1218885Sdim//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
2218885Sdim//
3218885Sdim//                     The LLVM Compiler Infrastructure
4218885Sdim//
5218885Sdim// This file is distributed under the University of Illinois Open Source
6218885Sdim// License. See LICENSE.TXT for details.
7218885Sdim//
8218885Sdim//===----------------------------------------------------------------------===//
9218885Sdim//
10218885Sdim// This file defines the RAGreedy function pass for register allocation in
11218885Sdim// optimized builds.
12218885Sdim//
13218885Sdim//===----------------------------------------------------------------------===//
14218885Sdim
15218885Sdim#define DEBUG_TYPE "regalloc"
16249423Sdim#include "llvm/CodeGen/Passes.h"
17218885Sdim#include "AllocationOrder.h"
18221345Sdim#include "InterferenceCache.h"
19221345Sdim#include "LiveDebugVariables.h"
20218885Sdim#include "RegAllocBase.h"
21249423Sdim#include "SpillPlacement.h"
22218885Sdim#include "Spiller.h"
23218885Sdim#include "SplitKit.h"
24218885Sdim#include "llvm/ADT/Statistic.h"
25218885Sdim#include "llvm/Analysis/AliasAnalysis.h"
26218885Sdim#include "llvm/CodeGen/CalcSpillWeights.h"
27218885Sdim#include "llvm/CodeGen/EdgeBundles.h"
28218885Sdim#include "llvm/CodeGen/LiveIntervalAnalysis.h"
29234353Sdim#include "llvm/CodeGen/LiveRangeEdit.h"
30249423Sdim#include "llvm/CodeGen/LiveRegMatrix.h"
31218885Sdim#include "llvm/CodeGen/LiveStackAnalysis.h"
32263508Sdim#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
33218885Sdim#include "llvm/CodeGen/MachineDominators.h"
34218885Sdim#include "llvm/CodeGen/MachineFunctionPass.h"
35218885Sdim#include "llvm/CodeGen/MachineLoopInfo.h"
36218885Sdim#include "llvm/CodeGen/MachineRegisterInfo.h"
37218885Sdim#include "llvm/CodeGen/RegAllocRegistry.h"
38249423Sdim#include "llvm/CodeGen/VirtRegMap.h"
39249423Sdim#include "llvm/PassAnalysisSupport.h"
40226633Sdim#include "llvm/Support/CommandLine.h"
41218885Sdim#include "llvm/Support/Debug.h"
42218885Sdim#include "llvm/Support/ErrorHandling.h"
43249423Sdim#include "llvm/Support/Timer.h"
44218885Sdim#include "llvm/Support/raw_ostream.h"
45219077Sdim#include <queue>
46219077Sdim
47218885Sdimusing namespace llvm;
48218885Sdim
49218885SdimSTATISTIC(NumGlobalSplits, "Number of split global live ranges");
50218885SdimSTATISTIC(NumLocalSplits,  "Number of split local live ranges");
51218885SdimSTATISTIC(NumEvicted,      "Number of interferences evicted");
52218885Sdim
53226633Sdimstatic cl::opt<SplitEditor::ComplementSpillMode>
54226633SdimSplitSpillMode("split-spill-mode", cl::Hidden,
55226633Sdim  cl::desc("Spill mode for splitting live ranges"),
56226633Sdim  cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
57226633Sdim             clEnumValN(SplitEditor::SM_Size,  "size",  "Optimize for size"),
58226633Sdim             clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"),
59226633Sdim             clEnumValEnd),
60226633Sdim  cl::init(SplitEditor::SM_Partition));
61226633Sdim
62218885Sdimstatic RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
63218885Sdim                                       createGreedyRegisterAllocator);
64218885Sdim
65218885Sdimnamespace {
66221345Sdimclass RAGreedy : public MachineFunctionPass,
67221345Sdim                 public RegAllocBase,
68221345Sdim                 private LiveRangeEdit::Delegate {
69221345Sdim
70218885Sdim  // context
71218885Sdim  MachineFunction *MF;
72218885Sdim
73218885Sdim  // analyses
74218885Sdim  SlotIndexes *Indexes;
75263508Sdim  MachineBlockFrequencyInfo *MBFI;
76218885Sdim  MachineDominatorTree *DomTree;
77218885Sdim  MachineLoopInfo *Loops;
78218885Sdim  EdgeBundles *Bundles;
79218885Sdim  SpillPlacement *SpillPlacer;
80223017Sdim  LiveDebugVariables *DebugVars;
81218885Sdim
82218885Sdim  // state
83251662Sdim  OwningPtr<Spiller> SpillerInstance;
84219077Sdim  std::priority_queue<std::pair<unsigned, unsigned> > Queue;
85224145Sdim  unsigned NextCascade;
86218885Sdim
87221345Sdim  // Live ranges pass through a number of stages as we try to allocate them.
88221345Sdim  // Some of the stages may also create new live ranges:
89221345Sdim  //
90221345Sdim  // - Region splitting.
91221345Sdim  // - Per-block splitting.
92221345Sdim  // - Local splitting.
93221345Sdim  // - Spilling.
94221345Sdim  //
95221345Sdim  // Ranges produced by one of the stages skip the previous stages when they are
96221345Sdim  // dequeued. This improves performance because we can skip interference checks
97221345Sdim  // that are unlikely to give any results. It also guarantees that the live
98221345Sdim  // range splitting algorithm terminates, something that is otherwise hard to
99221345Sdim  // ensure.
100221345Sdim  enum LiveRangeStage {
101226633Sdim    /// Newly created live range that has never been queued.
102226633Sdim    RS_New,
103226633Sdim
104226633Sdim    /// Only attempt assignment and eviction. Then requeue as RS_Split.
105226633Sdim    RS_Assign,
106226633Sdim
107226633Sdim    /// Attempt live range splitting if assignment is impossible.
108226633Sdim    RS_Split,
109226633Sdim
110226633Sdim    /// Attempt more aggressive live range splitting that is guaranteed to make
111226633Sdim    /// progress.  This is used for split products that may not be making
112226633Sdim    /// progress.
113226633Sdim    RS_Split2,
114226633Sdim
115226633Sdim    /// Live range will be spilled.  No more splitting will be attempted.
116226633Sdim    RS_Spill,
117226633Sdim
118226633Sdim    /// There is nothing more we can do to this live range.  Abort compilation
119226633Sdim    /// if it can't be assigned.
120226633Sdim    RS_Done
121221345Sdim  };
122221345Sdim
123263508Sdim#ifndef NDEBUG
124223017Sdim  static const char *const StageName[];
125263508Sdim#endif
126223017Sdim
127224145Sdim  // RegInfo - Keep additional information about each live range.
128224145Sdim  struct RegInfo {
129224145Sdim    LiveRangeStage Stage;
130221345Sdim
131224145Sdim    // Cascade - Eviction loop prevention. See canEvictInterference().
132224145Sdim    unsigned Cascade;
133224145Sdim
134224145Sdim    RegInfo() : Stage(RS_New), Cascade(0) {}
135224145Sdim  };
136224145Sdim
137224145Sdim  IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
138224145Sdim
139221345Sdim  LiveRangeStage getStage(const LiveInterval &VirtReg) const {
140224145Sdim    return ExtraRegInfo[VirtReg.reg].Stage;
141221345Sdim  }
142221345Sdim
143224145Sdim  void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
144224145Sdim    ExtraRegInfo.resize(MRI->getNumVirtRegs());
145224145Sdim    ExtraRegInfo[VirtReg.reg].Stage = Stage;
146224145Sdim  }
147224145Sdim
148221345Sdim  template<typename Iterator>
149221345Sdim  void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
150224145Sdim    ExtraRegInfo.resize(MRI->getNumVirtRegs());
151221345Sdim    for (;Begin != End; ++Begin) {
152263508Sdim      unsigned Reg = *Begin;
153224145Sdim      if (ExtraRegInfo[Reg].Stage == RS_New)
154224145Sdim        ExtraRegInfo[Reg].Stage = NewStage;
155221345Sdim    }
156221345Sdim  }
157221345Sdim
158224145Sdim  /// Cost of evicting interference.
159224145Sdim  struct EvictionCost {
160224145Sdim    unsigned BrokenHints; ///< Total number of broken hints.
161224145Sdim    float MaxWeight;      ///< Maximum spill weight evicted.
162224145Sdim
163224145Sdim    EvictionCost(unsigned B = 0) : BrokenHints(B), MaxWeight(0) {}
164224145Sdim
165263508Sdim    bool isMax() const { return BrokenHints == ~0u; }
166263508Sdim
167224145Sdim    bool operator<(const EvictionCost &O) const {
168224145Sdim      if (BrokenHints != O.BrokenHints)
169224145Sdim        return BrokenHints < O.BrokenHints;
170224145Sdim      return MaxWeight < O.MaxWeight;
171224145Sdim    }
172223017Sdim  };
173223017Sdim
174218885Sdim  // splitting state.
175251662Sdim  OwningPtr<SplitAnalysis> SA;
176251662Sdim  OwningPtr<SplitEditor> SE;
177218885Sdim
178221345Sdim  /// Cached per-block interference maps
179221345Sdim  InterferenceCache IntfCache;
180218885Sdim
181221345Sdim  /// All basic blocks where the current register has uses.
182221345Sdim  SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
183221345Sdim
184221345Sdim  /// Global live range splitting candidate info.
185221345Sdim  struct GlobalSplitCandidate {
186226633Sdim    // Register intended for assignment, or 0.
187221345Sdim    unsigned PhysReg;
188226633Sdim
189226633Sdim    // SplitKit interval index for this candidate.
190226633Sdim    unsigned IntvIdx;
191226633Sdim
192226633Sdim    // Interference for PhysReg.
193224145Sdim    InterferenceCache::Cursor Intf;
194226633Sdim
195226633Sdim    // Bundles where this candidate should be live.
196221345Sdim    BitVector LiveBundles;
197221345Sdim    SmallVector<unsigned, 8> ActiveBlocks;
198221345Sdim
199224145Sdim    void reset(InterferenceCache &Cache, unsigned Reg) {
200221345Sdim      PhysReg = Reg;
201226633Sdim      IntvIdx = 0;
202224145Sdim      Intf.setPhysReg(Cache, Reg);
203221345Sdim      LiveBundles.clear();
204221345Sdim      ActiveBlocks.clear();
205221345Sdim    }
206226633Sdim
207226633Sdim    // Set B[i] = C for every live bundle where B[i] was NoCand.
208226633Sdim    unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
209226633Sdim      unsigned Count = 0;
210226633Sdim      for (int i = LiveBundles.find_first(); i >= 0;
211226633Sdim           i = LiveBundles.find_next(i))
212226633Sdim        if (B[i] == NoCand) {
213226633Sdim          B[i] = C;
214226633Sdim          Count++;
215226633Sdim        }
216226633Sdim      return Count;
217226633Sdim    }
218221345Sdim  };
219221345Sdim
220221345Sdim  /// Candidate info for for each PhysReg in AllocationOrder.
221221345Sdim  /// This vector never shrinks, but grows to the size of the largest register
222221345Sdim  /// class.
223221345Sdim  SmallVector<GlobalSplitCandidate, 32> GlobalCand;
224221345Sdim
225263508Sdim  enum LLVM_ENUM_INT_TYPE(unsigned) { NoCand = ~0u };
226226633Sdim
227226633Sdim  /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
228226633Sdim  /// NoCand which indicates the stack interval.
