MachineBlockPlacement.cpp revision 263508
1//===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements basic block placement transformations using the CFG
11// structure and branch probability estimates.
12//
13// The pass strives to preserve the structure of the CFG (that is, retain
14// a topological ordering of basic blocks) in the absence of a *strong* signal
15// to the contrary from probabilities. However, within the CFG structure, it
16// attempts to choose an ordering which favors placing more likely sequences of
17// blocks adjacent to each other.
18//
19// The algorithm works from the inner-most loop within a function outward, and
20// at each stage walks through the basic blocks, trying to coalesce them into
21// sequential chains where allowed by the CFG (or demanded by heavy
22// probabilities). Finally, it walks the blocks in topological order, and the
23// first time it reaches a chain of basic blocks, it schedules them in the
24// function in-order.
25//
26//===----------------------------------------------------------------------===//
27
28#define DEBUG_TYPE "block-placement2"
29#include "llvm/CodeGen/Passes.h"
30#include "llvm/ADT/DenseMap.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/CodeGen/MachineBasicBlock.h"
35#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
36#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
37#include "llvm/CodeGen/MachineFunction.h"
38#include "llvm/CodeGen/MachineFunctionPass.h"
39#include "llvm/CodeGen/MachineLoopInfo.h"
40#include "llvm/CodeGen/MachineModuleInfo.h"
41#include "llvm/Support/Allocator.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Target/TargetInstrInfo.h"
45#include "llvm/Target/TargetLowering.h"
46#include <algorithm>
47using namespace llvm;
48
49STATISTIC(NumCondBranches, "Number of conditional branches");
50STATISTIC(NumUncondBranches, "Number of uncondittional branches");
51STATISTIC(CondBranchTakenFreq,
52          "Potential frequency of taking conditional branches");
53STATISTIC(UncondBranchTakenFreq,
54          "Potential frequency of taking unconditional branches");
55
56static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
57                                       cl::desc("Force the alignment of all "
58                                                "blocks in the function."),
59                                       cl::init(0), cl::Hidden);
60
61namespace {
62class BlockChain;
63/// \brief Type for our function-wide basic block -> block chain mapping.
64typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
65}
66
67namespace {
68/// \brief A chain of blocks which will be laid out contiguously.
69///
70/// This is the datastructure representing a chain of consecutive blocks that
71/// are profitable to layout together in order to maximize fallthrough
72/// probabilities and code locality. We also can use a block chain to represent
73/// a sequence of basic blocks which have some external (correctness)
74/// requirement for sequential layout.
75///
76/// Chains can be built around a single basic block and can be merged to grow
77/// them. They participate in a block-to-chain mapping, which is updated
78/// automatically as chains are merged together.
79class BlockChain {
80  /// \brief The sequence of blocks belonging to this chain.
81  ///
82  /// This is the sequence of blocks for a particular chain. These will be laid
83  /// out in-order within the function.
84  SmallVector<MachineBasicBlock *, 4> Blocks;
85
86  /// \brief A handle to the function-wide basic block to block chain mapping.
87  ///
88  /// This is retained in each block chain to simplify the computation of child
89  /// block chains for SCC-formation and iteration. We store the edges to child
90  /// basic blocks, and map them back to their associated chains using this
91  /// structure.
92  BlockToChainMapType &BlockToChain;
93
94public:
95  /// \brief Construct a new BlockChain.
96  ///
97  /// This builds a new block chain representing a single basic block in the
98  /// function. It also registers itself as the chain that block participates
99  /// in with the BlockToChain mapping.
100  BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
101    : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) {
102    assert(BB && "Cannot create a chain with a null basic block");
103    BlockToChain[BB] = this;
104  }
105
106  /// \brief Iterator over blocks within the chain.
107  typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
108
109  /// \brief Beginning of blocks within the chain.
110  iterator begin() { return Blocks.begin(); }
111
112  /// \brief End of blocks within the chain.
113  iterator end() { return Blocks.end(); }
114
115  /// \brief Merge a block chain into this one.
116  ///
117  /// This routine merges a block chain into this one. It takes care of forming
118  /// a contiguous sequence of basic blocks, updating the edge list, and
119  /// updating the block -> chain mapping. It does not free or tear down the
120  /// old chain, but the old chain's block list is no longer valid.
121  void merge(MachineBasicBlock *BB, BlockChain *Chain) {
122    assert(BB);
123    assert(!Blocks.empty());
124
125    // Fast path in case we don't have a chain already.
126    if (!Chain) {
127      assert(!BlockToChain[BB]);
128      Blocks.push_back(BB);
129      BlockToChain[BB] = this;
130      return;
131    }
132
133    assert(BB == *Chain->begin());
134    assert(Chain->begin() != Chain->end());
135
136    // Update the incoming blocks to point to this chain, and add them to the
137    // chain structure.
138    for (BlockChain::iterator BI = Chain->begin(), BE = Chain->end();
139         BI != BE; ++BI) {
140      Blocks.push_back(*BI);
141      assert(BlockToChain[*BI] == Chain && "Incoming blocks not in chain");
142      BlockToChain[*BI] = this;
143    }
144  }
145
146#ifndef NDEBUG
147  /// \brief Dump the blocks in this chain.
148  void dump() LLVM_ATTRIBUTE_USED {
149    for (iterator I = begin(), E = end(); I != E; ++I)
150      (*I)->dump();
151  }
152#endif // NDEBUG
153
154  /// \brief Count of predecessors within the loop currently being processed.
155  ///
156  /// This count is updated at each loop we process to represent the number of
157  /// in-loop predecessors of this chain.
158  unsigned LoopPredecessors;
159};
160}
161
162namespace {
163class MachineBlockPlacement : public MachineFunctionPass {
164  /// \brief A typedef for a block filter set.
165  typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
166
167  /// \brief A handle to the branch probability pass.
168  const MachineBranchProbabilityInfo *MBPI;
169
170  /// \brief A handle to the function-wide block frequency pass.
