AArch64FrameLowering.cpp revision 263508
1//===- AArch64FrameLowering.cpp - AArch64 Frame Information ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the AArch64 implementation of TargetFrameLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AArch64.h"
15#include "AArch64FrameLowering.h"
16#include "AArch64MachineFunctionInfo.h"
17#include "AArch64InstrInfo.h"
18#include "llvm/CodeGen/MachineFrameInfo.h"
19#include "llvm/CodeGen/MachineFunction.h"
20#include "llvm/CodeGen/MachineInstrBuilder.h"
21#include "llvm/CodeGen/MachineMemOperand.h"
22#include "llvm/CodeGen/MachineModuleInfo.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/CodeGen/RegisterScavenging.h"
25#include "llvm/IR/Function.h"
26#include "llvm/MC/MachineLocation.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/ErrorHandling.h"
29
30using namespace llvm;
31
32void AArch64FrameLowering::splitSPAdjustments(uint64_t Total,
33                                              uint64_t &Initial,
34                                              uint64_t &Residual) const {
35  // 0x1f0 here is a pessimistic (i.e. realistic) boundary: x-register LDP
36  // instructions have a 7-bit signed immediate scaled by 8, giving a reach of
37  // 0x1f8, but stack adjustment should always be a multiple of 16.
38  if (Total <= 0x1f0) {
39    Initial = Total;
40    Residual = 0;
41  } else {
42    Initial = 0x1f0;
43    Residual = Total - Initial;
44  }
45}
46
47void AArch64FrameLowering::emitPrologue(MachineFunction &MF) const {
48  AArch64MachineFunctionInfo *FuncInfo =
49    MF.getInfo<AArch64MachineFunctionInfo>();
50  MachineBasicBlock &MBB = MF.front();
51  MachineBasicBlock::iterator MBBI = MBB.begin();
52  MachineFrameInfo *MFI = MF.getFrameInfo();
53  const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
54  DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
55
56  MachineModuleInfo &MMI = MF.getMMI();
57  const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
58  bool NeedsFrameMoves = MMI.hasDebugInfo()
59    || MF.getFunction()->needsUnwindTableEntry();
60
61  uint64_t NumInitialBytes, NumResidualBytes;
62
63  // Currently we expect the stack to be laid out by
64  //     sub sp, sp, #initial
65  //     stp x29, x30, [sp, #offset]
66  //     ...
67  //     str xxx, [sp, #offset]
68  //     sub sp, sp, #rest (possibly via extra instructions).
69  if (MFI->getCalleeSavedInfo().size()) {
70    // If there are callee-saved registers, we want to store them efficiently as
71    // a block, and virtual base assignment happens too early to do it for us so
72    // we adjust the stack in two phases: first just for callee-saved fiddling,
73    // then to allocate the rest of the frame.
74    splitSPAdjustments(MFI->getStackSize(), NumInitialBytes, NumResidualBytes);
75  } else {
76    // If there aren't any callee-saved registers, two-phase adjustment is
77    // inefficient. It's more efficient to adjust with NumInitialBytes too
78    // because when we're in a "callee pops argument space" situation, that pop
79    // must be tacked onto Initial for correctness.
80    NumInitialBytes = MFI->getStackSize();
81    NumResidualBytes = 0;
82  }
83
84  // Tell everyone else how much adjustment we're expecting them to use. In
85  // particular if an adjustment is required for a tail call the epilogue could
86  // have a different view of things.
87  FuncInfo->setInitialStackAdjust(NumInitialBytes);
88
89  emitSPUpdate(MBB, MBBI, DL, TII, AArch64::X16, -NumInitialBytes,
90               MachineInstr::FrameSetup);
91
92  if (NeedsFrameMoves && NumInitialBytes) {
93    // We emit this update even if the CFA is set from a frame pointer later so
94    // that the CFA is valid in the interim.
