RegAllocPBQP.cpp revision 263508
1//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11// register allocator for LLVM. This allocator works by constructing a PBQP
12// problem representing the register allocation problem under consideration,
13// solving this using a PBQP solver, and mapping the solution back to a
14// register assignment. If any variables are selected for spilling then spill
15// code is inserted and the process repeated.
16//
17// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18// for register allocation. For more information on PBQP for register
19// allocation, see the following papers:
20//
21//   (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22//   PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23//   (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
24//
25//   (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26//   architectures. In Proceedings of the Joint Conference on Languages,
27//   Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
28//   NY, USA, 139-148.
29//
30//===----------------------------------------------------------------------===//
31
32#define DEBUG_TYPE "regalloc"
33
34#include "llvm/CodeGen/RegAllocPBQP.h"
35#include "RegisterCoalescer.h"
36#include "Spiller.h"
37#include "llvm/ADT/OwningPtr.h"
38#include "llvm/Analysis/AliasAnalysis.h"
39#include "llvm/CodeGen/CalcSpillWeights.h"
40#include "llvm/CodeGen/LiveIntervalAnalysis.h"
41#include "llvm/CodeGen/LiveRangeEdit.h"
42#include "llvm/CodeGen/LiveStackAnalysis.h"
43#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
44#include "llvm/CodeGen/MachineDominators.h"
45#include "llvm/CodeGen/MachineFunctionPass.h"
46#include "llvm/CodeGen/MachineLoopInfo.h"
47#include "llvm/CodeGen/MachineRegisterInfo.h"
48#include "llvm/CodeGen/PBQP/Graph.h"
49#include "llvm/CodeGen/PBQP/HeuristicSolver.h"
50#include "llvm/CodeGen/PBQP/Heuristics/Briggs.h"
51#include "llvm/CodeGen/RegAllocRegistry.h"
52#include "llvm/CodeGen/VirtRegMap.h"
53#include "llvm/IR/Module.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/raw_ostream.h"
56#include "llvm/Target/TargetInstrInfo.h"
57#include "llvm/Target/TargetMachine.h"
58#include <limits>
59#include <memory>
60#include <set>
61#include <sstream>
62#include <vector>
63
64using namespace llvm;
65
66static RegisterRegAlloc
67registerPBQPRepAlloc("pbqp", "PBQP register allocator",
68                       createDefaultPBQPRegisterAllocator);
69
70static cl::opt<bool>
71pbqpCoalescing("pbqp-coalescing",
72                cl::desc("Attempt coalescing during PBQP register allocation."),
73                cl::init(false), cl::Hidden);
74
75#ifndef NDEBUG
76static cl::opt<bool>
77pbqpDumpGraphs("pbqp-dump-graphs",
78               cl::desc("Dump graphs for each function/round in the compilation unit."),
79               cl::init(false), cl::Hidden);
80#endif
81
82namespace {
83
84///
85/// PBQP based allocators solve the register allocation problem by mapping
86/// register allocation problems to Partitioned Boolean Quadratic
87/// Programming problems.
88class RegAllocPBQP : public MachineFunctionPass {
89public:
90
91  static char ID;
92
93  /// Construct a PBQP register allocator.
94  RegAllocPBQP(OwningPtr<PBQPBuilder> &b, char *cPassID=0)
95      : MachineFunctionPass(ID), builder(b.take()), customPassID(cPassID) {
96    initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
97    initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
98    initializeLiveStacksPass(*PassRegistry::getPassRegistry());
99    initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
100  }
101
102  /// Return the pass name.
103  virtual const char* getPassName() const {
104    return "PBQP Register Allocator";
105  }
106
107  /// PBQP analysis usage.
