BitcodeReader.cpp revision 263508
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "llvm/Bitcode/ReaderWriter.h"
11#include "BitcodeReader.h"
12#include "llvm/ADT/SmallString.h"
13#include "llvm/ADT/SmallVector.h"
14#include "llvm/AutoUpgrade.h"
15#include "llvm/Bitcode/LLVMBitCodes.h"
16#include "llvm/IR/Constants.h"
17#include "llvm/IR/DerivedTypes.h"
18#include "llvm/IR/InlineAsm.h"
19#include "llvm/IR/IntrinsicInst.h"
20#include "llvm/IR/LLVMContext.h"
21#include "llvm/IR/Module.h"
22#include "llvm/IR/OperandTraits.h"
23#include "llvm/IR/Operator.h"
24#include "llvm/Support/DataStream.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27#include "llvm/Support/raw_ostream.h"
28using namespace llvm;
29
30enum {
31  SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
32};
33
34void BitcodeReader::materializeForwardReferencedFunctions() {
35  while (!BlockAddrFwdRefs.empty()) {
36    Function *F = BlockAddrFwdRefs.begin()->first;
37    F->Materialize();
38  }
39}
40
41void BitcodeReader::FreeState() {
42  if (BufferOwned)
43    delete Buffer;
44  Buffer = 0;
45  std::vector<Type*>().swap(TypeList);
46  ValueList.clear();
47  MDValueList.clear();
48
49  std::vector<AttributeSet>().swap(MAttributes);
50  std::vector<BasicBlock*>().swap(FunctionBBs);
51  std::vector<Function*>().swap(FunctionsWithBodies);
52  DeferredFunctionInfo.clear();
53  MDKindMap.clear();
54
55  assert(BlockAddrFwdRefs.empty() && "Unresolved blockaddress fwd references");
56}
57
58//===----------------------------------------------------------------------===//
59//  Helper functions to implement forward reference resolution, etc.
60//===----------------------------------------------------------------------===//
61
62/// ConvertToString - Convert a string from a record into an std::string, return
63/// true on failure.
64template<typename StrTy>
65static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx,
66                            StrTy &Result) {
67  if (Idx > Record.size())
68    return true;
69
70  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
71    Result += (char)Record[i];
72  return false;
73}
74
75static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
76  switch (Val) {
77  default: // Map unknown/new linkages to external
78  case 0:  return GlobalValue::ExternalLinkage;
79  case 1:  return GlobalValue::WeakAnyLinkage;
80  case 2:  return GlobalValue::AppendingLinkage;
81  case 3:  return GlobalValue::InternalLinkage;
82  case 4:  return GlobalValue::LinkOnceAnyLinkage;
83  case 5:  return GlobalValue::DLLImportLinkage;
84  case 6:  return GlobalValue::DLLExportLinkage;
85  case 7:  return GlobalValue::ExternalWeakLinkage;
86  case 8:  return GlobalValue::CommonLinkage;
87  case 9:  return GlobalValue::PrivateLinkage;
88  case 10: return GlobalValue::WeakODRLinkage;
89  case 11: return GlobalValue::LinkOnceODRLinkage;
90  case 12: return GlobalValue::AvailableExternallyLinkage;
91  case 13: return GlobalValue::LinkerPrivateLinkage;
92  case 14: return GlobalValue::LinkerPrivateWeakLinkage;
93  }
94}
95
96static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
97  switch (Val) {
98  default: // Map unknown visibilities to default.
99  case 0: return GlobalValue::DefaultVisibility;
100  case 1: return GlobalValue::HiddenVisibility;
101  case 2: return GlobalValue::ProtectedVisibility;
102  }
103}
104
105static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) {
106  switch (Val) {
107    case 0: return GlobalVariable::NotThreadLocal;
108    default: // Map unknown non-zero value to general dynamic.
109    case 1: return GlobalVariable::GeneralDynamicTLSModel;
110    case 2: return GlobalVariable::LocalDynamicTLSModel;
111    case 3: return GlobalVariable::InitialExecTLSModel;
112    case 4: return GlobalVariable::LocalExecTLSModel;
113  }
114}
115
116static int GetDecodedCastOpcode(unsigned Val) {
117  switch (Val) {
118  default: return -1;
119  case bitc::CAST_TRUNC   : return Instruction::Trunc;
120  case bitc::CAST_ZEXT    : return Instruction::ZExt;
121  case bitc::CAST_SEXT    : return Instruction::SExt;
122  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
123  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
124  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
125  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
126  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
127  case bitc::CAST_FPEXT   : return Instruction::FPExt;
128  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
129  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
130  case bitc::CAST_BITCAST : return Instruction::BitCast;
131  case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
132  }
133}
134static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
135  switch (Val) {
136  default: return -1;
137  case bitc::BINOP_ADD:
138    return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
139  case bitc::BINOP_SUB:
140    return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
141  case bitc::BINOP_MUL:
142    return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
143  case bitc::BINOP_UDIV: return Instruction::UDiv;
144  case bitc::BINOP_SDIV:
145    return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
146  case bitc::BINOP_UREM: return Instruction::URem;
147  case bitc::BINOP_SREM:
148    return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
149  case bitc::BINOP_SHL:  return Instruction::Shl;
150  case bitc::BINOP_LSHR: return Instruction::LShr;
151  case bitc::BINOP_ASHR: return Instruction::AShr;
152  case bitc::BINOP_AND:  return Instruction::And;
153  case bitc::BINOP_OR:   return Instruction::Or;
154  case bitc::BINOP_XOR:  return Instruction::Xor;
155  }
156}
157
158static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) {
159  switch (Val) {
160  default: return AtomicRMWInst::BAD_BINOP;
161  case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
162  case bitc::RMW_ADD: return AtomicRMWInst::Add;
163  case bitc::RMW_SUB: return AtomicRMWInst::Sub;
164  case bitc::RMW_AND: return AtomicRMWInst::And;
165  case bitc::RMW_NAND: return AtomicRMWInst::Nand;
166  case bitc::RMW_OR: return AtomicRMWInst::Or;
167  case bitc::RMW_XOR: return AtomicRMWInst::Xor;
168  case bitc::RMW_MAX: return AtomicRMWInst::Max;
169  case bitc::RMW_MIN: return AtomicRMWInst::Min;
170  case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
171  case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
172  }
173}
174
175static AtomicOrdering GetDecodedOrdering(unsigned Val) {
176  switch (Val) {
177  case bitc::ORDERING_NOTATOMIC: return NotAtomic;
178  case bitc::ORDERING_UNORDERED: return Unordered;
179  case bitc::ORDERING_MONOTONIC: return Monotonic;
180  case bitc::ORDERING_ACQUIRE: return Acquire;
181  case bitc::ORDERING_RELEASE: return Release;
182  case bitc::ORDERING_ACQREL: return AcquireRelease;
183  default: // Map unknown orderings to sequentially-consistent.
184  case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
185  }
186}
187
188static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
189  switch (Val) {
190  case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
191  default: // Map unknown scopes to cross-thread.
192  case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
193  }
194}
195
196namespace llvm {
197namespace {
198  /// @brief A class for maintaining the slot number definition
199  /// as a placeholder for the actual definition for forward constants defs.
200  class ConstantPlaceHolder : public ConstantExpr {
201    void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION;
202  public:
203    // allocate space for exactly one operand
204    void *operator new(size_t s) {
205      return User::operator new(s, 1);
206    }
207    explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
208      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
209      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
210    }
211
212    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
213    static bool classof(const Value *V) {
214      return isa<ConstantExpr>(V) &&
215             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
216    }
217
218
219    /// Provide fast operand accessors
220    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
221  };
222}
223
224// FIXME: can we inherit this from ConstantExpr?
225template <>
226struct OperandTraits<ConstantPlaceHolder> :
227  public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
228};
229}
230
231
232void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
233  if (Idx == size()) {
234    push_back(V);
235    return;
236  }
237
238  if (Idx >= size())
239    resize(Idx+1);
240
241  WeakVH &OldV = ValuePtrs[Idx];
242  if (OldV == 0) {
243    OldV = V;
244    return;
245  }
246
247  // Handle constants and non-constants (e.g. instrs) differently for
248  // efficiency.
249  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
250    ResolveConstants.push_back(std::make_pair(PHC, Idx));
251    OldV = V;
252  } else {
253    // If there was a forward reference to this value, replace it.
