AArch64BaseInfo.cpp revision 263508
1//===-- AArch64BaseInfo.cpp - AArch64 Base encoding information------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides basic encoding and assembly information for AArch64.
11//
12//===----------------------------------------------------------------------===//
13#include "AArch64BaseInfo.h"
14#include "llvm/ADT/APFloat.h"
15#include "llvm/ADT/SmallVector.h"
16#include "llvm/ADT/StringExtras.h"
17#include "llvm/Support/Regex.h"
18
19using namespace llvm;
20
21StringRef NamedImmMapper::toString(uint32_t Value, bool &Valid) const {
22  for (unsigned i = 0; i < NumPairs; ++i) {
23    if (Pairs[i].Value == Value) {
24      Valid = true;
25      return Pairs[i].Name;
26    }
27  }
28
29  Valid = false;
30  return StringRef();
31}
32
33uint32_t NamedImmMapper::fromString(StringRef Name, bool &Valid) const {
34  std::string LowerCaseName = Name.lower();
35  for (unsigned i = 0; i < NumPairs; ++i) {
36    if (Pairs[i].Name == LowerCaseName) {
37      Valid = true;
38      return Pairs[i].Value;
39    }
40  }
41
42  Valid = false;
43  return -1;
44}
45
46bool NamedImmMapper::validImm(uint32_t Value) const {
47  return Value < TooBigImm;
48}
49
50const NamedImmMapper::Mapping A64AT::ATMapper::ATPairs[] = {
51  {"s1e1r", S1E1R},
52  {"s1e2r", S1E2R},
53  {"s1e3r", S1E3R},
54  {"s1e1w", S1E1W},
55  {"s1e2w", S1E2W},
56  {"s1e3w", S1E3W},
57  {"s1e0r", S1E0R},
58  {"s1e0w", S1E0W},
59  {"s12e1r", S12E1R},
60  {"s12e1w", S12E1W},
61  {"s12e0r", S12E0R},
62  {"s12e0w", S12E0W},
63};
64
65A64AT::ATMapper::ATMapper()
66  : NamedImmMapper(ATPairs, 0) {}
67
68const NamedImmMapper::Mapping A64DB::DBarrierMapper::DBarrierPairs[] = {
69  {"oshld", OSHLD},
70  {"oshst", OSHST},
71  {"osh", OSH},
72  {"nshld", NSHLD},
73  {"nshst", NSHST},
74  {"nsh", NSH},
75  {"ishld", ISHLD},
76  {"ishst", ISHST},
77  {"ish", ISH},
78  {"ld", LD},
79  {"st", ST},
80  {"sy", SY}
81};
82
83A64DB::DBarrierMapper::DBarrierMapper()
84  : NamedImmMapper(DBarrierPairs, 16u) {}
85
86const NamedImmMapper::Mapping A64DC::DCMapper::DCPairs[] = {
87  {"zva", ZVA},
88  {"ivac", IVAC},
89  {"isw", ISW},
90  {"cvac", CVAC},
91  {"csw", CSW},
92  {"cvau", CVAU},
93  {"civac", CIVAC},
94  {"cisw", CISW}
95};
96
97A64DC::DCMapper::DCMapper()
98  : NamedImmMapper(DCPairs, 0) {}
99
100const NamedImmMapper::Mapping A64IC::ICMapper::ICPairs[] = {
101  {"ialluis",  IALLUIS},
102  {"iallu", IALLU},
103  {"ivau", IVAU}
104};
105
106A64IC::ICMapper::ICMapper()
107  : NamedImmMapper(ICPairs, 0) {}
108
109const NamedImmMapper::Mapping A64ISB::ISBMapper::ISBPairs[] = {
110  {"sy",  SY},
111};
112
113A64ISB::ISBMapper::ISBMapper()
114  : NamedImmMapper(ISBPairs, 16) {}
115
116const NamedImmMapper::Mapping A64PRFM::PRFMMapper::PRFMPairs[] = {
117  {"pldl1keep", PLDL1KEEP},
118  {"pldl1strm", PLDL1STRM},
119  {"pldl2keep", PLDL2KEEP},
120  {"pldl2strm", PLDL2STRM},
121  {"pldl3keep", PLDL3KEEP},
122  {"pldl3strm", PLDL3STRM},
123  {"plil1keep", PLIL1KEEP},
124  {"plil1strm", PLIL1STRM},
125  {"plil2keep", PLIL2KEEP},
126  {"plil2strm", PLIL2STRM},
127  {"plil3keep", PLIL3KEEP},
128  {"plil3strm", PLIL3STRM},
129  {"pstl1keep", PSTL1KEEP},
130  {"pstl1strm", PSTL1STRM},
131  {"pstl2keep", PSTL2KEEP},
132  {"pstl2strm", PSTL2STRM},
133  {"pstl3keep", PSTL3KEEP},
134  {"pstl3strm", PSTL3STRM}
135};
136
137A64PRFM::PRFMMapper::PRFMMapper()
138  : NamedImmMapper(PRFMPairs, 32) {}
139
140const NamedImmMapper::Mapping A64PState::PStateMapper::PStatePairs[] = {
141  {"spsel", SPSel},
142  {"daifset", DAIFSet},
143  {"daifclr", DAIFClr}
144};
145
146A64PState::PStateMapper::PStateMapper()
147  : NamedImmMapper(PStatePairs, 0) {}
148
149const NamedImmMapper::Mapping A64SysReg::MRSMapper::MRSPairs[] = {
150  {"mdccsr_el0", MDCCSR_EL0},
151  {"dbgdtrrx_el0", DBGDTRRX_EL0},
152  {"mdrar_el1", MDRAR_EL1},
153  {"oslsr_el1", OSLSR_EL1},
154  {"dbgauthstatus_el1", DBGAUTHSTATUS_EL1},
155  {"pmceid0_el0", PMCEID0_EL0},
156  {"pmceid1_el0", PMCEID1_EL0},
157  {"midr_el1", MIDR_EL1},
158  {"ccsidr_el1", CCSIDR_EL1},
159  {"clidr_el1", CLIDR_EL1},
160  {"ctr_el0", CTR_EL0},
161  {"mpidr_el1", MPIDR_EL1},
162  {"revidr_el1", REVIDR_EL1},
163  {"aidr_el1", AIDR_EL1},
164  {"dczid_el0", DCZID_EL0},
165  {"id_pfr0_el1", ID_PFR0_EL1},
166  {"id_pfr1_el1", ID_PFR1_EL1},
167  {"id_dfr0_el1", ID_DFR0_EL1},
168  {"id_afr0_el1", ID_AFR0_EL1},