108  virtual void getAnalysisUsage(AnalysisUsage &au) const;
109
110  /// Perform register allocation
111  virtual bool runOnMachineFunction(MachineFunction &MF);
112
113private:
114
115  typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
116  typedef std::vector<const LiveInterval*> Node2LIMap;
117  typedef std::vector<unsigned> AllowedSet;
118  typedef std::vector<AllowedSet> AllowedSetMap;
119  typedef std::pair<unsigned, unsigned> RegPair;
120  typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
121  typedef std::set<unsigned> RegSet;
122
123
124  OwningPtr<PBQPBuilder> builder;
125
126  char *customPassID;
127
128  MachineFunction *mf;
129  const TargetMachine *tm;
130  const TargetRegisterInfo *tri;
131  const TargetInstrInfo *tii;
132  MachineRegisterInfo *mri;
133  const MachineBlockFrequencyInfo *mbfi;
134
135  OwningPtr<Spiller> spiller;
136  LiveIntervals *lis;
137  LiveStacks *lss;
138  VirtRegMap *vrm;
139
140  RegSet vregsToAlloc, emptyIntervalVRegs;
141
142  /// \brief Finds the initial set of vreg intervals to allocate.
143  void findVRegIntervalsToAlloc();
144
145  /// \brief Given a solved PBQP problem maps this solution back to a register
146  /// assignment.
147  bool mapPBQPToRegAlloc(const PBQPRAProblem &problem,
148                         const PBQP::Solution &solution);
149
150  /// \brief Postprocessing before final spilling. Sets basic block "live in"
151  /// variables.
152  void finalizeAlloc() const;
153
154};
155
156char RegAllocPBQP::ID = 0;
157
158} // End anonymous namespace.
159
160unsigned PBQPRAProblem::getVRegForNode(PBQP::Graph::NodeId node) const {
161  Node2VReg::const_iterator vregItr = node2VReg.find(node);
162  assert(vregItr != node2VReg.end() && "No vreg for node.");
163  return vregItr->second;
164}
165
166PBQP::Graph::NodeId PBQPRAProblem::getNodeForVReg(unsigned vreg) const {
167  VReg2Node::const_iterator nodeItr = vreg2Node.find(vreg);
168  assert(nodeItr != vreg2Node.end() && "No node for vreg.");
169  return nodeItr->second;
170
171}
172
173const PBQPRAProblem::AllowedSet&
174  PBQPRAProblem::getAllowedSet(unsigned vreg) const {
175  AllowedSetMap::const_iterator allowedSetItr = allowedSets.find(vreg);
176  assert(allowedSetItr != allowedSets.end() && "No pregs for vreg.");
177  const AllowedSet &allowedSet = allowedSetItr->second;
178  return allowedSet;
179}
180
181unsigned PBQPRAProblem::getPRegForOption(unsigned vreg, unsigned option) const {
182  assert(isPRegOption(vreg, option) && "Not a preg option.");
183
184  const AllowedSet& allowedSet = getAllowedSet(vreg);
185  assert(option <= allowedSet.size() && "Option outside allowed set.");
186  return allowedSet[option - 1];
187}
188
189PBQPRAProblem *PBQPBuilder::build(MachineFunction *mf, const LiveIntervals *lis,
190                                  const MachineBlockFrequencyInfo *mbfi,
191                                  const RegSet &vregs) {
192
193  LiveIntervals *LIS = const_cast<LiveIntervals*>(lis);
194  MachineRegisterInfo *mri = &mf->getRegInfo();
195  const TargetRegisterInfo *tri = mf->getTarget().getRegisterInfo();
196
197  OwningPtr<PBQPRAProblem> p(new PBQPRAProblem());
198  PBQP::Graph &g = p->getGraph();
199  RegSet pregs;
200
201  // Collect the set of preg intervals, record that they're used in the MF.
202  for (unsigned Reg = 1, e = tri->getNumRegs(); Reg != e; ++Reg) {
203    if (mri->def_empty(Reg))
204      continue;
205    pregs.insert(Reg);
206    mri->setPhysRegUsed(Reg);
207  }
208
209  // Iterate over vregs.
210  for (RegSet::const_iterator vregItr = vregs.begin(), vregEnd = vregs.end();
211       vregItr != vregEnd; ++vregItr) {
212    unsigned vreg = *vregItr;
213    const TargetRegisterClass *trc = mri->getRegClass(vreg);
214    LiveInterval *vregLI = &LIS->getInterval(vreg);
215
216    // Record any overlaps with regmask operands.
217    BitVector regMaskOverlaps;
218    LIS->checkRegMaskInterference(*vregLI, regMaskOverlaps);
219
220    // Compute an initial allowed set for the current vreg.