229226633Sdim  SmallVector<unsigned, 32> BundleCand;
230226633Sdim
231218885Sdimpublic:
232218885Sdim  RAGreedy();
233218885Sdim
234218885Sdim  /// Return the pass name.
235218885Sdim  virtual const char* getPassName() const {
236218885Sdim    return "Greedy Register Allocator";
237218885Sdim  }
238218885Sdim
239218885Sdim  /// RAGreedy analysis usage.
240218885Sdim  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
241218885Sdim  virtual void releaseMemory();
242218885Sdim  virtual Spiller &spiller() { return *SpillerInstance; }
243219077Sdim  virtual void enqueue(LiveInterval *LI);
244219077Sdim  virtual LiveInterval *dequeue();
245218885Sdim  virtual unsigned selectOrSplit(LiveInterval&,
246263508Sdim                                 SmallVectorImpl<unsigned>&);
247218885Sdim
248218885Sdim  /// Perform register allocation.
249218885Sdim  virtual bool runOnMachineFunction(MachineFunction &mf);
250218885Sdim
251218885Sdim  static char ID;
252218885Sdim
253218885Sdimprivate:
254221345Sdim  bool LRE_CanEraseVirtReg(unsigned);
255221345Sdim  void LRE_WillShrinkVirtReg(unsigned);
256221345Sdim  void LRE_DidCloneVirtReg(unsigned, unsigned);
257221345Sdim
258263508Sdim  BlockFrequency calcSpillCost();
259263508Sdim  bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
260221345Sdim  void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
261224145Sdim  void growRegion(GlobalSplitCandidate &Cand);
262263508Sdim  BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate&);
263226633Sdim  bool calcCompactRegion(GlobalSplitCandidate&);
264226633Sdim  void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
265218885Sdim  void calcGapWeights(unsigned, SmallVectorImpl<float>&);
266263508Sdim  unsigned canReassign(LiveInterval &VirtReg, unsigned PhysReg);
267224145Sdim  bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
268224145Sdim  bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
269224145Sdim  void evictInterference(LiveInterval&, unsigned,
270263508Sdim                         SmallVectorImpl<unsigned>&);
271218885Sdim
272221345Sdim  unsigned tryAssign(LiveInterval&, AllocationOrder&,
273263508Sdim                     SmallVectorImpl<unsigned>&);
274219077Sdim  unsigned tryEvict(LiveInterval&, AllocationOrder&,
275263508Sdim                    SmallVectorImpl<unsigned>&, unsigned = ~0u);
276218885Sdim  unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
277263508Sdim                          SmallVectorImpl<unsigned>&);
278226633Sdim  unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
279263508Sdim                         SmallVectorImpl<unsigned>&);
280239462Sdim  unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
281263508Sdim                               SmallVectorImpl<unsigned>&);
282218885Sdim  unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
283263508Sdim    SmallVectorImpl<unsigned>&);
284218885Sdim  unsigned trySplit(LiveInterval&, AllocationOrder&,
285263508Sdim                    SmallVectorImpl<unsigned>&);
286218885Sdim};
287218885Sdim} // end anonymous namespace
288218885Sdim
289218885Sdimchar RAGreedy::ID = 0;
290218885Sdim
291223017Sdim#ifndef NDEBUG
292223017Sdimconst char *const RAGreedy::StageName[] = {
293226633Sdim    "RS_New",
294226633Sdim    "RS_Assign",
295226633Sdim    "RS_Split",
296226633Sdim    "RS_Split2",
297226633Sdim    "RS_Spill",
298226633Sdim    "RS_Done"
299223017Sdim};
300223017Sdim#endif
301223017Sdim
302221345Sdim// Hysteresis to use when comparing floats.
303221345Sdim// This helps stabilize decisions based on float comparisons.
304221345Sdimconst float Hysteresis = 0.98f;
305221345Sdim
306221345Sdim
307218885SdimFunctionPass* llvm::createGreedyRegisterAllocator() {
308218885Sdim  return new RAGreedy();
309218885Sdim}
310218885Sdim
311224145SdimRAGreedy::RAGreedy(): MachineFunctionPass(ID) {
312221345Sdim  initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
313218885Sdim  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
314218885Sdim  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
315218885Sdim  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
316224145Sdim  initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
317234353Sdim  initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
318218885Sdim  initializeLiveStacksPass(*PassRegistry::getPassRegistry());
319218885Sdim  initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
320218885Sdim  initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
321218885Sdim  initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
322239462Sdim  initializeLiveRegMatrixPass(*PassRegistry::getPassRegistry());
323218885Sdim  initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
324218885Sdim  initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
325218885Sdim}
326218885Sdim
327218885Sdimvoid RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
328218885Sdim  AU.setPreservesCFG();
329263508Sdim  AU.addRequired<MachineBlockFrequencyInfo>();
330263508Sdim  AU.addPreserved<MachineBlockFrequencyInfo>();
331218885Sdim  AU.addRequired<AliasAnalysis>();
332218885Sdim  AU.addPreserved<AliasAnalysis>();
333218885Sdim  AU.addRequired<LiveIntervals>();
334239462Sdim  AU.addPreserved<LiveIntervals>();
335218885Sdim  AU.addRequired<SlotIndexes>();
336218885Sdim  AU.addPreserved<SlotIndexes>();
337221345Sdim  AU.addRequired<LiveDebugVariables>();
338221345Sdim  AU.addPreserved<LiveDebugVariables>();
339218885Sdim  AU.addRequired<LiveStacks>();
340218885Sdim  AU.addPreserved<LiveStacks>();
341218885Sdim  AU.addRequired<MachineDominatorTree>();
342218885Sdim  AU.addPreserved<MachineDominatorTree>();
343218885Sdim  AU.addRequired<MachineLoopInfo>();
344218885Sdim  AU.addPreserved<MachineLoopInfo>();
345218885Sdim  AU.addRequired<VirtRegMap>();
346218885Sdim  AU.addPreserved<VirtRegMap>();
347239462Sdim  AU.addRequired<LiveRegMatrix>();
348239462Sdim  AU.addPreserved<LiveRegMatrix>();
349218885Sdim  AU.addRequired<EdgeBundles>();
350218885Sdim  AU.addRequired<SpillPlacement>();
351218885Sdim  MachineFunctionPass::getAnalysisUsage(AU);
352218885Sdim}
353218885Sdim
354221345Sdim
355221345Sdim//===----------------------------------------------------------------------===//
356221345Sdim//                     LiveRangeEdit delegate methods
357221345Sdim//===----------------------------------------------------------------------===//
358221345Sdim
359221345Sdimbool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
360239462Sdim  if (VRM->hasPhys(VirtReg)) {
361239462Sdim    Matrix->unassign(LIS->getInterval(VirtReg));
362221345Sdim    return true;
363221345Sdim  }
364221345Sdim  // Unassigned virtreg is probably in the priority queue.
365221345Sdim  // RegAllocBase will erase it after dequeueing.
366221345Sdim  return false;
367221345Sdim}
368221345Sdim
369221345Sdimvoid RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
370239462Sdim  if (!VRM->hasPhys(VirtReg))
371221345Sdim    return;
372221345Sdim
373221345Sdim  // Register is assigned, put it back on the queue for reassignment.
374221345Sdim  LiveInterval &LI = LIS->getInterval(VirtReg);
375239462Sdim  Matrix->unassign(LI);
376221345Sdim  enqueue(&LI);
377221345Sdim}
378221345Sdim
379221345Sdimvoid RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
380226633Sdim  // Cloning a register we haven't even heard about yet?  Just ignore it.
381226633Sdim  if (!ExtraRegInfo.inBounds(Old))
382226633Sdim    return;
383226633Sdim
384221345Sdim  // LRE may clone a virtual register because dead code elimination causes it to
385226633Sdim  // be split into connected components. The new components are much smaller
386226633Sdim  // than the original, so they should get a new chance at being assigned.
387221345Sdim  // same stage as the parent.
388226633Sdim  ExtraRegInfo[Old].Stage = RS_Assign;
389224145Sdim  ExtraRegInfo.grow(New);
390224145Sdim  ExtraRegInfo[New] = ExtraRegInfo[Old];
391221345Sdim}
392221345Sdim
393218885Sdimvoid RAGreedy::releaseMemory() {
394218885Sdim  SpillerInstance.reset(0);
395224145Sdim  ExtraRegInfo.clear();
396221345Sdim  GlobalCand.clear();
397218885Sdim}
398218885Sdim
399219077Sdimvoid RAGreedy::enqueue(LiveInterval *LI) {
400219077Sdim  // Prioritize live ranges by size, assigning larger ranges first.
401219077Sdim  // The queue holds (size, reg) pairs.
402219077Sdim  const unsigned Size = LI->getSize();
403219077Sdim  const unsigned Reg = LI->reg;
404219077Sdim  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
405219077Sdim         "Can only enqueue virtual registers");
406219077Sdim  unsigned Prio;
407218885Sdim
408224145Sdim  ExtraRegInfo.grow(Reg);
409224145Sdim  if (ExtraRegInfo[Reg].Stage == RS_New)
410226633Sdim    ExtraRegInfo[Reg].Stage = RS_Assign;
411221345Sdim
412226633Sdim  if (ExtraRegInfo[Reg].Stage == RS_Split) {
413221345Sdim    // Unsplit ranges that couldn't be allocated immediately are deferred until
414226633Sdim    // everything else has been allocated.
415226633Sdim    Prio = Size;
416226633Sdim  } else {
417263508Sdim    if (ExtraRegInfo[Reg].Stage == RS_Assign && !LI->empty() &&
418263508Sdim        LIS->intervalIsInOneMBB(*LI)) {
419263508Sdim      // Allocate original local ranges in linear instruction order. Since they
420263508Sdim      // are singly defined, this produces optimal coloring in the absence of
421263508Sdim      // global interference and other constraints.
422263508Sdim      Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
423263508Sdim    }
424263508Sdim    else {
425263508Sdim      // Allocate global and split ranges in long->short order. Long ranges that
426263508Sdim      // don't fit should be spilled (or split) ASAP so they don't create
427263508Sdim      // interference.  Mark a bit to prioritize global above local ranges.
428263508Sdim      Prio = (1u << 29) + Size;
429263508Sdim    }
430263508Sdim    // Mark a higher bit to prioritize global and local above RS_Split.
431263508Sdim    Prio |= (1u << 31);
432218885Sdim
433221345Sdim    // Boost ranges that have a physical register hint.
434249423Sdim    if (VRM->hasKnownPreference(Reg))
435221345Sdim      Prio |= (1u << 30);
436221345Sdim  }
437263508Sdim  // The virtual register number is a tie breaker for same-sized ranges.
438263508Sdim  // Give lower vreg numbers higher priority to assign them first.
439234353Sdim  Queue.push(std::make_pair(Prio, ~Reg));
440218885Sdim}
441218885Sdim
442219077SdimLiveInterval *RAGreedy::dequeue() {
443219077Sdim  if (Queue.empty())
444219077Sdim    return 0;
445234353Sdim  LiveInterval *LI = &LIS->getInterval(~Queue.top().second);
446219077Sdim  Queue.pop();
447219077Sdim  return LI;
448219077Sdim}
449218885Sdim
450221345Sdim
451218885Sdim//===----------------------------------------------------------------------===//
452221345Sdim//                            Direct Assignment
453218885Sdim//===----------------------------------------------------------------------===//
454218885Sdim
455221345Sdim/// tryAssign - Try to assign VirtReg to an available register.
