InlineSpiller.cpp revision 263508
1//===-------- InlineSpiller.cpp - Insert spills and restores inline -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The inline spiller modifies the machine function directly instead of
11// inserting spills and restores in VirtRegMap.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "Spiller.h"
17#include "llvm/ADT/SetVector.h"
18#include "llvm/ADT/Statistic.h"
19#include "llvm/ADT/TinyPtrVector.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/CodeGen/LiveIntervalAnalysis.h"
22#include "llvm/CodeGen/LiveRangeEdit.h"
23#include "llvm/CodeGen/LiveStackAnalysis.h"
24#include "llvm/CodeGen/MachineDominators.h"
25#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineInstrBuilder.h"
29#include "llvm/CodeGen/MachineInstrBundle.h"
30#include "llvm/CodeGen/MachineLoopInfo.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/VirtRegMap.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetMachine.h"
38
39using namespace llvm;
40
41STATISTIC(NumSpilledRanges,   "Number of spilled live ranges");
42STATISTIC(NumSnippets,        "Number of spilled snippets");
43STATISTIC(NumSpills,          "Number of spills inserted");
44STATISTIC(NumSpillsRemoved,   "Number of spills removed");
45STATISTIC(NumReloads,         "Number of reloads inserted");
46STATISTIC(NumReloadsRemoved,  "Number of reloads removed");
47STATISTIC(NumFolded,          "Number of folded stack accesses");
48STATISTIC(NumFoldedLoads,     "Number of folded loads");
49STATISTIC(NumRemats,          "Number of rematerialized defs for spilling");
50STATISTIC(NumOmitReloadSpill, "Number of omitted spills of reloads");
51STATISTIC(NumHoists,          "Number of hoisted spills");
52
53static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
54                                     cl::desc("Disable inline spill hoisting"));
55
56namespace {
57class InlineSpiller : public Spiller {
58  MachineFunction &MF;
59  LiveIntervals &LIS;
60  LiveStacks &LSS;
61  AliasAnalysis *AA;
62  MachineDominatorTree &MDT;
63  MachineLoopInfo &Loops;
64  VirtRegMap &VRM;
65  MachineFrameInfo &MFI;
66  MachineRegisterInfo &MRI;
67  const TargetInstrInfo &TII;
68  const TargetRegisterInfo &TRI;
69  const MachineBlockFrequencyInfo &MBFI;
70
71  // Variables that are valid during spill(), but used by multiple methods.
72  LiveRangeEdit *Edit;
73  LiveInterval *StackInt;
74  int StackSlot;
75  unsigned Original;
76
77  // All registers to spill to StackSlot, including the main register.
78  SmallVector<unsigned, 8> RegsToSpill;
79
80  // All COPY instructions to/from snippets.
81  // They are ignored since both operands refer to the same stack slot.
82  SmallPtrSet<MachineInstr*, 8> SnippetCopies;
83
84  // Values that failed to remat at some point.
85  SmallPtrSet<VNInfo*, 8> UsedValues;
86
87public:
88  // Information about a value that was defined by a copy from a sibling
89  // register.
90  struct SibValueInfo {
91    // True when all reaching defs were reloads: No spill is necessary.
92    bool AllDefsAreReloads;
93
94    // True when value is defined by an original PHI not from splitting.
95    bool DefByOrigPHI;
96
97    // True when the COPY defining this value killed its source.
98    bool KillsSource;
99
100    // The preferred register to spill.
101    unsigned SpillReg;
102
103    // The value of SpillReg that should be spilled.
104    VNInfo *SpillVNI;
105
106    // The block where SpillVNI should be spilled. Currently, this must be the
107    // block containing SpillVNI->def.
108    MachineBasicBlock *SpillMBB;
109
110    // A defining instruction that is not a sibling copy or a reload, or NULL.
111    // This can be used as a template for rematerialization.
112    MachineInstr *DefMI;
113
114    // List of values that depend on this one.  These values are actually the
115    // same, but live range splitting has placed them in different registers,
116    // or SSA update needed to insert PHI-defs to preserve SSA form.  This is
117    // copies of the current value and phi-kills.  Usually only phi-kills cause
118    // more than one dependent value.
119    TinyPtrVector<VNInfo*> Deps;
120
121    SibValueInfo(unsigned Reg, VNInfo *VNI)
122      : AllDefsAreReloads(true), DefByOrigPHI(false), KillsSource(false),
123        SpillReg(Reg), SpillVNI(VNI), SpillMBB(0), DefMI(0) {}
124
125    // Returns true when a def has been found.
126    bool hasDef() const { return DefByOrigPHI || DefMI; }
127  };
128
129private:
130  // Values in RegsToSpill defined by sibling copies.
131  typedef DenseMap<VNInfo*, SibValueInfo> SibValueMap;
132  SibValueMap SibValues;
133
134  // Dead defs generated during spilling.
135  SmallVector<MachineInstr*, 8> DeadDefs;
136
137  ~InlineSpiller() {}
138
139public:
140  InlineSpiller(MachineFunctionPass &pass,
141                MachineFunction &mf,
142                VirtRegMap &vrm)
143    : MF(mf),
144      LIS(pass.getAnalysis<LiveIntervals>()),
145      LSS(pass.getAnalysis<LiveStacks>()),
146      AA(&pass.getAnalysis<AliasAnalysis>()),
147      MDT(pass.getAnalysis<MachineDominatorTree>()),
148      Loops(pass.getAnalysis<MachineLoopInfo>()),
149      VRM(vrm),
150      MFI(*mf.getFrameInfo()),
151      MRI(mf.getRegInfo()),
152      TII(*mf.getTarget().getInstrInfo()),
153      TRI(*mf.getTarget().getRegisterInfo()),
154      MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()) {}
155
156  void spill(LiveRangeEdit &);
157
158private:
159  bool isSnippet(const LiveInterval &SnipLI);
160  void collectRegsToSpill();
161
162  bool isRegToSpill(unsigned Reg) {
163    return std::find(RegsToSpill.begin(),
164                     RegsToSpill.end(), Reg) != RegsToSpill.end();
165  }
166
167  bool isSibling(unsigned Reg);
168  MachineInstr *traceSiblingValue(unsigned, VNInfo*, VNInfo*);
169  void propagateSiblingValue(SibValueMap::iterator, VNInfo *VNI = 0);
170  void analyzeSiblingValues();
171
172  bool hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI);
173  void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
174
175  void markValueUsed(LiveInterval*, VNInfo*);
176  bool reMaterializeFor(LiveInterval&, MachineBasicBlock::iterator MI);
177  void reMaterializeAll();
178
179  bool coalesceStackAccess(MachineInstr *MI, unsigned Reg);
180  bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> >,
181                         MachineInstr *LoadMI = 0);
182  void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI);
183  void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI);
184
185  void spillAroundUses(unsigned Reg);
186  void spillAll();
187};
188}
189
190namespace llvm {
191Spiller *createInlineSpiller(MachineFunctionPass &pass,
192                             MachineFunction &mf,
193                             VirtRegMap &vrm) {
194  return new InlineSpiller(pass, mf, vrm);
195}
196}
197
198//===----------------------------------------------------------------------===//
199//                                Snippets
200//===----------------------------------------------------------------------===//
201
202// When spilling a virtual register, we also spill any snippets it is connected
203// to. The snippets are small live ranges that only have a single real use,
204// leftovers from live range splitting. Spilling them enables memory operand
205// folding or tightens the live range around the single use.