221    typedef std::vector<unsigned> VRAllowed;
222    VRAllowed vrAllowed;
223    ArrayRef<uint16_t> rawOrder = trc->getRawAllocationOrder(*mf);
224    for (unsigned i = 0; i != rawOrder.size(); ++i) {
225      unsigned preg = rawOrder[i];
226      if (mri->isReserved(preg))
227        continue;
228
229      // vregLI crosses a regmask operand that clobbers preg.
230      if (!regMaskOverlaps.empty() && !regMaskOverlaps.test(preg))
231        continue;
232
233      // vregLI overlaps fixed regunit interference.
234      bool Interference = false;
235      for (MCRegUnitIterator Units(preg, tri); Units.isValid(); ++Units) {
236        if (vregLI->overlaps(LIS->getRegUnit(*Units))) {
237          Interference = true;
238          break;
239        }
240      }
241      if (Interference)
242        continue;
243
244      // preg is usable for this virtual register.
245      vrAllowed.push_back(preg);
246    }
247
248    // Construct the node.
249    PBQP::Graph::NodeId node =
250      g.addNode(PBQP::Vector(vrAllowed.size() + 1, 0));
251
252    // Record the mapping and allowed set in the problem.
253    p->recordVReg(vreg, node, vrAllowed.begin(), vrAllowed.end());
254
255    PBQP::PBQPNum spillCost = (vregLI->weight != 0.0) ?
256        vregLI->weight : std::numeric_limits<PBQP::PBQPNum>::min();
257
258    addSpillCosts(g.getNodeCosts(node), spillCost);
259  }
260
261  for (RegSet::const_iterator vr1Itr = vregs.begin(), vrEnd = vregs.end();
262         vr1Itr != vrEnd; ++vr1Itr) {
263    unsigned vr1 = *vr1Itr;
264    const LiveInterval &l1 = lis->getInterval(vr1);
265    const PBQPRAProblem::AllowedSet &vr1Allowed = p->getAllowedSet(vr1);
266
267    for (RegSet::const_iterator vr2Itr = llvm::next(vr1Itr);
268         vr2Itr != vrEnd; ++vr2Itr) {
269      unsigned vr2 = *vr2Itr;
270      const LiveInterval &l2 = lis->getInterval(vr2);
271      const PBQPRAProblem::AllowedSet &vr2Allowed = p->getAllowedSet(vr2);
272
273      assert(!l2.empty() && "Empty interval in vreg set?");
274      if (l1.overlaps(l2)) {
275        PBQP::Graph::EdgeId edge =
276          g.addEdge(p->getNodeForVReg(vr1), p->getNodeForVReg(vr2),
277                    PBQP::Matrix(vr1Allowed.size()+1, vr2Allowed.size()+1, 0));
278
279        addInterferenceCosts(g.getEdgeCosts(edge), vr1Allowed, vr2Allowed, tri);
280      }
281    }
282  }
283
284  return p.take();
285}
286
287void PBQPBuilder::addSpillCosts(PBQP::Vector &costVec,
288                                PBQP::PBQPNum spillCost) {
289  costVec[0] = spillCost;
290}
291
292void PBQPBuilder::addInterferenceCosts(
293                                    PBQP::Matrix &costMat,
294                                    const PBQPRAProblem::AllowedSet &vr1Allowed,
295                                    const PBQPRAProblem::AllowedSet &vr2Allowed,
296                                    const TargetRegisterInfo *tri) {
297  assert(costMat.getRows() == vr1Allowed.size() + 1 && "Matrix height mismatch.");
298  assert(costMat.getCols() == vr2Allowed.size() + 1 && "Matrix width mismatch.");
299
300  for (unsigned i = 0; i != vr1Allowed.size(); ++i) {
301    unsigned preg1 = vr1Allowed[i];
302
303    for (unsigned j = 0; j != vr2Allowed.size(); ++j) {
304      unsigned preg2 = vr2Allowed[j];
305
306      if (tri->regsOverlap(preg1, preg2)) {
307        costMat[i + 1][j + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
308      }
309    }
310  }
311}
312
313PBQPRAProblem *PBQPBuilderWithCoalescing::build(MachineFunction *mf,
314                                                const LiveIntervals *lis,
315                                                const MachineBlockFrequencyInfo *mbfi,
316                                                const RegSet &vregs) {
317
318  OwningPtr<PBQPRAProblem> p(PBQPBuilder::build(mf, lis, mbfi, vregs));
319  PBQP::Graph &g = p->getGraph();
320
321  const TargetMachine &tm = mf->getTarget();
322  CoalescerPair cp(*tm.getRegisterInfo());
323
324  // Scan the machine function and add a coalescing cost whenever CoalescerPair
325  // gives the Ok.