95    MCSymbol *SPLabel = MMI.getContext().CreateTempSymbol();
96    BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::PROLOG_LABEL))
97      .addSym(SPLabel);
98
99    MachineLocation Dst(MachineLocation::VirtualFP);
100    unsigned Reg = MRI->getDwarfRegNum(AArch64::XSP, true);
101    MMI.addFrameInst(
102        MCCFIInstruction::createDefCfa(SPLabel, Reg, -NumInitialBytes));
103  }
104
105  // Otherwise we need to set the frame pointer and/or add a second stack
106  // adjustment.
107
108  bool FPNeedsSetting = hasFP(MF);
109  for (; MBBI != MBB.end(); ++MBBI) {
110    // Note that this search makes strong assumptions about the operation used
111    // to store the frame-pointer: it must be "STP x29, x30, ...". This could
112    // change in future, but until then there's no point in implementing
113    // untestable more generic cases.
114    if (FPNeedsSetting && MBBI->getOpcode() == AArch64::LSPair64_STR
115                       && MBBI->getOperand(0).getReg() == AArch64::X29) {
116      int64_t X29FrameIdx = MBBI->getOperand(2).getIndex();
117      FuncInfo->setFramePointerOffset(MFI->getObjectOffset(X29FrameIdx));
118
119      ++MBBI;
120      emitRegUpdate(MBB, MBBI, DL, TII, AArch64::X29, AArch64::XSP,
121                    AArch64::X29,
122                    NumInitialBytes + MFI->getObjectOffset(X29FrameIdx),
123                    MachineInstr::FrameSetup);
124
125      // The offset adjustment used when emitting debugging locations relative
126      // to whatever frame base is set. AArch64 uses the default frame base (FP
127      // or SP) and this adjusts the calculations to be correct.
128      MFI->setOffsetAdjustment(- MFI->getObjectOffset(X29FrameIdx)
129                               - MFI->getStackSize());
130
131      if (NeedsFrameMoves) {
132        MCSymbol *FPLabel = MMI.getContext().CreateTempSymbol();
133        BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::PROLOG_LABEL))
134          .addSym(FPLabel);
135        unsigned Reg = MRI->getDwarfRegNum(AArch64::X29, true);
136        unsigned Offset = MFI->getObjectOffset(X29FrameIdx);
137        MMI.addFrameInst(MCCFIInstruction::createDefCfa(FPLabel, Reg, Offset));
138      }
139
140      FPNeedsSetting = false;
141    }
142
143    if (!MBBI->getFlag(MachineInstr::FrameSetup))
144      break;
145  }
146
147  assert(!FPNeedsSetting && "Frame pointer couldn't be set");
148
149  emitSPUpdate(MBB, MBBI, DL, TII, AArch64::X16, -NumResidualBytes,
150               MachineInstr::FrameSetup);
151
152  // Now we emit the rest of the frame setup information, if necessary: we've
153  // already noted the FP and initial SP moves so we're left with the prologue's
154  // final SP update and callee-saved register locations.
155  if (!NeedsFrameMoves)
156    return;
157
158  // Reuse the label if appropriate, so create it in this outer scope.
159  MCSymbol *CSLabel = 0;
160
161  // The rest of the stack adjustment
162  if (!hasFP(MF) && NumResidualBytes) {
163    CSLabel = MMI.getContext().CreateTempSymbol();
164    BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::PROLOG_LABEL))
165      .addSym(CSLabel);
166
167    MachineLocation Dst(MachineLocation::VirtualFP);
168    unsigned Reg = MRI->getDwarfRegNum(AArch64::XSP, true);
169    unsigned Offset = NumResidualBytes + NumInitialBytes;
170    MMI.addFrameInst(MCCFIInstruction::createDefCfa(CSLabel, Reg, -Offset));
171  }
172
173  // And any callee-saved registers (it's fine to leave them to the end here,
174  // because the old values are still valid at this point.