254    Value *PrevVal = OldV;
255    OldV->replaceAllUsesWith(V);
256    delete PrevVal;
257  }
258}
259
260
261Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
262                                                    Type *Ty) {
263  if (Idx >= size())
264    resize(Idx + 1);
265
266  if (Value *V = ValuePtrs[Idx]) {
267    assert(Ty == V->getType() && "Type mismatch in constant table!");
268    return cast<Constant>(V);
269  }
270
271  // Create and return a placeholder, which will later be RAUW'd.
272  Constant *C = new ConstantPlaceHolder(Ty, Context);
273  ValuePtrs[Idx] = C;
274  return C;
275}
276
277Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
278  if (Idx >= size())
279    resize(Idx + 1);
280
281  if (Value *V = ValuePtrs[Idx]) {
282    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
283    return V;
284  }
285
286  // No type specified, must be invalid reference.
287  if (Ty == 0) return 0;
288
289  // Create and return a placeholder, which will later be RAUW'd.
290  Value *V = new Argument(Ty);
291  ValuePtrs[Idx] = V;
292  return V;
293}
294
295/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
296/// resolves any forward references.  The idea behind this is that we sometimes
297/// get constants (such as large arrays) which reference *many* forward ref
298/// constants.  Replacing each of these causes a lot of thrashing when
299/// building/reuniquing the constant.  Instead of doing this, we look at all the
300/// uses and rewrite all the place holders at once for any constant that uses
301/// a placeholder.
302void BitcodeReaderValueList::ResolveConstantForwardRefs() {
303  // Sort the values by-pointer so that they are efficient to look up with a
304  // binary search.
305  std::sort(ResolveConstants.begin(), ResolveConstants.end());
306
307  SmallVector<Constant*, 64> NewOps;
308
309  while (!ResolveConstants.empty()) {
310    Value *RealVal = operator[](ResolveConstants.back().second);
311    Constant *Placeholder = ResolveConstants.back().first;
312    ResolveConstants.pop_back();
313
314    // Loop over all users of the placeholder, updating them to reference the
315    // new value.  If they reference more than one placeholder, update them all
316    // at once.
317    while (!Placeholder->use_empty()) {
318      Value::use_iterator UI = Placeholder->use_begin();
319      User *U = *UI;
320
321      // If the using object isn't uniqued, just update the operands.  This
322      // handles instructions and initializers for global variables.
323      if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
324        UI.getUse().set(RealVal);
325        continue;
326      }
327
328      // Otherwise, we have a constant that uses the placeholder.  Replace that
329      // constant with a new constant that has *all* placeholder uses updated.
330      Constant *UserC = cast<Constant>(U);
331      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
332           I != E; ++I) {
333        Value *NewOp;
334        if (!isa<ConstantPlaceHolder>(*I)) {
335          // Not a placeholder reference.
336          NewOp = *I;
337        } else if (*I == Placeholder) {
338          // Common case is that it just references this one placeholder.
339          NewOp = RealVal;
340        } else {
341          // Otherwise, look up the placeholder in ResolveConstants.
342          ResolveConstantsTy::iterator It =
343            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
344                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
345                                                            0));
346          assert(It != ResolveConstants.end() && It->first == *I);
347          NewOp = operator[](It->second);
348        }
349
350        NewOps.push_back(cast<Constant>(NewOp));
351      }
352
353      // Make the new constant.
354      Constant *NewC;
355      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
356        NewC = ConstantArray::get(UserCA->getType(), NewOps);
357      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
358        NewC = ConstantStruct::get(UserCS->getType(), NewOps);
359      } else if (isa<ConstantVector>(UserC)) {
360        NewC = ConstantVector::get(NewOps);
361      } else {
362        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
363        NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
364      }
365
366      UserC->replaceAllUsesWith(NewC);
367      UserC->destroyConstant();
368      NewOps.clear();
369    }
370
371    // Update all ValueHandles, they should be the only users at this point.
372    Placeholder->replaceAllUsesWith(RealVal);
373    delete Placeholder;
374  }
375}
376
377void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
378  if (Idx == size()) {
379    push_back(V);
380    return;
381  }
382
383  if (Idx >= size())
384    resize(Idx+1);
385
386  WeakVH &OldV = MDValuePtrs[Idx];
387  if (OldV == 0) {
388    OldV = V;
389    return;
390  }
391
392  // If there was a forward reference to this value, replace it.
393  MDNode *PrevVal = cast<MDNode>(OldV);
394  OldV->replaceAllUsesWith(V);
395  MDNode::deleteTemporary(PrevVal);
396  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
397  // value for Idx.
398  MDValuePtrs[Idx] = V;
399}
400
401Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
402  if (Idx >= size())
403    resize(Idx + 1);
404
405  if (Value *V = MDValuePtrs[Idx]) {
406    assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
407    return V;
408  }
409
410  // Create and return a placeholder, which will later be RAUW'd.
411  Value *V = MDNode::getTemporary(Context, None);
412  MDValuePtrs[Idx] = V;
413  return V;
414}
415
416Type *BitcodeReader::getTypeByID(unsigned ID) {
417  // The type table size is always specified correctly.
418  if (ID >= TypeList.size())
419    return 0;
420
421  if (Type *Ty = TypeList[ID])
422    return Ty;
423
424  // If we have a forward reference, the only possible case is when it is to a
425  // named struct.  Just create a placeholder for now.
426  return TypeList[ID] = StructType::create(Context);
427}
428
429
430//===----------------------------------------------------------------------===//
431//  Functions for parsing blocks from the bitcode file
432//===----------------------------------------------------------------------===//
433
434
435/// \brief This fills an AttrBuilder object with the LLVM attributes that have
436/// been decoded from the given integer. This function must stay in sync with
437/// 'encodeLLVMAttributesForBitcode'.
438static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
439                                           uint64_t EncodedAttrs) {
440  // FIXME: Remove in 4.0.
441
442  // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
443  // the bits above 31 down by 11 bits.
444  unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
445  assert((!Alignment || isPowerOf2_32(Alignment)) &&
446         "Alignment must be a power of two.");
447
448  if (Alignment)
449    B.addAlignmentAttr(Alignment);
450  B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
451                (EncodedAttrs & 0xffff));
452}
453
454error_code BitcodeReader::ParseAttributeBlock() {
455  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
456    return Error(InvalidRecord);
457
458  if (!MAttributes.empty())
459    return Error(InvalidMultipleBlocks);
460
461  SmallVector<uint64_t, 64> Record;
462
463  SmallVector<AttributeSet, 8> Attrs;
464
465  // Read all the records.
466  while (1) {
467    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
468
469    switch (Entry.Kind) {
470    case BitstreamEntry::SubBlock: // Handled for us already.
471    case BitstreamEntry::Error:
472      return Error(MalformedBlock);
473    case BitstreamEntry::EndBlock:
474      return error_code::success();
475    case BitstreamEntry::Record:
476      // The interesting case.
477      break;
478    }
479
480    // Read a record.
481    Record.clear();
482    switch (Stream.readRecord(Entry.ID, Record)) {
483    default:  // Default behavior: ignore.
484      break;
485    case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
486      // FIXME: Remove in 4.0.
487      if (Record.size() & 1)
488        return Error(InvalidRecord);
489
490      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
491        AttrBuilder B;
492        decodeLLVMAttributesForBitcode(B, Record[i+1]);
493        Attrs.push_back(AttributeSet::get(Context, Record[i], B));
494      }
495
496      MAttributes.push_back(AttributeSet::get(Context, Attrs));
497      Attrs.clear();
498      break;
499    }
500    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
501      for (unsigned i = 0, e = Record.size(); i != e; ++i)
502        Attrs.push_back(MAttributeGroups[Record[i]]);
503
504      MAttributes.push_back(AttributeSet::get(Context, Attrs));
505      Attrs.clear();
506      break;
507    }
508    }
509  }
510}
511
512// Returns Attribute::None on unrecognized codes.