456221345Sdimunsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
457221345Sdim                             AllocationOrder &Order,
458263508Sdim                             SmallVectorImpl<unsigned> &NewVRegs) {
459221345Sdim  Order.rewind();
460221345Sdim  unsigned PhysReg;
461239462Sdim  while ((PhysReg = Order.next()))
462239462Sdim    if (!Matrix->checkInterference(VirtReg, PhysReg))
463221345Sdim      break;
464249423Sdim  if (!PhysReg || Order.isHint())
465221345Sdim    return PhysReg;
466218885Sdim
467224145Sdim  // PhysReg is available, but there may be a better choice.
468224145Sdim
469224145Sdim  // If we missed a simple hint, try to cheaply evict interference from the
470224145Sdim  // preferred register.
471224145Sdim  if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
472239462Sdim    if (Order.isHint(Hint)) {
473224145Sdim      DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
474224145Sdim      EvictionCost MaxCost(1);
475224145Sdim      if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
476224145Sdim        evictInterference(VirtReg, Hint, NewVRegs);
477224145Sdim        return Hint;
478224145Sdim      }
479224145Sdim    }
480224145Sdim
481224145Sdim  // Try to evict interference from a cheaper alternative.
482221345Sdim  unsigned Cost = TRI->getCostPerUse(PhysReg);
483218885Sdim
484221345Sdim  // Most registers have 0 additional cost.
485221345Sdim  if (!Cost)
486221345Sdim    return PhysReg;
487218885Sdim
488221345Sdim  DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
489221345Sdim               << '\n');
490221345Sdim  unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
491221345Sdim  return CheapReg ? CheapReg : PhysReg;
492218885Sdim}
493218885Sdim
494218885Sdim
495219077Sdim//===----------------------------------------------------------------------===//
496219077Sdim//                         Interference eviction
497219077Sdim//===----------------------------------------------------------------------===//
498219077Sdim
499263508Sdimunsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) {
500263508Sdim  AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
501263508Sdim  unsigned PhysReg;
502263508Sdim  while ((PhysReg = Order.next())) {
503263508Sdim    if (PhysReg == PrevReg)
504263508Sdim      continue;
505263508Sdim
506263508Sdim    MCRegUnitIterator Units(PhysReg, TRI);
507263508Sdim    for (; Units.isValid(); ++Units) {
508263508Sdim      // Instantiate a "subquery", not to be confused with the Queries array.
509263508Sdim      LiveIntervalUnion::Query subQ(&VirtReg, &Matrix->getLiveUnions()[*Units]);
510263508Sdim      if (subQ.checkInterference())
511263508Sdim        break;
512263508Sdim    }
513263508Sdim    // If no units have interference, break out with the current PhysReg.
514263508Sdim    if (!Units.isValid())
515263508Sdim      break;
516263508Sdim  }
517263508Sdim  if (PhysReg)
518263508Sdim    DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
519263508Sdim          << PrintReg(PrevReg, TRI) << " to " << PrintReg(PhysReg, TRI)
520263508Sdim          << '\n');
521263508Sdim  return PhysReg;
522263508Sdim}
523263508Sdim
524224145Sdim/// shouldEvict - determine if A should evict the assigned live range B. The
525224145Sdim/// eviction policy defined by this function together with the allocation order
526224145Sdim/// defined by enqueue() decides which registers ultimately end up being split
527224145Sdim/// and spilled.
528223017Sdim///
529224145Sdim/// Cascade numbers are used to prevent infinite loops if this function is a
530224145Sdim/// cyclic relation.
531224145Sdim///
532224145Sdim/// @param A          The live range to be assigned.
533224145Sdim/// @param IsHint     True when A is about to be assigned to its preferred
534224145Sdim///                   register.
535224145Sdim/// @param B          The live range to be evicted.
536224145Sdim/// @param BreaksHint True when B is already assigned to its preferred register.
537224145Sdimbool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
538224145Sdim                           LiveInterval &B, bool BreaksHint) {
539226633Sdim  bool CanSplit = getStage(B) < RS_Spill;
540224145Sdim
541224145Sdim  // Be fairly aggressive about following hints as long as the evictee can be
542224145Sdim  // split.
543224145Sdim  if (CanSplit && IsHint && !BreaksHint)
544224145Sdim    return true;
545224145Sdim
546224145Sdim  return A.weight > B.weight;
547223017Sdim}
548223017Sdim
549224145Sdim/// canEvictInterference - Return true if all interferences between VirtReg and
550224145Sdim/// PhysReg can be evicted.  When OnlyCheap is set, don't do anything
551224145Sdim///
552224145Sdim/// @param VirtReg Live range that is about to be assigned.
553224145Sdim/// @param PhysReg Desired register for assignment.
554243830Sdim/// @param IsHint  True when PhysReg is VirtReg's preferred register.
555224145Sdim/// @param MaxCost Only look for cheaper candidates and update with new cost
556224145Sdim///                when returning true.
557224145Sdim/// @returns True when interference can be evicted cheaper than MaxCost.
558219077Sdimbool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
559224145Sdim                                    bool IsHint, EvictionCost &MaxCost) {
560239462Sdim  // It is only possible to evict virtual register interference.
561239462Sdim  if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
562239462Sdim    return false;
563239462Sdim
564263508Sdim  bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
565263508Sdim
566224145Sdim  // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
567224145Sdim  // involved in an eviction before. If a cascade number was assigned, deny
568224145Sdim  // evicting anything with the same or a newer cascade number. This prevents
569224145Sdim  // infinite eviction loops.
570224145Sdim  //
571224145Sdim  // This works out so a register without a cascade number is allowed to evict
572224145Sdim  // anything, and it can be evicted by anything.
573224145Sdim  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
574224145Sdim  if (!Cascade)
575224145Sdim    Cascade = NextCascade;
576224145Sdim
577224145Sdim  EvictionCost Cost;
578239462Sdim  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
579239462Sdim    LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
580221345Sdim    // If there is 10 or more interferences, chances are one is heavier.
581224145Sdim    if (Q.collectInterferingVRegs(10) >= 10)
582219077Sdim      return false;
583219077Sdim
584221345Sdim    // Check if any interfering live range is heavier than MaxWeight.
585221345Sdim    for (unsigned i = Q.interferingVRegs().size(); i; --i) {
586221345Sdim      LiveInterval *Intf = Q.interferingVRegs()[i - 1];
587239462Sdim      assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) &&
588239462Sdim             "Only expecting virtual register interference from query");
589224145Sdim      // Never evict spill products. They cannot split or spill.
590226633Sdim      if (getStage(*Intf) == RS_Done)
591219077Sdim        return false;
592224145Sdim      // Once a live range becomes small enough, it is urgent that we find a
593224145Sdim      // register for it. This is indicated by an infinite spill weight. These
594224145Sdim      // urgent live ranges get to evict almost anything.
595239462Sdim      //
596239462Sdim      // Also allow urgent evictions of unspillable ranges from a strictly
597239462Sdim      // larger allocation order.
598239462Sdim      bool Urgent = !VirtReg.isSpillable() &&
599239462Sdim        (Intf->isSpillable() ||
600239462Sdim         RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
601239462Sdim         RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
602224145Sdim      // Only evict older cascades or live ranges without a cascade.
603224145Sdim      unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
604224145Sdim      if (Cascade <= IntfCascade) {
605224145Sdim        if (!Urgent)
606223017Sdim          return false;
607224145Sdim        // We permit breaking cascades for urgent evictions. It should be the
608224145Sdim        // last resort, though, so make it really expensive.
609224145Sdim        Cost.BrokenHints += 10;
610223017Sdim      }
611224145Sdim      // Would this break a satisfied hint?
612224145Sdim      bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
613224145Sdim      // Update eviction cost.
614224145Sdim      Cost.BrokenHints += BreaksHint;
615224145Sdim      Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
616224145Sdim      // Abort if this would be too expensive.
617224145Sdim      if (!(Cost < MaxCost))
618224145Sdim        return false;
619263508Sdim      if (Urgent)
620263508Sdim        continue;
621263508Sdim      // If !MaxCost.isMax(), then we're just looking for a cheap register.
622263508Sdim      // Evicting another local live range in this case could lead to suboptimal
623263508Sdim      // coloring.
624263508Sdim      if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
625263508Sdim          !canReassign(*Intf, PhysReg)) {
626263508Sdim        return false;
627263508Sdim      }
628224145Sdim      // Finally, apply the eviction policy for non-urgent evictions.
629263508Sdim      if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
630224145Sdim        return false;
631218885Sdim    }
632218885Sdim  }
633224145Sdim  MaxCost = Cost;
634219077Sdim  return true;
635219077Sdim}
636218885Sdim
637224145Sdim/// evictInterference - Evict any interferring registers that prevent VirtReg
638224145Sdim/// from being assigned to Physreg. This assumes that canEvictInterference
639224145Sdim/// returned true.
640224145Sdimvoid RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
641263508Sdim                                 SmallVectorImpl<unsigned> &NewVRegs) {
642224145Sdim  // Make sure that VirtReg has a cascade number, and assign that cascade
643224145Sdim  // number to every evicted register. These live ranges than then only be
644224145Sdim  // evicted by a newer cascade, preventing infinite loops.
645224145Sdim  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
646224145Sdim  if (!Cascade)
647224145Sdim    Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
648224145Sdim
649224145Sdim  DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
650224145Sdim               << " interference: Cascade " << Cascade << '\n');
651239462Sdim
652239462Sdim  // Collect all interfering virtregs first.
653239462Sdim  SmallVector<LiveInterval*, 8> Intfs;
654239462Sdim  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
655239462Sdim    LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
656224145Sdim    assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
657239462Sdim    ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
658239462Sdim    Intfs.append(IVR.begin(), IVR.end());
659224145Sdim  }
660239462Sdim
661239462Sdim  // Evict them second. This will invalidate the queries.
662239462Sdim  for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
663239462Sdim    LiveInterval *Intf = Intfs[i];
664239462Sdim    // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
665239462Sdim    if (!VRM->hasPhys(Intf->reg))
666239462Sdim      continue;
667239462Sdim    Matrix->unassign(*Intf);
668239462Sdim    assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
669239462Sdim            VirtReg.isSpillable() < Intf->isSpillable()) &&
670239462Sdim           "Cannot decrease cascade number, illegal eviction");
671239462Sdim    ExtraRegInfo[Intf->reg].Cascade = Cascade;
672239462Sdim    ++NumEvicted;
673263508Sdim    NewVRegs.push_back(Intf->reg);
674239462Sdim  }
675224145Sdim}
676224145Sdim
677219077Sdim/// tryEvict - Try to evict all interferences for a physreg.
678219077Sdim/// @param  VirtReg Currently unassigned virtual register.
679219077Sdim/// @param  Order   Physregs to try.
680219077Sdim/// @return         Physreg to assign VirtReg, or 0.
681219077Sdimunsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
682219077Sdim                            AllocationOrder &Order,
683263508Sdim                            SmallVectorImpl<unsigned> &NewVRegs,
684221345Sdim                            unsigned CostPerUseLimit) {
685219077Sdim  NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
686219077Sdim
687224145Sdim  // Keep track of the cheapest interference seen so far.