175  const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
176  if (CSI.size()) {
177    if (!CSLabel) {
178      CSLabel = MMI.getContext().CreateTempSymbol();
179      BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::PROLOG_LABEL))
180        .addSym(CSLabel);
181    }
182
183    for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(),
184           E = CSI.end(); I != E; ++I) {
185      unsigned Offset = MFI->getObjectOffset(I->getFrameIdx());
186      unsigned Reg = MRI->getDwarfRegNum(I->getReg(), true);
187      MMI.addFrameInst(MCCFIInstruction::createOffset(CSLabel, Reg, Offset));
188    }
189  }
190}
191
192void
193AArch64FrameLowering::emitEpilogue(MachineFunction &MF,
194                                   MachineBasicBlock &MBB) const {
195  AArch64MachineFunctionInfo *FuncInfo =
196    MF.getInfo<AArch64MachineFunctionInfo>();
197
198  MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
199  DebugLoc DL = MBBI->getDebugLoc();
200  const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
201  MachineFrameInfo &MFI = *MF.getFrameInfo();
202  unsigned RetOpcode = MBBI->getOpcode();
203
204  // Initial and residual are named for consitency with the prologue. Note that
205  // in the epilogue, the residual adjustment is executed first.
206  uint64_t NumInitialBytes = FuncInfo->getInitialStackAdjust();
207  uint64_t NumResidualBytes = MFI.getStackSize() - NumInitialBytes;
208  uint64_t ArgumentPopSize = 0;
209  if (RetOpcode == AArch64::TC_RETURNdi ||
210      RetOpcode == AArch64::TC_RETURNxi) {
211    MachineOperand &JumpTarget = MBBI->getOperand(0);
212    MachineOperand &StackAdjust = MBBI->getOperand(1);
213
214    MachineInstrBuilder MIB;
215    if (RetOpcode == AArch64::TC_RETURNdi) {
216      MIB = BuildMI(MBB, MBBI, DL, TII.get(AArch64::TAIL_Bimm));
217      if (JumpTarget.isGlobal()) {
218        MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
219                             JumpTarget.getTargetFlags());
220      } else {
221        assert(JumpTarget.isSymbol() && "unexpected tail call destination");
222        MIB.addExternalSymbol(JumpTarget.getSymbolName(),
223                              JumpTarget.getTargetFlags());
224      }
225    } else {
226      assert(RetOpcode == AArch64::TC_RETURNxi && JumpTarget.isReg()
227             && "Unexpected tail call");
228
229      MIB = BuildMI(MBB, MBBI, DL, TII.get(AArch64::TAIL_BRx));
230      MIB.addReg(JumpTarget.getReg(), RegState::Kill);
231    }
232
233    // Add the extra operands onto the new tail call instruction even though
234    // they're not used directly (so that liveness is tracked properly etc).
235    for (unsigned i = 2, e = MBBI->getNumOperands(); i != e; ++i)
236        MIB->addOperand(MBBI->getOperand(i));
237
238
239    // Delete the pseudo instruction TC_RETURN.
240    MachineInstr *NewMI = prior(MBBI);
241    MBB.erase(MBBI);
242    MBBI = NewMI;
243
244    // For a tail-call in a callee-pops-arguments environment, some or all of
245    // the stack may actually be in use for the call's arguments, this is
246    // calculated during LowerCall and consumed here...
247    ArgumentPopSize = StackAdjust.getImm();
248  } else {
249    // ... otherwise the amount to pop is *all* of the argument space,
250    // conveniently stored in the MachineFunctionInfo by
251    // LowerFormalArguments. This will, of course, be zero for the C calling
252    // convention.
253    ArgumentPopSize = FuncInfo->getArgumentStackToRestore();
254  }
255
256  assert(NumInitialBytes % 16 == 0 && NumResidualBytes % 16 == 0
257         && "refusing to adjust stack by misaligned amt");
258
259  // We may need to address callee-saved registers differently, so find out the
260  // bound on the frame indices.
261  const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
262  int MinCSFI = 0;
263  int MaxCSFI = -1;
264
265  if (CSI.size()) {
266    MinCSFI = CSI[0].getFrameIdx();
267    MaxCSFI = CSI[CSI.size() - 1].getFrameIdx();
268  }
269
270  // The "residual" stack update comes first from this direction and guarantees
271  // that SP is NumInitialBytes below its value on function entry, either by a
272  // direct update or restoring it from the frame pointer.