513static Attribute::AttrKind GetAttrFromCode(uint64_t Code) {
514  switch (Code) {
515  default:
516    return Attribute::None;
517  case bitc::ATTR_KIND_ALIGNMENT:
518    return Attribute::Alignment;
519  case bitc::ATTR_KIND_ALWAYS_INLINE:
520    return Attribute::AlwaysInline;
521  case bitc::ATTR_KIND_BUILTIN:
522    return Attribute::Builtin;
523  case bitc::ATTR_KIND_BY_VAL:
524    return Attribute::ByVal;
525  case bitc::ATTR_KIND_COLD:
526    return Attribute::Cold;
527  case bitc::ATTR_KIND_INLINE_HINT:
528    return Attribute::InlineHint;
529  case bitc::ATTR_KIND_IN_REG:
530    return Attribute::InReg;
531  case bitc::ATTR_KIND_MIN_SIZE:
532    return Attribute::MinSize;
533  case bitc::ATTR_KIND_NAKED:
534    return Attribute::Naked;
535  case bitc::ATTR_KIND_NEST:
536    return Attribute::Nest;
537  case bitc::ATTR_KIND_NO_ALIAS:
538    return Attribute::NoAlias;
539  case bitc::ATTR_KIND_NO_BUILTIN:
540    return Attribute::NoBuiltin;
541  case bitc::ATTR_KIND_NO_CAPTURE:
542    return Attribute::NoCapture;
543  case bitc::ATTR_KIND_NO_DUPLICATE:
544    return Attribute::NoDuplicate;
545  case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
546    return Attribute::NoImplicitFloat;
547  case bitc::ATTR_KIND_NO_INLINE:
548    return Attribute::NoInline;
549  case bitc::ATTR_KIND_NON_LAZY_BIND:
550    return Attribute::NonLazyBind;
551  case bitc::ATTR_KIND_NO_RED_ZONE:
552    return Attribute::NoRedZone;
553  case bitc::ATTR_KIND_NO_RETURN:
554    return Attribute::NoReturn;
555  case bitc::ATTR_KIND_NO_UNWIND:
556    return Attribute::NoUnwind;
557  case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
558    return Attribute::OptimizeForSize;
559  case bitc::ATTR_KIND_OPTIMIZE_NONE:
560    return Attribute::OptimizeNone;
561  case bitc::ATTR_KIND_READ_NONE:
562    return Attribute::ReadNone;
563  case bitc::ATTR_KIND_READ_ONLY:
564    return Attribute::ReadOnly;
565  case bitc::ATTR_KIND_RETURNED:
566    return Attribute::Returned;
567  case bitc::ATTR_KIND_RETURNS_TWICE:
568    return Attribute::ReturnsTwice;
569  case bitc::ATTR_KIND_S_EXT:
570    return Attribute::SExt;
571  case bitc::ATTR_KIND_STACK_ALIGNMENT:
572    return Attribute::StackAlignment;
573  case bitc::ATTR_KIND_STACK_PROTECT:
574    return Attribute::StackProtect;
575  case bitc::ATTR_KIND_STACK_PROTECT_REQ:
576    return Attribute::StackProtectReq;
577  case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
578    return Attribute::StackProtectStrong;
579  case bitc::ATTR_KIND_STRUCT_RET:
580    return Attribute::StructRet;
581  case bitc::ATTR_KIND_SANITIZE_ADDRESS:
582    return Attribute::SanitizeAddress;
583  case bitc::ATTR_KIND_SANITIZE_THREAD:
584    return Attribute::SanitizeThread;
585  case bitc::ATTR_KIND_SANITIZE_MEMORY:
586    return Attribute::SanitizeMemory;
587  case bitc::ATTR_KIND_UW_TABLE:
588    return Attribute::UWTable;
589  case bitc::ATTR_KIND_Z_EXT:
590    return Attribute::ZExt;
591  }
592}
593
594error_code BitcodeReader::ParseAttrKind(uint64_t Code,
595                                        Attribute::AttrKind *Kind) {
596  *Kind = GetAttrFromCode(Code);
597  if (*Kind == Attribute::None)
598    return Error(InvalidValue);
599  return error_code::success();
600}
601
602error_code BitcodeReader::ParseAttributeGroupBlock() {
603  if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
604    return Error(InvalidRecord);
605
606  if (!MAttributeGroups.empty())
607    return Error(InvalidMultipleBlocks);
608
609  SmallVector<uint64_t, 64> Record;
610
611  // Read all the records.
612  while (1) {
613    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
614
615    switch (Entry.Kind) {
616    case BitstreamEntry::SubBlock: // Handled for us already.
617    case BitstreamEntry::Error:
618      return Error(MalformedBlock);
619    case BitstreamEntry::EndBlock:
620      return error_code::success();
621    case BitstreamEntry::Record:
622      // The interesting case.
623      break;
624    }
625
626    // Read a record.
627    Record.clear();
628    switch (Stream.readRecord(Entry.ID, Record)) {
629    default:  // Default behavior: ignore.
630      break;
631    case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
632      if (Record.size() < 3)
633        return Error(InvalidRecord);
634
635      uint64_t GrpID = Record[0];
636      uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
637
638      AttrBuilder B;
639      for (unsigned i = 2, e = Record.size(); i != e; ++i) {
640        if (Record[i] == 0) {        // Enum attribute
641          Attribute::AttrKind Kind;
642          if (error_code EC = ParseAttrKind(Record[++i], &Kind))
643            return EC;
644
645          B.addAttribute(Kind);
646        } else if (Record[i] == 1) { // Align attribute
647          Attribute::AttrKind Kind;
648          if (error_code EC = ParseAttrKind(Record[++i], &Kind))
649            return EC;
650          if (Kind == Attribute::Alignment)
651            B.addAlignmentAttr(Record[++i]);
652          else
653            B.addStackAlignmentAttr(Record[++i]);
654        } else {                     // String attribute
655          assert((Record[i] == 3 || Record[i] == 4) &&
656                 "Invalid attribute group entry");
657          bool HasValue = (Record[i++] == 4);
658          SmallString<64> KindStr;
659          SmallString<64> ValStr;
660
661          while (Record[i] != 0 && i != e)
662            KindStr += Record[i++];
663          assert(Record[i] == 0 && "Kind string not null terminated");
664
665          if (HasValue) {
666            // Has a value associated with it.
667            ++i; // Skip the '0' that terminates the "kind" string.
668            while (Record[i] != 0 && i != e)
669              ValStr += Record[i++];
670            assert(Record[i] == 0 && "Value string not null terminated");
671          }
672
673          B.addAttribute(KindStr.str(), ValStr.str());
674        }
675      }
676
677      MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
678      break;
679    }
680    }
681  }
682}
683
684error_code BitcodeReader::ParseTypeTable() {
685  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
686    return Error(InvalidRecord);
687
688  return ParseTypeTableBody();
689}
690
691error_code BitcodeReader::ParseTypeTableBody() {
692  if (!TypeList.empty())
693    return Error(InvalidMultipleBlocks);
694
695  SmallVector<uint64_t, 64> Record;
696  unsigned NumRecords = 0;
697
698  SmallString<64> TypeName;
699
700  // Read all the records for this type table.
701  while (1) {
702    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
703
704    switch (Entry.Kind) {
705    case BitstreamEntry::SubBlock: // Handled for us already.
706    case BitstreamEntry::Error:
707      return Error(MalformedBlock);
708    case BitstreamEntry::EndBlock:
709      if (NumRecords != TypeList.size())
710        return Error(MalformedBlock);
711      return error_code::success();
712    case BitstreamEntry::Record:
713      // The interesting case.
714      break;
715    }
716
717    // Read a record.
718    Record.clear();
719    Type *ResultTy = 0;
720    switch (Stream.readRecord(Entry.ID, Record)) {
721    default:
722      return Error(InvalidValue);
723    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
724      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
725      // type list.  This allows us to reserve space.