688224145Sdim  EvictionCost BestCost(~0u);
689219077Sdim  unsigned BestPhys = 0;
690249423Sdim  unsigned OrderLimit = Order.getOrder().size();
691219077Sdim
692224145Sdim  // When we are just looking for a reduced cost per use, don't break any
693224145Sdim  // hints, and only evict smaller spill weights.
694224145Sdim  if (CostPerUseLimit < ~0u) {
695224145Sdim    BestCost.BrokenHints = 0;
696224145Sdim    BestCost.MaxWeight = VirtReg.weight;
697249423Sdim
698249423Sdim    // Check of any registers in RC are below CostPerUseLimit.
699249423Sdim    const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg);
700249423Sdim    unsigned MinCost = RegClassInfo.getMinCost(RC);
701249423Sdim    if (MinCost >= CostPerUseLimit) {
702249423Sdim      DEBUG(dbgs() << RC->getName() << " minimum cost = " << MinCost
703249423Sdim                   << ", no cheaper registers to be found.\n");
704249423Sdim      return 0;
705249423Sdim    }
706249423Sdim
707249423Sdim    // It is normal for register classes to have a long tail of registers with
708249423Sdim    // the same cost. We don't need to look at them if they're too expensive.
709249423Sdim    if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
710249423Sdim      OrderLimit = RegClassInfo.getLastCostChange(RC);
711249423Sdim      DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n");
712249423Sdim    }
713224145Sdim  }
714224145Sdim
715219077Sdim  Order.rewind();
716249423Sdim  while (unsigned PhysReg = Order.nextWithDups(OrderLimit)) {
717221345Sdim    if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
718219077Sdim      continue;
719224145Sdim    // The first use of a callee-saved register in a function has cost 1.
720224145Sdim    // Don't start using a CSR when the CostPerUseLimit is low.
721224145Sdim    if (CostPerUseLimit == 1)
722224145Sdim     if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
723224145Sdim       if (!MRI->isPhysRegUsed(CSR)) {
724224145Sdim         DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
725224145Sdim                      << PrintReg(CSR, TRI) << '\n');
726224145Sdim         continue;
727224145Sdim       }
728219077Sdim
729224145Sdim    if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
730221345Sdim      continue;
731221345Sdim
732219077Sdim    // Best so far.
733219077Sdim    BestPhys = PhysReg;
734224145Sdim
735219077Sdim    // Stop if the hint can be used.
736249423Sdim    if (Order.isHint())
737219077Sdim      break;
738218885Sdim  }
739218885Sdim
740219077Sdim  if (!BestPhys)
741219077Sdim    return 0;
742219077Sdim
743224145Sdim  evictInterference(VirtReg, BestPhys, NewVRegs);
744219077Sdim  return BestPhys;
745218885Sdim}
746218885Sdim
747218885Sdim
748218885Sdim//===----------------------------------------------------------------------===//
749218885Sdim//                              Region Splitting
750218885Sdim//===----------------------------------------------------------------------===//
751218885Sdim
752221345Sdim/// addSplitConstraints - Fill out the SplitConstraints vector based on the
753221345Sdim/// interference pattern in Physreg and its aliases. Add the constraints to
754221345Sdim/// SpillPlacement and return the static cost of this split in Cost, assuming
755221345Sdim/// that all preferences in SplitConstraints are met.
756221345Sdim/// Return false if there are no bundles with positive bias.
757221345Sdimbool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
758263508Sdim                                   BlockFrequency &Cost) {
759221345Sdim  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
760221345Sdim
761218885Sdim  // Reset interference dependent info.
762221345Sdim  SplitConstraints.resize(UseBlocks.size());
763263508Sdim  BlockFrequency StaticCost = 0;
764221345Sdim  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
765221345Sdim    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
766221345Sdim    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
767221345Sdim
768218885Sdim    BC.Number = BI.MBB->getNumber();
769221345Sdim    Intf.moveToBlock(BC.Number);
770221345Sdim    BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
771221345Sdim    BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
772263508Sdim    BC.ChangesValue = BI.FirstDef.isValid();
773218885Sdim
774221345Sdim    if (!Intf.hasInterference())
775218885Sdim      continue;
776218885Sdim
777221345Sdim    // Number of spill code instructions to insert.
778221345Sdim    unsigned Ins = 0;
779218885Sdim
780221345Sdim    // Interference for the live-in value.
781221345Sdim    if (BI.LiveIn) {
782221345Sdim      if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
783221345Sdim        BC.Entry = SpillPlacement::MustSpill, ++Ins;
784226633Sdim      else if (Intf.first() < BI.FirstInstr)
785221345Sdim        BC.Entry = SpillPlacement::PrefSpill, ++Ins;
786226633Sdim      else if (Intf.first() < BI.LastInstr)
787221345Sdim        ++Ins;
788221345Sdim    }
789218885Sdim
790221345Sdim    // Interference for the live-out value.
791221345Sdim    if (BI.LiveOut) {
792221345Sdim      if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
793221345Sdim        BC.Exit = SpillPlacement::MustSpill, ++Ins;
794226633Sdim      else if (Intf.last() > BI.LastInstr)
795221345Sdim        BC.Exit = SpillPlacement::PrefSpill, ++Ins;
796226633Sdim      else if (Intf.last() > BI.FirstInstr)
797221345Sdim        ++Ins;
798218885Sdim    }
799218885Sdim
800221345Sdim    // Accumulate the total frequency of inserted spill code.
801263508Sdim    while (Ins--)
802263508Sdim      StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
803221345Sdim  }
804221345Sdim  Cost = StaticCost;
805218885Sdim
806221345Sdim  // Add constraints for use-blocks. Note that these are the only constraints
807221345Sdim  // that may add a positive bias, it is downhill from here.
808221345Sdim  SpillPlacer->addConstraints(SplitConstraints);
809221345Sdim  return SpillPlacer->scanActiveBundles();
810221345Sdim}
811218885Sdim
812218885Sdim
813221345Sdim/// addThroughConstraints - Add constraints and links to SpillPlacer from the
814221345Sdim/// live-through blocks in Blocks.
815221345Sdimvoid RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
816221345Sdim                                     ArrayRef<unsigned> Blocks) {
817221345Sdim  const unsigned GroupSize = 8;
818221345Sdim  SpillPlacement::BlockConstraint BCS[GroupSize];
819221345Sdim  unsigned TBS[GroupSize];
820221345Sdim  unsigned B = 0, T = 0;
821218885Sdim
822221345Sdim  for (unsigned i = 0; i != Blocks.size(); ++i) {
823221345Sdim    unsigned Number = Blocks[i];
824221345Sdim    Intf.moveToBlock(Number);
825218885Sdim
826221345Sdim    if (!Intf.hasInterference()) {
827221345Sdim      assert(T < GroupSize && "Array overflow");
828221345Sdim      TBS[T] = Number;
829221345Sdim      if (++T == GroupSize) {
830226633Sdim        SpillPlacer->addLinks(makeArrayRef(TBS, T));
831221345Sdim        T = 0;
832218885Sdim      }
833221345Sdim      continue;
834221345Sdim    }
835218885Sdim
836221345Sdim    assert(B < GroupSize && "Array overflow");
837221345Sdim    BCS[B].Number = Number;
838218885Sdim
839221345Sdim    // Interference for the live-in value.
840221345Sdim    if (Intf.first() <= Indexes->getMBBStartIdx(Number))
841221345Sdim      BCS[B].Entry = SpillPlacement::MustSpill;
842221345Sdim    else
843221345Sdim      BCS[B].Entry = SpillPlacement::PrefSpill;
844218885Sdim
845221345Sdim    // Interference for the live-out value.
846221345Sdim    if (Intf.last() >= SA->getLastSplitPoint(Number))
847221345Sdim      BCS[B].Exit = SpillPlacement::MustSpill;
848221345Sdim    else
849221345Sdim      BCS[B].Exit = SpillPlacement::PrefSpill;
850221345Sdim
851221345Sdim    if (++B == GroupSize) {
852221345Sdim      ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
853221345Sdim      SpillPlacer->addConstraints(Array);
854221345Sdim      B = 0;
855218885Sdim    }
856218885Sdim  }
857218885Sdim
858221345Sdim  ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
859221345Sdim  SpillPlacer->addConstraints(Array);
860226633Sdim  SpillPlacer->addLinks(makeArrayRef(TBS, T));
861221345Sdim}
862218885Sdim
863224145Sdimvoid RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
864221345Sdim  // Keep track of through blocks that have not been added to SpillPlacer.
865221345Sdim  BitVector Todo = SA->getThroughBlocks();
866221345Sdim  SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
867221345Sdim  unsigned AddedTo = 0;
868221345Sdim#ifndef NDEBUG
869221345Sdim  unsigned Visited = 0;
870221345Sdim#endif
871218885Sdim
872221345Sdim  for (;;) {
873221345Sdim    ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
874221345Sdim    // Find new through blocks in the periphery of PrefRegBundles.
875221345Sdim    for (int i = 0, e = NewBundles.size(); i != e; ++i) {
876221345Sdim      unsigned Bundle = NewBundles[i];
877221345Sdim      // Look at all blocks connected to Bundle in the full graph.
878221345Sdim      ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
879221345Sdim      for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
880221345Sdim           I != E; ++I) {
881221345Sdim        unsigned Block = *I;
882221345Sdim        if (!Todo.test(Block))
883221345Sdim          continue;
884221345Sdim        Todo.reset(Block);
885221345Sdim        // This is a new through block. Add it to SpillPlacer later.
886221345Sdim        ActiveBlocks.push_back(Block);
887221345Sdim#ifndef NDEBUG
888221345Sdim        ++Visited;
889221345Sdim#endif
890221345Sdim      }
891221345Sdim    }
892221345Sdim    // Any new blocks to add?
893224145Sdim    if (ActiveBlocks.size() == AddedTo)
894224145Sdim      break;
895226633Sdim
896226633Sdim    // Compute through constraints from the interference, or assume that all
897226633Sdim    // through blocks prefer spilling when forming compact regions.
898226633Sdim    ArrayRef<unsigned> NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
899226633Sdim    if (Cand.PhysReg)
900226633Sdim      addThroughConstraints(Cand.Intf, NewBlocks);
901226633Sdim    else
902226633Sdim      // Provide a strong negative bias on through blocks to prevent unwanted
903226633Sdim      // liveness on loop backedges.
904226633Sdim      SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
905224145Sdim    AddedTo = ActiveBlocks.size();
906224145Sdim
907221345Sdim    // Perhaps iterating can enable more bundles?
908221345Sdim    SpillPlacer->iterate();
909221345Sdim  }
910221345Sdim  DEBUG(dbgs() << ", v=" << Visited);
911221345Sdim}
912218885Sdim
913226633Sdim/// calcCompactRegion - Compute the set of edge bundles that should be live
914226633Sdim/// when splitting the current live range into compact regions.  Compact
915226633Sdim/// regions can be computed without looking at interference.  They are the
916226633Sdim/// regions formed by removing all the live-through blocks from the live range.
917226633Sdim///
918226633Sdim/// Returns false if the current live range is already compact, or if the
919226633Sdim/// compact regions would form single block regions anyway.
920226633Sdimbool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
921226633Sdim  // Without any through blocks, the live range is already compact.