169  {"id_mmfr0_el1", ID_MMFR0_EL1},
170  {"id_mmfr1_el1", ID_MMFR1_EL1},
171  {"id_mmfr2_el1", ID_MMFR2_EL1},
172  {"id_mmfr3_el1", ID_MMFR3_EL1},
173  {"id_isar0_el1", ID_ISAR0_EL1},
174  {"id_isar1_el1", ID_ISAR1_EL1},
175  {"id_isar2_el1", ID_ISAR2_EL1},
176  {"id_isar3_el1", ID_ISAR3_EL1},
177  {"id_isar4_el1", ID_ISAR4_EL1},
178  {"id_isar5_el1", ID_ISAR5_EL1},
179  {"id_aa64pfr0_el1", ID_AA64PFR0_EL1},
180  {"id_aa64pfr1_el1", ID_AA64PFR1_EL1},
181  {"id_aa64dfr0_el1", ID_AA64DFR0_EL1},
182  {"id_aa64dfr1_el1", ID_AA64DFR1_EL1},
183  {"id_aa64afr0_el1", ID_AA64AFR0_EL1},
184  {"id_aa64afr1_el1", ID_AA64AFR1_EL1},
185  {"id_aa64isar0_el1", ID_AA64ISAR0_EL1},
186  {"id_aa64isar1_el1", ID_AA64ISAR1_EL1},
187  {"id_aa64mmfr0_el1", ID_AA64MMFR0_EL1},
188  {"id_aa64mmfr1_el1", ID_AA64MMFR1_EL1},
189  {"mvfr0_el1", MVFR0_EL1},
190  {"mvfr1_el1", MVFR1_EL1},
191  {"mvfr2_el1", MVFR2_EL1},
192  {"rvbar_el1", RVBAR_EL1},
193  {"rvbar_el2", RVBAR_EL2},
194  {"rvbar_el3", RVBAR_EL3},
195  {"isr_el1", ISR_EL1},
196  {"cntpct_el0", CNTPCT_EL0},
197  {"cntvct_el0", CNTVCT_EL0},
198
199  // Trace registers
200  {"trcstatr", TRCSTATR},
201  {"trcidr8", TRCIDR8},
202  {"trcidr9", TRCIDR9},
203  {"trcidr10", TRCIDR10},
204  {"trcidr11", TRCIDR11},
205  {"trcidr12", TRCIDR12},
206  {"trcidr13", TRCIDR13},
207  {"trcidr0", TRCIDR0},
208  {"trcidr1", TRCIDR1},
209  {"trcidr2", TRCIDR2},
210  {"trcidr3", TRCIDR3},
211  {"trcidr4", TRCIDR4},
212  {"trcidr5", TRCIDR5},
213  {"trcidr6", TRCIDR6},
214  {"trcidr7", TRCIDR7},
215  {"trcoslsr", TRCOSLSR},
216  {"trcpdsr", TRCPDSR},
217  {"trcdevaff0", TRCDEVAFF0},
218  {"trcdevaff1", TRCDEVAFF1},
219  {"trclsr", TRCLSR},
220  {"trcauthstatus", TRCAUTHSTATUS},
221  {"trcdevarch", TRCDEVARCH},
222  {"trcdevid", TRCDEVID},
223  {"trcdevtype", TRCDEVTYPE},
224  {"trcpidr4", TRCPIDR4},
225  {"trcpidr5", TRCPIDR5},
226  {"trcpidr6", TRCPIDR6},
227  {"trcpidr7", TRCPIDR7},
228  {"trcpidr0", TRCPIDR0},
229  {"trcpidr1", TRCPIDR1},
230  {"trcpidr2", TRCPIDR2},
231  {"trcpidr3", TRCPIDR3},
232  {"trccidr0", TRCCIDR0},
233  {"trccidr1", TRCCIDR1},
234  {"trccidr2", TRCCIDR2},
235  {"trccidr3", TRCCIDR3},
236
237  // GICv3 registers
238  {"icc_iar1_el1", ICC_IAR1_EL1},
239  {"icc_iar0_el1", ICC_IAR0_EL1},
240  {"icc_hppir1_el1", ICC_HPPIR1_EL1},
241  {"icc_hppir0_el1", ICC_HPPIR0_EL1},
242  {"icc_rpr_el1", ICC_RPR_EL1},
243  {"ich_vtr_el2", ICH_VTR_EL2},
244  {"ich_eisr_el2", ICH_EISR_EL2},
245  {"ich_elsr_el2", ICH_ELSR_EL2}
246};
247
248A64SysReg::MRSMapper::MRSMapper() {
249    InstPairs = &MRSPairs[0];
250    NumInstPairs = llvm::array_lengthof(MRSPairs);
251}
252
253const NamedImmMapper::Mapping A64SysReg::MSRMapper::MSRPairs[] = {
254  {"dbgdtrtx_el0", DBGDTRTX_EL0},
255  {"oslar_el1", OSLAR_EL1},
256  {"pmswinc_el0", PMSWINC_EL0},
257
258  // Trace registers
259  {"trcoslar", TRCOSLAR},
260  {"trclar", TRCLAR},
261
262  // GICv3 registers
263  {"icc_eoir1_el1", ICC_EOIR1_EL1},
264  {"icc_eoir0_el1", ICC_EOIR0_EL1},
265  {"icc_dir_el1", ICC_DIR_EL1},
266  {"icc_sgi1r_el1", ICC_SGI1R_EL1},
267  {"icc_asgi1r_el1", ICC_ASGI1R_EL1},
268  {"icc_sgi0r_el1", ICC_SGI0R_EL1}
269};
270
271A64SysReg::MSRMapper::MSRMapper() {
272    InstPairs = &MSRPairs[0];
273    NumInstPairs = llvm::array_lengthof(MSRPairs);
274}
275
276
277const NamedImmMapper::Mapping A64SysReg::SysRegMapper::SysRegPairs[] = {
278  {"osdtrrx_el1", OSDTRRX_EL1},
279  {"osdtrtx_el1",  OSDTRTX_EL1},
280  {"teecr32_el1", TEECR32_EL1},
281  {"mdccint_el1", MDCCINT_EL1},
282  {"mdscr_el1", MDSCR_EL1},
283  {"dbgdtr_el0", DBGDTR_EL0},
284  {"oseccr_el1", OSECCR_EL1},
285  {"dbgvcr32_el2", DBGVCR32_EL2},
286  {"dbgbvr0_el1", DBGBVR0_EL1},
287  {"dbgbvr1_el1", DBGBVR1_EL1},
288  {"dbgbvr2_el1", DBGBVR2_EL1},
289  {"dbgbvr3_el1", DBGBVR3_EL1},
290  {"dbgbvr4_el1", DBGBVR4_EL1},
291  {"dbgbvr5_el1", DBGBVR5_EL1},
292  {"dbgbvr6_el1", DBGBVR6_EL1},
293  {"dbgbvr7_el1", DBGBVR7_EL1},
294  {"dbgbvr8_el1", DBGBVR8_EL1},
295  {"dbgbvr9_el1", DBGBVR9_EL1},
296  {"dbgbvr10_el1", DBGBVR10_EL1},
297  {"dbgbvr11_el1", DBGBVR11_EL1},
298  {"dbgbvr12_el1", DBGBVR12_EL1},
299  {"dbgbvr13_el1", DBGBVR13_EL1},
300  {"dbgbvr14_el1", DBGBVR14_EL1},
301  {"dbgbvr15_el1", DBGBVR15_EL1},
302  {"dbgbcr0_el1", DBGBCR0_EL1},
303  {"dbgbcr1_el1", DBGBCR1_EL1},
304  {"dbgbcr2_el1", DBGBCR2_EL1},
305  {"dbgbcr3_el1", DBGBCR3_EL1},