326  for (MachineFunction::const_iterator mbbItr = mf->begin(),
327                                       mbbEnd = mf->end();
328       mbbItr != mbbEnd; ++mbbItr) {
329    const MachineBasicBlock *mbb = &*mbbItr;
330
331    for (MachineBasicBlock::const_iterator miItr = mbb->begin(),
332                                           miEnd = mbb->end();
333         miItr != miEnd; ++miItr) {
334      const MachineInstr *mi = &*miItr;
335
336      if (!cp.setRegisters(mi)) {
337        continue; // Not coalescable.
338      }
339
340      if (cp.getSrcReg() == cp.getDstReg()) {
341        continue; // Already coalesced.
342      }
343
344      unsigned dst = cp.getDstReg(),
345               src = cp.getSrcReg();
346
347      const float copyFactor = 0.5; // Cost of copy relative to load. Current
348      // value plucked randomly out of the air.
349
350      PBQP::PBQPNum cBenefit =
351        copyFactor * LiveIntervals::getSpillWeight(false, true,
352                                                   mbfi->getBlockFreq(mbb));
353
354      if (cp.isPhys()) {
355        if (!mf->getRegInfo().isAllocatable(dst)) {
356          continue;
357        }
358
359        const PBQPRAProblem::AllowedSet &allowed = p->getAllowedSet(src);
360        unsigned pregOpt = 0;
361        while (pregOpt < allowed.size() && allowed[pregOpt] != dst) {
362          ++pregOpt;
363        }
364        if (pregOpt < allowed.size()) {
365          ++pregOpt; // +1 to account for spill option.
366          PBQP::Graph::NodeId node = p->getNodeForVReg(src);
367          addPhysRegCoalesce(g.getNodeCosts(node), pregOpt, cBenefit);
368        }
369      } else {
370        const PBQPRAProblem::AllowedSet *allowed1 = &p->getAllowedSet(dst);
371        const PBQPRAProblem::AllowedSet *allowed2 = &p->getAllowedSet(src);
372        PBQP::Graph::NodeId node1 = p->getNodeForVReg(dst);
373        PBQP::Graph::NodeId node2 = p->getNodeForVReg(src);
374        PBQP::Graph::EdgeId edge = g.findEdge(node1, node2);
375        if (edge == g.invalidEdgeId()) {
376          edge = g.addEdge(node1, node2, PBQP::Matrix(allowed1->size() + 1,
377                                                      allowed2->size() + 1,
378                                                      0));
379        } else {
380          if (g.getEdgeNode1(edge) == node2) {
381            std::swap(node1, node2);
382            std::swap(allowed1, allowed2);
383          }
384        }
385
386        addVirtRegCoalesce(g.getEdgeCosts(edge), *allowed1, *allowed2,
387                           cBenefit);
388      }
389    }
390  }
391
392  return p.take();
393}
394
395void PBQPBuilderWithCoalescing::addPhysRegCoalesce(PBQP::Vector &costVec,
396                                                   unsigned pregOption,
397                                                   PBQP::PBQPNum benefit) {
398  costVec[pregOption] += -benefit;
399}
400
401void PBQPBuilderWithCoalescing::addVirtRegCoalesce(
402                                    PBQP::Matrix &costMat,
403                                    const PBQPRAProblem::AllowedSet &vr1Allowed,
404                                    const PBQPRAProblem::AllowedSet &vr2Allowed,
405                                    PBQP::PBQPNum benefit) {
406
407  assert(costMat.getRows() == vr1Allowed.size() + 1 && "Size mismatch.");
408  assert(costMat.getCols() == vr2Allowed.size() + 1 && "Size mismatch.");
409
410  for (unsigned i = 0; i != vr1Allowed.size(); ++i) {
411    unsigned preg1 = vr1Allowed[i];
412    for (unsigned j = 0; j != vr2Allowed.size(); ++j) {
413      unsigned preg2 = vr2Allowed[j];
414