726      if (Record.size() < 1)
727        return Error(InvalidRecord);
728      TypeList.resize(Record[0]);
729      continue;
730    case bitc::TYPE_CODE_VOID:      // VOID
731      ResultTy = Type::getVoidTy(Context);
732      break;
733    case bitc::TYPE_CODE_HALF:     // HALF
734      ResultTy = Type::getHalfTy(Context);
735      break;
736    case bitc::TYPE_CODE_FLOAT:     // FLOAT
737      ResultTy = Type::getFloatTy(Context);
738      break;
739    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
740      ResultTy = Type::getDoubleTy(Context);
741      break;
742    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
743      ResultTy = Type::getX86_FP80Ty(Context);
744      break;
745    case bitc::TYPE_CODE_FP128:     // FP128
746      ResultTy = Type::getFP128Ty(Context);
747      break;
748    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
749      ResultTy = Type::getPPC_FP128Ty(Context);
750      break;
751    case bitc::TYPE_CODE_LABEL:     // LABEL
752      ResultTy = Type::getLabelTy(Context);
753      break;
754    case bitc::TYPE_CODE_METADATA:  // METADATA
755      ResultTy = Type::getMetadataTy(Context);
756      break;
757    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
758      ResultTy = Type::getX86_MMXTy(Context);
759      break;
760    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
761      if (Record.size() < 1)
762        return Error(InvalidRecord);
763
764      ResultTy = IntegerType::get(Context, Record[0]);
765      break;
766    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
767                                    //          [pointee type, address space]
768      if (Record.size() < 1)
769        return Error(InvalidRecord);
770      unsigned AddressSpace = 0;
771      if (Record.size() == 2)
772        AddressSpace = Record[1];
773      ResultTy = getTypeByID(Record[0]);
774      if (ResultTy == 0)
775        return Error(InvalidType);
776      ResultTy = PointerType::get(ResultTy, AddressSpace);
777      break;
778    }
779    case bitc::TYPE_CODE_FUNCTION_OLD: {
780      // FIXME: attrid is dead, remove it in LLVM 4.0
781      // FUNCTION: [vararg, attrid, retty, paramty x N]
782      if (Record.size() < 3)
783        return Error(InvalidRecord);
784      SmallVector<Type*, 8> ArgTys;
785      for (unsigned i = 3, e = Record.size(); i != e; ++i) {
786        if (Type *T = getTypeByID(Record[i]))
787          ArgTys.push_back(T);
788        else
789          break;
790      }
791
792      ResultTy = getTypeByID(Record[2]);
793      if (ResultTy == 0 || ArgTys.size() < Record.size()-3)
794        return Error(InvalidType);
795
796      ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
797      break;
798    }
799    case bitc::TYPE_CODE_FUNCTION: {
800      // FUNCTION: [vararg, retty, paramty x N]
801      if (Record.size() < 2)
802        return Error(InvalidRecord);
803      SmallVector<Type*, 8> ArgTys;
804      for (unsigned i = 2, e = Record.size(); i != e; ++i) {
805        if (Type *T = getTypeByID(Record[i]))
806          ArgTys.push_back(T);
807        else
808          break;
809      }
810
811      ResultTy = getTypeByID(Record[1]);
812      if (ResultTy == 0 || ArgTys.size() < Record.size()-2)
813        return Error(InvalidType);
814
815      ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
816      break;
817    }
818    case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
819      if (Record.size() < 1)
820        return Error(InvalidRecord);
821      SmallVector<Type*, 8> EltTys;
822      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
823        if (Type *T = getTypeByID(Record[i]))
824          EltTys.push_back(T);
825        else
826          break;
827      }
828      if (EltTys.size() != Record.size()-1)
829        return Error(InvalidType);
830      ResultTy = StructType::get(Context, EltTys, Record[0]);
831      break;
832    }
833    case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
834      if (ConvertToString(Record, 0, TypeName))
835        return Error(InvalidRecord);
836      continue;
837
838    case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
839      if (Record.size() < 1)
840        return Error(InvalidRecord);
841
842      if (NumRecords >= TypeList.size())
843        return Error(InvalidTYPETable);
844
845      // Check to see if this was forward referenced, if so fill in the temp.
846      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
847      if (Res) {
848        Res->setName(TypeName);
849        TypeList[NumRecords] = 0;
850      } else  // Otherwise, create a new struct.
851        Res = StructType::create(Context, TypeName);
852      TypeName.clear();
853
854      SmallVector<Type*, 8> EltTys;
855      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
856        if (Type *T = getTypeByID(Record[i]))
857          EltTys.push_back(T);
858        else
859          break;
860      }
861      if (EltTys.size() != Record.size()-1)
862        return Error(InvalidRecord);
863      Res->setBody(EltTys, Record[0]);
864      ResultTy = Res;
865      break;
866    }
867    case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
868      if (Record.size() != 1)
869        return Error(InvalidRecord);
870
871      if (NumRecords >= TypeList.size())
872        return Error(InvalidTYPETable);
873
874      // Check to see if this was forward referenced, if so fill in the temp.
875      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
876      if (Res) {
877        Res->setName(TypeName);
878        TypeList[NumRecords] = 0;
879      } else  // Otherwise, create a new struct with no body.
880        Res = StructType::create(Context, TypeName);
881      TypeName.clear();
882      ResultTy = Res;
883      break;
884    }
885    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
886      if (Record.size() < 2)
887        return Error(InvalidRecord);
888      if ((ResultTy = getTypeByID(Record[1])))
889        ResultTy = ArrayType::get(ResultTy, Record[0]);
890      else
891        return Error(InvalidType);
892      break;
893    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
894      if (Record.size() < 2)
895        return Error(InvalidRecord);
896      if ((ResultTy = getTypeByID(Record[1])))
897        ResultTy = VectorType::get(ResultTy, Record[0]);
898      else
899        return Error(InvalidType);
900      break;
901    }
902
903    if (NumRecords >= TypeList.size())
904      return Error(InvalidTYPETable);
905    assert(ResultTy && "Didn't read a type?");
906    assert(TypeList[NumRecords] == 0 && "Already read type?");
907    TypeList[NumRecords++] = ResultTy;
908  }
909}
910
911error_code BitcodeReader::ParseValueSymbolTable() {
912  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
913    return Error(InvalidRecord);
914
915  SmallVector<uint64_t, 64> Record;
916
917  // Read all the records for this value table.
918  SmallString<128> ValueName;
919  while (1) {
920    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
921
922    switch (Entry.Kind) {
923    case BitstreamEntry::SubBlock: // Handled for us already.
924    case BitstreamEntry::Error:
925      return Error(MalformedBlock);
926    case BitstreamEntry::EndBlock:
927      return error_code::success();
928    case BitstreamEntry::Record:
929      // The interesting case.
930      break;
931    }
932
933    // Read a record.
934    Record.clear();
935    switch (Stream.readRecord(Entry.ID, Record)) {
936    default:  // Default behavior: unknown type.
937      break;
938    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
939      if (ConvertToString(Record, 1, ValueName))
940        return Error(InvalidRecord);
941      unsigned ValueID = Record[0];
942      if (ValueID >= ValueList.size())
943        return Error(InvalidRecord);
944      Value *V = ValueList[ValueID];
945
946      V->setName(StringRef(ValueName.data(), ValueName.size()));
947      ValueName.clear();
948      break;
949    }
950    case bitc::VST_CODE_BBENTRY: {
951      if (ConvertToString(Record, 1, ValueName))
952        return Error(InvalidRecord);
953      BasicBlock *BB = getBasicBlock(Record[0]);
954      if (BB == 0)
955        return Error(InvalidRecord);
956
957      BB->setName(StringRef(ValueName.data(), ValueName.size()));
958      ValueName.clear();
959      break;
960    }
961    }
962  }
963}
964
965error_code BitcodeReader::ParseMetadata() {
966  unsigned NextMDValueNo = MDValueList.size();
967
968  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
969    return Error(InvalidRecord);
970
971  SmallVector<uint64_t, 64> Record;
972
973  // Read all the records.
974  while (1) {
975    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
976
977    switch (Entry.Kind) {
978    case BitstreamEntry::SubBlock: // Handled for us already.
979    case BitstreamEntry::Error:
980      return Error(MalformedBlock);
981    case BitstreamEntry::EndBlock:
982      return error_code::success();
983    case BitstreamEntry::Record:
984      // The interesting case.
985      break;
986    }
987
988    bool IsFunctionLocal = false;
989    // Read a record.
990    Record.clear();
991    unsigned Code = Stream.readRecord(Entry.ID, Record);
992    switch (Code) {
993    default:  // Default behavior: ignore.
994      break;
995    case bitc::METADATA_NAME: {
996      // Read name of the named metadata.
997      SmallString<8> Name(Record.begin(), Record.end());
998      Record.clear();
999      Code = Stream.ReadCode();
1000
1001      // METADATA_NAME is always followed by METADATA_NAMED_NODE.
1002      unsigned NextBitCode = Stream.readRecord(Code, Record);
1003      assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
1004
1005      // Read named metadata elements.