171  const MachineBlockFrequencyInfo *MBFI;
172
173  /// \brief A handle to the loop info.
174  const MachineLoopInfo *MLI;
175
176  /// \brief A handle to the target's instruction info.
177  const TargetInstrInfo *TII;
178
179  /// \brief A handle to the target's lowering info.
180  const TargetLoweringBase *TLI;
181
182  /// \brief Allocator and owner of BlockChain structures.
183  ///
184  /// We build BlockChains lazily while processing the loop structure of
185  /// a function. To reduce malloc traffic, we allocate them using this
186  /// slab-like allocator, and destroy them after the pass completes. An
187  /// important guarantee is that this allocator produces stable pointers to
188  /// the chains.
189  SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
190
191  /// \brief Function wide BasicBlock to BlockChain mapping.
192  ///
193  /// This mapping allows efficiently moving from any given basic block to the
194  /// BlockChain it participates in, if any. We use it to, among other things,
195  /// allow implicitly defining edges between chains as the existing edges
196  /// between basic blocks.
197  DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
198
199  void markChainSuccessors(BlockChain &Chain,
200                           MachineBasicBlock *LoopHeaderBB,
201                           SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
202                           const BlockFilterSet *BlockFilter = 0);
203  MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
204                                         BlockChain &Chain,
205                                         const BlockFilterSet *BlockFilter);
206  MachineBasicBlock *selectBestCandidateBlock(
207      BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
208      const BlockFilterSet *BlockFilter);
209  MachineBasicBlock *getFirstUnplacedBlock(
210      MachineFunction &F,
211      const BlockChain &PlacedChain,
212      MachineFunction::iterator &PrevUnplacedBlockIt,
213      const BlockFilterSet *BlockFilter);
214  void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
215                  SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
216                  const BlockFilterSet *BlockFilter = 0);
217  MachineBasicBlock *findBestLoopTop(MachineLoop &L,
218                                     const BlockFilterSet &LoopBlockSet);
219  MachineBasicBlock *findBestLoopExit(MachineFunction &F,
220                                      MachineLoop &L,
221                                      const BlockFilterSet &LoopBlockSet);
222  void buildLoopChains(MachineFunction &F, MachineLoop &L);
223  void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB,
224                  const BlockFilterSet &LoopBlockSet);
225  void buildCFGChains(MachineFunction &F);
226
227public:
228  static char ID; // Pass identification, replacement for typeid
229  MachineBlockPlacement() : MachineFunctionPass(ID) {
230    initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
231  }
232
233  bool runOnMachineFunction(MachineFunction &F);
234
235  void getAnalysisUsage(AnalysisUsage &AU) const {
236    AU.addRequired<MachineBranchProbabilityInfo>();
237    AU.addRequired<MachineBlockFrequencyInfo>();
238    AU.addRequired<MachineLoopInfo>();
239    MachineFunctionPass::getAnalysisUsage(AU);
240  }
241};
242}
243
244char MachineBlockPlacement::ID = 0;
245char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
246INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement2",
247                      "Branch Probability Basic Block Placement", false, false)
248INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
249INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
250INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
251INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement2",
252                    "Branch Probability Basic Block Placement", false, false)
253
254#ifndef NDEBUG
255/// \brief Helper to print the name of a MBB.
256///
257/// Only used by debug logging.
258static std::string getBlockName(MachineBasicBlock *BB) {
259  std::string Result;
260  raw_string_ostream OS(Result);
261  OS << "BB#" << BB->getNumber()
262     << " (derived from LLVM BB '" << BB->getName() << "')";
263  OS.flush();
264  return Result;
265}
266
267/// \brief Helper to print the number of a MBB.
268///
269/// Only used by debug logging.
270static std::string getBlockNum(MachineBasicBlock *BB) {
271  std::string Result;
272  raw_string_ostream OS(Result);
273  OS << "BB#" << BB->getNumber();
274  OS.flush();
275  return Result;
276}
277#endif
278
279/// \brief Mark a chain's successors as having one fewer preds.
280///
281/// When a chain is being merged into the "placed" chain, this routine will
282/// quickly walk the successors of each block in the chain and mark them as
283/// having one fewer active predecessor. It also adds any successors of this
284/// chain which reach the zero-predecessor state to the worklist passed in.
285void MachineBlockPlacement::markChainSuccessors(
286    BlockChain &Chain,
287    MachineBasicBlock *LoopHeaderBB,
288    SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
289    const BlockFilterSet *BlockFilter) {
290  // Walk all the blocks in this chain, marking their successors as having
291  // a predecessor placed.
292  for (BlockChain::iterator CBI = Chain.begin(), CBE = Chain.end();
293       CBI != CBE; ++CBI) {
294    // Add any successors for which this is the only un-placed in-loop
295    // predecessor to the worklist as a viable candidate for CFG-neutral
296    // placement. No subsequent placement of this block will violate the CFG
297    // shape, so we get to use heuristics to choose a favorable placement.
298    for (MachineBasicBlock::succ_iterator SI = (*CBI)->succ_begin(),
299                                          SE = (*CBI)->succ_end();
300         SI != SE; ++SI) {
301      if (BlockFilter && !BlockFilter->count(*SI))
302        continue;
303      BlockChain &SuccChain = *BlockToChain[*SI];
304      // Disregard edges within a fixed chain, or edges to the loop header.
305      if (&Chain == &SuccChain || *SI == LoopHeaderBB)
306        continue;
307
308      // This is a cross-chain edge that is within the loop, so decrement the
309      // loop predecessor count of the destination chain.
310      if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0)
311        BlockWorkList.push_back(*SuccChain.begin());
312    }
313  }
314}
315
316/// \brief Select the best successor for a block.
317///
318/// This looks across all successors of a particular block and attempts to
319/// select the "best" one to be the layout successor. It only considers direct
320/// successors which also pass the block filter. It will attempt to avoid
321/// breaking CFG structure, but cave and break such structures in the case of
322/// very hot successor edges.