306  {"dbgbcr4_el1", DBGBCR4_EL1},
307  {"dbgbcr5_el1", DBGBCR5_EL1},
308  {"dbgbcr6_el1", DBGBCR6_EL1},
309  {"dbgbcr7_el1", DBGBCR7_EL1},
310  {"dbgbcr8_el1", DBGBCR8_EL1},
311  {"dbgbcr9_el1", DBGBCR9_EL1},
312  {"dbgbcr10_el1", DBGBCR10_EL1},
313  {"dbgbcr11_el1", DBGBCR11_EL1},
314  {"dbgbcr12_el1", DBGBCR12_EL1},
315  {"dbgbcr13_el1", DBGBCR13_EL1},
316  {"dbgbcr14_el1", DBGBCR14_EL1},
317  {"dbgbcr15_el1", DBGBCR15_EL1},
318  {"dbgwvr0_el1", DBGWVR0_EL1},
319  {"dbgwvr1_el1", DBGWVR1_EL1},
320  {"dbgwvr2_el1", DBGWVR2_EL1},
321  {"dbgwvr3_el1", DBGWVR3_EL1},
322  {"dbgwvr4_el1", DBGWVR4_EL1},
323  {"dbgwvr5_el1", DBGWVR5_EL1},
324  {"dbgwvr6_el1", DBGWVR6_EL1},
325  {"dbgwvr7_el1", DBGWVR7_EL1},
326  {"dbgwvr8_el1", DBGWVR8_EL1},
327  {"dbgwvr9_el1", DBGWVR9_EL1},
328  {"dbgwvr10_el1", DBGWVR10_EL1},
329  {"dbgwvr11_el1", DBGWVR11_EL1},
330  {"dbgwvr12_el1", DBGWVR12_EL1},
331  {"dbgwvr13_el1", DBGWVR13_EL1},
332  {"dbgwvr14_el1", DBGWVR14_EL1},
333  {"dbgwvr15_el1", DBGWVR15_EL1},
334  {"dbgwcr0_el1", DBGWCR0_EL1},
335  {"dbgwcr1_el1", DBGWCR1_EL1},
336  {"dbgwcr2_el1", DBGWCR2_EL1},
337  {"dbgwcr3_el1", DBGWCR3_EL1},
338  {"dbgwcr4_el1", DBGWCR4_EL1},
339  {"dbgwcr5_el1", DBGWCR5_EL1},
340  {"dbgwcr6_el1", DBGWCR6_EL1},
341  {"dbgwcr7_el1", DBGWCR7_EL1},
342  {"dbgwcr8_el1", DBGWCR8_EL1},
343  {"dbgwcr9_el1", DBGWCR9_EL1},
344  {"dbgwcr10_el1", DBGWCR10_EL1},
345  {"dbgwcr11_el1", DBGWCR11_EL1},
346  {"dbgwcr12_el1", DBGWCR12_EL1},
347  {"dbgwcr13_el1", DBGWCR13_EL1},
348  {"dbgwcr14_el1", DBGWCR14_EL1},
349  {"dbgwcr15_el1", DBGWCR15_EL1},
350  {"teehbr32_el1", TEEHBR32_EL1},
351  {"osdlr_el1", OSDLR_EL1},
352  {"dbgprcr_el1", DBGPRCR_EL1},
353  {"dbgclaimset_el1", DBGCLAIMSET_EL1},
354  {"dbgclaimclr_el1", DBGCLAIMCLR_EL1},
355  {"csselr_el1", CSSELR_EL1},
356  {"vpidr_el2", VPIDR_EL2},
357  {"vmpidr_el2", VMPIDR_EL2},
358  {"sctlr_el1", SCTLR_EL1},
359  {"sctlr_el2", SCTLR_EL2},
360  {"sctlr_el3", SCTLR_EL3},
361  {"actlr_el1", ACTLR_EL1},
362  {"actlr_el2", ACTLR_EL2},
363  {"actlr_el3", ACTLR_EL3},
364  {"cpacr_el1", CPACR_EL1},
365  {"hcr_el2", HCR_EL2},
366  {"scr_el3", SCR_EL3},
367  {"mdcr_el2", MDCR_EL2},
368  {"sder32_el3", SDER32_EL3},
369  {"cptr_el2", CPTR_EL2},
370  {"cptr_el3", CPTR_EL3},
371  {"hstr_el2", HSTR_EL2},
372  {"hacr_el2", HACR_EL2},
373  {"mdcr_el3", MDCR_EL3},
374  {"ttbr0_el1", TTBR0_EL1},
375  {"ttbr0_el2", TTBR0_EL2},
376  {"ttbr0_el3", TTBR0_EL3},
377  {"ttbr1_el1", TTBR1_EL1},
378  {"tcr_el1", TCR_EL1},
379  {"tcr_el2", TCR_EL2},
380  {"tcr_el3", TCR_EL3},
381  {"vttbr_el2", VTTBR_EL2},
382  {"vtcr_el2", VTCR_EL2},
383  {"dacr32_el2", DACR32_EL2},
384  {"spsr_el1", SPSR_EL1},
385  {"spsr_el2", SPSR_EL2},
386  {"spsr_el3", SPSR_EL3},
387  {"elr_el1", ELR_EL1},
388  {"elr_el2", ELR_EL2},
389  {"elr_el3", ELR_EL3},
390  {"sp_el0", SP_EL0},
391  {"sp_el1", SP_EL1},
392  {"sp_el2", SP_EL2},
393  {"spsel", SPSel},
394  {"nzcv", NZCV},
395  {"daif", DAIF},
396  {"currentel", CurrentEL},
397  {"spsr_irq", SPSR_irq},
398  {"spsr_abt", SPSR_abt},
399  {"spsr_und", SPSR_und},
400  {"spsr_fiq", SPSR_fiq},
401  {"fpcr", FPCR},
402  {"fpsr", FPSR},
403  {"dspsr_el0", DSPSR_EL0},
404  {"dlr_el0", DLR_EL0},
405  {"ifsr32_el2", IFSR32_EL2},
406  {"afsr0_el1", AFSR0_EL1},
407  {"afsr0_el2", AFSR0_EL2},
408  {"afsr0_el3", AFSR0_EL3},
409  {"afsr1_el1", AFSR1_EL1},
410  {"afsr1_el2", AFSR1_EL2},
411  {"afsr1_el3", AFSR1_EL3},
412  {"esr_el1", ESR_EL1},
413  {"esr_el2", ESR_EL2},
414  {"esr_el3", ESR_EL3},
415  {"fpexc32_el2", FPEXC32_EL2},
416  {"far_el1", FAR_EL1},
417  {"far_el2", FAR_EL2},
418  {"far_el3", FAR_EL3},
419  {"hpfar_el2", HPFAR_EL2},
420  {"par_el1", PAR_EL1},
421  {"pmcr_el0", PMCR_EL0},
422  {"pmcntenset_el0", PMCNTENSET_EL0},
423  {"pmcntenclr_el0", PMCNTENCLR_EL0},
424  {"pmovsclr_el0", PMOVSCLR_EL0},
425  {"pmselr_el0", PMSELR_EL0},
426  {"pmccntr_el0", PMCCNTR_EL0},
427  {"pmxevtyper_el0", PMXEVTYPER_EL0},
428  {"pmxevcntr_el0", PMXEVCNTR_EL0},
429  {"pmuserenr_el0", PMUSERENR_EL0},
430  {"pmintenset_el1", PMINTENSET_EL1},
431  {"pmintenclr_el1", PMINTENCLR_EL1},
432  {"pmovsset_el0", PMOVSSET_EL0},
433  {"mair_el1", MAIR_EL1},
434  {"mair_el2", MAIR_EL2},
435  {"mair_el3", MAIR_EL3},
436  {"amair_el1", AMAIR_EL1},
437  {"amair_el2", AMAIR_EL2},
438  {"amair_el3", AMAIR_EL3},
439  {"vbar_el1", VBAR_EL1},
440  {"vbar_el2", VBAR_EL2},
441  {"vbar_el3", VBAR_EL3},