273  if (NumInitialBytes + ArgumentPopSize != 0) {
274    emitSPUpdate(MBB, MBBI, DL, TII, AArch64::X16,
275                 NumInitialBytes + ArgumentPopSize);
276    --MBBI;
277  }
278
279
280  // MBBI now points to the instruction just past the last callee-saved
281  // restoration (either RET/B if NumInitialBytes == 0, or the "ADD sp, sp"
282  // otherwise).
283
284  // Now we need to find out where to put the bulk of the stack adjustment
285  MachineBasicBlock::iterator FirstEpilogue = MBBI;
286  while (MBBI != MBB.begin()) {
287    --MBBI;
288
289    unsigned FrameOp;
290    for (FrameOp = 0; FrameOp < MBBI->getNumOperands(); ++FrameOp) {
291      if (MBBI->getOperand(FrameOp).isFI())
292        break;
293    }
294
295    // If this instruction doesn't have a frame index we've reached the end of
296    // the callee-save restoration.
297    if (FrameOp == MBBI->getNumOperands())
298      break;
299
300    // Likewise if it *is* a local reference, but not to a callee-saved object.
301    int FrameIdx = MBBI->getOperand(FrameOp).getIndex();
302    if (FrameIdx < MinCSFI || FrameIdx > MaxCSFI)
303      break;
304
305    FirstEpilogue = MBBI;
306  }
307
308  if (MF.getFrameInfo()->hasVarSizedObjects()) {
309    int64_t StaticFrameBase;
310    StaticFrameBase = -(NumInitialBytes + FuncInfo->getFramePointerOffset());
311    emitRegUpdate(MBB, FirstEpilogue, DL, TII,
312                  AArch64::XSP, AArch64::X29, AArch64::NoRegister,
313                  StaticFrameBase);
314  } else {
315    emitSPUpdate(MBB, FirstEpilogue, DL,TII, AArch64::X16, NumResidualBytes);
316  }
317}
318
319int64_t
320AArch64FrameLowering::resolveFrameIndexReference(MachineFunction &MF,
321                                                 int FrameIndex,
322                                                 unsigned &FrameReg,
323                                                 int SPAdj,
324                                                 bool IsCalleeSaveOp) const {
325  AArch64MachineFunctionInfo *FuncInfo =
326    MF.getInfo<AArch64MachineFunctionInfo>();
327  MachineFrameInfo *MFI = MF.getFrameInfo();
328
329  int64_t TopOfFrameOffset = MFI->getObjectOffset(FrameIndex);
330
331  assert(!(IsCalleeSaveOp && FuncInfo->getInitialStackAdjust() == 0)
332         && "callee-saved register in unexpected place");
333
334  // If the frame for this function is particularly large, we adjust the stack
335  // in two phases which means the callee-save related operations see a
336  // different (intermediate) stack size.
337  int64_t FrameRegPos;
338  if (IsCalleeSaveOp) {
339    FrameReg = AArch64::XSP;
340    FrameRegPos = -static_cast<int64_t>(FuncInfo->getInitialStackAdjust());
341  } else if (useFPForAddressing(MF)) {
342    // Have to use the frame pointer since we have no idea where SP is.
343    FrameReg = AArch64::X29;
344    FrameRegPos = FuncInfo->getFramePointerOffset();
345  } else {
346    FrameReg = AArch64::XSP;
347    FrameRegPos = -static_cast<int64_t>(MFI->getStackSize()) + SPAdj;
348  }
349
350  return TopOfFrameOffset - FrameRegPos;
351}
352
353void
354AArch64FrameLowering::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
355                                                       RegScavenger *RS) const {
356  const AArch64RegisterInfo *RegInfo =
357    static_cast<const AArch64RegisterInfo *>(MF.getTarget().getRegisterInfo());
358  MachineFrameInfo *MFI = MF.getFrameInfo();
359  const AArch64InstrInfo &TII =
360    *static_cast<const AArch64InstrInfo *>(MF.getTarget().getInstrInfo());
361
362  if (hasFP(MF)) {
363    MF.getRegInfo().setPhysRegUsed(AArch64::X29);
364    MF.getRegInfo().setPhysRegUsed(AArch64::X30);
365  }
366
367  // If addressing of local variables is going to be more complicated than
368  // shoving a base register and an offset into the instruction then we may well
369  // need to scavenge registers. We should either specifically add an
370  // callee-save register for this purpose or allocate an extra spill slot.