323///
324/// \returns The best successor block found, or null if none are viable.
325MachineBasicBlock *MachineBlockPlacement::selectBestSuccessor(
326    MachineBasicBlock *BB, BlockChain &Chain,
327    const BlockFilterSet *BlockFilter) {
328  const BranchProbability HotProb(4, 5); // 80%
329
330  MachineBasicBlock *BestSucc = 0;
331  // FIXME: Due to the performance of the probability and weight routines in
332  // the MBPI analysis, we manually compute probabilities using the edge
333  // weights. This is suboptimal as it means that the somewhat subtle
334  // definition of edge weight semantics is encoded here as well. We should
335  // improve the MBPI interface to efficiently support query patterns such as
336  // this.
337  uint32_t BestWeight = 0;
338  uint32_t WeightScale = 0;
339  uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale);
340  DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
341  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
342                                        SE = BB->succ_end();
343       SI != SE; ++SI) {
344    if (BlockFilter && !BlockFilter->count(*SI))
345      continue;
346    BlockChain &SuccChain = *BlockToChain[*SI];
347    if (&SuccChain == &Chain) {
348      DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> Already merged!\n");
349      continue;
350    }
351    if (*SI != *SuccChain.begin()) {
352      DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> Mid chain!\n");
353      continue;
354    }
355
356    uint32_t SuccWeight = MBPI->getEdgeWeight(BB, *SI);
357    BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
358
359    // Only consider successors which are either "hot", or wouldn't violate
360    // any CFG constraints.
361    if (SuccChain.LoopPredecessors != 0) {
362      if (SuccProb < HotProb) {
363        DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> CFG conflict\n");
364        continue;
365      }
366
367      // Make sure that a hot successor doesn't have a globally more important
368      // predecessor.
369      BlockFrequency CandidateEdgeFreq
370        = MBFI->getBlockFreq(BB) * SuccProb * HotProb.getCompl();
371      bool BadCFGConflict = false;
372      for (MachineBasicBlock::pred_iterator PI = (*SI)->pred_begin(),
373                                            PE = (*SI)->pred_end();
374           PI != PE; ++PI) {
375        if (*PI == *SI || (BlockFilter && !BlockFilter->count(*PI)) ||
376            BlockToChain[*PI] == &Chain)
377          continue;
378        BlockFrequency PredEdgeFreq
379          = MBFI->getBlockFreq(*PI) * MBPI->getEdgeProbability(*PI, *SI);
380        if (PredEdgeFreq >= CandidateEdgeFreq) {
381          BadCFGConflict = true;
382          break;
383        }
384      }
385      if (BadCFGConflict) {
386        DEBUG(dbgs() << "    " << getBlockName(*SI)
387                               << " -> non-cold CFG conflict\n");
388        continue;
389      }
390    }
391
392    DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> " << SuccProb
393                 << " (prob)"
394                 << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "")
395                 << "\n");
396    if (BestSucc && BestWeight >= SuccWeight)
397      continue;
398    BestSucc = *SI;
399    BestWeight = SuccWeight;
400  }
401  return BestSucc;
402}
403
404namespace {
405/// \brief Predicate struct to detect blocks already placed.
406class IsBlockPlaced {
407  const BlockChain &PlacedChain;
408  const BlockToChainMapType &BlockToChain;
409
410public:
411  IsBlockPlaced(const BlockChain &PlacedChain,
412                const BlockToChainMapType &BlockToChain)
413      : PlacedChain(PlacedChain), BlockToChain(BlockToChain) {}
414
415  bool operator()(MachineBasicBlock *BB) const {
416    return BlockToChain.lookup(BB) == &PlacedChain;
417  }
418};
419}
420
421/// \brief Select the best block from a worklist.
422///
423/// This looks through the provided worklist as a list of candidate basic
424/// blocks and select the most profitable one to place. The definition of
425/// profitable only really makes sense in the context of a loop. This returns
426/// the most frequently visited block in the worklist, which in the case of
427/// a loop, is the one most desirable to be physically close to the rest of the
428/// loop body in order to improve icache behavior.
429///
430/// \returns The best block found, or null if none are viable.
431MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
432    BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
433    const BlockFilterSet *BlockFilter) {
434  // Once we need to walk the worklist looking for a candidate, cleanup the
435  // worklist of already placed entries.
436  // FIXME: If this shows up on profiles, it could be folded (at the cost of
437  // some code complexity) into the loop below.
438  WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
439                                IsBlockPlaced(Chain, BlockToChain)),
440                 WorkList.end());
441
442  MachineBasicBlock *BestBlock = 0;
443  BlockFrequency BestFreq;
444  for (SmallVectorImpl<MachineBasicBlock *>::iterator WBI = WorkList.begin(),
445                                                      WBE = WorkList.end();
446       WBI != WBE; ++WBI) {
447    BlockChain &SuccChain = *BlockToChain[*WBI];
448    if (&SuccChain == &Chain) {
449      DEBUG(dbgs() << "    " << getBlockName(*WBI)
450                   << " -> Already merged!\n");
451      continue;
452    }
453    assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block");
454
455    BlockFrequency CandidateFreq = MBFI->getBlockFreq(*WBI);
456    DEBUG(dbgs() << "    " << getBlockName(*WBI) << " -> " << CandidateFreq
457                 << " (freq)\n");
458    if (BestBlock && BestFreq >= CandidateFreq)
459      continue;
460    BestBlock = *WBI;
461    BestFreq = CandidateFreq;
462  }
463  return BestBlock;
464}
465
466/// \brief Retrieve the first unplaced basic block.
467///
468/// This routine is called when we are unable to use the CFG to walk through
469/// all of the basic blocks and form a chain due to unnatural loops in the CFG.
470/// We walk through the function's blocks in order, starting from the
471/// LastUnplacedBlockIt. We update this iterator on each call to avoid
472/// re-scanning the entire sequence on repeated calls to this routine.
473MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
474    MachineFunction &F, const BlockChain &PlacedChain,
475    MachineFunction::iterator &PrevUnplacedBlockIt,
476    const BlockFilterSet *BlockFilter) {
477  for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E;
478       ++I) {
479    if (BlockFilter && !BlockFilter->count(I))
480      continue;
481    if (BlockToChain[I] != &PlacedChain) {
482      PrevUnplacedBlockIt = I;
483      // Now select the head of the chain to which the unplaced block belongs
484      // as the block to place. This will force the entire chain to be placed,
485      // and satisfies the requirements of merging chains.
486      return *BlockToChain[I]->begin();
487    }
488  }
489  return 0;
490}
491
492void MachineBlockPlacement::buildChain(
493    MachineBasicBlock *BB,
494    BlockChain &Chain,
495    SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
496    const BlockFilterSet *BlockFilter) {
497  assert(BB);
498  assert(BlockToChain[BB] == &Chain);
499  MachineFunction &F = *BB->getParent();
500  MachineFunction::iterator PrevUnplacedBlockIt = F.begin();
501
502  MachineBasicBlock *LoopHeaderBB = BB;
503  markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter);
504  BB = *llvm::prior(Chain.end());
505  for (;;) {
506    assert(BB);
507    assert(BlockToChain[BB] == &Chain);
508    assert(*llvm::prior(Chain.end()) == BB);
509
510    // Look for the best viable successor if there is one to place immediately
511    // after this block.
512    MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
513
514    // If an immediate successor isn't available, look for the best viable
515    // block among those we've identified as not violating the loop's CFG at
516    // this point. This won't be a fallthrough, but it will increase locality.
517    if (!BestSucc)
518      BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter);
519
520    if (!BestSucc) {
521      BestSucc = getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt,
522                                       BlockFilter);
523      if (!BestSucc)
524        break;
525
526      DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
527                      "layout successor until the CFG reduces\n");
528    }
529
530    // Place this block, updating the datastructures to reflect its placement.
531    BlockChain &SuccChain = *BlockToChain[BestSucc];
532    // Zero out LoopPredecessors for the successor we're about to merge in case
533    // we selected a successor that didn't fit naturally into the CFG.
534    SuccChain.LoopPredecessors = 0;
535    DEBUG(dbgs() << "Merging from " << getBlockNum(BB)
536                 << " to " << getBlockNum(BestSucc) << "\n");
537    markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter);
538    Chain.merge(BestSucc, &SuccChain);
539    BB = *llvm::prior(Chain.end());
540  }
541
542  DEBUG(dbgs() << "Finished forming chain for header block "
543               << getBlockNum(*Chain.begin()) << "\n");
544}
545
546/// \brief Find the best loop top block for layout.
547///
548/// Look for a block which is strictly better than the loop header for laying
549/// out at the top of the loop. This looks for one and only one pattern:
550/// a latch block with no conditional exit. This block will cause a conditional
551/// jump around it or will be the bottom of the loop if we lay it out in place,
552/// but if it it doesn't end up at the bottom of the loop for any reason,
553/// rotation alone won't fix it. Because such a block will always result in an
554/// unconditional jump (for the backedge) rotating it in front of the loop
555/// header is always profitable.
556MachineBasicBlock *
557MachineBlockPlacement::findBestLoopTop(MachineLoop &L,
558                                       const BlockFilterSet &LoopBlockSet) {
559  // Check that the header hasn't been fused with a preheader block due to
560  // crazy branches. If it has, we need to start with the header at the top to
561  // prevent pulling the preheader into the loop body.
562  BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
563  if (!LoopBlockSet.count(*HeaderChain.begin()))
564    return L.getHeader();
565
566  DEBUG(dbgs() << "Finding best loop top for: "
567               << getBlockName(L.getHeader()) << "\n");
568
569  BlockFrequency BestPredFreq;
570  MachineBasicBlock *BestPred = 0;
571  for (MachineBasicBlock::pred_iterator PI = L.getHeader()->pred_begin(),
572                                        PE = L.getHeader()->pred_end();
573       PI != PE; ++PI) {
574    MachineBasicBlock *Pred = *PI;
575    if (!LoopBlockSet.count(Pred))
576      continue;
577    DEBUG(dbgs() << "    header pred: " << getBlockName(Pred) << ", "
578                 << Pred->succ_size() << " successors, "
579                 << MBFI->getBlockFreq(Pred) << " freq\n");
580    if (Pred->succ_size() > 1)
581      continue;
582
583    BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
584    if (!BestPred || PredFreq > BestPredFreq ||
585        (!(PredFreq < BestPredFreq) &&
586         Pred->isLayoutSuccessor(L.getHeader()))) {
587      BestPred = Pred;
588      BestPredFreq = PredFreq;
589    }
590  }
591
592  // If no direct predecessor is fine, just use the loop header.
593  if (!BestPred)
594    return L.getHeader();
595
596  // Walk backwards through any straight line of predecessors.
597  while (BestPred->pred_size() == 1 &&
598         (*BestPred->pred_begin())->succ_size() == 1 &&
599         *BestPred->pred_begin() != L.getHeader())
600    BestPred = *BestPred->pred_begin();
601
602  DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
603  return BestPred;
604}
605
606
607/// \brief Find the best loop exiting block for layout.
608///
609/// This routine implements the logic to analyze the loop looking for the best
610/// block to layout at the top of the loop. Typically this is done to maximize
611/// fallthrough opportunities.
612MachineBasicBlock *
613MachineBlockPlacement::findBestLoopExit(MachineFunction &F,
614                                        MachineLoop &L,
615                                        const BlockFilterSet &LoopBlockSet) {
616  // We don't want to layout the loop linearly in all cases. If the loop header
617  // is just a normal basic block in the loop, we want to look for what block
618  // within the loop is the best one to layout at the top. However, if the loop
619  // header has be pre-merged into a chain due to predecessors not having
620  // analyzable branches, *and* the predecessor it is merged with is *not* part
621  // of the loop, rotating the header into the middle of the loop will create
622  // a non-contiguous range of blocks which is Very Bad. So start with the
623  // header and only rotate if safe.