442  {"rmr_el1", RMR_EL1},
443  {"rmr_el2", RMR_EL2},
444  {"rmr_el3", RMR_EL3},
445  {"contextidr_el1", CONTEXTIDR_EL1},
446  {"tpidr_el0", TPIDR_EL0},
447  {"tpidr_el2", TPIDR_EL2},
448  {"tpidr_el3", TPIDR_EL3},
449  {"tpidrro_el0", TPIDRRO_EL0},
450  {"tpidr_el1", TPIDR_EL1},
451  {"cntfrq_el0", CNTFRQ_EL0},
452  {"cntvoff_el2", CNTVOFF_EL2},
453  {"cntkctl_el1", CNTKCTL_EL1},
454  {"cnthctl_el2", CNTHCTL_EL2},
455  {"cntp_tval_el0", CNTP_TVAL_EL0},
456  {"cnthp_tval_el2", CNTHP_TVAL_EL2},
457  {"cntps_tval_el1", CNTPS_TVAL_EL1},
458  {"cntp_ctl_el0", CNTP_CTL_EL0},
459  {"cnthp_ctl_el2", CNTHP_CTL_EL2},
460  {"cntps_ctl_el1", CNTPS_CTL_EL1},
461  {"cntp_cval_el0", CNTP_CVAL_EL0},
462  {"cnthp_cval_el2", CNTHP_CVAL_EL2},
463  {"cntps_cval_el1", CNTPS_CVAL_EL1},
464  {"cntv_tval_el0", CNTV_TVAL_EL0},
465  {"cntv_ctl_el0", CNTV_CTL_EL0},
466  {"cntv_cval_el0", CNTV_CVAL_EL0},
467  {"pmevcntr0_el0", PMEVCNTR0_EL0},
468  {"pmevcntr1_el0", PMEVCNTR1_EL0},
469  {"pmevcntr2_el0", PMEVCNTR2_EL0},
470  {"pmevcntr3_el0", PMEVCNTR3_EL0},
471  {"pmevcntr4_el0", PMEVCNTR4_EL0},
472  {"pmevcntr5_el0", PMEVCNTR5_EL0},
473  {"pmevcntr6_el0", PMEVCNTR6_EL0},
474  {"pmevcntr7_el0", PMEVCNTR7_EL0},
475  {"pmevcntr8_el0", PMEVCNTR8_EL0},
476  {"pmevcntr9_el0", PMEVCNTR9_EL0},
477  {"pmevcntr10_el0", PMEVCNTR10_EL0},
478  {"pmevcntr11_el0", PMEVCNTR11_EL0},
479  {"pmevcntr12_el0", PMEVCNTR12_EL0},
480  {"pmevcntr13_el0", PMEVCNTR13_EL0},
481  {"pmevcntr14_el0", PMEVCNTR14_EL0},
482  {"pmevcntr15_el0", PMEVCNTR15_EL0},
483  {"pmevcntr16_el0", PMEVCNTR16_EL0},
484  {"pmevcntr17_el0", PMEVCNTR17_EL0},
485  {"pmevcntr18_el0", PMEVCNTR18_EL0},
486  {"pmevcntr19_el0", PMEVCNTR19_EL0},
487  {"pmevcntr20_el0", PMEVCNTR20_EL0},
488  {"pmevcntr21_el0", PMEVCNTR21_EL0},
489  {"pmevcntr22_el0", PMEVCNTR22_EL0},
490  {"pmevcntr23_el0", PMEVCNTR23_EL0},
491  {"pmevcntr24_el0", PMEVCNTR24_EL0},
492  {"pmevcntr25_el0", PMEVCNTR25_EL0},
493  {"pmevcntr26_el0", PMEVCNTR26_EL0},
494  {"pmevcntr27_el0", PMEVCNTR27_EL0},
495  {"pmevcntr28_el0", PMEVCNTR28_EL0},
496  {"pmevcntr29_el0", PMEVCNTR29_EL0},
497  {"pmevcntr30_el0", PMEVCNTR30_EL0},
498  {"pmccfiltr_el0", PMCCFILTR_EL0},
499  {"pmevtyper0_el0", PMEVTYPER0_EL0},
500  {"pmevtyper1_el0", PMEVTYPER1_EL0},
501  {"pmevtyper2_el0", PMEVTYPER2_EL0},
502  {"pmevtyper3_el0", PMEVTYPER3_EL0},
503  {"pmevtyper4_el0", PMEVTYPER4_EL0},
504  {"pmevtyper5_el0", PMEVTYPER5_EL0},
505  {"pmevtyper6_el0", PMEVTYPER6_EL0},
506  {"pmevtyper7_el0", PMEVTYPER7_EL0},
507  {"pmevtyper8_el0", PMEVTYPER8_EL0},
508  {"pmevtyper9_el0", PMEVTYPER9_EL0},
509  {"pmevtyper10_el0", PMEVTYPER10_EL0},
510  {"pmevtyper11_el0", PMEVTYPER11_EL0},
511  {"pmevtyper12_el0", PMEVTYPER12_EL0},
512  {"pmevtyper13_el0", PMEVTYPER13_EL0},
513  {"pmevtyper14_el0", PMEVTYPER14_EL0},
514  {"pmevtyper15_el0", PMEVTYPER15_EL0},
515  {"pmevtyper16_el0", PMEVTYPER16_EL0},
516  {"pmevtyper17_el0", PMEVTYPER17_EL0},
517  {"pmevtyper18_el0", PMEVTYPER18_EL0},
518  {"pmevtyper19_el0", PMEVTYPER19_EL0},
519  {"pmevtyper20_el0", PMEVTYPER20_EL0},
520  {"pmevtyper21_el0", PMEVTYPER21_EL0},
521  {"pmevtyper22_el0", PMEVTYPER22_EL0},
522  {"pmevtyper23_el0", PMEVTYPER23_EL0},
523  {"pmevtyper24_el0", PMEVTYPER24_EL0},
524  {"pmevtyper25_el0", PMEVTYPER25_EL0},
525  {"pmevtyper26_el0", PMEVTYPER26_EL0},
526  {"pmevtyper27_el0", PMEVTYPER27_EL0},
527  {"pmevtyper28_el0", PMEVTYPER28_EL0},
528  {"pmevtyper29_el0", PMEVTYPER29_EL0},
529  {"pmevtyper30_el0", PMEVTYPER30_EL0},
530
531  // Trace registers
532  {"trcprgctlr", TRCPRGCTLR},
533  {"trcprocselr", TRCPROCSELR},
534  {"trcconfigr", TRCCONFIGR},
535  {"trcauxctlr", TRCAUXCTLR},
536  {"trceventctl0r", TRCEVENTCTL0R},
537  {"trceventctl1r", TRCEVENTCTL1R},
538  {"trcstallctlr", TRCSTALLCTLR},
539  {"trctsctlr", TRCTSCTLR},
540  {"trcsyncpr", TRCSYNCPR},
541  {"trcccctlr", TRCCCCTLR},
542  {"trcbbctlr", TRCBBCTLR},
543  {"trctraceidr", TRCTRACEIDR},
544  {"trcqctlr", TRCQCTLR},
545  {"trcvictlr", TRCVICTLR},
546  {"trcviiectlr", TRCVIIECTLR},
547  {"trcvissctlr", TRCVISSCTLR},
548  {"trcvipcssctlr", TRCVIPCSSCTLR},
549  {"trcvdctlr", TRCVDCTLR},
550  {"trcvdsacctlr", TRCVDSACCTLR},
551  {"trcvdarcctlr", TRCVDARCCTLR},
552  {"trcseqevr0", TRCSEQEVR0},
553  {"trcseqevr1", TRCSEQEVR1},
554  {"trcseqevr2", TRCSEQEVR2},
555  {"trcseqrstevr", TRCSEQRSTEVR},
556  {"trcseqstr", TRCSEQSTR},