1006      unsigned Size = Record.size();
1007      NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1008      for (unsigned i = 0; i != Size; ++i) {
1009        MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1010        if (MD == 0)
1011          return Error(InvalidRecord);
1012        NMD->addOperand(MD);
1013      }
1014      break;
1015    }
1016    case bitc::METADATA_FN_NODE:
1017      IsFunctionLocal = true;
1018      // fall-through
1019    case bitc::METADATA_NODE: {
1020      if (Record.size() % 2 == 1)
1021        return Error(InvalidRecord);
1022
1023      unsigned Size = Record.size();
1024      SmallVector<Value*, 8> Elts;
1025      for (unsigned i = 0; i != Size; i += 2) {
1026        Type *Ty = getTypeByID(Record[i]);
1027        if (!Ty)
1028          return Error(InvalidRecord);
1029        if (Ty->isMetadataTy())
1030          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1031        else if (!Ty->isVoidTy())
1032          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
1033        else
1034          Elts.push_back(NULL);
1035      }
1036      Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
1037      IsFunctionLocal = false;
1038      MDValueList.AssignValue(V, NextMDValueNo++);
1039      break;
1040    }
1041    case bitc::METADATA_STRING: {
1042      SmallString<8> String(Record.begin(), Record.end());
1043      Value *V = MDString::get(Context, String);
1044      MDValueList.AssignValue(V, NextMDValueNo++);
1045      break;
1046    }
1047    case bitc::METADATA_KIND: {
1048      if (Record.size() < 2)
1049        return Error(InvalidRecord);
1050
1051      unsigned Kind = Record[0];
1052      SmallString<8> Name(Record.begin()+1, Record.end());
1053
1054      unsigned NewKind = TheModule->getMDKindID(Name.str());
1055      if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1056        return Error(ConflictingMETADATA_KINDRecords);
1057      break;
1058    }
1059    }
1060  }
1061}
1062
1063/// decodeSignRotatedValue - Decode a signed value stored with the sign bit in
1064/// the LSB for dense VBR encoding.
1065uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
1066  if ((V & 1) == 0)
1067    return V >> 1;
1068  if (V != 1)
1069    return -(V >> 1);
1070  // There is no such thing as -0 with integers.  "-0" really means MININT.
1071  return 1ULL << 63;
1072}
1073
1074/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
1075/// values and aliases that we can.
1076error_code BitcodeReader::ResolveGlobalAndAliasInits() {
1077  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
1078  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
1079  std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
1080
1081  GlobalInitWorklist.swap(GlobalInits);
1082  AliasInitWorklist.swap(AliasInits);
1083  FunctionPrefixWorklist.swap(FunctionPrefixes);
1084
1085  while (!GlobalInitWorklist.empty()) {
1086    unsigned ValID = GlobalInitWorklist.back().second;
1087    if (ValID >= ValueList.size()) {
1088      // Not ready to resolve this yet, it requires something later in the file.
1089      GlobalInits.push_back(GlobalInitWorklist.back());
1090    } else {
1091      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1092        GlobalInitWorklist.back().first->setInitializer(C);
1093      else
1094        return Error(ExpectedConstant);
1095    }
1096    GlobalInitWorklist.pop_back();
1097  }
1098
1099  while (!AliasInitWorklist.empty()) {
1100    unsigned ValID = AliasInitWorklist.back().second;
1101    if (ValID >= ValueList.size()) {
1102      AliasInits.push_back(AliasInitWorklist.back());
1103    } else {
1104      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1105        AliasInitWorklist.back().first->setAliasee(C);
1106      else
1107        return Error(ExpectedConstant);
1108    }
1109    AliasInitWorklist.pop_back();
1110  }
1111
1112  while (!FunctionPrefixWorklist.empty()) {
1113    unsigned ValID = FunctionPrefixWorklist.back().second;
1114    if (ValID >= ValueList.size()) {
1115      FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
1116    } else {
1117      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1118        FunctionPrefixWorklist.back().first->setPrefixData(C);
1119      else
1120        return Error(ExpectedConstant);
1121    }
1122    FunctionPrefixWorklist.pop_back();
1123  }
1124
1125  return error_code::success();
1126}
1127
1128static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
1129  SmallVector<uint64_t, 8> Words(Vals.size());
1130  std::transform(Vals.begin(), Vals.end(), Words.begin(),
1131                 BitcodeReader::decodeSignRotatedValue);
1132
1133  return APInt(TypeBits, Words);
1134}
1135
1136error_code BitcodeReader::ParseConstants() {
1137  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
1138    return Error(InvalidRecord);
1139
1140  SmallVector<uint64_t, 64> Record;
1141
1142  // Read all the records for this value table.
1143  Type *CurTy = Type::getInt32Ty(Context);
1144  unsigned NextCstNo = ValueList.size();
1145  while (1) {
1146    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1147
1148    switch (Entry.Kind) {
1149    case BitstreamEntry::SubBlock: // Handled for us already.
1150    case BitstreamEntry::Error:
1151      return Error(MalformedBlock);
1152    case BitstreamEntry::EndBlock:
1153      if (NextCstNo != ValueList.size())
1154        return Error(InvalidConstantReference);
1155
1156      // Once all the constants have been read, go through and resolve forward
1157      // references.
1158      ValueList.ResolveConstantForwardRefs();
1159      return error_code::success();
1160    case BitstreamEntry::Record:
1161      // The interesting case.
1162      break;
1163    }
1164
1165    // Read a record.
1166    Record.clear();
1167    Value *V = 0;
1168    unsigned BitCode = Stream.readRecord(Entry.ID, Record);
1169    switch (BitCode) {
1170    default:  // Default behavior: unknown constant
1171    case bitc::CST_CODE_UNDEF:     // UNDEF
1172      V = UndefValue::get(CurTy);
1173      break;
1174    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
1175      if (Record.empty())
1176        return Error(InvalidRecord);
1177      if (Record[0] >= TypeList.size())
1178        return Error(InvalidRecord);
1179      CurTy = TypeList[Record[0]];
1180      continue;  // Skip the ValueList manipulation.
1181    case bitc::CST_CODE_NULL:      // NULL
1182      V = Constant::getNullValue(CurTy);
1183      break;
1184    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
1185      if (!CurTy->isIntegerTy() || Record.empty())
1186        return Error(InvalidRecord);
1187      V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
1188      break;
1189    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1190      if (!CurTy->isIntegerTy() || Record.empty())
1191        return Error(InvalidRecord);
1192
1193      APInt VInt = ReadWideAPInt(Record,
1194                                 cast<IntegerType>(CurTy)->getBitWidth());
1195      V = ConstantInt::get(Context, VInt);
1196
1197      break;
1198    }
1199    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
1200      if (Record.empty())
1201        return Error(InvalidRecord);
1202      if (CurTy->isHalfTy())
1203        V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
1204                                             APInt(16, (uint16_t)Record[0])));
1205      else if (CurTy->isFloatTy())
1206        V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
1207                                             APInt(32, (uint32_t)Record[0])));
1208      else if (CurTy->isDoubleTy())
1209        V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
1210                                             APInt(64, Record[0])));
1211      else if (CurTy->isX86_FP80Ty()) {
1212        // Bits are not stored the same way as a normal i80 APInt, compensate.