624  BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
625  if (!LoopBlockSet.count(*HeaderChain.begin()))
626    return 0;
627
628  BlockFrequency BestExitEdgeFreq;
629  unsigned BestExitLoopDepth = 0;
630  MachineBasicBlock *ExitingBB = 0;
631  // If there are exits to outer loops, loop rotation can severely limit
632  // fallthrough opportunites unless it selects such an exit. Keep a set of
633  // blocks where rotating to exit with that block will reach an outer loop.
634  SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
635
636  DEBUG(dbgs() << "Finding best loop exit for: "
637               << getBlockName(L.getHeader()) << "\n");
638  for (MachineLoop::block_iterator I = L.block_begin(),
639                                   E = L.block_end();
640       I != E; ++I) {
641    BlockChain &Chain = *BlockToChain[*I];
642    // Ensure that this block is at the end of a chain; otherwise it could be
643    // mid-way through an inner loop or a successor of an analyzable branch.
644    if (*I != *llvm::prior(Chain.end()))
645      continue;
646
647    // Now walk the successors. We need to establish whether this has a viable
648    // exiting successor and whether it has a viable non-exiting successor.
649    // We store the old exiting state and restore it if a viable looping
650    // successor isn't found.
651    MachineBasicBlock *OldExitingBB = ExitingBB;
652    BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
653    bool HasLoopingSucc = false;
654    // FIXME: Due to the performance of the probability and weight routines in
655    // the MBPI analysis, we use the internal weights and manually compute the
656    // probabilities to avoid quadratic behavior.
657    uint32_t WeightScale = 0;
658    uint32_t SumWeight = MBPI->getSumForBlock(*I, WeightScale);
659    for (MachineBasicBlock::succ_iterator SI = (*I)->succ_begin(),
660                                          SE = (*I)->succ_end();
661         SI != SE; ++SI) {
662      if ((*SI)->isLandingPad())
663        continue;
664      if (*SI == *I)
665        continue;
666      BlockChain &SuccChain = *BlockToChain[*SI];
667      // Don't split chains, either this chain or the successor's chain.
668      if (&Chain == &SuccChain) {
669        DEBUG(dbgs() << "    exiting: " << getBlockName(*I) << " -> "
670                     << getBlockName(*SI) << " (chain conflict)\n");
671        continue;
672      }
673
674      uint32_t SuccWeight = MBPI->getEdgeWeight(*I, *SI);
675      if (LoopBlockSet.count(*SI)) {
676        DEBUG(dbgs() << "    looping: " << getBlockName(*I) << " -> "
677                     << getBlockName(*SI) << " (" << SuccWeight << ")\n");
678        HasLoopingSucc = true;
679        continue;
680      }
681
682      unsigned SuccLoopDepth = 0;
683      if (MachineLoop *ExitLoop = MLI->getLoopFor(*SI)) {
684        SuccLoopDepth = ExitLoop->getLoopDepth();
685        if (ExitLoop->contains(&L))
686          BlocksExitingToOuterLoop.insert(*I);
687      }
688
689      BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
690      BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(*I) * SuccProb;
691      DEBUG(dbgs() << "    exiting: " << getBlockName(*I) << " -> "
692                   << getBlockName(*SI) << " [L:" << SuccLoopDepth
693                   << "] (" << ExitEdgeFreq << ")\n");
694      // Note that we slightly bias this toward an existing layout successor to
695      // retain incoming order in the absence of better information.
696      // FIXME: Should we bias this more strongly? It's pretty weak.
697      if (!ExitingBB || BestExitLoopDepth < SuccLoopDepth ||
698          ExitEdgeFreq > BestExitEdgeFreq ||
699          ((*I)->isLayoutSuccessor(*SI) &&
700           !(ExitEdgeFreq < BestExitEdgeFreq))) {
701        BestExitEdgeFreq = ExitEdgeFreq;
702        ExitingBB = *I;
703      }
704    }
705
706    // Restore the old exiting state, no viable looping successor was found.
707    if (!HasLoopingSucc) {
708      ExitingBB = OldExitingBB;
709      BestExitEdgeFreq = OldBestExitEdgeFreq;
710      continue;
711    }
712  }
713  // Without a candidate exiting block or with only a single block in the
714  // loop, just use the loop header to layout the loop.
715  if (!ExitingBB || L.getNumBlocks() == 1)
716    return 0;
717
718  // Also, if we have exit blocks which lead to outer loops but didn't select
719  // one of them as the exiting block we are rotating toward, disable loop
720  // rotation altogether.
721  if (!BlocksExitingToOuterLoop.empty() &&
722      !BlocksExitingToOuterLoop.count(ExitingBB))
723    return 0;
724
725  DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB) << "\n");
726  return ExitingBB;
727}
728
729/// \brief Attempt to rotate an exiting block to the bottom of the loop.
730///
731/// Once we have built a chain, try to rotate it to line up the hot exit block
732/// with fallthrough out of the loop if doing so doesn't introduce unnecessary
733/// branches. For example, if the loop has fallthrough into its header and out
734/// of its bottom already, don't rotate it.
735void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
736                                       MachineBasicBlock *ExitingBB,
737                                       const BlockFilterSet &LoopBlockSet) {
738  if (!ExitingBB)
739    return;
740
741  MachineBasicBlock *Top = *LoopChain.begin();
742  bool ViableTopFallthrough = false;
743  for (MachineBasicBlock::pred_iterator PI = Top->pred_begin(),
744                                        PE = Top->pred_end();
745       PI != PE; ++PI) {
746    BlockChain *PredChain = BlockToChain[*PI];
747    if (!LoopBlockSet.count(*PI) &&
748        (!PredChain || *PI == *llvm::prior(PredChain->end()))) {
749      ViableTopFallthrough = true;
750      break;
751    }
752  }
753
754  // If the header has viable fallthrough, check whether the current loop
755  // bottom is a viable exiting block. If so, bail out as rotating will
756  // introduce an unnecessary branch.