557  {"trcextinselr", TRCEXTINSELR},
558  {"trccntrldvr0", TRCCNTRLDVR0},
559  {"trccntrldvr1", TRCCNTRLDVR1},
560  {"trccntrldvr2", TRCCNTRLDVR2},
561  {"trccntrldvr3", TRCCNTRLDVR3},
562  {"trccntctlr0", TRCCNTCTLR0},
563  {"trccntctlr1", TRCCNTCTLR1},
564  {"trccntctlr2", TRCCNTCTLR2},
565  {"trccntctlr3", TRCCNTCTLR3},
566  {"trccntvr0", TRCCNTVR0},
567  {"trccntvr1", TRCCNTVR1},
568  {"trccntvr2", TRCCNTVR2},
569  {"trccntvr3", TRCCNTVR3},
570  {"trcimspec0", TRCIMSPEC0},
571  {"trcimspec1", TRCIMSPEC1},
572  {"trcimspec2", TRCIMSPEC2},
573  {"trcimspec3", TRCIMSPEC3},
574  {"trcimspec4", TRCIMSPEC4},
575  {"trcimspec5", TRCIMSPEC5},
576  {"trcimspec6", TRCIMSPEC6},
577  {"trcimspec7", TRCIMSPEC7},
578  {"trcrsctlr2", TRCRSCTLR2},
579  {"trcrsctlr3", TRCRSCTLR3},
580  {"trcrsctlr4", TRCRSCTLR4},
581  {"trcrsctlr5", TRCRSCTLR5},
582  {"trcrsctlr6", TRCRSCTLR6},
583  {"trcrsctlr7", TRCRSCTLR7},
584  {"trcrsctlr8", TRCRSCTLR8},
585  {"trcrsctlr9", TRCRSCTLR9},
586  {"trcrsctlr10", TRCRSCTLR10},
587  {"trcrsctlr11", TRCRSCTLR11},
588  {"trcrsctlr12", TRCRSCTLR12},
589  {"trcrsctlr13", TRCRSCTLR13},
590  {"trcrsctlr14", TRCRSCTLR14},
591  {"trcrsctlr15", TRCRSCTLR15},
592  {"trcrsctlr16", TRCRSCTLR16},
593  {"trcrsctlr17", TRCRSCTLR17},
594  {"trcrsctlr18", TRCRSCTLR18},
595  {"trcrsctlr19", TRCRSCTLR19},
596  {"trcrsctlr20", TRCRSCTLR20},
597  {"trcrsctlr21", TRCRSCTLR21},
598  {"trcrsctlr22", TRCRSCTLR22},
599  {"trcrsctlr23", TRCRSCTLR23},
600  {"trcrsctlr24", TRCRSCTLR24},
601  {"trcrsctlr25", TRCRSCTLR25},
602  {"trcrsctlr26", TRCRSCTLR26},
603  {"trcrsctlr27", TRCRSCTLR27},
604  {"trcrsctlr28", TRCRSCTLR28},
605  {"trcrsctlr29", TRCRSCTLR29},
606  {"trcrsctlr30", TRCRSCTLR30},
607  {"trcrsctlr31", TRCRSCTLR31},
608  {"trcssccr0", TRCSSCCR0},
609  {"trcssccr1", TRCSSCCR1},
610  {"trcssccr2", TRCSSCCR2},
611  {"trcssccr3", TRCSSCCR3},
612  {"trcssccr4", TRCSSCCR4},
613  {"trcssccr5", TRCSSCCR5},
614  {"trcssccr6", TRCSSCCR6},
615  {"trcssccr7", TRCSSCCR7},
616  {"trcsscsr0", TRCSSCSR0},
617  {"trcsscsr1", TRCSSCSR1},
618  {"trcsscsr2", TRCSSCSR2},
619  {"trcsscsr3", TRCSSCSR3},
620  {"trcsscsr4", TRCSSCSR4},
621  {"trcsscsr5", TRCSSCSR5},
622  {"trcsscsr6", TRCSSCSR6},
623  {"trcsscsr7", TRCSSCSR7},
624  {"trcsspcicr0", TRCSSPCICR0},
625  {"trcsspcicr1", TRCSSPCICR1},
626  {"trcsspcicr2", TRCSSPCICR2},
627  {"trcsspcicr3", TRCSSPCICR3},
628  {"trcsspcicr4", TRCSSPCICR4},
629  {"trcsspcicr5", TRCSSPCICR5},
630  {"trcsspcicr6", TRCSSPCICR6},
631  {"trcsspcicr7", TRCSSPCICR7},
632  {"trcpdcr", TRCPDCR},
633  {"trcacvr0", TRCACVR0},
634  {"trcacvr1", TRCACVR1},
635  {"trcacvr2", TRCACVR2},
636  {"trcacvr3", TRCACVR3},
637  {"trcacvr4", TRCACVR4},
638  {"trcacvr5", TRCACVR5},
639  {"trcacvr6", TRCACVR6},
640  {"trcacvr7", TRCACVR7},
641  {"trcacvr8", TRCACVR8},
642  {"trcacvr9", TRCACVR9},
643  {"trcacvr10", TRCACVR10},
644  {"trcacvr11", TRCACVR11},
645  {"trcacvr12", TRCACVR12},
646  {"trcacvr13", TRCACVR13},
647  {"trcacvr14", TRCACVR14},
648  {"trcacvr15", TRCACVR15},
649  {"trcacatr0", TRCACATR0},
650  {"trcacatr1", TRCACATR1},
651  {"trcacatr2", TRCACATR2},
652  {"trcacatr3", TRCACATR3},
653  {"trcacatr4", TRCACATR4},
654  {"trcacatr5", TRCACATR5},
655  {"trcacatr6", TRCACATR6},
656  {"trcacatr7", TRCACATR7},
657  {"trcacatr8", TRCACATR8},
658  {"trcacatr9", TRCACATR9},
659  {"trcacatr10", TRCACATR10},
660  {"trcacatr11", TRCACATR11},
661  {"trcacatr12", TRCACATR12},
662  {"trcacatr13", TRCACATR13},
663  {"trcacatr14", TRCACATR14},
664  {"trcacatr15", TRCACATR15},
665  {"trcdvcvr0", TRCDVCVR0},
666  {"trcdvcvr1", TRCDVCVR1},
667  {"trcdvcvr2", TRCDVCVR2},
668  {"trcdvcvr3", TRCDVCVR3},
669  {"trcdvcvr4", TRCDVCVR4},
670  {"trcdvcvr5", TRCDVCVR5},
671  {"trcdvcvr6", TRCDVCVR6},
672  {"trcdvcvr7", TRCDVCVR7},
673  {"trcdvcmr0", TRCDVCMR0},
674  {"trcdvcmr1", TRCDVCMR1},
675  {"trcdvcmr2", TRCDVCMR2},
676  {"trcdvcmr3", TRCDVCMR3},
677  {"trcdvcmr4", TRCDVCMR4},
678  {"trcdvcmr5", TRCDVCMR5},
679  {"trcdvcmr6", TRCDVCMR6},
680  {"trcdvcmr7", TRCDVCMR7},
681  {"trccidcvr0", TRCCIDCVR0},
682  {"trccidcvr1", TRCCIDCVR1},
683  {"trccidcvr2", TRCCIDCVR2},
684  {"trccidcvr3", TRCCIDCVR3},
685  {"trccidcvr4", TRCCIDCVR4},
686  {"trccidcvr5", TRCCIDCVR5},
687  {"trccidcvr6", TRCCIDCVR6},
688  {"trccidcvr7", TRCCIDCVR7},
689  {"trcvmidcvr0", TRCVMIDCVR0},
690  {"trcvmidcvr1", TRCVMIDCVR1},