1213        uint64_t Rearrange[2];
1214        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1215        Rearrange[1] = Record[0] >> 48;
1216        V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
1217                                             APInt(80, Rearrange)));
1218      } else if (CurTy->isFP128Ty())
1219        V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
1220                                             APInt(128, Record)));
1221      else if (CurTy->isPPC_FP128Ty())
1222        V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
1223                                             APInt(128, Record)));
1224      else
1225        V = UndefValue::get(CurTy);
1226      break;
1227    }
1228
1229    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1230      if (Record.empty())
1231        return Error(InvalidRecord);
1232
1233      unsigned Size = Record.size();
1234      SmallVector<Constant*, 16> Elts;
1235
1236      if (StructType *STy = dyn_cast<StructType>(CurTy)) {
1237        for (unsigned i = 0; i != Size; ++i)
1238          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1239                                                     STy->getElementType(i)));
1240        V = ConstantStruct::get(STy, Elts);
1241      } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1242        Type *EltTy = ATy->getElementType();
1243        for (unsigned i = 0; i != Size; ++i)
1244          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1245        V = ConstantArray::get(ATy, Elts);
1246      } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1247        Type *EltTy = VTy->getElementType();
1248        for (unsigned i = 0; i != Size; ++i)
1249          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1250        V = ConstantVector::get(Elts);
1251      } else {
1252        V = UndefValue::get(CurTy);
1253      }
1254      break;
1255    }
1256    case bitc::CST_CODE_STRING:    // STRING: [values]
1257    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1258      if (Record.empty())
1259        return Error(InvalidRecord);
1260
1261      SmallString<16> Elts(Record.begin(), Record.end());
1262      V = ConstantDataArray::getString(Context, Elts,
1263                                       BitCode == bitc::CST_CODE_CSTRING);
1264      break;
1265    }
1266    case bitc::CST_CODE_DATA: {// DATA: [n x value]
1267      if (Record.empty())
1268        return Error(InvalidRecord);
1269
1270      Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
1271      unsigned Size = Record.size();
1272
1273      if (EltTy->isIntegerTy(8)) {
1274        SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
1275        if (isa<VectorType>(CurTy))
1276          V = ConstantDataVector::get(Context, Elts);
1277        else
1278          V = ConstantDataArray::get(Context, Elts);
1279      } else if (EltTy->isIntegerTy(16)) {
1280        SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
1281        if (isa<VectorType>(CurTy))
1282          V = ConstantDataVector::get(Context, Elts);
1283        else
1284          V = ConstantDataArray::get(Context, Elts);
1285      } else if (EltTy->isIntegerTy(32)) {
1286        SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
1287        if (isa<VectorType>(CurTy))
1288          V = ConstantDataVector::get(Context, Elts);
1289        else
1290          V = ConstantDataArray::get(Context, Elts);
1291      } else if (EltTy->isIntegerTy(64)) {
1292        SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
1293        if (isa<VectorType>(CurTy))
1294          V = ConstantDataVector::get(Context, Elts);
1295        else
1296          V = ConstantDataArray::get(Context, Elts);
1297      } else if (EltTy->isFloatTy()) {
1298        SmallVector<float, 16> Elts(Size);
1299        std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat);
1300        if (isa<VectorType>(CurTy))
1301          V = ConstantDataVector::get(Context, Elts);
1302        else
1303          V = ConstantDataArray::get(Context, Elts);
1304      } else if (EltTy->isDoubleTy()) {
1305        SmallVector<double, 16> Elts(Size);
1306        std::transform(Record.begin(), Record.end(), Elts.begin(),
1307                       BitsToDouble);
1308        if (isa<VectorType>(CurTy))
1309          V = ConstantDataVector::get(Context, Elts);
1310        else
1311          V = ConstantDataArray::get(Context, Elts);
1312      } else {
1313        return Error(InvalidTypeForValue);
1314      }
1315      break;
1316    }
1317
1318    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1319      if (Record.size() < 3)
1320        return Error(InvalidRecord);
1321      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1322      if (Opc < 0) {
1323        V = UndefValue::get(CurTy);  // Unknown binop.
1324      } else {
1325        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1326        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1327        unsigned Flags = 0;
1328        if (Record.size() >= 4) {
1329          if (Opc == Instruction::Add ||
1330              Opc == Instruction::Sub ||
1331              Opc == Instruction::Mul ||
1332              Opc == Instruction::Shl) {
1333            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1334              Flags |= OverflowingBinaryOperator::NoSignedWrap;
1335            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1336              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1337          } else if (Opc == Instruction::SDiv ||
1338                     Opc == Instruction::UDiv ||
1339                     Opc == Instruction::LShr ||
1340                     Opc == Instruction::AShr) {
1341            if (Record[3] & (1 << bitc::PEO_EXACT))
1342              Flags |= SDivOperator::IsExact;
1343          }
1344        }
1345        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1346      }
1347      break;
1348    }
1349    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1350      if (Record.size() < 3)
1351        return Error(InvalidRecord);
1352      int Opc = GetDecodedCastOpcode(Record[0]);
1353      if (Opc < 0) {
1354        V = UndefValue::get(CurTy);  // Unknown cast.
1355      } else {
1356        Type *OpTy = getTypeByID(Record[1]);
1357        if (!OpTy)
1358          return Error(InvalidRecord);
1359        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1360        V = UpgradeBitCastExpr(Opc, Op, CurTy);
1361        if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
1362      }
1363      break;
1364    }
1365    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1366    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1367      if (Record.size() & 1)
1368        return Error(InvalidRecord);
1369      SmallVector<Constant*, 16> Elts;
1370      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1371        Type *ElTy = getTypeByID(Record[i]);
1372        if (!ElTy)
1373          return Error(InvalidRecord);
1374        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1375      }
1376      ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
1377      V = ConstantExpr::getGetElementPtr(Elts[0], Indices,
1378                                         BitCode ==
1379                                           bitc::CST_CODE_CE_INBOUNDS_GEP);
1380      break;
1381    }
1382    case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
1383      if (Record.size() < 3)
1384        return Error(InvalidRecord);
1385
1386      Type *SelectorTy = Type::getInt1Ty(Context);
1387
1388      // If CurTy is a vector of length n, then Record[0] must be a <n x i1>
1389      // vector. Otherwise, it must be a single bit.
1390      if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
1391        SelectorTy = VectorType::get(Type::getInt1Ty(Context),
1392                                     VTy->getNumElements());
1393
1394      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1395                                                              SelectorTy),
1396                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1397                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1398      break;
1399    }
1400    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1401      if (Record.size() < 3)
1402        return Error(InvalidRecord);
1403      VectorType *OpTy =
1404        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1405      if (OpTy == 0)
1406        return Error(InvalidRecord);
1407      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1408      Constant *Op1 = ValueList.getConstantFwdRef(Record[2],
1409                                                  Type::getInt32Ty(Context));
1410      V = ConstantExpr::getExtractElement(Op0, Op1);
1411      break;
1412    }
1413    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1414      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1415      if (Record.size() < 3 || OpTy == 0)
1416        return Error(InvalidRecord);
1417      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1418      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1419                                                  OpTy->getElementType());
1420      Constant *Op2 = ValueList.getConstantFwdRef(Record[2],
1421                                                  Type::getInt32Ty(Context));
1422      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1423      break;
1424    }
1425    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1426      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1427      if (Record.size() < 3 || OpTy == 0)
1428        return Error(InvalidRecord);
1429      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1430      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1431      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1432                                                 OpTy->getNumElements());
1433      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1434      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1435      break;
1436    }
1437    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1438      VectorType *RTy = dyn_cast<VectorType>(CurTy);
1439      VectorType *OpTy =
1440        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1441      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1442        return Error(InvalidRecord);
1443      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1444      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1445      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1446                                                 RTy->getNumElements());
1447      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1448      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1449      break;
1450    }
1451    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1452      if (Record.size() < 4)
1453        return Error(InvalidRecord);
1454      Type *OpTy = getTypeByID(Record[0]);
1455      if (OpTy == 0)
1456        return Error(InvalidRecord);
1457      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1458      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1459
1460      if (OpTy->isFPOrFPVectorTy())
1461        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1462      else
1463        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1464      break;
1465    }
1466    // This maintains backward compatibility, pre-asm dialect keywords.
1467    // FIXME: Remove with the 4.0 release.
1468    case bitc::CST_CODE_INLINEASM_OLD: {
1469      if (Record.size() < 2)
1470        return Error(InvalidRecord);
1471      std::string AsmStr, ConstrStr;
1472      bool HasSideEffects = Record[0] & 1;
1473      bool IsAlignStack = Record[0] >> 1;
1474      unsigned AsmStrSize = Record[1];
1475      if (2+AsmStrSize >= Record.size())
1476        return Error(InvalidRecord);
1477      unsigned ConstStrSize = Record[2+AsmStrSize];
1478      if (3+AsmStrSize+ConstStrSize > Record.size())
1479        return Error(InvalidRecord);
1480
1481      for (unsigned i = 0; i != AsmStrSize; ++i)
1482        AsmStr += (char)Record[2+i];
1483      for (unsigned i = 0; i != ConstStrSize; ++i)
1484        ConstrStr += (char)Record[3+AsmStrSize+i];
1485      PointerType *PTy = cast<PointerType>(CurTy);
1486      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1487                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1488      break;
1489    }
1490    // This version adds support for the asm dialect keywords (e.g.,
1491    // inteldialect).