757  if (ViableTopFallthrough) {
758    MachineBasicBlock *Bottom = *llvm::prior(LoopChain.end());
759    for (MachineBasicBlock::succ_iterator SI = Bottom->succ_begin(),
760                                          SE = Bottom->succ_end();
761         SI != SE; ++SI) {
762      BlockChain *SuccChain = BlockToChain[*SI];
763      if (!LoopBlockSet.count(*SI) &&
764          (!SuccChain || *SI == *SuccChain->begin()))
765        return;
766    }
767  }
768
769  BlockChain::iterator ExitIt = std::find(LoopChain.begin(), LoopChain.end(),
770                                          ExitingBB);
771  if (ExitIt == LoopChain.end())
772    return;
773
774  std::rotate(LoopChain.begin(), llvm::next(ExitIt), LoopChain.end());
775}
776
777/// \brief Forms basic block chains from the natural loop structures.
778///
779/// These chains are designed to preserve the existing *structure* of the code
780/// as much as possible. We can then stitch the chains together in a way which
781/// both preserves the topological structure and minimizes taken conditional
782/// branches.
783void MachineBlockPlacement::buildLoopChains(MachineFunction &F,
784                                            MachineLoop &L) {
785  // First recurse through any nested loops, building chains for those inner
786  // loops.
787  for (MachineLoop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI)
788    buildLoopChains(F, **LI);
789
790  SmallVector<MachineBasicBlock *, 16> BlockWorkList;
791  BlockFilterSet LoopBlockSet(L.block_begin(), L.block_end());
792
793  // First check to see if there is an obviously preferable top block for the
794  // loop. This will default to the header, but may end up as one of the
795  // predecessors to the header if there is one which will result in strictly
796  // fewer branches in the loop body.
797  MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
798
799  // If we selected just the header for the loop top, look for a potentially
800  // profitable exit block in the event that rotating the loop can eliminate
801  // branches by placing an exit edge at the bottom.
802  MachineBasicBlock *ExitingBB = 0;
803  if (LoopTop == L.getHeader())
804    ExitingBB = findBestLoopExit(F, L, LoopBlockSet);
805
806  BlockChain &LoopChain = *BlockToChain[LoopTop];
807
808  // FIXME: This is a really lame way of walking the chains in the loop: we
809  // walk the blocks, and use a set to prevent visiting a particular chain
810  // twice.
811  SmallPtrSet<BlockChain *, 4> UpdatedPreds;
812  assert(LoopChain.LoopPredecessors == 0);
813  UpdatedPreds.insert(&LoopChain);
814  for (MachineLoop::block_iterator BI = L.block_begin(),
815                                   BE = L.block_end();
816       BI != BE; ++BI) {
817    BlockChain &Chain = *BlockToChain[*BI];
818    if (!UpdatedPreds.insert(&Chain))
819      continue;
820
821    assert(Chain.LoopPredecessors == 0);
822    for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end();
823         BCI != BCE; ++BCI) {
824      assert(BlockToChain[*BCI] == &Chain);
825      for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(),
826                                            PE = (*BCI)->pred_end();
827           PI != PE; ++PI) {
828        if (BlockToChain[*PI] == &Chain || !LoopBlockSet.count(*PI))
829          continue;
830        ++Chain.LoopPredecessors;
831      }
832    }
833
834    if (Chain.LoopPredecessors == 0)
835      BlockWorkList.push_back(*Chain.begin());
836  }
837
838  buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet);
839  rotateLoop(LoopChain, ExitingBB, LoopBlockSet);
840
841  DEBUG({
842    // Crash at the end so we get all of the debugging output first.
843    bool BadLoop = false;
844    if (LoopChain.LoopPredecessors) {
845      BadLoop = true;
846      dbgs() << "Loop chain contains a block without its preds placed!\n"
847             << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
848             << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
849    }
850    for (BlockChain::iterator BCI = LoopChain.begin(), BCE = LoopChain.end();
851         BCI != BCE; ++BCI) {
852      dbgs() << "          ... " << getBlockName(*BCI) << "\n";
853      if (!LoopBlockSet.erase(*BCI)) {
854        // We don't mark the loop as bad here because there are real situations
855        // where this can occur. For example, with an unanalyzable fallthrough
856        // from a loop block to a non-loop block or vice versa.
857        dbgs() << "Loop chain contains a block not contained by the loop!\n"
858               << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
859               << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
860               << "  Bad block:    " << getBlockName(*BCI) << "\n";
861      }
862    }
863
864    if (!LoopBlockSet.empty()) {
865      BadLoop = true;
866      for (BlockFilterSet::iterator LBI = LoopBlockSet.begin(),
867                                    LBE = LoopBlockSet.end();
868           LBI != LBE; ++LBI)
869        dbgs() << "Loop contains blocks never placed into a chain!\n"
870               << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
871               << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
872               << "  Bad block:    " << getBlockName(*LBI) << "\n";
873    }
874    assert(!BadLoop && "Detected problems with the placement of this loop.");
875  });
876}
877
878void MachineBlockPlacement::buildCFGChains(MachineFunction &F) {
879  // Ensure that every BB in the function has an associated chain to simplify
880  // the assumptions of the remaining algorithm.
881  SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
882  for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
883    MachineBasicBlock *BB = FI;
884    BlockChain *Chain
885      = new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
886    // Also, merge any blocks which we cannot reason about and must preserve
887    // the exact fallthrough behavior for.
888    for (;;) {
889      Cond.clear();
890      MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
891      if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
892        break;
893
894      MachineFunction::iterator NextFI(llvm::next(FI));
895      MachineBasicBlock *NextBB = NextFI;
896      // Ensure that the layout successor is a viable block, as we know that
897      // fallthrough is a possibility.