691  {"trcvmidcvr2", TRCVMIDCVR2},
692  {"trcvmidcvr3", TRCVMIDCVR3},
693  {"trcvmidcvr4", TRCVMIDCVR4},
694  {"trcvmidcvr5", TRCVMIDCVR5},
695  {"trcvmidcvr6", TRCVMIDCVR6},
696  {"trcvmidcvr7", TRCVMIDCVR7},
697  {"trccidcctlr0", TRCCIDCCTLR0},
698  {"trccidcctlr1", TRCCIDCCTLR1},
699  {"trcvmidcctlr0", TRCVMIDCCTLR0},
700  {"trcvmidcctlr1", TRCVMIDCCTLR1},
701  {"trcitctrl", TRCITCTRL},
702  {"trcclaimset", TRCCLAIMSET},
703  {"trcclaimclr", TRCCLAIMCLR},
704
705  // GICv3 registers
706  {"icc_bpr1_el1", ICC_BPR1_EL1},
707  {"icc_bpr0_el1", ICC_BPR0_EL1},
708  {"icc_pmr_el1", ICC_PMR_EL1},
709  {"icc_ctlr_el1", ICC_CTLR_EL1},
710  {"icc_ctlr_el3", ICC_CTLR_EL3},
711  {"icc_sre_el1", ICC_SRE_EL1},
712  {"icc_sre_el2", ICC_SRE_EL2},
713  {"icc_sre_el3", ICC_SRE_EL3},
714  {"icc_igrpen0_el1", ICC_IGRPEN0_EL1},
715  {"icc_igrpen1_el1", ICC_IGRPEN1_EL1},
716  {"icc_igrpen1_el3", ICC_IGRPEN1_EL3},
717  {"icc_seien_el1", ICC_SEIEN_EL1},
718  {"icc_ap0r0_el1", ICC_AP0R0_EL1},
719  {"icc_ap0r1_el1", ICC_AP0R1_EL1},
720  {"icc_ap0r2_el1", ICC_AP0R2_EL1},
721  {"icc_ap0r3_el1", ICC_AP0R3_EL1},
722  {"icc_ap1r0_el1", ICC_AP1R0_EL1},
723  {"icc_ap1r1_el1", ICC_AP1R1_EL1},
724  {"icc_ap1r2_el1", ICC_AP1R2_EL1},
725  {"icc_ap1r3_el1", ICC_AP1R3_EL1},
726  {"ich_ap0r0_el2", ICH_AP0R0_EL2},
727  {"ich_ap0r1_el2", ICH_AP0R1_EL2},
728  {"ich_ap0r2_el2", ICH_AP0R2_EL2},
729  {"ich_ap0r3_el2", ICH_AP0R3_EL2},
730  {"ich_ap1r0_el2", ICH_AP1R0_EL2},
731  {"ich_ap1r1_el2", ICH_AP1R1_EL2},
732  {"ich_ap1r2_el2", ICH_AP1R2_EL2},
733  {"ich_ap1r3_el2", ICH_AP1R3_EL2},
734  {"ich_hcr_el2", ICH_HCR_EL2},
735  {"ich_misr_el2", ICH_MISR_EL2},
736  {"ich_vmcr_el2", ICH_VMCR_EL2},
737  {"ich_vseir_el2", ICH_VSEIR_EL2},
738  {"ich_lr0_el2", ICH_LR0_EL2},
739  {"ich_lr1_el2", ICH_LR1_EL2},
740  {"ich_lr2_el2", ICH_LR2_EL2},
741  {"ich_lr3_el2", ICH_LR3_EL2},
742  {"ich_lr4_el2", ICH_LR4_EL2},
743  {"ich_lr5_el2", ICH_LR5_EL2},
744  {"ich_lr6_el2", ICH_LR6_EL2},
745  {"ich_lr7_el2", ICH_LR7_EL2},
746  {"ich_lr8_el2", ICH_LR8_EL2},
747  {"ich_lr9_el2", ICH_LR9_EL2},
748  {"ich_lr10_el2", ICH_LR10_EL2},
749  {"ich_lr11_el2", ICH_LR11_EL2},
750  {"ich_lr12_el2", ICH_LR12_EL2},
751  {"ich_lr13_el2", ICH_LR13_EL2},
752  {"ich_lr14_el2", ICH_LR14_EL2},
753  {"ich_lr15_el2", ICH_LR15_EL2}
754};
755
756uint32_t
757A64SysReg::SysRegMapper::fromString(StringRef Name, bool &Valid) const {
758  // First search the registers shared by all
759  std::string NameLower = Name.lower();
760  for (unsigned i = 0; i < array_lengthof(SysRegPairs); ++i) {
761    if (SysRegPairs[i].Name == NameLower) {
762      Valid = true;
763      return SysRegPairs[i].Value;
764    }
765  }
766
767  // Now try the instruction-specific registers (either read-only or
768  // write-only).
769  for (unsigned i = 0; i < NumInstPairs; ++i) {
770    if (InstPairs[i].Name == NameLower) {
771      Valid = true;
772      return InstPairs[i].Value;
773    }
774  }
775
776  // Try to parse an S<op0>_<op1>_<Cn>_<Cm>_<op2> register name, where the bits
777  // are: 11 xxx 1x11 xxxx xxx
778  Regex GenericRegPattern("^s3_([0-7])_c(1[15])_c([0-9]|1[0-5])_([0-7])$");
779
780  SmallVector<StringRef, 4> Ops;
781  if (!GenericRegPattern.match(NameLower, &Ops)) {
782    Valid = false;
783    return -1;
784  }
785
786  uint32_t Op0 = 3, Op1 = 0, CRn = 0, CRm = 0, Op2 = 0;
787  uint32_t Bits;
788  Ops[1].getAsInteger(10, Op1);
789  Ops[2].getAsInteger(10, CRn);
790  Ops[3].getAsInteger(10, CRm);
791  Ops[4].getAsInteger(10, Op2);
792  Bits = (Op0 << 14) | (Op1 << 11) | (CRn << 7) | (CRm << 3) | Op2;
793
794  Valid = true;
795  return Bits;
796}
797
798std::string
799A64SysReg::SysRegMapper::toString(uint32_t Bits, bool &Valid) const {
800  for (unsigned i = 0; i < array_lengthof(SysRegPairs); ++i) {
801    if (SysRegPairs[i].Value == Bits) {
802      Valid = true;
803      return SysRegPairs[i].Name;
804    }
805  }
806
807  for (unsigned i = 0; i < NumInstPairs; ++i) {
808    if (InstPairs[i].Value == Bits) {
809      Valid = true;
810      return InstPairs[i].Name;
811    }
812  }
813
814  uint32_t Op0 = (Bits >> 14) & 0x3;
815  uint32_t Op1 = (Bits >> 11) & 0x7;
816  uint32_t CRn = (Bits >> 7) & 0xf;
817  uint32_t CRm = (Bits >> 3) & 0xf;
818  uint32_t Op2 = Bits & 0x7;
819
820  // Only combinations matching: 11 xxx 1x11 xxxx xxx are valid for a generic
821  // name.