1492    case bitc::CST_CODE_INLINEASM: {
1493      if (Record.size() < 2)
1494        return Error(InvalidRecord);
1495      std::string AsmStr, ConstrStr;
1496      bool HasSideEffects = Record[0] & 1;
1497      bool IsAlignStack = (Record[0] >> 1) & 1;
1498      unsigned AsmDialect = Record[0] >> 2;
1499      unsigned AsmStrSize = Record[1];
1500      if (2+AsmStrSize >= Record.size())
1501        return Error(InvalidRecord);
1502      unsigned ConstStrSize = Record[2+AsmStrSize];
1503      if (3+AsmStrSize+ConstStrSize > Record.size())
1504        return Error(InvalidRecord);
1505
1506      for (unsigned i = 0; i != AsmStrSize; ++i)
1507        AsmStr += (char)Record[2+i];
1508      for (unsigned i = 0; i != ConstStrSize; ++i)
1509        ConstrStr += (char)Record[3+AsmStrSize+i];
1510      PointerType *PTy = cast<PointerType>(CurTy);
1511      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1512                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
1513                         InlineAsm::AsmDialect(AsmDialect));
1514      break;
1515    }
1516    case bitc::CST_CODE_BLOCKADDRESS:{
1517      if (Record.size() < 3)
1518        return Error(InvalidRecord);
1519      Type *FnTy = getTypeByID(Record[0]);
1520      if (FnTy == 0)
1521        return Error(InvalidRecord);
1522      Function *Fn =
1523        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1524      if (Fn == 0)
1525        return Error(InvalidRecord);
1526
1527      // If the function is already parsed we can insert the block address right
1528      // away.
1529      if (!Fn->empty()) {
1530        Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1531        for (size_t I = 0, E = Record[2]; I != E; ++I) {
1532          if (BBI == BBE)
1533            return Error(InvalidID);
1534          ++BBI;
1535        }
1536        V = BlockAddress::get(Fn, BBI);
1537      } else {
1538        // Otherwise insert a placeholder and remember it so it can be inserted
1539        // when the function is parsed.
1540        GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1541                                                    Type::getInt8Ty(Context),
1542                                            false, GlobalValue::InternalLinkage,
1543                                                    0, "");
1544        BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1545        V = FwdRef;
1546      }
1547      break;
1548    }
1549    }
1550
1551    ValueList.AssignValue(V, NextCstNo);
1552    ++NextCstNo;
1553  }
1554}
1555
1556error_code BitcodeReader::ParseUseLists() {
1557  if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
1558    return Error(InvalidRecord);
1559
1560  SmallVector<uint64_t, 64> Record;
1561
1562  // Read all the records.
1563  while (1) {
1564    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1565
1566    switch (Entry.Kind) {
1567    case BitstreamEntry::SubBlock: // Handled for us already.
1568    case BitstreamEntry::Error:
1569      return Error(MalformedBlock);
1570    case BitstreamEntry::EndBlock:
1571      return error_code::success();
1572    case BitstreamEntry::Record:
1573      // The interesting case.
1574      break;
1575    }
1576
1577    // Read a use list record.
1578    Record.clear();
1579    switch (Stream.readRecord(Entry.ID, Record)) {
1580    default:  // Default behavior: unknown type.
1581      break;
1582    case bitc::USELIST_CODE_ENTRY: { // USELIST_CODE_ENTRY: TBD.
1583      unsigned RecordLength = Record.size();
1584      if (RecordLength < 1)
1585        return Error(InvalidRecord);
1586      UseListRecords.push_back(Record);
1587      break;
1588    }
1589    }
1590  }
1591}
1592
1593/// RememberAndSkipFunctionBody - When we see the block for a function body,
1594/// remember where it is and then skip it.  This lets us lazily deserialize the
1595/// functions.
1596error_code BitcodeReader::RememberAndSkipFunctionBody() {
1597  // Get the function we are talking about.
1598  if (FunctionsWithBodies.empty())
1599    return Error(InsufficientFunctionProtos);
1600
1601  Function *Fn = FunctionsWithBodies.back();
1602  FunctionsWithBodies.pop_back();
1603
1604  // Save the current stream state.
1605  uint64_t CurBit = Stream.GetCurrentBitNo();
1606  DeferredFunctionInfo[Fn] = CurBit;
1607
1608  // Skip over the function block for now.
1609  if (Stream.SkipBlock())
1610    return Error(InvalidRecord);
1611  return error_code::success();
1612}
1613
1614error_code BitcodeReader::GlobalCleanup() {
1615  // Patch the initializers for globals and aliases up.
1616  ResolveGlobalAndAliasInits();
1617  if (!GlobalInits.empty() || !AliasInits.empty())
1618    return Error(MalformedGlobalInitializerSet);
1619
1620  // Look for intrinsic functions which need to be upgraded at some point
1621  for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1622       FI != FE; ++FI) {
1623    Function *NewFn;
1624    if (UpgradeIntrinsicFunction(FI, NewFn))
1625      UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1626  }
1627
1628  // Look for global variables which need to be renamed.
1629  for (Module::global_iterator
1630         GI = TheModule->global_begin(), GE = TheModule->global_end();
1631       GI != GE; ++GI)
1632    UpgradeGlobalVariable(GI);
1633  // Force deallocation of memory for these vectors to favor the client that
1634  // want lazy deserialization.
1635  std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1636  std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1637  return error_code::success();
1638}
1639
1640error_code BitcodeReader::ParseModule(bool Resume) {
1641  if (Resume)
1642    Stream.JumpToBit(NextUnreadBit);
1643  else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1644    return Error(InvalidRecord);
1645
1646  SmallVector<uint64_t, 64> Record;
1647  std::vector<std::string> SectionTable;
1648  std::vector<std::string> GCTable;
1649
1650  // Read all the records for this module.
1651  while (1) {
1652    BitstreamEntry Entry = Stream.advance();
1653
1654    switch (Entry.Kind) {
1655    case BitstreamEntry::Error:
1656      return Error(MalformedBlock);
1657    case BitstreamEntry::EndBlock:
1658      return GlobalCleanup();
1659
1660    case BitstreamEntry::SubBlock:
1661      switch (Entry.ID) {
1662      default:  // Skip unknown content.
1663        if (Stream.SkipBlock())
1664          return Error(InvalidRecord);
1665        break;
1666      case bitc::BLOCKINFO_BLOCK_ID:
1667        if (Stream.ReadBlockInfoBlock())
1668          return Error(MalformedBlock);
1669        break;
1670      case bitc::PARAMATTR_BLOCK_ID:
1671        if (error_code EC = ParseAttributeBlock())
1672          return EC;
1673        break;
1674      case bitc::PARAMATTR_GROUP_BLOCK_ID:
1675        if (error_code EC = ParseAttributeGroupBlock())
1676          return EC;
1677        break;
1678      case bitc::TYPE_BLOCK_ID_NEW:
1679        if (error_code EC = ParseTypeTable())
1680          return EC;
1681        break;
1682      case bitc::VALUE_SYMTAB_BLOCK_ID:
1683        if (error_code EC = ParseValueSymbolTable())
1684          return EC;
1685        SeenValueSymbolTable = true;
1686        break;
1687      case bitc::CONSTANTS_BLOCK_ID:
1688        if (error_code EC = ParseConstants())
1689          return EC;
1690        if (error_code EC = ResolveGlobalAndAliasInits())
1691          return EC;
1692        break;
1693      case bitc::METADATA_BLOCK_ID:
1694        if (error_code EC = ParseMetadata())
1695          return EC;
1696        break;
1697      case bitc::FUNCTION_BLOCK_ID:
1698        // If this is the first function body we've seen, reverse the
1699        // FunctionsWithBodies list.
1700        if (!SeenFirstFunctionBody) {
1701          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1702          if (error_code EC = GlobalCleanup())
1703            return EC;
1704          SeenFirstFunctionBody = true;
1705        }
1706
1707        if (error_code EC = RememberAndSkipFunctionBody())
1708          return EC;
1709        // For streaming bitcode, suspend parsing when we reach the function
1710        // bodies. Subsequent materialization calls will resume it when
1711        // necessary. For streaming, the function bodies must be at the end of
1712        // the bitcode. If the bitcode file is old, the symbol table will be
1713        // at the end instead and will not have been seen yet. In this case,
1714        // just finish the parse now.