206//
207// This minimizes register pressure and maximizes the store-to-load distance for
208// spill slots which can be important in tight loops.
209
210/// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
211/// otherwise return 0.
212static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) {
213  if (!MI->isFullCopy())
214    return 0;
215  if (MI->getOperand(0).getReg() == Reg)
216      return MI->getOperand(1).getReg();
217  if (MI->getOperand(1).getReg() == Reg)
218      return MI->getOperand(0).getReg();
219  return 0;
220}
221
222/// isSnippet - Identify if a live interval is a snippet that should be spilled.
223/// It is assumed that SnipLI is a virtual register with the same original as
224/// Edit->getReg().
225bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
226  unsigned Reg = Edit->getReg();
227
228  // A snippet is a tiny live range with only a single instruction using it
229  // besides copies to/from Reg or spills/fills. We accept:
230  //
231  //   %snip = COPY %Reg / FILL fi#
232  //   %snip = USE %snip
233  //   %Reg = COPY %snip / SPILL %snip, fi#
234  //
235  if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
236    return false;
237
238  MachineInstr *UseMI = 0;
239
240  // Check that all uses satisfy our criteria.
241  for (MachineRegisterInfo::reg_nodbg_iterator
242         RI = MRI.reg_nodbg_begin(SnipLI.reg);
243       MachineInstr *MI = RI.skipInstruction();) {
244
245    // Allow copies to/from Reg.
246    if (isFullCopyOf(MI, Reg))
247      continue;
248
249    // Allow stack slot loads.
250    int FI;
251    if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
252      continue;
253
254    // Allow stack slot stores.
255    if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
256      continue;
257
258    // Allow a single additional instruction.
259    if (UseMI && MI != UseMI)
260      return false;
261    UseMI = MI;
262  }
263  return true;
264}
265
266/// collectRegsToSpill - Collect live range snippets that only have a single
267/// real use.
268void InlineSpiller::collectRegsToSpill() {
269  unsigned Reg = Edit->getReg();
270
271  // Main register always spills.
272  RegsToSpill.assign(1, Reg);
273  SnippetCopies.clear();
274
275  // Snippets all have the same original, so there can't be any for an original
276  // register.
277  if (Original == Reg)
278    return;
279
280  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Reg);
281       MachineInstr *MI = RI.skipInstruction();) {
282    unsigned SnipReg = isFullCopyOf(MI, Reg);
283    if (!isSibling(SnipReg))
284      continue;
285    LiveInterval &SnipLI = LIS.getInterval(SnipReg);
286    if (!isSnippet(SnipLI))
287      continue;
288    SnippetCopies.insert(MI);
289    if (isRegToSpill(SnipReg))
290      continue;
291    RegsToSpill.push_back(SnipReg);
292    DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
293    ++NumSnippets;
294  }
295}
296
297
298//===----------------------------------------------------------------------===//
299//                            Sibling Values
300//===----------------------------------------------------------------------===//
301
302// After live range splitting, some values to be spilled may be defined by
303// copies from sibling registers. We trace the sibling copies back to the
304// original value if it still exists. We need it for rematerialization.
305//
306// Even when the value can't be rematerialized, we still want to determine if
307// the value has already been spilled, or we may want to hoist the spill from a
308// loop.
309
310bool InlineSpiller::isSibling(unsigned Reg) {
311  return TargetRegisterInfo::isVirtualRegister(Reg) &&
312           VRM.getOriginal(Reg) == Original;
313}
314
315#ifndef NDEBUG
316static raw_ostream &operator<<(raw_ostream &OS,
317                               const InlineSpiller::SibValueInfo &SVI) {
318  OS << "spill " << PrintReg(SVI.SpillReg) << ':'
319     << SVI.SpillVNI->id << '@' << SVI.SpillVNI->def;
320  if (SVI.SpillMBB)
321    OS << " in BB#" << SVI.SpillMBB->getNumber();
322  if (SVI.AllDefsAreReloads)
323    OS << " all-reloads";
324  if (SVI.DefByOrigPHI)
325    OS << " orig-phi";
326  if (SVI.KillsSource)
327    OS << " kill";
328  OS << " deps[";
329  for (unsigned i = 0, e = SVI.Deps.size(); i != e; ++i)
330    OS << ' ' << SVI.Deps[i]->id << '@' << SVI.Deps[i]->def;
331  OS << " ]";
332  if (SVI.DefMI)
333    OS << " def: " << *SVI.DefMI;
334  else
335    OS << '\n';
336  return OS;
337}
338#endif
339
340/// propagateSiblingValue - Propagate the value in SVI to dependents if it is
341/// known.  Otherwise remember the dependency for later.
342///
343/// @param SVIIter SibValues entry to propagate.
344/// @param VNI Dependent value, or NULL to propagate to all saved dependents.
345void InlineSpiller::propagateSiblingValue(SibValueMap::iterator SVIIter,
346                                          VNInfo *VNI) {
347  SibValueMap::value_type *SVI = &*SVIIter;
348
349  // When VNI is non-NULL, add it to SVI's deps, and only propagate to that.
350  TinyPtrVector<VNInfo*> FirstDeps;
351  if (VNI) {
352    FirstDeps.push_back(VNI);
353    SVI->second.Deps.push_back(VNI);
354  }
355
356  // Has the value been completely determined yet?  If not, defer propagation.
357  if (!SVI->second.hasDef())
358    return;
359
360  // Work list of values to propagate.