922226633Sdim  if (!SA->getNumThroughBlocks())
923226633Sdim    return false;
924226633Sdim
925226633Sdim  // Compact regions don't correspond to any physreg.
926226633Sdim  Cand.reset(IntfCache, 0);
927226633Sdim
928226633Sdim  DEBUG(dbgs() << "Compact region bundles");
929226633Sdim
930226633Sdim  // Use the spill placer to determine the live bundles. GrowRegion pretends
931226633Sdim  // that all the through blocks have interference when PhysReg is unset.
932226633Sdim  SpillPlacer->prepare(Cand.LiveBundles);
933226633Sdim
934226633Sdim  // The static split cost will be zero since Cand.Intf reports no interference.
935263508Sdim  BlockFrequency Cost;
936226633Sdim  if (!addSplitConstraints(Cand.Intf, Cost)) {
937226633Sdim    DEBUG(dbgs() << ", none.\n");
938226633Sdim    return false;
939226633Sdim  }
940226633Sdim
941226633Sdim  growRegion(Cand);
942226633Sdim  SpillPlacer->finish();
943226633Sdim
944226633Sdim  if (!Cand.LiveBundles.any()) {
945226633Sdim    DEBUG(dbgs() << ", none.\n");
946226633Sdim    return false;
947226633Sdim  }
948226633Sdim
949226633Sdim  DEBUG({
950226633Sdim    for (int i = Cand.LiveBundles.find_first(); i>=0;
951226633Sdim         i = Cand.LiveBundles.find_next(i))
952226633Sdim    dbgs() << " EB#" << i;
953226633Sdim    dbgs() << ".\n";
954226633Sdim  });
955226633Sdim  return true;
956226633Sdim}
957226633Sdim
958221345Sdim/// calcSpillCost - Compute how expensive it would be to split the live range in
959221345Sdim/// SA around all use blocks instead of forming bundle regions.
960263508SdimBlockFrequency RAGreedy::calcSpillCost() {
961263508Sdim  BlockFrequency Cost = 0;
962221345Sdim  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
963221345Sdim  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
964221345Sdim    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
965221345Sdim    unsigned Number = BI.MBB->getNumber();
966221345Sdim    // We normally only need one spill instruction - a load or a store.
967221345Sdim    Cost += SpillPlacer->getBlockFrequency(Number);
968221345Sdim
969221345Sdim    // Unless the value is redefined in the block.
970226633Sdim    if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
971226633Sdim      Cost += SpillPlacer->getBlockFrequency(Number);
972218885Sdim  }
973221345Sdim  return Cost;
974218885Sdim}
975218885Sdim
976218885Sdim/// calcGlobalSplitCost - Return the global split cost of following the split
977218885Sdim/// pattern in LiveBundles. This cost should be added to the local cost of the
978221345Sdim/// interference pattern in SplitConstraints.
979218885Sdim///
980263508SdimBlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
981263508Sdim  BlockFrequency GlobalCost = 0;
982221345Sdim  const BitVector &LiveBundles = Cand.LiveBundles;
983221345Sdim  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
984221345Sdim  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
985221345Sdim    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
986221345Sdim    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
987221345Sdim    bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
988221345Sdim    bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
989221345Sdim    unsigned Ins = 0;
990221345Sdim
991221345Sdim    if (BI.LiveIn)
992221345Sdim      Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
993221345Sdim    if (BI.LiveOut)
994221345Sdim      Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
995263508Sdim    while (Ins--)
996263508Sdim      GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
997218885Sdim  }
998221345Sdim
999221345Sdim  for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
1000221345Sdim    unsigned Number = Cand.ActiveBlocks[i];
1001221345Sdim    bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
1002221345Sdim    bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
1003221345Sdim    if (!RegIn && !RegOut)
1004221345Sdim      continue;
1005221345Sdim    if (RegIn && RegOut) {
1006221345Sdim      // We need double spill code if this block has interference.
1007224145Sdim      Cand.Intf.moveToBlock(Number);
1008263508Sdim      if (Cand.Intf.hasInterference()) {
1009263508Sdim        GlobalCost += SpillPlacer->getBlockFrequency(Number);
1010263508Sdim        GlobalCost += SpillPlacer->getBlockFrequency(Number);
1011263508Sdim      }
1012221345Sdim      continue;
1013221345Sdim    }
1014221345Sdim    // live-in / stack-out or stack-in live-out.
1015221345Sdim    GlobalCost += SpillPlacer->getBlockFrequency(Number);
1016221345Sdim  }
1017218885Sdim  return GlobalCost;
1018218885Sdim}
1019218885Sdim
1020226633Sdim/// splitAroundRegion - Split the current live range around the regions
1021226633Sdim/// determined by BundleCand and GlobalCand.
1022218885Sdim///
1023226633Sdim/// Before calling this function, GlobalCand and BundleCand must be initialized
1024226633Sdim/// so each bundle is assigned to a valid candidate, or NoCand for the
1025226633Sdim/// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1026226633Sdim/// objects must be initialized for the current live range, and intervals
1027226633Sdim/// created for the used candidates.
1028218885Sdim///
1029226633Sdim/// @param LREdit    The LiveRangeEdit object handling the current split.
1030226633Sdim/// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1031226633Sdim///                  must appear in this list.
1032226633Sdimvoid RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1033226633Sdim                                 ArrayRef<unsigned> UsedCands) {
1034226633Sdim  // These are the intervals created for new global ranges. We may create more
1035226633Sdim  // intervals for local ranges.
1036226633Sdim  const unsigned NumGlobalIntvs = LREdit.size();
1037226633Sdim  DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n");
1038226633Sdim  assert(NumGlobalIntvs && "No global intervals configured");
1039221345Sdim
1040226633Sdim  // Isolate even single instructions when dealing with a proper sub-class.
1041226633Sdim  // That guarantees register class inflation for the stack interval because it
1042226633Sdim  // is all copies.
1043226633Sdim  unsigned Reg = SA->getParent().reg;
1044226633Sdim  bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1045218885Sdim
1046224145Sdim  // First handle all the blocks with uses.
1047221345Sdim  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1048221345Sdim  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1049221345Sdim    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1050226633Sdim    unsigned Number = BI.MBB->getNumber();
1051226633Sdim    unsigned IntvIn = 0, IntvOut = 0;
1052226633Sdim    SlotIndex IntfIn, IntfOut;
1053226633Sdim    if (BI.LiveIn) {
1054226633Sdim      unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
1055226633Sdim      if (CandIn != NoCand) {
1056226633Sdim        GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1057226633Sdim        IntvIn = Cand.IntvIdx;
1058226633Sdim        Cand.Intf.moveToBlock(Number);
1059226633Sdim        IntfIn = Cand.Intf.first();
1060226633Sdim      }
1061226633Sdim    }
1062226633Sdim    if (BI.LiveOut) {
1063226633Sdim      unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
1064226633Sdim      if (CandOut != NoCand) {
1065226633Sdim        GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1066226633Sdim        IntvOut = Cand.IntvIdx;
1067226633Sdim        Cand.Intf.moveToBlock(Number);
1068226633Sdim        IntfOut = Cand.Intf.last();
1069226633Sdim      }
1070226633Sdim    }
1071218885Sdim
1072221345Sdim    // Create separate intervals for isolated blocks with multiple uses.
1073226633Sdim    if (!IntvIn && !IntvOut) {
1074221345Sdim      DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
1075226633Sdim      if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1076224145Sdim        SE->splitSingleBlock(BI);
1077218885Sdim      continue;
1078218885Sdim    }
1079218885Sdim
1080226633Sdim    if (IntvIn && IntvOut)
1081226633Sdim      SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1082226633Sdim    else if (IntvIn)
1083226633Sdim      SE->splitRegInBlock(BI, IntvIn, IntfIn);
1084224145Sdim    else
1085226633Sdim      SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1086218885Sdim  }
1087218885Sdim
1088226633Sdim  // Handle live-through blocks. The relevant live-through blocks are stored in
1089226633Sdim  // the ActiveBlocks list with each candidate. We need to filter out
1090226633Sdim  // duplicates.
1091226633Sdim  BitVector Todo = SA->getThroughBlocks();
1092226633Sdim  for (unsigned c = 0; c != UsedCands.size(); ++c) {
1093226633Sdim    ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1094226633Sdim    for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1095226633Sdim      unsigned Number = Blocks[i];
1096226633Sdim      if (!Todo.test(Number))
1097226633Sdim        continue;
1098226633Sdim      Todo.reset(Number);
1099226633Sdim
1100226633Sdim      unsigned IntvIn = 0, IntvOut = 0;
1101226633Sdim      SlotIndex IntfIn, IntfOut;
1102226633Sdim
1103226633Sdim      unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
1104226633Sdim      if (CandIn != NoCand) {
1105226633Sdim        GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1106226633Sdim        IntvIn = Cand.IntvIdx;
1107226633Sdim        Cand.Intf.moveToBlock(Number);
1108226633Sdim        IntfIn = Cand.Intf.first();
1109226633Sdim      }
1110226633Sdim
1111226633Sdim      unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
1112226633Sdim      if (CandOut != NoCand) {
1113226633Sdim        GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1114226633Sdim        IntvOut = Cand.IntvIdx;
1115226633Sdim        Cand.Intf.moveToBlock(Number);
1116226633Sdim        IntfOut = Cand.Intf.last();
1117226633Sdim      }
1118226633Sdim      if (!IntvIn && !IntvOut)
1119226633Sdim        continue;
1120226633Sdim      SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1121226633Sdim    }
1122221345Sdim  }
1123218885Sdim
1124218885Sdim  ++NumGlobalSplits;
1125218885Sdim
1126221345Sdim  SmallVector<unsigned, 8> IntvMap;
1127221345Sdim  SE->finish(&IntvMap);
1128263508Sdim  DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1129223017Sdim
1130224145Sdim  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1131223017Sdim  unsigned OrigBlocks = SA->getNumLiveBlocks();
1132218885Sdim
1133221345Sdim  // Sort out the new intervals created by splitting. We get four kinds:
1134221345Sdim  // - Remainder intervals should not be split again.
1135221345Sdim  // - Candidate intervals can be assigned to Cand.PhysReg.
1136221345Sdim  // - Block-local splits are candidates for local splitting.
1137221345Sdim  // - DCE leftovers should go back on the queue.
1138221345Sdim  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1139263508Sdim    LiveInterval &Reg = LIS->getInterval(LREdit.get(i));
1140221345Sdim
1141221345Sdim    // Ignore old intervals from DCE.
1142224145Sdim    if (getStage(Reg) != RS_New)
1143221345Sdim      continue;
1144221345Sdim
1145221345Sdim    // Remainder interval. Don't try splitting again, spill if it doesn't
1146221345Sdim    // allocate.
1147221345Sdim    if (IntvMap[i] == 0) {
1148226633Sdim      setStage(Reg, RS_Spill);
1149221345Sdim      continue;
1150221345Sdim    }
1151221345Sdim
1152226633Sdim    // Global intervals. Allow repeated splitting as long as the number of live
1153221345Sdim    // blocks is strictly decreasing.
1154226633Sdim    if (IntvMap[i] < NumGlobalIntvs) {
1155224145Sdim      if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1156221345Sdim        DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1157221345Sdim                     << " blocks as original.\n");
1158221345Sdim        // Don't allow repeated splitting as a safe guard against looping.