371  bool BigStack =
372    MFI->estimateStackSize(MF) >= TII.estimateRSStackLimit(MF)
373    || MFI->hasVarSizedObjects() // Access will be from X29: messes things up
374    || (MFI->adjustsStack() && !hasReservedCallFrame(MF));
375
376  if (!BigStack)
377    return;
378
379  // We certainly need some slack space for the scavenger, preferably an extra
380  // register.
381  const uint16_t *CSRegs = RegInfo->getCalleeSavedRegs();
382  uint16_t ExtraReg = AArch64::NoRegister;
383
384  for (unsigned i = 0; CSRegs[i]; ++i) {
385    if (AArch64::GPR64RegClass.contains(CSRegs[i]) &&
386        !MF.getRegInfo().isPhysRegUsed(CSRegs[i])) {
387      ExtraReg = CSRegs[i];
388      break;
389    }
390  }
391
392  if (ExtraReg != 0) {
393    MF.getRegInfo().setPhysRegUsed(ExtraReg);
394  } else {
395    assert(RS && "Expect register scavenger to be available");
396
397    // Create a stack slot for scavenging purposes. PrologEpilogInserter
398    // helpfully places it near either SP or FP for us to avoid
399    // infinitely-regression during scavenging.
400    const TargetRegisterClass *RC = &AArch64::GPR64RegClass;
401    RS->addScavengingFrameIndex(MFI->CreateStackObject(RC->getSize(),
402                                                       RC->getAlignment(),
403                                                       false));
404  }
405}
406
407bool AArch64FrameLowering::determinePrologueDeath(MachineBasicBlock &MBB,
408                                                  unsigned Reg) const {
409  // If @llvm.returnaddress is called then it will refer to X30 by some means;
410  // the prologue store does not kill the register.
411  if (Reg == AArch64::X30) {
412    if (MBB.getParent()->getFrameInfo()->isReturnAddressTaken()
413        && MBB.getParent()->getRegInfo().isLiveIn(Reg))
414    return false;
415  }
416
417  // In all other cases, physical registers are dead after they've been saved
418  // but live at the beginning of the prologue block.
419  MBB.addLiveIn(Reg);
420  return true;
421}
422
423void
424AArch64FrameLowering::emitFrameMemOps(bool isPrologue, MachineBasicBlock &MBB,
425                                      MachineBasicBlock::iterator MBBI,
426                                      const std::vector<CalleeSavedInfo> &CSI,
427                                      const TargetRegisterInfo *TRI,
428                                      const LoadStoreMethod PossClasses[],
429                                      unsigned NumClasses) const {
430  DebugLoc DL = MBB.findDebugLoc(MBBI);
431  MachineFunction &MF = *MBB.getParent();
432  MachineFrameInfo &MFI = *MF.getFrameInfo();
433  const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
434
435  // A certain amount of implicit contract is present here. The actual stack
436  // offsets haven't been allocated officially yet, so for strictly correct code
437  // we rely on the fact that the elements of CSI are allocated in order
438  // starting at SP, purely as dictated by size and alignment. In practice since
439  // this function handles the only accesses to those slots it's not quite so
440  // important.
441  //
442  // We have also ordered the Callee-saved register list in AArch64CallingConv
443  // so that the above scheme puts registers in order: in particular we want
444  // &X30 to be &X29+8 for an ABI-correct frame record (PCS 5.2.2)
445  for (unsigned i = 0, e = CSI.size(); i < e; ++i) {
446    unsigned Reg = CSI[i].getReg();
447
448    // First we need to find out which register class the register belongs to so
449    // that we can use the correct load/store instrucitons.