361  SmallSetVector<SibValueMap::value_type *, 8> WorkList;
362  WorkList.insert(SVI);
363
364  do {
365    SVI = WorkList.pop_back_val();
366    TinyPtrVector<VNInfo*> *Deps = VNI ? &FirstDeps : &SVI->second.Deps;
367    VNI = 0;
368
369    SibValueInfo &SV = SVI->second;
370    if (!SV.SpillMBB)
371      SV.SpillMBB = LIS.getMBBFromIndex(SV.SpillVNI->def);
372
373    DEBUG(dbgs() << "  prop to " << Deps->size() << ": "
374                 << SVI->first->id << '@' << SVI->first->def << ":\t" << SV);
375
376    assert(SV.hasDef() && "Propagating undefined value");
377
378    // Should this value be propagated as a preferred spill candidate?  We don't
379    // propagate values of registers that are about to spill.
380    bool PropSpill = !DisableHoisting && !isRegToSpill(SV.SpillReg);
381    unsigned SpillDepth = ~0u;
382
383    for (TinyPtrVector<VNInfo*>::iterator DepI = Deps->begin(),
384         DepE = Deps->end(); DepI != DepE; ++DepI) {
385      SibValueMap::iterator DepSVI = SibValues.find(*DepI);
386      assert(DepSVI != SibValues.end() && "Dependent value not in SibValues");
387      SibValueInfo &DepSV = DepSVI->second;
388      if (!DepSV.SpillMBB)
389        DepSV.SpillMBB = LIS.getMBBFromIndex(DepSV.SpillVNI->def);
390
391      bool Changed = false;
392
393      // Propagate defining instruction.
394      if (!DepSV.hasDef()) {
395        Changed = true;
396        DepSV.DefMI = SV.DefMI;
397        DepSV.DefByOrigPHI = SV.DefByOrigPHI;
398      }
399
400      // Propagate AllDefsAreReloads.  For PHI values, this computes an AND of
401      // all predecessors.
402      if (!SV.AllDefsAreReloads && DepSV.AllDefsAreReloads) {
403        Changed = true;
404        DepSV.AllDefsAreReloads = false;
405      }
406
407      // Propagate best spill value.
408      if (PropSpill && SV.SpillVNI != DepSV.SpillVNI) {
409        if (SV.SpillMBB == DepSV.SpillMBB) {
410          // DepSV is in the same block.  Hoist when dominated.
411          if (DepSV.KillsSource && SV.SpillVNI->def < DepSV.SpillVNI->def) {
412            // This is an alternative def earlier in the same MBB.
413            // Hoist the spill as far as possible in SpillMBB. This can ease
414            // register pressure:
415            //
416            //   x = def
417            //   y = use x
418            //   s = copy x
419            //
420            // Hoisting the spill of s to immediately after the def removes the
421            // interference between x and y:
422            //
423            //   x = def
424            //   spill x
425            //   y = use x<kill>
426            //
427            // This hoist only helps when the DepSV copy kills its source.
428            Changed = true;
429            DepSV.SpillReg = SV.SpillReg;
430            DepSV.SpillVNI = SV.SpillVNI;
431            DepSV.SpillMBB = SV.SpillMBB;
432          }
433        } else {
434          // DepSV is in a different block.
435          if (SpillDepth == ~0u)
436            SpillDepth = Loops.getLoopDepth(SV.SpillMBB);
437
438          // Also hoist spills to blocks with smaller loop depth, but make sure
439          // that the new value dominates.  Non-phi dependents are always
440          // dominated, phis need checking.
441          if ((Loops.getLoopDepth(DepSV.SpillMBB) > SpillDepth) &&
442              (!DepSVI->first->isPHIDef() ||
443               MDT.dominates(SV.SpillMBB, DepSV.SpillMBB))) {
444            Changed = true;
445            DepSV.SpillReg = SV.SpillReg;
446            DepSV.SpillVNI = SV.SpillVNI;
447            DepSV.SpillMBB = SV.SpillMBB;
448          }
449        }
450      }
451
452      if (!Changed)
453        continue;
454
455      // Something changed in DepSVI. Propagate to dependents.
456      WorkList.insert(&*DepSVI);
457
458      DEBUG(dbgs() << "  update " << DepSVI->first->id << '@'
459            << DepSVI->first->def << " to:\t" << DepSV);
460    }
461  } while (!WorkList.empty());
462}
463
464/// traceSiblingValue - Trace a value that is about to be spilled back to the
465/// real defining instructions by looking through sibling copies. Always stay
466/// within the range of OrigVNI so the registers are known to carry the same
467/// value.
468///
469/// Determine if the value is defined by all reloads, so spilling isn't
470/// necessary - the value is already in the stack slot.
471///
472/// Return a defining instruction that may be a candidate for rematerialization.
473///
474MachineInstr *InlineSpiller::traceSiblingValue(unsigned UseReg, VNInfo *UseVNI,
475                                               VNInfo *OrigVNI) {
476  // Check if a cached value already exists.
477  SibValueMap::iterator SVI;
478  bool Inserted;
479  tie(SVI, Inserted) =
480    SibValues.insert(std::make_pair(UseVNI, SibValueInfo(UseReg, UseVNI)));
481  if (!Inserted) {
482    DEBUG(dbgs() << "Cached value " << PrintReg(UseReg) << ':'
483                 << UseVNI->id << '@' << UseVNI->def << ' ' << SVI->second);
484    return SVI->second.DefMI;
485  }
486
487  DEBUG(dbgs() << "Tracing value " << PrintReg(UseReg) << ':'
488               << UseVNI->id << '@' << UseVNI->def << '\n');
489
490  // List of (Reg, VNI) that have been inserted into SibValues, but need to be
491  // processed.
492  SmallVector<std::pair<unsigned, VNInfo*>, 8> WorkList;
493  WorkList.push_back(std::make_pair(UseReg, UseVNI));
494
495  do {
496    unsigned Reg;
497    VNInfo *VNI;
498    tie(Reg, VNI) = WorkList.pop_back_val();
499    DEBUG(dbgs() << "  " << PrintReg(Reg) << ':' << VNI->id << '@' << VNI->def
500                 << ":\t");
501
502    // First check if this value has already been computed.
503    SVI = SibValues.find(VNI);
504    assert(SVI != SibValues.end() && "Missing SibValues entry");
505
506    // Trace through PHI-defs created by live range splitting.
507    if (VNI->isPHIDef()) {
508      // Stop at original PHIs.  We don't know the value at the predecessors.