822  if (Op0 != 3 || (CRn != 11 && CRn != 15)) {
823      Valid = false;
824      return "";
825  }
826
827  assert(Op0 == 3 && (CRn == 11 || CRn == 15) && "Invalid generic sysreg");
828
829  Valid = true;
830  return "s3_" + utostr(Op1) + "_c" + utostr(CRn)
831               + "_c" + utostr(CRm) + "_" + utostr(Op2);
832}
833
834const NamedImmMapper::Mapping A64TLBI::TLBIMapper::TLBIPairs[] = {
835  {"ipas2e1is", IPAS2E1IS},
836  {"ipas2le1is", IPAS2LE1IS},
837  {"vmalle1is", VMALLE1IS},
838  {"alle2is", ALLE2IS},
839  {"alle3is", ALLE3IS},
840  {"vae1is", VAE1IS},
841  {"vae2is", VAE2IS},
842  {"vae3is", VAE3IS},
843  {"aside1is", ASIDE1IS},
844  {"vaae1is", VAAE1IS},
845  {"alle1is", ALLE1IS},
846  {"vale1is", VALE1IS},
847  {"vale2is", VALE2IS},
848  {"vale3is", VALE3IS},
849  {"vmalls12e1is", VMALLS12E1IS},
850  {"vaale1is", VAALE1IS},
851  {"ipas2e1", IPAS2E1},
852  {"ipas2le1", IPAS2LE1},
853  {"vmalle1", VMALLE1},
854  {"alle2", ALLE2},
855  {"alle3", ALLE3},
856  {"vae1", VAE1},
857  {"vae2", VAE2},
858  {"vae3", VAE3},
859  {"aside1", ASIDE1},
860  {"vaae1", VAAE1},
861  {"alle1", ALLE1},
862  {"vale1", VALE1},
863  {"vale2", VALE2},
864  {"vale3", VALE3},
865  {"vmalls12e1", VMALLS12E1},
866  {"vaale1", VAALE1}
867};
868
869A64TLBI::TLBIMapper::TLBIMapper()
870  : NamedImmMapper(TLBIPairs, 0) {}
871
872bool A64Imms::isFPImm(const APFloat &Val, uint32_t &Imm8Bits) {
873  const fltSemantics &Sem = Val.getSemantics();
874  unsigned FracBits = APFloat::semanticsPrecision(Sem) - 1;
875
876  uint32_t ExpMask;
877  switch (FracBits) {
878  case 10: // IEEE half-precision
879    ExpMask = 0x1f;
880    break;
881  case 23: // IEEE single-precision
882    ExpMask = 0xff;
883    break;
884  case 52: // IEEE double-precision
885    ExpMask = 0x7ff;
886    break;
887  case 112: // IEEE quad-precision
888    // No immediates are valid for double precision.
889    return false;
890  default:
891    llvm_unreachable("Only half, single and double precision supported");
892  }
893
894  uint32_t ExpStart = FracBits;
895  uint64_t FracMask = (1ULL << FracBits) - 1;
896
897  uint32_t Sign = Val.isNegative();
898
899  uint64_t Bits= Val.bitcastToAPInt().getLimitedValue();
900  uint64_t Fraction = Bits & FracMask;
901  int32_t Exponent = ((Bits >> ExpStart) & ExpMask);
902  Exponent -= ExpMask >> 1;
903
904  // S[d] = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>, 5):imm8<5:0>:Zeros(19)
905  // D[d] = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>, 8):imm8<5:0>:Zeros(48)
906  // This translates to: only 4 bits of fraction; -3 <= exp <= 4.
907  uint64_t A64FracStart = FracBits - 4;
908  uint64_t A64FracMask = 0xf;
909
910  // Are there too many fraction bits?
911  if (Fraction & ~(A64FracMask << A64FracStart))
912    return false;
913
914  if (Exponent < -3 || Exponent > 4)
915    return false;
916
917  uint32_t PackedFraction = (Fraction >> A64FracStart) & A64FracMask;
918  uint32_t PackedExp = (Exponent + 7) & 0x7;
919
920  Imm8Bits = (Sign << 7) | (PackedExp << 4) | PackedFraction;
921  return true;
922}
923
924// Encoding of the immediate for logical (immediate) instructions:
925//
926// | N | imms   | immr   | size | R            | S            |
927// |---+--------+--------+------+--------------+--------------|
928// | 1 | ssssss | rrrrrr |   64 | UInt(rrrrrr) | UInt(ssssss) |
929// | 0 | 0sssss | xrrrrr |   32 | UInt(rrrrr)  | UInt(sssss)  |
930// | 0 | 10ssss | xxrrrr |   16 | UInt(rrrr)   | UInt(ssss)   |
931// | 0 | 110sss | xxxrrr |    8 | UInt(rrr)    | UInt(sss)    |
932// | 0 | 1110ss | xxxxrr |    4 | UInt(rr)     | UInt(ss)     |
933// | 0 | 11110s | xxxxxr |    2 | UInt(r)      | UInt(s)      |
934// | 0 | 11111x | -      |      | UNALLOCATED  |              |
935//
936// Columns 'R', 'S' and 'size' specify a "bitmask immediate" of size bits in
937// which the lower S+1 bits are ones and the remaining bits are zero, then
938// rotated right by R bits, which is then replicated across the datapath.
939//
940// + Values of 'N', 'imms' and 'immr' which do not match the above table are
941//   RESERVED.
942// + If all 's' bits in the imms field are set then the instruction is
943//   RESERVED.
944// + The 'x' bits in the 'immr' field are IGNORED.
945
946bool A64Imms::isLogicalImm(unsigned RegWidth, uint64_t Imm, uint32_t &Bits) {
947  int RepeatWidth;
948  int Rotation = 0;
949  int Num1s = 0;
950
951  // Because there are S+1 ones in the replicated mask, an immediate of all
952  // zeros is not allowed. Filtering it here is probably more efficient.
953  if (Imm == 0) return false;
954
955  for (RepeatWidth = RegWidth; RepeatWidth > 1; RepeatWidth /= 2) {
956    uint64_t RepeatMask = RepeatWidth == 64 ? -1 : (1ULL << RepeatWidth) - 1;
957    uint64_t ReplicatedMask = Imm & RepeatMask;
958
959    if (ReplicatedMask == 0) continue;
960
961    // First we have to make sure the mask is actually repeated in each slot for
962    // this width-specifier.
963    bool IsReplicatedMask = true;
964    for (unsigned i = RepeatWidth; i < RegWidth; i += RepeatWidth) {
965      if (((Imm >> i) & RepeatMask) != ReplicatedMask) {
966        IsReplicatedMask = false;
967        break;
968      }
969    }
970    if (!IsReplicatedMask) continue;
971
972    // Now we have to work out the amount of rotation needed. The first part of
973    // this calculation is actually independent of RepeatWidth, but the complex
974    // case will depend on it.
975    Rotation = countTrailingZeros(Imm);
976    if (Rotation == 0) {
977      // There were no leading zeros, which means it's either in place or there
978      // are 1s at each end (e.g. 0x8003 needs rotating).
979      Rotation = RegWidth == 64 ? CountLeadingOnes_64(Imm)
980                                : CountLeadingOnes_32(Imm);
981      Rotation = RepeatWidth - Rotation;
982    }
983
984    uint64_t ReplicatedOnes = ReplicatedMask;
985    if (Rotation != 0 && Rotation != 64)
986      ReplicatedOnes = (ReplicatedMask >> Rotation)
987        | ((ReplicatedMask << (RepeatWidth - Rotation)) & RepeatMask);
988
989    // Of course, they may not actually be ones, so we have to check that:
990    if (!isMask_64(ReplicatedOnes))
991      continue;
992
993    Num1s = CountTrailingOnes_64(ReplicatedOnes);
994
995    // We know we've got an almost valid encoding (certainly, if this is invalid
996    // no other parameters would work).