450    unsigned ClassIdx;
451    for (ClassIdx = 0; ClassIdx < NumClasses; ++ClassIdx) {
452      if (PossClasses[ClassIdx].RegClass->contains(Reg))
453        break;
454    }
455    assert(ClassIdx != NumClasses
456           && "Asked to store register in unexpected class");
457    const TargetRegisterClass &TheClass = *PossClasses[ClassIdx].RegClass;
458
459    // Now we need to decide whether it's possible to emit a paired instruction:
460    // for this we want the next register to be in the same class.
461    MachineInstrBuilder NewMI;
462    bool Pair = false;
463    if (i + 1 < CSI.size() && TheClass.contains(CSI[i+1].getReg())) {
464      Pair = true;
465      unsigned StLow = 0, StHigh = 0;
466      if (isPrologue) {
467        // Most of these registers will be live-in to the MBB and killed by our
468        // store, though there are exceptions (see determinePrologueDeath).
469        StLow = getKillRegState(determinePrologueDeath(MBB, CSI[i+1].getReg()));
470        StHigh = getKillRegState(determinePrologueDeath(MBB, CSI[i].getReg()));
471      } else {
472        StLow = RegState::Define;
473        StHigh = RegState::Define;
474      }
475
476      NewMI = BuildMI(MBB, MBBI, DL, TII.get(PossClasses[ClassIdx].PairOpcode))
477                .addReg(CSI[i+1].getReg(), StLow)
478                .addReg(CSI[i].getReg(), StHigh);
479
480      // If it's a paired op, we've consumed two registers
481      ++i;
482    } else {
483      unsigned State;
484      if (isPrologue) {
485        State = getKillRegState(determinePrologueDeath(MBB, CSI[i].getReg()));
486      } else {
487        State = RegState::Define;
488      }
489
490      NewMI = BuildMI(MBB, MBBI, DL,
491                      TII.get(PossClasses[ClassIdx].SingleOpcode))
492                .addReg(CSI[i].getReg(), State);
493    }
494
495    // Note that the FrameIdx refers to the second register in a pair: it will
496    // be allocated the smaller numeric address and so is the one an LDP/STP
497    // address must use.
498    int FrameIdx = CSI[i].getFrameIdx();
499    MachineMemOperand::MemOperandFlags Flags;
500    Flags = isPrologue ? MachineMemOperand::MOStore : MachineMemOperand::MOLoad;
501    MachineMemOperand *MMO =
502      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
503                             Flags,
504                             Pair ? TheClass.getSize() * 2 : TheClass.getSize(),
505                             MFI.getObjectAlignment(FrameIdx));
506
507    NewMI.addFrameIndex(FrameIdx)
508      .addImm(0)                  // address-register offset
509      .addMemOperand(MMO);
510
511    if (isPrologue)
512      NewMI.setMIFlags(MachineInstr::FrameSetup);
513
514    // For aesthetic reasons, during an epilogue we want to emit complementary
515    // operations to the prologue, but in the opposite order. So we still
516    // iterate through the CalleeSavedInfo list in order, but we put the
517    // instructions successively earlier in the MBB.