509      if (VNI->def == OrigVNI->def) {
510        DEBUG(dbgs() << "orig phi value\n");
511        SVI->second.DefByOrigPHI = true;
512        SVI->second.AllDefsAreReloads = false;
513        propagateSiblingValue(SVI);
514        continue;
515      }
516
517      // This is a PHI inserted by live range splitting.  We could trace the
518      // live-out value from predecessor blocks, but that search can be very
519      // expensive if there are many predecessors and many more PHIs as
520      // generated by tail-dup when it sees an indirectbr.  Instead, look at
521      // all the non-PHI defs that have the same value as OrigVNI.  They must
522      // jointly dominate VNI->def.  This is not optimal since VNI may actually
523      // be jointly dominated by a smaller subset of defs, so there is a change
524      // we will miss a AllDefsAreReloads optimization.
525
526      // Separate all values dominated by OrigVNI into PHIs and non-PHIs.
527      SmallVector<VNInfo*, 8> PHIs, NonPHIs;
528      LiveInterval &LI = LIS.getInterval(Reg);
529      LiveInterval &OrigLI = LIS.getInterval(Original);
530
531      for (LiveInterval::vni_iterator VI = LI.vni_begin(), VE = LI.vni_end();
532           VI != VE; ++VI) {
533        VNInfo *VNI2 = *VI;
534        if (VNI2->isUnused())
535          continue;
536        if (!OrigLI.containsOneValue() &&
537            OrigLI.getVNInfoAt(VNI2->def) != OrigVNI)
538          continue;
539        if (VNI2->isPHIDef() && VNI2->def != OrigVNI->def)
540          PHIs.push_back(VNI2);
541        else
542          NonPHIs.push_back(VNI2);
543      }
544      DEBUG(dbgs() << "split phi value, checking " << PHIs.size()
545                   << " phi-defs, and " << NonPHIs.size()
546                   << " non-phi/orig defs\n");
547
548      // Create entries for all the PHIs.  Don't add them to the worklist, we
549      // are processing all of them in one go here.
550      for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
551        SibValues.insert(std::make_pair(PHIs[i], SibValueInfo(Reg, PHIs[i])));
552
553      // Add every PHI as a dependent of all the non-PHIs.
554      for (unsigned i = 0, e = NonPHIs.size(); i != e; ++i) {
555        VNInfo *NonPHI = NonPHIs[i];
556        // Known value? Try an insertion.
557        tie(SVI, Inserted) =
558          SibValues.insert(std::make_pair(NonPHI, SibValueInfo(Reg, NonPHI)));
559        // Add all the PHIs as dependents of NonPHI.
560        for (unsigned pi = 0, pe = PHIs.size(); pi != pe; ++pi)
561          SVI->second.Deps.push_back(PHIs[pi]);
562        // This is the first time we see NonPHI, add it to the worklist.
563        if (Inserted)
564          WorkList.push_back(std::make_pair(Reg, NonPHI));
565        else
566          // Propagate to all inserted PHIs, not just VNI.
567          propagateSiblingValue(SVI);
568      }
569
570      // Next work list item.
571      continue;
572    }
573
574    MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
575    assert(MI && "Missing def");
576
577    // Trace through sibling copies.
578    if (unsigned SrcReg = isFullCopyOf(MI, Reg)) {
579      if (isSibling(SrcReg)) {
580        LiveInterval &SrcLI = LIS.getInterval(SrcReg);
581        LiveQueryResult SrcQ = SrcLI.Query(VNI->def);
582        assert(SrcQ.valueIn() && "Copy from non-existing value");
583        // Check if this COPY kills its source.
584        SVI->second.KillsSource = SrcQ.isKill();
585        VNInfo *SrcVNI = SrcQ.valueIn();
586        DEBUG(dbgs() << "copy of " << PrintReg(SrcReg) << ':'
587                     << SrcVNI->id << '@' << SrcVNI->def
588                     << " kill=" << unsigned(SVI->second.KillsSource) << '\n');
589        // Known sibling source value? Try an insertion.
590        tie(SVI, Inserted) = SibValues.insert(std::make_pair(SrcVNI,
591                                                 SibValueInfo(SrcReg, SrcVNI)));
592        // This is the first time we see Src, add it to the worklist.
593        if (Inserted)
594          WorkList.push_back(std::make_pair(SrcReg, SrcVNI));
595        propagateSiblingValue(SVI, VNI);
596        // Next work list item.
597        continue;
598      }
599    }
600
601    // Track reachable reloads.
602    SVI->second.DefMI = MI;
603    SVI->second.SpillMBB = MI->getParent();
604    int FI;
605    if (Reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) {
606      DEBUG(dbgs() << "reload\n");
607      propagateSiblingValue(SVI);
608      // Next work list item.
609      continue;
610    }
611
612    // Potential remat candidate.
613    DEBUG(dbgs() << "def " << *MI);
614    SVI->second.AllDefsAreReloads = false;
615    propagateSiblingValue(SVI);
616  } while (!WorkList.empty());
617
618  // Look up the value we were looking for.  We already did this lookup at the
619  // top of the function, but SibValues may have been invalidated.
620  SVI = SibValues.find(UseVNI);
621  assert(SVI != SibValues.end() && "Didn't compute requested info");
622  DEBUG(dbgs() << "  traced to:\t" << SVI->second);
623  return SVI->second.DefMI;
624}
625
626/// analyzeSiblingValues - Trace values defined by sibling copies back to
627/// something that isn't a sibling copy.
628///
629/// Keep track of values that may be rematerializable.
630void InlineSpiller::analyzeSiblingValues() {
631  SibValues.clear();
632
633  // No siblings at all?
634  if (Edit->getReg() == Original)
635    return;
636
637  LiveInterval &OrigLI = LIS.getInterval(Original);
638  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
639    unsigned Reg = RegsToSpill[i];
640    LiveInterval &LI = LIS.getInterval(Reg);
641    for (LiveInterval::const_vni_iterator VI = LI.vni_begin(),
642         VE = LI.vni_end(); VI != VE; ++VI) {
643      VNInfo *VNI = *VI;
644      if (VNI->isUnused())
645        continue;
646      MachineInstr *DefMI = 0;
647      if (!VNI->isPHIDef()) {
648       DefMI = LIS.getInstructionFromIndex(VNI->def);
649       assert(DefMI && "No defining instruction");
650      }
651      // Check possible sibling copies.