415      if (preg1 == preg2) {
416        costMat[i + 1][j + 1] += -benefit;
417      }
418    }
419  }
420}
421
422
423void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
424  au.setPreservesCFG();
425  au.addRequired<AliasAnalysis>();
426  au.addPreserved<AliasAnalysis>();
427  au.addRequired<SlotIndexes>();
428  au.addPreserved<SlotIndexes>();
429  au.addRequired<LiveIntervals>();
430  au.addPreserved<LiveIntervals>();
431  //au.addRequiredID(SplitCriticalEdgesID);
432  if (customPassID)
433    au.addRequiredID(*customPassID);
434  au.addRequired<LiveStacks>();
435  au.addPreserved<LiveStacks>();
436  au.addRequired<MachineBlockFrequencyInfo>();
437  au.addPreserved<MachineBlockFrequencyInfo>();
438  au.addRequired<MachineLoopInfo>();
439  au.addPreserved<MachineLoopInfo>();
440  au.addRequired<MachineDominatorTree>();
441  au.addPreserved<MachineDominatorTree>();
442  au.addRequired<VirtRegMap>();
443  au.addPreserved<VirtRegMap>();
444  MachineFunctionPass::getAnalysisUsage(au);
445}
446
447void RegAllocPBQP::findVRegIntervalsToAlloc() {
448
449  // Iterate over all live ranges.
450  for (unsigned i = 0, e = mri->getNumVirtRegs(); i != e; ++i) {
451    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
452    if (mri->reg_nodbg_empty(Reg))
453      continue;
454    LiveInterval *li = &lis->getInterval(Reg);
455
456    // If this live interval is non-empty we will use pbqp to allocate it.
457    // Empty intervals we allocate in a simple post-processing stage in
458    // finalizeAlloc.
459    if (!li->empty()) {
460      vregsToAlloc.insert(li->reg);
461    } else {
462      emptyIntervalVRegs.insert(li->reg);
463    }
464  }
465}
466
467bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAProblem &problem,
468                                     const PBQP::Solution &solution) {
469  // Set to true if we have any spills
470  bool anotherRoundNeeded = false;
471
472  // Clear the existing allocation.
473  vrm->clearAllVirt();
474
475  const PBQP::Graph &g = problem.getGraph();
476  // Iterate over the nodes mapping the PBQP solution to a register
477  // assignment.
478  for (PBQP::Graph::NodeItr nodeItr = g.nodesBegin(),
479                            nodeEnd = g.nodesEnd();
480       nodeItr != nodeEnd; ++nodeItr) {
481    unsigned vreg = problem.getVRegForNode(*nodeItr);
482    unsigned alloc = solution.getSelection(*nodeItr);
483
484    if (problem.isPRegOption(vreg, alloc)) {
485      unsigned preg = problem.getPRegForOption(vreg, alloc);
486      DEBUG(dbgs() << "VREG " << PrintReg(vreg, tri) << " -> "
487            << tri->getName(preg) << "\n");
488      assert(preg != 0 && "Invalid preg selected.");
489      vrm->assignVirt2Phys(vreg, preg);
490    } else if (problem.isSpillOption(vreg, alloc)) {
491      vregsToAlloc.erase(vreg);
492      SmallVector<unsigned, 8> newSpills;
493      LiveRangeEdit LRE(&lis->getInterval(vreg), newSpills, *mf, *lis, vrm);
494      spiller->spill(LRE);
495
496      DEBUG(dbgs() << "VREG " << PrintReg(vreg, tri) << " -> SPILLED (Cost: "
497                   << LRE.getParent().weight << ", New vregs: ");
498
499      // Copy any newly inserted live intervals into the list of regs to
500      // allocate.
501      for (LiveRangeEdit::iterator itr = LRE.begin(), end = LRE.end();
502           itr != end; ++itr) {
503        LiveInterval &li = lis->getInterval(*itr);
504        assert(!li.empty() && "Empty spill range.");
505        DEBUG(dbgs() << PrintReg(li.reg, tri) << " ");
506        vregsToAlloc.insert(li.reg);
507      }
508
509      DEBUG(dbgs() << ")\n");
510
511      // We need another round if spill intervals were added.