898      assert(NextFI != FE && "Can't fallthrough past the last block.");
899      DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
900                   << getBlockName(BB) << " -> " << getBlockName(NextBB)
901                   << "\n");
902      Chain->merge(NextBB, 0);
903      FI = NextFI;
904      BB = NextBB;
905    }
906  }
907
908  // Build any loop-based chains.
909  for (MachineLoopInfo::iterator LI = MLI->begin(), LE = MLI->end(); LI != LE;
910       ++LI)
911    buildLoopChains(F, **LI);
912
913  SmallVector<MachineBasicBlock *, 16> BlockWorkList;
914
915  SmallPtrSet<BlockChain *, 4> UpdatedPreds;
916  for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
917    MachineBasicBlock *BB = &*FI;
918    BlockChain &Chain = *BlockToChain[BB];
919    if (!UpdatedPreds.insert(&Chain))
920      continue;
921
922    assert(Chain.LoopPredecessors == 0);
923    for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end();
924         BCI != BCE; ++BCI) {
925      assert(BlockToChain[*BCI] == &Chain);
926      for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(),
927                                            PE = (*BCI)->pred_end();
928           PI != PE; ++PI) {
929        if (BlockToChain[*PI] == &Chain)
930          continue;
931        ++Chain.LoopPredecessors;
932      }
933    }
934
935    if (Chain.LoopPredecessors == 0)
936      BlockWorkList.push_back(*Chain.begin());
937  }
938
939  BlockChain &FunctionChain = *BlockToChain[&F.front()];
940  buildChain(&F.front(), FunctionChain, BlockWorkList);
941
942  typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
943  DEBUG({
944    // Crash at the end so we get all of the debugging output first.
945    bool BadFunc = false;
946    FunctionBlockSetType FunctionBlockSet;
947    for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
948      FunctionBlockSet.insert(FI);
949
950    for (BlockChain::iterator BCI = FunctionChain.begin(),
951                              BCE = FunctionChain.end();
952         BCI != BCE; ++BCI)
953      if (!FunctionBlockSet.erase(*BCI)) {
954        BadFunc = true;
955        dbgs() << "Function chain contains a block not in the function!\n"
956               << "  Bad block:    " << getBlockName(*BCI) << "\n";
957      }
958
959    if (!FunctionBlockSet.empty()) {
960      BadFunc = true;
961      for (FunctionBlockSetType::iterator FBI = FunctionBlockSet.begin(),
962                                          FBE = FunctionBlockSet.end();
963           FBI != FBE; ++FBI)
964        dbgs() << "Function contains blocks never placed into a chain!\n"
965               << "  Bad block:    " << getBlockName(*FBI) << "\n";
966    }
967    assert(!BadFunc && "Detected problems with the block placement.");
968  });
969
970  // Splice the blocks into place.
971  MachineFunction::iterator InsertPos = F.begin();
972  for (BlockChain::iterator BI = FunctionChain.begin(),
973                            BE = FunctionChain.end();
974       BI != BE; ++BI) {
975    DEBUG(dbgs() << (BI == FunctionChain.begin() ? "Placing chain "
976                                                  : "          ... ")
977          << getBlockName(*BI) << "\n");
978    if (InsertPos != MachineFunction::iterator(*BI))
979      F.splice(InsertPos, *BI);
980    else
981      ++InsertPos;
982
983    // Update the terminator of the previous block.
984    if (BI == FunctionChain.begin())
985      continue;
986    MachineBasicBlock *PrevBB = llvm::prior(MachineFunction::iterator(*BI));
987
988    // FIXME: It would be awesome of updateTerminator would just return rather
989    // than assert when the branch cannot be analyzed in order to remove this
990    // boiler plate.
991    Cond.clear();
992    MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
993    if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
994      // The "PrevBB" is not yet updated to reflect current code layout, so,
995      //   o. it may fall-through to a block without explict "goto" instruction
996      //      before layout, and no longer fall-through it after layout; or
997      //   o. just opposite.
998      //
999      // AnalyzeBranch() may return erroneous value for FBB when these two
1000      // situations take place. For the first scenario FBB is mistakenly set
1001      // NULL; for the 2nd scenario, the FBB, which is expected to be NULL,
1002      // is mistakenly pointing to "*BI".
1003      //
1004      bool needUpdateBr = true;
1005      if (!Cond.empty() && (!FBB || FBB == *BI)) {
1006        PrevBB->updateTerminator();
1007        needUpdateBr = false;
1008        Cond.clear();
1009        TBB = FBB = 0;
1010        if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
1011          // FIXME: This should never take place.
1012          TBB = FBB = 0;
1013        }
1014      }
1015
1016      // If PrevBB has a two-way branch, try to re-order the branches
1017      // such that we branch to the successor with higher weight first.
1018      if (TBB && !Cond.empty() && FBB &&
1019          MBPI->getEdgeWeight(PrevBB, FBB) > MBPI->getEdgeWeight(PrevBB, TBB) &&
1020          !TII->ReverseBranchCondition(Cond)) {
1021        DEBUG(dbgs() << "Reverse order of the two branches: "
1022                     << getBlockName(PrevBB) << "\n");
1023        DEBUG(dbgs() << "    Edge weight: " << MBPI->getEdgeWeight(PrevBB, FBB)
1024                     << " vs " << MBPI->getEdgeWeight(PrevBB, TBB) << "\n");
1025        DebugLoc dl;  // FIXME: this is nowhere
1026        TII->RemoveBranch(*PrevBB);
1027        TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl);
1028        needUpdateBr = true;
1029      }
1030      if (needUpdateBr)
1031        PrevBB->updateTerminator();
1032    }
1033  }
1034
1035  // Fixup the last block.
1036  Cond.clear();
1037  MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
1038  if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond))
1039    F.back().updateTerminator();
1040
1041  // Walk through the backedges of the function now that we have fully laid out
1042  // the basic blocks and align the destination of each backedge. We don't rely
1043  // exclusively on the loop info here so that we can align backedges in
1044  // unnatural CFGs and backedges that were introduced purely because of the
1045  // loop rotations done during this layout pass.
1046  if (F.getFunction()->getAttributes().