652      if (VNI->isPHIDef() || DefMI->isCopy()) {
653        VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
654        assert(OrigVNI && "Def outside original live range");
655        if (OrigVNI->def != VNI->def)
656          DefMI = traceSiblingValue(Reg, VNI, OrigVNI);
657      }
658      if (DefMI && Edit->checkRematerializable(VNI, DefMI, AA)) {
659        DEBUG(dbgs() << "Value " << PrintReg(Reg) << ':' << VNI->id << '@'
660                     << VNI->def << " may remat from " << *DefMI);
661      }
662    }
663  }
664}
665
666/// hoistSpill - Given a sibling copy that defines a value to be spilled, insert
667/// a spill at a better location.
668bool InlineSpiller::hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI) {
669  SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
670  VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
671  assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
672  SibValueMap::iterator I = SibValues.find(VNI);
673  if (I == SibValues.end())
674    return false;
675
676  const SibValueInfo &SVI = I->second;
677
678  // Let the normal folding code deal with the boring case.
679  if (!SVI.AllDefsAreReloads && SVI.SpillVNI == VNI)
680    return false;
681
682  // SpillReg may have been deleted by remat and DCE.
683  if (!LIS.hasInterval(SVI.SpillReg)) {
684    DEBUG(dbgs() << "Stale interval: " << PrintReg(SVI.SpillReg) << '\n');
685    SibValues.erase(I);
686    return false;
687  }
688
689  LiveInterval &SibLI = LIS.getInterval(SVI.SpillReg);
690  if (!SibLI.containsValue(SVI.SpillVNI)) {
691    DEBUG(dbgs() << "Stale value: " << PrintReg(SVI.SpillReg) << '\n');
692    SibValues.erase(I);
693    return false;
694  }
695
696  // Conservatively extend the stack slot range to the range of the original
697  // value. We may be able to do better with stack slot coloring by being more
698  // careful here.
699  assert(StackInt && "No stack slot assigned yet.");
700  LiveInterval &OrigLI = LIS.getInterval(Original);
701  VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
702  StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
703  DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
704               << *StackInt << '\n');
705
706  // Already spilled everywhere.
707  if (SVI.AllDefsAreReloads) {
708    DEBUG(dbgs() << "\tno spill needed: " << SVI);
709    ++NumOmitReloadSpill;
710    return true;
711  }
712  // We are going to spill SVI.SpillVNI immediately after its def, so clear out
713  // any later spills of the same value.
714  eliminateRedundantSpills(SibLI, SVI.SpillVNI);
715
716  MachineBasicBlock *MBB = LIS.getMBBFromIndex(SVI.SpillVNI->def);
717  MachineBasicBlock::iterator MII;
718  if (SVI.SpillVNI->isPHIDef())
719    MII = MBB->SkipPHIsAndLabels(MBB->begin());
720  else {
721    MachineInstr *DefMI = LIS.getInstructionFromIndex(SVI.SpillVNI->def);
722    assert(DefMI && "Defining instruction disappeared");
723    MII = DefMI;
724    ++MII;
725  }
726  // Insert spill without kill flag immediately after def.
727  TII.storeRegToStackSlot(*MBB, MII, SVI.SpillReg, false, StackSlot,
728                          MRI.getRegClass(SVI.SpillReg), &TRI);
729  --MII; // Point to store instruction.
730  LIS.InsertMachineInstrInMaps(MII);
731  DEBUG(dbgs() << "\thoisted: " << SVI.SpillVNI->def << '\t' << *MII);
732
733  ++NumSpills;
734  ++NumHoists;
735  return true;
736}
737
738/// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
739/// redundant spills of this value in SLI.reg and sibling copies.
740void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
741  assert(VNI && "Missing value");
742  SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
743  WorkList.push_back(std::make_pair(&SLI, VNI));
744  assert(StackInt && "No stack slot assigned yet.");
745
746  do {
747    LiveInterval *LI;
748    tie(LI, VNI) = WorkList.pop_back_val();
749    unsigned Reg = LI->reg;
750    DEBUG(dbgs() << "Checking redundant spills for "
751                 << VNI->id << '@' << VNI->def << " in " << *LI << '\n');
752
753    // Regs to spill are taken care of.
754    if (isRegToSpill(Reg))
755      continue;
756
757    // Add all of VNI's live range to StackInt.
758    StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
759    DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
760
761    // Find all spills and copies of VNI.
762    for (MachineRegisterInfo::use_nodbg_iterator UI = MRI.use_nodbg_begin(Reg);
763         MachineInstr *MI = UI.skipInstruction();) {
764      if (!MI->isCopy() && !MI->mayStore())
765        continue;
766      SlotIndex Idx = LIS.getInstructionIndex(MI);
767      if (LI->getVNInfoAt(Idx) != VNI)
768        continue;
769
770      // Follow sibling copies down the dominator tree.
771      if (unsigned DstReg = isFullCopyOf(MI, Reg)) {
772        if (isSibling(DstReg)) {
773           LiveInterval &DstLI = LIS.getInterval(DstReg);
774           VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
775           assert(DstVNI && "Missing defined value");
776           assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
777           WorkList.push_back(std::make_pair(&DstLI, DstVNI));
778        }
779        continue;
780      }
781
782      // Erase spills.
783      int FI;
784      if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
785        DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << *MI);
786        // eliminateDeadDefs won't normally remove stores, so switch opcode.
787        MI->setDesc(TII.get(TargetOpcode::KILL));
788        DeadDefs.push_back(MI);
789        ++NumSpillsRemoved;
790        --NumSpills;
791      }
792    }
793  } while (!WorkList.empty());
794}
795
796
797//===----------------------------------------------------------------------===//
798//                            Rematerialization
799//===----------------------------------------------------------------------===//
800
801/// markValueUsed - Remember that VNI failed to rematerialize, so its defining
802/// instruction cannot be eliminated. See through snippet copies
803void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
804  SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
805  WorkList.push_back(std::make_pair(LI, VNI));
806  do {
807    tie(LI, VNI) = WorkList.pop_back_val();
808    if (!UsedValues.insert(VNI))
809      continue;
810
811    if (VNI->isPHIDef()) {
812      MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
813      for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
814             PE = MBB->pred_end(); PI != PE; ++PI) {
815        VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI));
816        if (PVNI)
817          WorkList.push_back(std::make_pair(LI, PVNI));
818      }
819      continue;
820    }
821
822    // Follow snippet copies.