512      anotherRoundNeeded |= !LRE.empty();
513    } else {
514      llvm_unreachable("Unknown allocation option.");
515    }
516  }
517
518  return !anotherRoundNeeded;
519}
520
521
522void RegAllocPBQP::finalizeAlloc() const {
523  // First allocate registers for the empty intervals.
524  for (RegSet::const_iterator
525         itr = emptyIntervalVRegs.begin(), end = emptyIntervalVRegs.end();
526         itr != end; ++itr) {
527    LiveInterval *li = &lis->getInterval(*itr);
528
529    unsigned physReg = mri->getSimpleHint(li->reg);
530
531    if (physReg == 0) {
532      const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
533      physReg = liRC->getRawAllocationOrder(*mf).front();
534    }
535
536    vrm->assignVirt2Phys(li->reg, physReg);
537  }
538}
539
540bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
541
542  mf = &MF;
543  tm = &mf->getTarget();
544  tri = tm->getRegisterInfo();
545  tii = tm->getInstrInfo();
546  mri = &mf->getRegInfo();
547
548  lis = &getAnalysis<LiveIntervals>();
549  lss = &getAnalysis<LiveStacks>();
550  mbfi = &getAnalysis<MachineBlockFrequencyInfo>();
551
552  calculateSpillWeightsAndHints(*lis, MF, getAnalysis<MachineLoopInfo>(),
553                                *mbfi);
554
555  vrm = &getAnalysis<VirtRegMap>();
556  spiller.reset(createInlineSpiller(*this, MF, *vrm));
557
558  mri->freezeReservedRegs(MF);
559
560  DEBUG(dbgs() << "PBQP Register Allocating for " << mf->getName() << "\n");
561
562  // Allocator main loop:
563  //
564  // * Map current regalloc problem to a PBQP problem
565  // * Solve the PBQP problem
566  // * Map the solution back to a register allocation
567  // * Spill if necessary
568  //
569  // This process is continued till no more spills are generated.
570
571  // Find the vreg intervals in need of allocation.
572  findVRegIntervalsToAlloc();
573
574#ifndef NDEBUG
575  const Function* func = mf->getFunction();
576  std::string fqn =
577    func->getParent()->getModuleIdentifier() + "." +
578    func->getName().str();
579#endif
580
581  // If there are non-empty intervals allocate them using pbqp.
582  if (!vregsToAlloc.empty()) {
583
584    bool pbqpAllocComplete = false;
585    unsigned round = 0;
586
587    while (!pbqpAllocComplete) {
588      DEBUG(dbgs() << "  PBQP Regalloc round " << round << ":\n");
589
590      OwningPtr<PBQPRAProblem> problem(
591        builder->build(mf, lis, mbfi, vregsToAlloc));
592
593#ifndef NDEBUG
594      if (pbqpDumpGraphs) {
595        std::ostringstream rs;
596        rs << round;
597        std::string graphFileName(fqn + "." + rs.str() + ".pbqpgraph");
598        std::string tmp;
599        raw_fd_ostream os(graphFileName.c_str(), tmp);
600        DEBUG(dbgs() << "Dumping graph for round " << round << " to \""
601              << graphFileName << "\"\n");
602        problem->getGraph().dump(os);
603      }
604#endif
605
606      PBQP::Solution solution =
607        PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve(
608          problem->getGraph());
609
610      pbqpAllocComplete = mapPBQPToRegAlloc(*problem, solution);
611
612      ++round;
613    }
614  }
615
616  // Finalise allocation, allocate empty ranges.
617  finalizeAlloc();
618  vregsToAlloc.clear();
619  emptyIntervalVRegs.clear();
620
621  DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
622
623  return true;
624}
625
626FunctionPass* llvm::createPBQPRegisterAllocator(
627                                           OwningPtr<PBQPBuilder> &builder,
628                                           char *customPassID) {
629  return new RegAllocPBQP(builder, customPassID);
630}
631
632FunctionPass* llvm::createDefaultPBQPRegisterAllocator() {
633  OwningPtr<PBQPBuilder> Builder;
634  if (pbqpCoalescing)
635    Builder.reset(new PBQPBuilderWithCoalescing());
636  else
637    Builder.reset(new PBQPBuilder());
638  return createPBQPRegisterAllocator(Builder);
639}
640
641#undef DEBUG_TYPE
642