1047        hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize))
1048    return;
1049  unsigned Align = TLI->getPrefLoopAlignment();
1050  if (!Align)
1051    return;  // Don't care about loop alignment.
1052  if (FunctionChain.begin() == FunctionChain.end())
1053    return;  // Empty chain.
1054
1055  const BranchProbability ColdProb(1, 5); // 20%
1056  BlockFrequency EntryFreq = MBFI->getBlockFreq(F.begin());
1057  BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
1058  for (BlockChain::iterator BI = llvm::next(FunctionChain.begin()),
1059                            BE = FunctionChain.end();
1060       BI != BE; ++BI) {
1061    // Don't align non-looping basic blocks. These are unlikely to execute
1062    // enough times to matter in practice. Note that we'll still handle
1063    // unnatural CFGs inside of a natural outer loop (the common case) and
1064    // rotated loops.
1065    MachineLoop *L = MLI->getLoopFor(*BI);
1066    if (!L)
1067      continue;
1068
1069    // If the block is cold relative to the function entry don't waste space
1070    // aligning it.
1071    BlockFrequency Freq = MBFI->getBlockFreq(*BI);
1072    if (Freq < WeightedEntryFreq)
1073      continue;
1074
1075    // If the block is cold relative to its loop header, don't align it
1076    // regardless of what edges into the block exist.
1077    MachineBasicBlock *LoopHeader = L->getHeader();
1078    BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
1079    if (Freq < (LoopHeaderFreq * ColdProb))
1080      continue;
1081
1082    // Check for the existence of a non-layout predecessor which would benefit
1083    // from aligning this block.
1084    MachineBasicBlock *LayoutPred = *llvm::prior(BI);
1085
1086    // Force alignment if all the predecessors are jumps. We already checked
1087    // that the block isn't cold above.
1088    if (!LayoutPred->isSuccessor(*BI)) {
1089      (*BI)->setAlignment(Align);
1090      continue;
1091    }
1092
1093    // Align this block if the layout predecessor's edge into this block is
1094    // cold relative to the block. When this is true, other predecessors make up
1095    // all of the hot entries into the block and thus alignment is likely to be
1096    // important.
1097    BranchProbability LayoutProb = MBPI->getEdgeProbability(LayoutPred, *BI);
1098    BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
1099    if (LayoutEdgeFreq <= (Freq * ColdProb))
1100      (*BI)->setAlignment(Align);
1101  }
1102}
1103
1104bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) {
1105  // Check for single-block functions and skip them.
1106  if (llvm::next(F.begin()) == F.end())
1107    return false;
1108
1109  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1110  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1111  MLI = &getAnalysis<MachineLoopInfo>();
1112  TII = F.getTarget().getInstrInfo();
1113  TLI = F.getTarget().getTargetLowering();
1114  assert(BlockToChain.empty());
1115
1116  buildCFGChains(F);
1117
1118  BlockToChain.clear();
1119  ChainAllocator.DestroyAll();
1120
1121  if (AlignAllBlock)
1122    // Align all of the blocks in the function to a specific alignment.
1123    for (MachineFunction::iterator FI = F.begin(), FE = F.end();
1124         FI != FE; ++FI)
1125      FI->setAlignment(AlignAllBlock);
1126
1127  // We always return true as we have no way to track whether the final order
1128  // differs from the original order.
1129  return true;
1130}
1131
1132namespace {
1133/// \brief A pass to compute block placement statistics.
1134///
1135/// A separate pass to compute interesting statistics for evaluating block
1136/// placement. This is separate from the actual placement pass so that they can
1137/// be computed in the absence of any placement transformations or when using
1138/// alternative placement strategies.
1139class MachineBlockPlacementStats : public MachineFunctionPass {
1140  /// \brief A handle to the branch probability pass.
1141  const MachineBranchProbabilityInfo *MBPI;
1142
1143  /// \brief A handle to the function-wide block frequency pass.
1144  const MachineBlockFrequencyInfo *MBFI;
1145
1146public:
1147  static char ID; // Pass identification, replacement for typeid
1148  MachineBlockPlacementStats() : MachineFunctionPass(ID) {
1149    initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
1150  }
1151
1152  bool runOnMachineFunction(MachineFunction &F);
1153
1154  void getAnalysisUsage(AnalysisUsage &AU) const {
1155    AU.addRequired<MachineBranchProbabilityInfo>();
1156    AU.addRequired<MachineBlockFrequencyInfo>();
1157    AU.setPreservesAll();
1158    MachineFunctionPass::getAnalysisUsage(AU);
1159  }
1160};
1161}
1162
1163char MachineBlockPlacementStats::ID = 0;
1164char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
1165INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
1166                      "Basic Block Placement Stats", false, false)
1167INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
1168INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1169INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
1170                    "Basic Block Placement Stats", false, false)
1171
1172bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
1173  // Check for single-block functions and skip them.
1174  if (llvm::next(F.begin()) == F.end())
1175    return false;
1176
1177  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1178  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1179
1180  for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) {
1181    BlockFrequency BlockFreq = MBFI->getBlockFreq(I);
1182    Statistic &NumBranches = (I->succ_size() > 1) ? NumCondBranches
1183                                                  : NumUncondBranches;
1184    Statistic &BranchTakenFreq = (I->succ_size() > 1) ? CondBranchTakenFreq
1185                                                      : UncondBranchTakenFreq;
1186    for (MachineBasicBlock::succ_iterator SI = I->succ_begin(),
1187                                          SE = I->succ_end();
1188         SI != SE; ++SI) {
1189      // Skip if this successor is a fallthrough.
1190      if (I->isLayoutSuccessor(*SI))
1191        continue;
1192
1193      BlockFrequency EdgeFreq = BlockFreq * MBPI->getEdgeProbability(I, *SI);
1194      ++NumBranches;
1195      BranchTakenFreq += EdgeFreq.getFrequency();
1196    }
1197  }
1198
1199  return false;
1200}
1201
1202