1159226633Sdim        setStage(Reg, RS_Split2);
1160218885Sdim      }
1161221345Sdim      continue;
1162221345Sdim    }
1163221345Sdim
1164221345Sdim    // Other intervals are treated as new. This includes local intervals created
1165221345Sdim    // for blocks with multiple uses, and anything created by DCE.
1166218885Sdim  }
1167221345Sdim
1168221345Sdim  if (VerifyEnabled)
1169221345Sdim    MF->verify(this, "After splitting live range around region");
1170218885Sdim}
1171218885Sdim
1172218885Sdimunsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1173263508Sdim                                  SmallVectorImpl<unsigned> &NewVRegs) {
1174226633Sdim  unsigned NumCands = 0;
1175221345Sdim  unsigned BestCand = NoCand;
1176263508Sdim  BlockFrequency BestCost;
1177226633Sdim  SmallVector<unsigned, 8> UsedCands;
1178221345Sdim
1179226633Sdim  // Check if we can split this live range around a compact region.
1180226633Sdim  bool HasCompact = calcCompactRegion(GlobalCand.front());
1181226633Sdim  if (HasCompact) {
1182226633Sdim    // Yes, keep GlobalCand[0] as the compact region candidate.
1183226633Sdim    NumCands = 1;
1184263508Sdim    BestCost = BlockFrequency::getMaxFrequency();
1185226633Sdim  } else {
1186226633Sdim    // No benefit from the compact region, our fallback will be per-block
1187226633Sdim    // splitting. Make sure we find a solution that is cheaper than spilling.
1188263508Sdim    BestCost = calcSpillCost();
1189226633Sdim    DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n');
1190226633Sdim  }
1191226633Sdim
1192218885Sdim  Order.rewind();
1193224145Sdim  while (unsigned PhysReg = Order.next()) {
1194224145Sdim    // Discard bad candidates before we run out of interference cache cursors.
1195224145Sdim    // This will only affect register classes with a lot of registers (>32).
1196224145Sdim    if (NumCands == IntfCache.getMaxCursors()) {
1197224145Sdim      unsigned WorstCount = ~0u;
1198224145Sdim      unsigned Worst = 0;
1199224145Sdim      for (unsigned i = 0; i != NumCands; ++i) {
1200226633Sdim        if (i == BestCand || !GlobalCand[i].PhysReg)
1201224145Sdim          continue;
1202224145Sdim        unsigned Count = GlobalCand[i].LiveBundles.count();
1203224145Sdim        if (Count < WorstCount)
1204224145Sdim          Worst = i, WorstCount = Count;
1205224145Sdim      }
1206224145Sdim      --NumCands;
1207224145Sdim      GlobalCand[Worst] = GlobalCand[NumCands];
1208234353Sdim      if (BestCand == NumCands)
1209234353Sdim        BestCand = Worst;
1210224145Sdim    }
1211221345Sdim
1212224145Sdim    if (GlobalCand.size() <= NumCands)
1213224145Sdim      GlobalCand.resize(NumCands+1);
1214224145Sdim    GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1215224145Sdim    Cand.reset(IntfCache, PhysReg);
1216224145Sdim
1217224145Sdim    SpillPlacer->prepare(Cand.LiveBundles);
1218263508Sdim    BlockFrequency Cost;
1219224145Sdim    if (!addSplitConstraints(Cand.Intf, Cost)) {
1220221345Sdim      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
1221218885Sdim      continue;
1222221345Sdim    }
1223221345Sdim    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost);
1224221345Sdim    if (Cost >= BestCost) {
1225221345Sdim      DEBUG({
1226221345Sdim        if (BestCand == NoCand)
1227221345Sdim          dbgs() << " worse than no bundles\n";
1228221345Sdim        else
1229221345Sdim          dbgs() << " worse than "
1230221345Sdim                 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1231221345Sdim      });
1232221345Sdim      continue;
1233221345Sdim    }
1234224145Sdim    growRegion(Cand);
1235218885Sdim
1236221345Sdim    SpillPlacer->finish();
1237221345Sdim
1238218885Sdim    // No live bundles, defer to splitSingleBlocks().
1239224145Sdim    if (!Cand.LiveBundles.any()) {
1240221345Sdim      DEBUG(dbgs() << " no bundles.\n");
1241218885Sdim      continue;
1242221345Sdim    }
1243218885Sdim
1244224145Sdim    Cost += calcGlobalSplitCost(Cand);
1245221345Sdim    DEBUG({
1246221345Sdim      dbgs() << ", total = " << Cost << " with bundles";
1247224145Sdim      for (int i = Cand.LiveBundles.find_first(); i>=0;
1248224145Sdim           i = Cand.LiveBundles.find_next(i))
1249221345Sdim        dbgs() << " EB#" << i;
1250221345Sdim      dbgs() << ".\n";
1251221345Sdim    });
1252221345Sdim    if (Cost < BestCost) {
1253224145Sdim      BestCand = NumCands;
1254263508Sdim      BestCost = Cost;
1255218885Sdim    }
1256224145Sdim    ++NumCands;
1257218885Sdim  }
1258218885Sdim
1259226633Sdim  // No solutions found, fall back to single block splitting.
1260226633Sdim  if (!HasCompact && BestCand == NoCand)
1261218885Sdim    return 0;
1262218885Sdim
1263226633Sdim  // Prepare split editor.
1264239462Sdim  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1265226633Sdim  SE->reset(LREdit, SplitSpillMode);
1266226633Sdim
1267226633Sdim  // Assign all edge bundles to the preferred candidate, or NoCand.
1268226633Sdim  BundleCand.assign(Bundles->getNumBundles(), NoCand);
1269226633Sdim
1270226633Sdim  // Assign bundles for the best candidate region.
1271226633Sdim  if (BestCand != NoCand) {
1272226633Sdim    GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1273226633Sdim    if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1274226633Sdim      UsedCands.push_back(BestCand);
1275226633Sdim      Cand.IntvIdx = SE->openIntv();
1276226633Sdim      DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in "
1277226633Sdim                   << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1278226633Sdim      (void)B;
1279226633Sdim    }
1280226633Sdim  }
1281226633Sdim
1282226633Sdim  // Assign bundles for the compact region.
1283226633Sdim  if (HasCompact) {
1284226633Sdim    GlobalSplitCandidate &Cand = GlobalCand.front();
1285226633Sdim    assert(!Cand.PhysReg && "Compact region has no physreg");
1286226633Sdim    if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1287226633Sdim      UsedCands.push_back(0);
1288226633Sdim      Cand.IntvIdx = SE->openIntv();
1289226633Sdim      DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv "
1290226633Sdim                   << Cand.IntvIdx << ".\n");
1291226633Sdim      (void)B;
1292226633Sdim    }
1293226633Sdim  }
1294226633Sdim
1295226633Sdim  splitAroundRegion(LREdit, UsedCands);
1296218885Sdim  return 0;
1297218885Sdim}
1298218885Sdim
1299218885Sdim
1300218885Sdim//===----------------------------------------------------------------------===//
1301226633Sdim//                            Per-Block Splitting
1302226633Sdim//===----------------------------------------------------------------------===//
1303226633Sdim
1304226633Sdim/// tryBlockSplit - Split a global live range around every block with uses. This
1305226633Sdim/// creates a lot of local live ranges, that will be split by tryLocalSplit if
1306226633Sdim/// they don't allocate.
1307226633Sdimunsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1308263508Sdim                                 SmallVectorImpl<unsigned> &NewVRegs) {
1309226633Sdim  assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1310226633Sdim  unsigned Reg = VirtReg.reg;
1311226633Sdim  bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1312239462Sdim  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1313226633Sdim  SE->reset(LREdit, SplitSpillMode);
1314226633Sdim  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1315226633Sdim  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1316226633Sdim    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1317226633Sdim    if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1318226633Sdim      SE->splitSingleBlock(BI);
1319226633Sdim  }
1320226633Sdim  // No blocks were split.
1321226633Sdim  if (LREdit.empty())
1322226633Sdim    return 0;
1323226633Sdim
1324226633Sdim  // We did split for some blocks.
1325226633Sdim  SmallVector<unsigned, 8> IntvMap;
1326226633Sdim  SE->finish(&IntvMap);
1327226633Sdim
1328226633Sdim  // Tell LiveDebugVariables about the new ranges.
1329263508Sdim  DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1330226633Sdim
1331226633Sdim  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1332226633Sdim
1333226633Sdim  // Sort out the new intervals created by splitting. The remainder interval
1334226633Sdim  // goes straight to spilling, the new local ranges get to stay RS_New.
1335226633Sdim  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1336263508Sdim    LiveInterval &LI = LIS->getInterval(LREdit.get(i));
1337226633Sdim    if (getStage(LI) == RS_New && IntvMap[i] == 0)
1338226633Sdim      setStage(LI, RS_Spill);
1339226633Sdim  }
1340226633Sdim
1341226633Sdim  if (VerifyEnabled)
1342226633Sdim    MF->verify(this, "After splitting live range around basic blocks");
1343226633Sdim  return 0;
1344226633Sdim}
1345226633Sdim
1346239462Sdim
1347226633Sdim//===----------------------------------------------------------------------===//
1348239462Sdim//                         Per-Instruction Splitting
1349239462Sdim//===----------------------------------------------------------------------===//
1350239462Sdim
1351239462Sdim/// tryInstructionSplit - Split a live range around individual instructions.
1352239462Sdim/// This is normally not worthwhile since the spiller is doing essentially the
1353239462Sdim/// same thing. However, when the live range is in a constrained register
1354239462Sdim/// class, it may help to insert copies such that parts of the live range can
1355239462Sdim/// be moved to a larger register class.
1356239462Sdim///
1357239462Sdim/// This is similar to spilling to a larger register class.
1358239462Sdimunsigned
1359239462SdimRAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1360263508Sdim                              SmallVectorImpl<unsigned> &NewVRegs) {
1361239462Sdim  // There is no point to this if there are no larger sub-classes.
1362239462Sdim  if (!RegClassInfo.isProperSubClass(MRI->getRegClass(VirtReg.reg)))
1363239462Sdim    return 0;
1364239462Sdim
1365239462Sdim  // Always enable split spill mode, since we're effectively spilling to a
1366239462Sdim  // register.
1367239462Sdim  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1368239462Sdim  SE->reset(LREdit, SplitEditor::SM_Size);
1369239462Sdim
1370239462Sdim  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1371239462Sdim  if (Uses.size() <= 1)
1372239462Sdim    return 0;
1373239462Sdim
1374239462Sdim  DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n");
1375239462Sdim
1376239462Sdim  // Split around every non-copy instruction.
1377239462Sdim  for (unsigned i = 0; i != Uses.size(); ++i) {
1378239462Sdim    if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
1379239462Sdim      if (MI->isFullCopy()) {
1380239462Sdim        DEBUG(dbgs() << "    skip:\t" << Uses[i] << '\t' << *MI);
1381239462Sdim        continue;
1382239462Sdim      }
1383239462Sdim    SE->openIntv();
1384239462Sdim    SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
1385239462Sdim    SlotIndex SegStop  = SE->leaveIntvAfter(Uses[i]);
1386239462Sdim    SE->useIntv(SegStart, SegStop);
1387239462Sdim  }
1388239462Sdim
1389239462Sdim  if (LREdit.empty()) {
1390239462Sdim    DEBUG(dbgs() << "All uses were copies.\n");
1391239462Sdim    return 0;
1392239462Sdim  }
1393239462Sdim
1394239462Sdim  SmallVector<unsigned, 8> IntvMap;
1395239462Sdim  SE->finish(&IntvMap);
1396263508Sdim  DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
1397239462Sdim  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1398239462Sdim
1399239462Sdim  // Assign all new registers to RS_Spill. This was the last chance.