823    MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
824    if (!SnippetCopies.count(MI))
825      continue;
826    LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
827    assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy");
828    VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
829    assert(SnipVNI && "Snippet undefined before copy");
830    WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
831  } while (!WorkList.empty());
832}
833
834/// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
835bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg,
836                                     MachineBasicBlock::iterator MI) {
837  SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
838  VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
839
840  if (!ParentVNI) {
841    DEBUG(dbgs() << "\tadding <undef> flags: ");
842    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
843      MachineOperand &MO = MI->getOperand(i);
844      if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg)
845        MO.setIsUndef();
846    }
847    DEBUG(dbgs() << UseIdx << '\t' << *MI);
848    return true;
849  }
850
851  if (SnippetCopies.count(MI))
852    return false;
853
854  // Use an OrigVNI from traceSiblingValue when ParentVNI is a sibling copy.
855  LiveRangeEdit::Remat RM(ParentVNI);
856  SibValueMap::const_iterator SibI = SibValues.find(ParentVNI);
857  if (SibI != SibValues.end())
858    RM.OrigMI = SibI->second.DefMI;
859  if (!Edit->canRematerializeAt(RM, UseIdx, false)) {
860    markValueUsed(&VirtReg, ParentVNI);
861    DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI);
862    return false;
863  }
864
865  // If the instruction also writes VirtReg.reg, it had better not require the
866  // same register for uses and defs.
867  SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
868  MIBundleOperands::VirtRegInfo RI =
869    MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops);
870  if (RI.Tied) {
871    markValueUsed(&VirtReg, ParentVNI);
872    DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI);
873    return false;
874  }
875
876  // Before rematerializing into a register for a single instruction, try to
877  // fold a load into the instruction. That avoids allocating a new register.
878  if (RM.OrigMI->canFoldAsLoad() &&
879      foldMemoryOperand(Ops, RM.OrigMI)) {
880    Edit->markRematerialized(RM.ParentVNI);
881    ++NumFoldedLoads;
882    return true;
883  }
884
885  // Alocate a new register for the remat.
886  unsigned NewVReg = Edit->createFrom(Original);
887
888  // Finally we can rematerialize OrigMI before MI.
889  SlotIndex DefIdx = Edit->rematerializeAt(*MI->getParent(), MI, NewVReg, RM,
890                                           TRI);
891  (void)DefIdx;
892  DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
893               << *LIS.getInstructionFromIndex(DefIdx));
894
895  // Replace operands
896  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
897    MachineOperand &MO = MI->getOperand(Ops[i].second);
898    if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) {
899      MO.setReg(NewVReg);
900      MO.setIsKill();
901    }
902  }
903  DEBUG(dbgs() << "\t        " << UseIdx << '\t' << *MI << '\n');
904
905  ++NumRemats;
906  return true;
907}
908
909/// reMaterializeAll - Try to rematerialize as many uses as possible,
910/// and trim the live ranges after.
911void InlineSpiller::reMaterializeAll() {
912  // analyzeSiblingValues has already tested all relevant defining instructions.
913  if (!Edit->anyRematerializable(AA))
914    return;
915
916  UsedValues.clear();
917
918  // Try to remat before all uses of snippets.
919  bool anyRemat = false;
920  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
921    unsigned Reg = RegsToSpill[i];
922    LiveInterval &LI = LIS.getInterval(Reg);
923    for (MachineRegisterInfo::use_nodbg_iterator
924         RI = MRI.use_nodbg_begin(Reg);
925         MachineInstr *MI = RI.skipBundle();)
926      anyRemat |= reMaterializeFor(LI, MI);
927  }
928  if (!anyRemat)
929    return;
930
931  // Remove any values that were completely rematted.
932  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
933    unsigned Reg = RegsToSpill[i];
934    LiveInterval &LI = LIS.getInterval(Reg);
935    for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
936         I != E; ++I) {
937      VNInfo *VNI = *I;
938      if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
939        continue;
940      MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
941      MI->addRegisterDead(Reg, &TRI);
942      if (!MI->allDefsAreDead())
943        continue;
944      DEBUG(dbgs() << "All defs dead: " << *MI);
945      DeadDefs.push_back(MI);
946    }
947  }
948
949  // Eliminate dead code after remat. Note that some snippet copies may be
950  // deleted here.
951  if (DeadDefs.empty())
952    return;
953  DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
954  Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
955
956  // Get rid of deleted and empty intervals.
957  unsigned ResultPos = 0;
958  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
959    unsigned Reg = RegsToSpill[i];
960    if (!LIS.hasInterval(Reg))
961      continue;
962
963    LiveInterval &LI = LIS.getInterval(Reg);
964    if (LI.empty()) {
965      Edit->eraseVirtReg(Reg);
966      continue;
967    }
968
969    RegsToSpill[ResultPos++] = Reg;
970  }
971  RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
972  DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n");
973}
974
975
976//===----------------------------------------------------------------------===//
977//                                 Spilling
978//===----------------------------------------------------------------------===//
979
980/// If MI is a load or store of StackSlot, it can be removed.
981bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) {
982  int FI = 0;
983  unsigned InstrReg = TII.isLoadFromStackSlot(MI, FI);
984  bool IsLoad = InstrReg;
985  if (!IsLoad)
986    InstrReg = TII.isStoreToStackSlot(MI, FI);
987
988  // We have a stack access. Is it the right register and slot?
989  if (InstrReg != Reg || FI != StackSlot)
990    return false;
991
992  DEBUG(dbgs() << "Coalescing stack access: " << *MI);
993  LIS.RemoveMachineInstrFromMaps(MI);
994  MI->eraseFromParent();
995
996  if (IsLoad) {
997    ++NumReloadsRemoved;
998    --NumReloads;
999  } else {
1000    ++NumSpillsRemoved;
1001    --NumSpills;
1002  }
1003
1004  return true;
1005}
1006
1007#if !defined(NDEBUG)
1008// Dump the range of instructions from B to E with their slot indexes.
1009static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
1010                                               MachineBasicBlock::iterator E,
1011                                               LiveIntervals const &LIS,
1012                                               const char *const header,
1013                                               unsigned VReg =0) {
1014  char NextLine = '\n';
1015  char SlotIndent = '\t';
1016
1017  if (llvm::next(B) == E) {
1018    NextLine = ' ';
1019    SlotIndent = ' ';
1020  }
1021
1022  dbgs() << '\t' << header << ": " << NextLine;
1023
1024  for (MachineBasicBlock::iterator I = B; I != E; ++I) {
1025    SlotIndex Idx = LIS.getInstructionIndex(I).getRegSlot();
1026
1027    // If a register was passed in and this instruction has it as a
1028    // destination that is marked as an early clobber, print the
1029    // early-clobber slot index.