997    break;
998  }
999
1000  // The encodings which would produce all 1s are RESERVED.
1001  if (RepeatWidth == 1 || Num1s == RepeatWidth) return false;
1002
1003  uint32_t N = RepeatWidth == 64;
1004  uint32_t ImmR = RepeatWidth - Rotation;
1005  uint32_t ImmS = Num1s - 1;
1006
1007  switch (RepeatWidth) {
1008  default: break; // No action required for other valid rotations.
1009  case 16: ImmS |= 0x20; break; // 10ssss
1010  case 8: ImmS |= 0x30; break;  // 110sss
1011  case 4: ImmS |= 0x38; break;  // 1110ss
1012  case 2: ImmS |= 0x3c; break;  // 11110s
1013  }
1014
1015  Bits = ImmS | (ImmR << 6) | (N << 12);
1016
1017  return true;
1018}
1019
1020
1021bool A64Imms::isLogicalImmBits(unsigned RegWidth, uint32_t Bits,
1022                               uint64_t &Imm) {
1023  uint32_t N = Bits >> 12;
1024  uint32_t ImmR = (Bits >> 6) & 0x3f;
1025  uint32_t ImmS = Bits & 0x3f;
1026
1027  // N=1 encodes a 64-bit replication and is invalid for the 32-bit
1028  // instructions.
1029  if (RegWidth == 32 && N != 0) return false;
1030
1031  int Width = 0;
1032  if (N == 1)
1033    Width = 64;
1034  else if ((ImmS & 0x20) == 0)
1035    Width = 32;
1036  else if ((ImmS & 0x10) == 0)
1037    Width = 16;
1038  else if ((ImmS & 0x08) == 0)
1039    Width = 8;
1040  else if ((ImmS & 0x04) == 0)
1041    Width = 4;
1042  else if ((ImmS & 0x02) == 0)
1043    Width = 2;
1044  else {
1045    // ImmS  is 0b11111x: UNALLOCATED
1046    return false;
1047  }
1048
1049  int Num1s = (ImmS & (Width - 1)) + 1;
1050
1051  // All encodings which would map to -1 (signed) are RESERVED.
1052  if (Num1s == Width) return false;
1053
1054  int Rotation = (ImmR & (Width - 1));
1055  uint64_t Mask = (1ULL << Num1s) - 1;
1056  uint64_t WidthMask = Width == 64 ? -1 : (1ULL << Width) - 1;
1057  if (Rotation != 0 && Rotation != 64)
1058    Mask = (Mask >> Rotation)
1059      | ((Mask << (Width - Rotation)) & WidthMask);
1060
1061  Imm = Mask;
1062  for (unsigned i = 1; i < RegWidth / Width; ++i) {
1063    Mask <<= Width;
1064    Imm |= Mask;
1065  }
1066
1067  return true;
1068}
1069
1070bool A64Imms::isMOVZImm(int RegWidth, uint64_t Value, int &UImm16, int &Shift) {
1071  // If high bits are set then a 32-bit MOVZ can't possibly work.
1072  if (RegWidth == 32 && (Value & ~0xffffffffULL))
1073    return false;
1074
1075  for (int i = 0; i < RegWidth; i += 16) {
1076    // If the value is 0 when we mask out all the bits that could be set with
1077    // the current LSL value then it's representable.
1078    if ((Value & ~(0xffffULL << i)) == 0) {
1079      Shift = i / 16;
1080      UImm16 = (Value >> i) & 0xffff;
1081      return true;
1082    }
1083  }
1084  return false;
1085}
1086
1087bool A64Imms::isMOVNImm(int RegWidth, uint64_t Value, int &UImm16, int &Shift) {
1088  // MOVN is defined to set its register to NOT(LSL(imm16, shift)).
1089
1090  // We have to be a little careful about a 32-bit register: 0xffff_1234 *is*
1091  // representable, but ~0xffff_1234 == 0xffff_ffff_0000_edcb which is not
1092  // a valid input for isMOVZImm.
1093  if (RegWidth == 32 && (Value & ~0xffffffffULL))
1094    return false;
1095
1096  uint64_t MOVZEquivalent = RegWidth == 32 ? ~Value & 0xffffffff : ~Value;
1097
1098  return isMOVZImm(RegWidth, MOVZEquivalent, UImm16, Shift);
1099}
1100
1101bool A64Imms::isOnlyMOVNImm(int RegWidth, uint64_t Value,
1102                            int &UImm16, int &Shift) {
1103  if (isMOVZImm(RegWidth, Value, UImm16, Shift))
1104    return false;
1105
1106  return isMOVNImm(RegWidth, Value, UImm16, Shift);
1107}
1108
1109// decodeNeonModShiftImm - Decode a Neon OpCmode value into the
1110// the shift amount and the shift type (shift zeros or ones in) and
1111// returns whether the OpCmode value implies a shift operation.
1112bool A64Imms::decodeNeonModShiftImm(unsigned OpCmode, unsigned &ShiftImm,
1113                                    unsigned &ShiftOnesIn) {
1114  ShiftImm = 0;
1115  ShiftOnesIn = false;
1116  bool HasShift = true;
1117
1118  if (OpCmode == 0xe) {
1119    // movi byte
1120    HasShift = false;
1121  } else if (OpCmode == 0x1e) {
1122    // movi 64-bit bytemask
1123    HasShift = false;
1124  } else if ((OpCmode & 0xc) == 0x8) {
1125    // shift zeros, per halfword
1126    ShiftImm = ((OpCmode & 0x2) >> 1);
1127  } else if ((OpCmode & 0x8) == 0) {
1128    // shift zeros, per word
1129    ShiftImm = ((OpCmode & 0x6) >> 1);
1130  } else if ((OpCmode & 0xe) == 0xc) {
1131    // shift ones, per word
1132    ShiftOnesIn = true;
1133    ShiftImm = (OpCmode & 0x1);
1134  } else {
1135    // per byte, per bytemask
1136    llvm_unreachable("Unsupported Neon modified immediate");
1137  }
1138
1139  return HasShift;
1140}
1141
1142// decodeNeonModImm - Decode a NEON modified immediate and OpCmode values
1143// into the element value and the element size in bits.
1144uint64_t A64Imms::decodeNeonModImm(unsigned Val, unsigned OpCmode,
1145                                   unsigned &EltBits) {
1146  uint64_t DecodedVal = Val;
1147  EltBits = 0;
1148
1149  if (OpCmode == 0xe) {
1150    // movi byte
1151    EltBits = 8;
1152  } else if (OpCmode == 0x1e) {
1153    // movi 64-bit bytemask
1154    DecodedVal = 0;
1155    for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) {
1156      if ((Val >> ByteNum) & 1)
1157        DecodedVal |= (uint64_t)0xff << (8 * ByteNum);
1158    }
1159    EltBits = 64;
1160  } else if ((OpCmode & 0xc) == 0x8) {
1161    // shift zeros, per halfword
1162    EltBits = 16;
1163  } else if ((OpCmode & 0x8) == 0) {
1164    // shift zeros, per word
1165    EltBits = 32;
1166  } else if ((OpCmode & 0xe) == 0xc) {
1167    // shift ones, per word
1168    EltBits = 32;
1169  } else {
1170    llvm_unreachable("Unsupported Neon modified immediate");
1171  }
1172  return DecodedVal;
1173}
1174