1400239462Sdim  setStage(LREdit.begin(), LREdit.end(), RS_Spill);
1401239462Sdim  return 0;
1402239462Sdim}
1403239462Sdim
1404239462Sdim
1405239462Sdim//===----------------------------------------------------------------------===//
1406218885Sdim//                             Local Splitting
1407218885Sdim//===----------------------------------------------------------------------===//
1408218885Sdim
1409218885Sdim
1410218885Sdim/// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1411218885Sdim/// in order to use PhysReg between two entries in SA->UseSlots.
1412218885Sdim///
1413218885Sdim/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
1414218885Sdim///
1415218885Sdimvoid RAGreedy::calcGapWeights(unsigned PhysReg,
1416218885Sdim                              SmallVectorImpl<float> &GapWeight) {
1417221345Sdim  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1418221345Sdim  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1419234353Sdim  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1420218885Sdim  const unsigned NumGaps = Uses.size()-1;
1421218885Sdim
1422218885Sdim  // Start and end points for the interference check.
1423226633Sdim  SlotIndex StartIdx =
1424226633Sdim    BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1425226633Sdim  SlotIndex StopIdx =
1426226633Sdim    BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1427218885Sdim
1428218885Sdim  GapWeight.assign(NumGaps, 0.0f);
1429218885Sdim
1430218885Sdim  // Add interference from each overlapping register.
1431239462Sdim  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1432239462Sdim    if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
1433239462Sdim          .checkInterference())
1434218885Sdim      continue;
1435218885Sdim
1436226633Sdim    // We know that VirtReg is a continuous interval from FirstInstr to
1437226633Sdim    // LastInstr, so we don't need InterferenceQuery.
1438218885Sdim    //
1439218885Sdim    // Interference that overlaps an instruction is counted in both gaps
1440218885Sdim    // surrounding the instruction. The exception is interference before
1441218885Sdim    // StartIdx and after StopIdx.
1442218885Sdim    //
1443239462Sdim    LiveIntervalUnion::SegmentIter IntI =
1444239462Sdim      Matrix->getLiveUnions()[*Units] .find(StartIdx);
1445218885Sdim    for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1446218885Sdim      // Skip the gaps before IntI.
1447218885Sdim      while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1448218885Sdim        if (++Gap == NumGaps)
1449218885Sdim          break;
1450218885Sdim      if (Gap == NumGaps)
1451218885Sdim        break;
1452218885Sdim
1453218885Sdim      // Update the gaps covered by IntI.
1454218885Sdim      const float weight = IntI.value()->weight;
1455218885Sdim      for (; Gap != NumGaps; ++Gap) {
1456218885Sdim        GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1457218885Sdim        if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1458218885Sdim          break;
1459218885Sdim      }
1460218885Sdim      if (Gap == NumGaps)
1461218885Sdim        break;
1462218885Sdim    }
1463218885Sdim  }
1464239462Sdim
1465239462Sdim  // Add fixed interference.
1466239462Sdim  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1467263508Sdim    const LiveRange &LR = LIS->getRegUnit(*Units);
1468263508Sdim    LiveRange::const_iterator I = LR.find(StartIdx);
1469263508Sdim    LiveRange::const_iterator E = LR.end();
1470239462Sdim
1471239462Sdim    // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
1472239462Sdim    for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
1473239462Sdim      while (Uses[Gap+1].getBoundaryIndex() < I->start)
1474239462Sdim        if (++Gap == NumGaps)
1475239462Sdim          break;
1476239462Sdim      if (Gap == NumGaps)
1477239462Sdim        break;
1478239462Sdim
1479239462Sdim      for (; Gap != NumGaps; ++Gap) {
1480263508Sdim        GapWeight[Gap] = llvm::huge_valf;
1481239462Sdim        if (Uses[Gap+1].getBaseIndex() >= I->end)
1482239462Sdim          break;
1483239462Sdim      }
1484239462Sdim      if (Gap == NumGaps)
1485239462Sdim        break;
1486239462Sdim    }
1487239462Sdim  }
1488218885Sdim}
1489218885Sdim
1490218885Sdim/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1491218885Sdim/// basic block.
1492218885Sdim///
1493218885Sdimunsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1494263508Sdim                                 SmallVectorImpl<unsigned> &NewVRegs) {
1495221345Sdim  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1496221345Sdim  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1497218885Sdim
1498218885Sdim  // Note that it is possible to have an interval that is live-in or live-out
1499218885Sdim  // while only covering a single block - A phi-def can use undef values from
1500218885Sdim  // predecessors, and the block could be a single-block loop.
1501218885Sdim  // We don't bother doing anything clever about such a case, we simply assume
1502226633Sdim  // that the interval is continuous from FirstInstr to LastInstr. We should
1503226633Sdim  // make sure that we don't do anything illegal to such an interval, though.
1504218885Sdim
1505234353Sdim  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1506218885Sdim  if (Uses.size() <= 2)
1507218885Sdim    return 0;
1508218885Sdim  const unsigned NumGaps = Uses.size()-1;
1509218885Sdim
1510218885Sdim  DEBUG({
1511218885Sdim    dbgs() << "tryLocalSplit: ";
1512218885Sdim    for (unsigned i = 0, e = Uses.size(); i != e; ++i)
1513234353Sdim      dbgs() << ' ' << Uses[i];
1514218885Sdim    dbgs() << '\n';
1515218885Sdim  });
1516218885Sdim
1517234353Sdim  // If VirtReg is live across any register mask operands, compute a list of
1518234353Sdim  // gaps with register masks.
1519234353Sdim  SmallVector<unsigned, 8> RegMaskGaps;
1520239462Sdim  if (Matrix->checkRegMaskInterference(VirtReg)) {
1521234353Sdim    // Get regmask slots for the whole block.
1522234353Sdim    ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
1523234353Sdim    DEBUG(dbgs() << RMS.size() << " regmasks in block:");
1524234353Sdim    // Constrain to VirtReg's live range.
1525234353Sdim    unsigned ri = std::lower_bound(RMS.begin(), RMS.end(),
1526234353Sdim                                   Uses.front().getRegSlot()) - RMS.begin();
1527234353Sdim    unsigned re = RMS.size();
1528234353Sdim    for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
1529234353Sdim      // Look for Uses[i] <= RMS <= Uses[i+1].
1530234353Sdim      assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
1531234353Sdim      if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
1532234353Sdim        continue;
1533234353Sdim      // Skip a regmask on the same instruction as the last use. It doesn't
1534234353Sdim      // overlap the live range.
1535234353Sdim      if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
1536234353Sdim        break;
1537234353Sdim      DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]);
1538234353Sdim      RegMaskGaps.push_back(i);
1539234353Sdim      // Advance ri to the next gap. A regmask on one of the uses counts in
1540234353Sdim      // both gaps.
1541234353Sdim      while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
1542234353Sdim        ++ri;
1543234353Sdim    }
1544234353Sdim    DEBUG(dbgs() << '\n');
1545234353Sdim  }
1546234353Sdim
1547223017Sdim  // Since we allow local split results to be split again, there is a risk of
1548223017Sdim  // creating infinite loops. It is tempting to require that the new live
1549223017Sdim  // ranges have less instructions than the original. That would guarantee
1550223017Sdim  // convergence, but it is too strict. A live range with 3 instructions can be
1551223017Sdim  // split 2+3 (including the COPY), and we want to allow that.
1552223017Sdim  //
1553223017Sdim  // Instead we use these rules:
1554223017Sdim  //
1555226633Sdim  // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1556223017Sdim  //    noop split, of course).
1557226633Sdim  // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1558223017Sdim  //    the new ranges must have fewer instructions than before the split.
1559226633Sdim  // 3. New ranges with the same number of instructions are marked RS_Split2,
1560223017Sdim  //    smaller ranges are marked RS_New.
1561223017Sdim  //
1562223017Sdim  // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1563223017Sdim  // excessive splitting and infinite loops.
1564223017Sdim  //
1565226633Sdim  bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
1566218885Sdim
1567223017Sdim  // Best split candidate.
1568218885Sdim  unsigned BestBefore = NumGaps;
1569218885Sdim  unsigned BestAfter = 0;
1570218885Sdim  float BestDiff = 0;
1571218885Sdim
1572263508Sdim  const float blockFreq =
1573263508Sdim    SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
1574263508Sdim    (1.0f / BlockFrequency::getEntryFrequency());
1575218885Sdim  SmallVector<float, 8> GapWeight;
1576218885Sdim
1577218885Sdim  Order.rewind();
1578218885Sdim  while (unsigned PhysReg = Order.next()) {
1579218885Sdim    // Keep track of the largest spill weight that would need to be evicted in
1580218885Sdim    // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
1581218885Sdim    calcGapWeights(PhysReg, GapWeight);
1582218885Sdim
1583234353Sdim    // Remove any gaps with regmask clobbers.
1584239462Sdim    if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
1585234353Sdim      for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
1586263508Sdim        GapWeight[RegMaskGaps[i]] = llvm::huge_valf;
1587234353Sdim
1588218885Sdim    // Try to find the best sequence of gaps to close.
1589218885Sdim    // The new spill weight must be larger than any gap interference.
1590218885Sdim
1591218885Sdim    // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1592223017Sdim    unsigned SplitBefore = 0, SplitAfter = 1;
1593218885Sdim
1594218885Sdim    // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1595218885Sdim    // It is the spill weight that needs to be evicted.
1596218885Sdim    float MaxGap = GapWeight[0];
1597218885Sdim
1598218885Sdim    for (;;) {
1599218885Sdim      // Live before/after split?
1600218885Sdim      const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1601218885Sdim      const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1602218885Sdim
1603218885Sdim      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
1604218885Sdim                   << Uses[SplitBefore] << '-' << Uses[SplitAfter]
1605218885Sdim                   << " i=" << MaxGap);
1606218885Sdim
1607218885Sdim      // Stop before the interval gets so big we wouldn't be making progress.
1608218885Sdim      if (!LiveBefore && !LiveAfter) {
1609218885Sdim        DEBUG(dbgs() << " all\n");
1610218885Sdim        break;
1611218885Sdim      }
1612218885Sdim      // Should the interval be extended or shrunk?
1613218885Sdim      bool Shrink = true;
1614218885Sdim
1615223017Sdim      // How many gaps would the new range have?
1616223017Sdim      unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1617223017Sdim
1618223017Sdim      // Legally, without causing looping?
1619223017Sdim      bool Legal = !ProgressRequired || NewGaps < NumGaps;
1620223017Sdim
1621263508Sdim      if (Legal && MaxGap < llvm::huge_valf) {
1622223017Sdim        // Estimate the new spill weight. Each instruction reads or writes the
1623223017Sdim        // register. Conservatively assume there are no read-modify-write
1624223017Sdim        // instructions.
1625218885Sdim        //
1626223017Sdim        // Try to guess the size of the new interval.