1030    if (VReg) {
1031      MachineOperand *MO = I->findRegisterDefOperand(VReg);
1032      if (MO && MO->isEarlyClobber())
1033        Idx = Idx.getRegSlot(true);
1034    }
1035
1036    dbgs() << SlotIndent << Idx << '\t' << *I;
1037  }
1038}
1039#endif
1040
1041/// foldMemoryOperand - Try folding stack slot references in Ops into their
1042/// instructions.
1043///
1044/// @param Ops    Operand indices from analyzeVirtReg().
1045/// @param LoadMI Load instruction to use instead of stack slot when non-null.
1046/// @return       True on success.
1047bool InlineSpiller::
1048foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops,
1049                  MachineInstr *LoadMI) {
1050  if (Ops.empty())
1051    return false;
1052  // Don't attempt folding in bundles.
1053  MachineInstr *MI = Ops.front().first;
1054  if (Ops.back().first != MI || MI->isBundled())
1055    return false;
1056
1057  bool WasCopy = MI->isCopy();
1058  unsigned ImpReg = 0;
1059
1060  bool SpillSubRegs = (MI->getOpcode() == TargetOpcode::PATCHPOINT ||
1061                       MI->getOpcode() == TargetOpcode::STACKMAP);
1062
1063  // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
1064  // operands.
1065  SmallVector<unsigned, 8> FoldOps;
1066  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1067    unsigned Idx = Ops[i].second;
1068    MachineOperand &MO = MI->getOperand(Idx);
1069    if (MO.isImplicit()) {
1070      ImpReg = MO.getReg();
1071      continue;
1072    }
1073    // FIXME: Teach targets to deal with subregs.
1074    if (!SpillSubRegs && MO.getSubReg())
1075      return false;
1076    // We cannot fold a load instruction into a def.
1077    if (LoadMI && MO.isDef())
1078      return false;
1079    // Tied use operands should not be passed to foldMemoryOperand.
1080    if (!MI->isRegTiedToDefOperand(Idx))
1081      FoldOps.push_back(Idx);
1082  }
1083
1084  MachineInstrSpan MIS(MI);
1085
1086  MachineInstr *FoldMI =
1087                LoadMI ? TII.foldMemoryOperand(MI, FoldOps, LoadMI)
1088                       : TII.foldMemoryOperand(MI, FoldOps, StackSlot);
1089  if (!FoldMI)
1090    return false;
1091
1092  // Remove LIS for any dead defs in the original MI not in FoldMI.
1093  for (MIBundleOperands MO(MI); MO.isValid(); ++MO) {
1094    if (!MO->isReg())
1095      continue;
1096    unsigned Reg = MO->getReg();
1097    if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg) ||
1098        MRI.isReserved(Reg)) {
1099      continue;
1100    }
1101    MIBundleOperands::PhysRegInfo RI =
1102      MIBundleOperands(FoldMI).analyzePhysReg(Reg, &TRI);
1103    if (MO->readsReg()) {
1104      assert(RI.Reads && "Cannot fold physreg reader");
1105      continue;
1106    }
1107    if (RI.Defines)
1108      continue;
1109    // FoldMI does not define this physreg. Remove the LI segment.
1110    assert(MO->isDead() && "Cannot fold physreg def");
1111    for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units) {
1112      if (LiveRange *LR = LIS.getCachedRegUnit(*Units)) {
1113        SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
1114        if (VNInfo *VNI = LR->getVNInfoAt(Idx))
1115          LR->removeValNo(VNI);
1116      }
1117    }
1118  }
1119
1120  LIS.ReplaceMachineInstrInMaps(MI, FoldMI);
1121  MI->eraseFromParent();
1122
1123  // Insert any new instructions other than FoldMI into the LIS maps.
1124  assert(!MIS.empty() && "Unexpected empty span of instructions!");
1125  for (MachineBasicBlock::iterator MII = MIS.begin(), End = MIS.end();
1126       MII != End; ++MII)
1127    if (&*MII != FoldMI)
1128      LIS.InsertMachineInstrInMaps(&*MII);
1129
1130  // TII.foldMemoryOperand may have left some implicit operands on the
1131  // instruction.  Strip them.
1132  if (ImpReg)
1133    for (unsigned i = FoldMI->getNumOperands(); i; --i) {
1134      MachineOperand &MO = FoldMI->getOperand(i - 1);
1135      if (!MO.isReg() || !MO.isImplicit())
1136        break;
1137      if (MO.getReg() == ImpReg)
1138        FoldMI->RemoveOperand(i - 1);
1139    }
1140
1141  DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,
1142                                           "folded"));
1143
1144  if (!WasCopy)
1145    ++NumFolded;
1146  else if (Ops.front().second == 0)
1147    ++NumSpills;
1148  else
1149    ++NumReloads;
1150  return true;
1151}
1152
1153void InlineSpiller::insertReload(unsigned NewVReg,
1154                                 SlotIndex Idx,
1155                                 MachineBasicBlock::iterator MI) {
1156  MachineBasicBlock &MBB = *MI->getParent();
1157
1158  MachineInstrSpan MIS(MI);
1159  TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
1160                           MRI.getRegClass(NewVReg), &TRI);
1161
1162  LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);
1163
1164  DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",
1165                                           NewVReg));
1166  ++NumReloads;
1167}
1168
1169/// insertSpill - Insert a spill of NewVReg after MI.
1170void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill,
1171                                 MachineBasicBlock::iterator MI) {
1172  MachineBasicBlock &MBB = *MI->getParent();
1173
1174  MachineInstrSpan MIS(MI);
1175  TII.storeRegToStackSlot(MBB, llvm::next(MI), NewVReg, isKill, StackSlot,
1176                          MRI.getRegClass(NewVReg), &TRI);
1177
1178  LIS.InsertMachineInstrRangeInMaps(llvm::next(MI), MIS.end());
1179
1180  DEBUG(dumpMachineInstrRangeWithSlotIndex(llvm::next(MI), MIS.end(), LIS,
1181                                           "spill"));
1182  ++NumSpills;
1183}
1184
1185/// spillAroundUses - insert spill code around each use of Reg.
1186void InlineSpiller::spillAroundUses(unsigned Reg) {
1187  DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n');
1188  LiveInterval &OldLI = LIS.getInterval(Reg);
1189
1190  // Iterate over instructions using Reg.