518    if (!isPrologue)
519      --MBBI;
520  }
521}
522
523bool
524AArch64FrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
525                                        MachineBasicBlock::iterator MBBI,
526                                        const std::vector<CalleeSavedInfo> &CSI,
527                                        const TargetRegisterInfo *TRI) const {
528  if (CSI.empty())
529    return false;
530
531  static const LoadStoreMethod PossibleClasses[] = {
532    {&AArch64::GPR64RegClass, AArch64::LSPair64_STR, AArch64::LS64_STR},
533    {&AArch64::FPR64RegClass, AArch64::LSFPPair64_STR, AArch64::LSFP64_STR},
534  };
535  const unsigned NumClasses = llvm::array_lengthof(PossibleClasses);
536
537  emitFrameMemOps(/* isPrologue = */ true, MBB, MBBI, CSI, TRI,
538                  PossibleClasses, NumClasses);
539
540  return true;
541}
542
543bool
544AArch64FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
545                                        MachineBasicBlock::iterator MBBI,
546                                        const std::vector<CalleeSavedInfo> &CSI,
547                                        const TargetRegisterInfo *TRI) const {
548
549  if (CSI.empty())
550    return false;
551
552  static const LoadStoreMethod PossibleClasses[] = {
553    {&AArch64::GPR64RegClass, AArch64::LSPair64_LDR, AArch64::LS64_LDR},
554    {&AArch64::FPR64RegClass, AArch64::LSFPPair64_LDR, AArch64::LSFP64_LDR},
555  };
556  const unsigned NumClasses = llvm::array_lengthof(PossibleClasses);
557
558  emitFrameMemOps(/* isPrologue = */ false, MBB, MBBI, CSI, TRI,
559                  PossibleClasses, NumClasses);
560
561  return true;
562}
563
564bool
565AArch64FrameLowering::hasFP(const MachineFunction &MF) const {
566  const MachineFrameInfo *MFI = MF.getFrameInfo();
567  const TargetRegisterInfo *RI = MF.getTarget().getRegisterInfo();
568
569  // This is a decision of ABI compliance. The AArch64 PCS gives various options
570  // for conformance, and even at the most stringent level more or less permits
571  // elimination for leaf functions because there's no loss of functionality
572  // (for debugging etc)..
573  if (MF.getTarget().Options.DisableFramePointerElim(MF) && MFI->hasCalls())
574    return true;
575
576  // The following are hard-limits: incorrect code will be generated if we try
577  // to omit the frame.
578  return (RI->needsStackRealignment(MF) ||
579          MFI->hasVarSizedObjects() ||
580          MFI->isFrameAddressTaken());
581}
582
583bool
584AArch64FrameLowering::useFPForAddressing(const MachineFunction &MF) const {
585  return MF.getFrameInfo()->hasVarSizedObjects();
586}
587
588bool
589AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
590  const MachineFrameInfo *MFI = MF.getFrameInfo();
591
592  // Of the various reasons for having a frame pointer, it's actually only
593  // variable-sized objects that prevent reservation of a call frame.
594  return !(hasFP(MF) && MFI->hasVarSizedObjects());
595}
596
597void
598AArch64FrameLowering::eliminateCallFramePseudoInstr(
599                                MachineFunction &MF,
600                                MachineBasicBlock &MBB,
601                                MachineBasicBlock::iterator MI) const {
602  const AArch64InstrInfo &TII =
603    *static_cast<const AArch64InstrInfo *>(MF.getTarget().getInstrInfo());
604  DebugLoc dl = MI->getDebugLoc();
605  int Opcode = MI->getOpcode();
606  bool IsDestroy = Opcode == TII.getCallFrameDestroyOpcode();
607  uint64_t CalleePopAmount = IsDestroy ? MI->getOperand(1).getImm() : 0;
608
609  if (!hasReservedCallFrame(MF)) {
610    unsigned Align = getStackAlignment();
611
612    int64_t Amount = MI->getOperand(0).getImm();
613    Amount = RoundUpToAlignment(Amount, Align);
614    if (!IsDestroy) Amount = -Amount;
615
616    // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it
617    // doesn't have to pop anything), then the first operand will be zero too so
618    // this adjustment is a no-op.
619    if (CalleePopAmount == 0) {
620      // FIXME: in-function stack adjustment for calls is limited to 12-bits
621      // because there's no guaranteed temporary register available. Mostly call
622      // frames will be allocated at the start of a function so this is OK, but
623      // it is a limitation that needs dealing with.
624      assert(Amount > -0xfff && Amount < 0xfff && "call frame too large");
625      emitSPUpdate(MBB, MI, dl, TII, AArch64::NoRegister, Amount);
626    }
627  } else if (CalleePopAmount != 0) {
628    // If the calling convention demands that the callee pops arguments from the
629    // stack, we want to add it back if we have a reserved call frame.
630    assert(CalleePopAmount < 0xfff && "call frame too large");
631    emitSPUpdate(MBB, MI, dl, TII, AArch64::NoRegister, -CalleePopAmount);
632  }
633
634  MBB.erase(MI);
635}
636