1627223017Sdim        const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1),
1628223017Sdim                                 Uses[SplitBefore].distance(Uses[SplitAfter]) +
1629223017Sdim                                 (LiveBefore + LiveAfter)*SlotIndex::InstrDist);
1630218885Sdim        // Would this split be possible to allocate?
1631218885Sdim        // Never allocate all gaps, we wouldn't be making progress.
1632221345Sdim        DEBUG(dbgs() << " w=" << EstWeight);
1633221345Sdim        if (EstWeight * Hysteresis >= MaxGap) {
1634218885Sdim          Shrink = false;
1635221345Sdim          float Diff = EstWeight - MaxGap;
1636218885Sdim          if (Diff > BestDiff) {
1637218885Sdim            DEBUG(dbgs() << " (best)");
1638221345Sdim            BestDiff = Hysteresis * Diff;
1639218885Sdim            BestBefore = SplitBefore;
1640218885Sdim            BestAfter = SplitAfter;
1641218885Sdim          }
1642218885Sdim        }
1643218885Sdim      }
1644218885Sdim
1645218885Sdim      // Try to shrink.
1646218885Sdim      if (Shrink) {
1647223017Sdim        if (++SplitBefore < SplitAfter) {
1648218885Sdim          DEBUG(dbgs() << " shrink\n");
1649218885Sdim          // Recompute the max when necessary.
1650218885Sdim          if (GapWeight[SplitBefore - 1] >= MaxGap) {
1651218885Sdim            MaxGap = GapWeight[SplitBefore];
1652218885Sdim            for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
1653218885Sdim              MaxGap = std::max(MaxGap, GapWeight[i]);
1654218885Sdim          }
1655218885Sdim          continue;
1656218885Sdim        }
1657218885Sdim        MaxGap = 0;
1658218885Sdim      }
1659218885Sdim
1660218885Sdim      // Try to extend the interval.
1661218885Sdim      if (SplitAfter >= NumGaps) {
1662218885Sdim        DEBUG(dbgs() << " end\n");
1663218885Sdim        break;
1664218885Sdim      }
1665218885Sdim
1666218885Sdim      DEBUG(dbgs() << " extend\n");
1667223017Sdim      MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1668218885Sdim    }
1669218885Sdim  }
1670218885Sdim
1671218885Sdim  // Didn't find any candidates?
1672218885Sdim  if (BestBefore == NumGaps)
1673218885Sdim    return 0;
1674218885Sdim
1675218885Sdim  DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
1676218885Sdim               << '-' << Uses[BestAfter] << ", " << BestDiff
1677218885Sdim               << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
1678218885Sdim
1679239462Sdim  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1680221345Sdim  SE->reset(LREdit);
1681218885Sdim
1682221345Sdim  SE->openIntv();
1683221345Sdim  SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1684221345Sdim  SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1685221345Sdim  SE->useIntv(SegStart, SegStop);
1686223017Sdim  SmallVector<unsigned, 8> IntvMap;
1687223017Sdim  SE->finish(&IntvMap);
1688263508Sdim  DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
1689223017Sdim
1690223017Sdim  // If the new range has the same number of instructions as before, mark it as
1691226633Sdim  // RS_Split2 so the next split will be forced to make progress. Otherwise,
1692223017Sdim  // leave the new intervals as RS_New so they can compete.
1693223017Sdim  bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1694223017Sdim  bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1695223017Sdim  unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1696223017Sdim  if (NewGaps >= NumGaps) {
1697223017Sdim    DEBUG(dbgs() << "Tagging non-progress ranges: ");
1698223017Sdim    assert(!ProgressRequired && "Didn't make progress when it was required.");
1699223017Sdim    for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
1700223017Sdim      if (IntvMap[i] == 1) {
1701263508Sdim        setStage(LIS->getInterval(LREdit.get(i)), RS_Split2);
1702263508Sdim        DEBUG(dbgs() << PrintReg(LREdit.get(i)));
1703223017Sdim      }
1704223017Sdim    DEBUG(dbgs() << '\n');
1705223017Sdim  }
1706218885Sdim  ++NumLocalSplits;
1707218885Sdim
1708218885Sdim  return 0;
1709218885Sdim}
1710218885Sdim
1711218885Sdim//===----------------------------------------------------------------------===//
1712218885Sdim//                          Live Range Splitting
1713218885Sdim//===----------------------------------------------------------------------===//
1714218885Sdim
1715218885Sdim/// trySplit - Try to split VirtReg or one of its interferences, making it
1716218885Sdim/// assignable.
1717218885Sdim/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1718218885Sdimunsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
1719263508Sdim                            SmallVectorImpl<unsigned>&NewVRegs) {
1720226633Sdim  // Ranges must be Split2 or less.
1721226633Sdim  if (getStage(VirtReg) >= RS_Spill)
1722226633Sdim    return 0;
1723226633Sdim
1724218885Sdim  // Local intervals are handled separately.
1725218885Sdim  if (LIS->intervalIsInOneMBB(VirtReg)) {
1726218885Sdim    NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
1727221345Sdim    SA->analyze(&VirtReg);
1728239462Sdim    unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
1729239462Sdim    if (PhysReg || !NewVRegs.empty())
1730239462Sdim      return PhysReg;
1731239462Sdim    return tryInstructionSplit(VirtReg, Order, NewVRegs);
1732218885Sdim  }
1733218885Sdim
1734218885Sdim  NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
1735218885Sdim
1736221345Sdim  SA->analyze(&VirtReg);
1737221345Sdim
1738223017Sdim  // FIXME: SplitAnalysis may repair broken live ranges coming from the
1739223017Sdim  // coalescer. That may cause the range to become allocatable which means that
1740223017Sdim  // tryRegionSplit won't be making progress. This check should be replaced with
1741223017Sdim  // an assertion when the coalescer is fixed.
1742223017Sdim  if (SA->didRepairRange()) {
1743223017Sdim    // VirtReg has changed, so all cached queries are invalid.
1744239462Sdim    Matrix->invalidateVirtRegs();
1745223017Sdim    if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1746223017Sdim      return PhysReg;
1747223017Sdim  }
1748223017Sdim
1749226633Sdim  // First try to split around a region spanning multiple blocks. RS_Split2
1750226633Sdim  // ranges already made dubious progress with region splitting, so they go
1751226633Sdim  // straight to single block splitting.
1752226633Sdim  if (getStage(VirtReg) < RS_Split2) {
1753226633Sdim    unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1754226633Sdim    if (PhysReg || !NewVRegs.empty())
1755226633Sdim      return PhysReg;
1756218885Sdim  }
1757218885Sdim
1758226633Sdim  // Then isolate blocks.
1759226633Sdim  return tryBlockSplit(VirtReg, Order, NewVRegs);
1760218885Sdim}
1761218885Sdim
1762218885Sdim
1763218885Sdim//===----------------------------------------------------------------------===//
1764218885Sdim//                            Main Entry Point
1765218885Sdim//===----------------------------------------------------------------------===//
1766218885Sdim
1767218885Sdimunsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
1768263508Sdim                                 SmallVectorImpl<unsigned> &NewVRegs) {
1769218885Sdim  // First try assigning a free register.
1770223017Sdim  AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
1771221345Sdim  if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1772218885Sdim    return PhysReg;
1773218885Sdim
1774223017Sdim  LiveRangeStage Stage = getStage(VirtReg);
1775224145Sdim  DEBUG(dbgs() << StageName[Stage]
1776224145Sdim               << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
1777219077Sdim
1778223017Sdim  // Try to evict a less worthy live range, but only for ranges from the primary
1779226633Sdim  // queue. The RS_Split ranges already failed to do this, and they should not
1780223017Sdim  // get a second chance until they have been split.
1781226633Sdim  if (Stage != RS_Split)
1782223017Sdim    if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
1783223017Sdim      return PhysReg;
1784223017Sdim
1785218885Sdim  assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
1786218885Sdim
1787219077Sdim  // The first time we see a live range, don't try to split or spill.
1788219077Sdim  // Wait until the second time, when all smaller ranges have been allocated.
1789219077Sdim  // This gives a better picture of the interference to split around.
1790226633Sdim  if (Stage < RS_Split) {
1791226633Sdim    setStage(VirtReg, RS_Split);
1792221345Sdim    DEBUG(dbgs() << "wait for second round\n");
1793263508Sdim    NewVRegs.push_back(VirtReg.reg);
1794219077Sdim    return 0;
1795219077Sdim  }
1796219077Sdim
1797223017Sdim  // If we couldn't allocate a register from spilling, there is probably some
1798223017Sdim  // invalid inline assembly. The base class wil report it.
1799226633Sdim  if (Stage >= RS_Done || !VirtReg.isSpillable())
1800223017Sdim    return ~0u;
1801221345Sdim
1802218885Sdim  // Try splitting VirtReg or interferences.
1803218885Sdim  unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
1804218885Sdim  if (PhysReg || !NewVRegs.empty())
1805218885Sdim    return PhysReg;
1806218885Sdim
1807218885Sdim  // Finally spill VirtReg itself.
1808218885Sdim  NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
1809239462Sdim  LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1810221345Sdim  spiller().spill(LRE);
1811226633Sdim  setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
1812218885Sdim
1813221345Sdim  if (VerifyEnabled)
1814221345Sdim    MF->verify(this, "After spilling");
1815221345Sdim
1816218885Sdim  // The live virtual register requesting allocation was spilled, so tell
1817218885Sdim  // the caller not to allocate anything during this round.
1818218885Sdim  return 0;
1819218885Sdim}
1820218885Sdim
1821218885Sdimbool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
1822218885Sdim  DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
1823243830Sdim               << "********** Function: " << mf.getName() << '\n');
1824218885Sdim
1825218885Sdim  MF = &mf;
1826218885Sdim  if (VerifyEnabled)
1827218885Sdim    MF->verify(this, "Before greedy register allocator");
1828218885Sdim
1829239462Sdim  RegAllocBase::init(getAnalysis<VirtRegMap>(),
1830239462Sdim                     getAnalysis<LiveIntervals>(),
1831239462Sdim                     getAnalysis<LiveRegMatrix>());
1832218885Sdim  Indexes = &getAnalysis<SlotIndexes>();
1833263508Sdim  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1834218885Sdim  DomTree = &getAnalysis<MachineDominatorTree>();
1835218885Sdim  SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
1836218885Sdim  Loops = &getAnalysis<MachineLoopInfo>();
1837218885Sdim  Bundles = &getAnalysis<EdgeBundles>();
1838218885Sdim  SpillPlacer = &getAnalysis<SpillPlacement>();
1839223017Sdim  DebugVars = &getAnalysis<LiveDebugVariables>();
1840218885Sdim
1841263508Sdim  calculateSpillWeightsAndHints(*LIS, mf, *Loops, *MBFI);
1842263508Sdim
1843263508Sdim  DEBUG(LIS->dump());
1844263508Sdim
1845218885Sdim  SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
1846263508Sdim  SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree, *MBFI));
1847224145Sdim  ExtraRegInfo.clear();
1848224145Sdim  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1849224145Sdim  NextCascade = 1;
1850239462Sdim  IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
1851226633Sdim  GlobalCand.resize(32);  // This will grow as needed.
1852218885Sdim
1853218885Sdim  allocatePhysRegs();
1854218885Sdim  releaseMemory();
1855218885Sdim  return true;
1856218885Sdim}
1857