1191  for (MachineRegisterInfo::reg_iterator RegI = MRI.reg_begin(Reg);
1192       MachineInstr *MI = RegI.skipBundle();) {
1193
1194    // Debug values are not allowed to affect codegen.
1195    if (MI->isDebugValue()) {
1196      // Modify DBG_VALUE now that the value is in a spill slot.
1197      bool IsIndirect = MI->isIndirectDebugValue();
1198      uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
1199      const MDNode *MDPtr = MI->getOperand(2).getMetadata();
1200      DebugLoc DL = MI->getDebugLoc();
1201      DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI);
1202      MachineBasicBlock *MBB = MI->getParent();
1203      BuildMI(*MBB, MBB->erase(MI), DL, TII.get(TargetOpcode::DBG_VALUE))
1204          .addFrameIndex(StackSlot).addImm(Offset).addMetadata(MDPtr);
1205      continue;
1206    }
1207
1208    // Ignore copies to/from snippets. We'll delete them.
1209    if (SnippetCopies.count(MI))
1210      continue;
1211
1212    // Stack slot accesses may coalesce away.
1213    if (coalesceStackAccess(MI, Reg))
1214      continue;
1215
1216    // Analyze instruction.
1217    SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
1218    MIBundleOperands::VirtRegInfo RI =
1219      MIBundleOperands(MI).analyzeVirtReg(Reg, &Ops);
1220
1221    // Find the slot index where this instruction reads and writes OldLI.
1222    // This is usually the def slot, except for tied early clobbers.
1223    SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
1224    if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
1225      if (SlotIndex::isSameInstr(Idx, VNI->def))
1226        Idx = VNI->def;
1227
1228    // Check for a sibling copy.
1229    unsigned SibReg = isFullCopyOf(MI, Reg);
1230    if (SibReg && isSibling(SibReg)) {
1231      // This may actually be a copy between snippets.
1232      if (isRegToSpill(SibReg)) {
1233        DEBUG(dbgs() << "Found new snippet copy: " << *MI);
1234        SnippetCopies.insert(MI);
1235        continue;
1236      }
1237      if (RI.Writes) {
1238        // Hoist the spill of a sib-reg copy.
1239        if (hoistSpill(OldLI, MI)) {
1240          // This COPY is now dead, the value is already in the stack slot.
1241          MI->getOperand(0).setIsDead();
1242          DeadDefs.push_back(MI);
1243          continue;
1244        }
1245      } else {
1246        // This is a reload for a sib-reg copy. Drop spills downstream.
1247        LiveInterval &SibLI = LIS.getInterval(SibReg);
1248        eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
1249        // The COPY will fold to a reload below.
1250      }
1251    }
1252
1253    // Attempt to fold memory ops.
1254    if (foldMemoryOperand(Ops))
1255      continue;
1256
1257    // Create a new virtual register for spill/fill.
1258    // FIXME: Infer regclass from instruction alone.
1259    unsigned NewVReg = Edit->createFrom(Reg);
1260
1261    if (RI.Reads)
1262      insertReload(NewVReg, Idx, MI);
1263
1264    // Rewrite instruction operands.
1265    bool hasLiveDef = false;
1266    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1267      MachineOperand &MO = Ops[i].first->getOperand(Ops[i].second);
1268      MO.setReg(NewVReg);
1269      if (MO.isUse()) {
1270        if (!Ops[i].first->isRegTiedToDefOperand(Ops[i].second))
1271          MO.setIsKill();
1272      } else {
1273        if (!MO.isDead())
1274          hasLiveDef = true;
1275      }
1276    }
1277    DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n');
1278
1279    // FIXME: Use a second vreg if instruction has no tied ops.
1280    if (RI.Writes)
1281      if (hasLiveDef)
1282        insertSpill(NewVReg, true, MI);
1283  }
1284}
1285
1286/// spillAll - Spill all registers remaining after rematerialization.
1287void InlineSpiller::spillAll() {
1288  // Update LiveStacks now that we are committed to spilling.
1289  if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
1290    StackSlot = VRM.assignVirt2StackSlot(Original);
1291    StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
1292    StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
1293  } else
1294    StackInt = &LSS.getInterval(StackSlot);
1295
1296  if (Original != Edit->getReg())
1297    VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
1298
1299  assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
1300  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
1301    StackInt->MergeSegmentsInAsValue(LIS.getInterval(RegsToSpill[i]),
1302                                     StackInt->getValNumInfo(0));
1303  DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
1304
1305  // Spill around uses of all RegsToSpill.
1306  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
1307    spillAroundUses(RegsToSpill[i]);
1308
1309  // Hoisted spills may cause dead code.
1310  if (!DeadDefs.empty()) {
1311    DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
1312    Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
1313  }
1314
1315  // Finally delete the SnippetCopies.
1316  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
1317    for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(RegsToSpill[i]);
1318         MachineInstr *MI = RI.skipInstruction();) {
1319      assert(SnippetCopies.count(MI) && "Remaining use wasn't a snippet copy");
1320      // FIXME: Do this with a LiveRangeEdit callback.
1321      LIS.RemoveMachineInstrFromMaps(MI);
1322      MI->eraseFromParent();
1323    }
1324  }
1325
1326  // Delete all spilled registers.
1327  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
1328    Edit->eraseVirtReg(RegsToSpill[i]);
1329}
1330
1331void InlineSpiller::spill(LiveRangeEdit &edit) {
1332  ++NumSpilledRanges;
1333  Edit = &edit;
1334  assert(!TargetRegisterInfo::isStackSlot(edit.getReg())
1335         && "Trying to spill a stack slot.");
1336  // Share a stack slot among all descendants of Original.
1337  Original = VRM.getOriginal(edit.getReg());
1338  StackSlot = VRM.getStackSlot(Original);
1339  StackInt = 0;
1340
1341  DEBUG(dbgs() << "Inline spilling "
1342               << MRI.getRegClass(edit.getReg())->getName()
1343               << ':' << edit.getParent()
1344               << "\nFrom original " << PrintReg(Original) << '\n');
1345  assert(edit.getParent().isSpillable() &&
1346         "Attempting to spill already spilled value.");
1347  assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
1348
1349  collectRegsToSpill();
1350  analyzeSiblingValues();
1351  reMaterializeAll();
1352
1353  // Remat may handle everything.
1354  if (!RegsToSpill.empty())
1355    spillAll();
1356
1357  Edit->calculateRegClassAndHint(MF, Loops, MBFI);
1358}
1359