1715        if (LazyStreamer && SeenValueSymbolTable) {
1716          NextUnreadBit = Stream.GetCurrentBitNo();
1717          return error_code::success();
1718        }
1719        break;
1720      case bitc::USELIST_BLOCK_ID:
1721        if (error_code EC = ParseUseLists())
1722          return EC;
1723        break;
1724      }
1725      continue;
1726
1727    case BitstreamEntry::Record:
1728      // The interesting case.
1729      break;
1730    }
1731
1732
1733    // Read a record.
1734    switch (Stream.readRecord(Entry.ID, Record)) {
1735    default: break;  // Default behavior, ignore unknown content.
1736    case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
1737      if (Record.size() < 1)
1738        return Error(InvalidRecord);
1739      // Only version #0 and #1 are supported so far.
1740      unsigned module_version = Record[0];
1741      switch (module_version) {
1742        default:
1743          return Error(InvalidValue);
1744        case 0:
1745          UseRelativeIDs = false;
1746          break;
1747        case 1:
1748          UseRelativeIDs = true;
1749          break;
1750      }
1751      break;
1752    }
1753    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1754      std::string S;
1755      if (ConvertToString(Record, 0, S))
1756        return Error(InvalidRecord);
1757      TheModule->setTargetTriple(S);
1758      break;
1759    }
1760    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1761      std::string S;
1762      if (ConvertToString(Record, 0, S))
1763        return Error(InvalidRecord);
1764      TheModule->setDataLayout(S);
1765      break;
1766    }
1767    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1768      std::string S;
1769      if (ConvertToString(Record, 0, S))
1770        return Error(InvalidRecord);
1771      TheModule->setModuleInlineAsm(S);
1772      break;
1773    }
1774    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1775      // FIXME: Remove in 4.0.
1776      std::string S;
1777      if (ConvertToString(Record, 0, S))
1778        return Error(InvalidRecord);
1779      // Ignore value.
1780      break;
1781    }
1782    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1783      std::string S;
1784      if (ConvertToString(Record, 0, S))
1785        return Error(InvalidRecord);
1786      SectionTable.push_back(S);
1787      break;
1788    }
1789    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1790      std::string S;
1791      if (ConvertToString(Record, 0, S))
1792        return Error(InvalidRecord);
1793      GCTable.push_back(S);
1794      break;
1795    }
1796    // GLOBALVAR: [pointer type, isconst, initid,
1797    //             linkage, alignment, section, visibility, threadlocal,
1798    //             unnamed_addr]
1799    case bitc::MODULE_CODE_GLOBALVAR: {
1800      if (Record.size() < 6)
1801        return Error(InvalidRecord);
1802      Type *Ty = getTypeByID(Record[0]);
1803      if (!Ty)
1804        return Error(InvalidRecord);
1805      if (!Ty->isPointerTy())
1806        return Error(InvalidTypeForValue);
1807      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1808      Ty = cast<PointerType>(Ty)->getElementType();
1809
1810      bool isConstant = Record[1];
1811      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1812      unsigned Alignment = (1 << Record[4]) >> 1;
1813      std::string Section;
1814      if (Record[5]) {
1815        if (Record[5]-1 >= SectionTable.size())
1816          return Error(InvalidID);
1817        Section = SectionTable[Record[5]-1];
1818      }
1819      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1820      if (Record.size() > 6)
1821        Visibility = GetDecodedVisibility(Record[6]);
1822
1823      GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
1824      if (Record.size() > 7)
1825        TLM = GetDecodedThreadLocalMode(Record[7]);
1826
1827      bool UnnamedAddr = false;
1828      if (Record.size() > 8)
1829        UnnamedAddr = Record[8];
1830
1831      bool ExternallyInitialized = false;
1832      if (Record.size() > 9)
1833        ExternallyInitialized = Record[9];
1834
1835      GlobalVariable *NewGV =
1836        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1837                           TLM, AddressSpace, ExternallyInitialized);
1838      NewGV->setAlignment(Alignment);
1839      if (!Section.empty())
1840        NewGV->setSection(Section);
1841      NewGV->setVisibility(Visibility);
1842      NewGV->setUnnamedAddr(UnnamedAddr);
1843
1844      ValueList.push_back(NewGV);
1845
1846      // Remember which value to use for the global initializer.
1847      if (unsigned InitID = Record[2])
1848        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1849      break;
1850    }
1851    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1852    //             alignment, section, visibility, gc, unnamed_addr]
1853    case bitc::MODULE_CODE_FUNCTION: {
1854      if (Record.size() < 8)
1855        return Error(InvalidRecord);
1856      Type *Ty = getTypeByID(Record[0]);
1857      if (!Ty)
1858        return Error(InvalidRecord);
1859      if (!Ty->isPointerTy())
1860        return Error(InvalidTypeForValue);
1861      FunctionType *FTy =
1862        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1863      if (!FTy)
1864        return Error(InvalidTypeForValue);
1865
1866      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1867                                        "", TheModule);
1868
1869      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1870      bool isProto = Record[2];
1871      Func->setLinkage(GetDecodedLinkage(Record[3]));
1872      Func->setAttributes(getAttributes(Record[4]));
1873
1874      Func->setAlignment((1 << Record[5]) >> 1);
1875      if (Record[6]) {
1876        if (Record[6]-1 >= SectionTable.size())
1877          return Error(InvalidID);
1878        Func->setSection(SectionTable[Record[6]-1]);
1879      }
1880      Func->setVisibility(GetDecodedVisibility(Record[7]));
1881      if (Record.size() > 8 && Record[8]) {
1882        if (Record[8]-1 > GCTable.size())
1883          return Error(InvalidID);
1884        Func->setGC(GCTable[Record[8]-1].c_str());
1885      }
1886      bool UnnamedAddr = false;
1887      if (Record.size() > 9)
1888        UnnamedAddr = Record[9];
1889      Func->setUnnamedAddr(UnnamedAddr);
1890      if (Record.size() > 10 && Record[10] != 0)
1891        FunctionPrefixes.push_back(std::make_pair(Func, Record[10]-1));
1892      ValueList.push_back(Func);
1893
1894      // If this is a function with a body, remember the prototype we are
1895      // creating now, so that we can match up the body with them later.
1896      if (!isProto) {
1897        FunctionsWithBodies.push_back(Func);
1898        if (LazyStreamer) DeferredFunctionInfo[Func] = 0;
1899      }
1900      break;
1901    }
1902    // ALIAS: [alias type, aliasee val#, linkage]
1903    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1904    case bitc::MODULE_CODE_ALIAS: {
1905      if (Record.size() < 3)
1906        return Error(InvalidRecord);
1907      Type *Ty = getTypeByID(Record[0]);
1908      if (!Ty)
1909        return Error(InvalidRecord);
1910      if (!Ty->isPointerTy())
1911        return Error(InvalidTypeForValue);
1912
1913      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1914                                           "", 0, TheModule);
1915      // Old bitcode files didn't have visibility field.
1916      if (Record.size() > 3)
1917        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1918      ValueList.push_back(NewGA);
1919      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1920      break;
1921    }
1922    /// MODULE_CODE_PURGEVALS: [numvals]
1923    case bitc::MODULE_CODE_PURGEVALS:
1924      // Trim down the value list to the specified size.
1925      if (Record.size() < 1 || Record[0] > ValueList.size())
1926        return Error(InvalidRecord);
1927      ValueList.shrinkTo(Record[0]);
1928      break;
1929    }
1930    Record.clear();
1931  }
1932}
1933
1934error_code BitcodeReader::ParseBitcodeInto(Module *M) {
1935  TheModule = 0;
1936
1937  if (error_code EC = InitStream())
1938    return EC;
1939
1940  // Sniff for the signature.
1941  if (Stream.Read(8) != 'B' ||
1942      Stream.Read(8) != 'C' ||
1943      Stream.Read(4) != 0x0 ||
1944      Stream.Read(4) != 0xC ||
1945      Stream.Read(4) != 0xE ||
1946      Stream.Read(4) != 0xD)
1947    return Error(InvalidBitcodeSignature);
1948
1949  // We expect a number of well-defined blocks, though we don't necessarily
1950  // need to understand them all.
1951  while (1) {
1952    if (Stream.AtEndOfStream())
1953      return error_code::success();
1954
1955    BitstreamEntry Entry =
1956      Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
1957
1958    switch (Entry.Kind) {
1959    case BitstreamEntry::Error:
1960      return Error(MalformedBlock);
1961    case BitstreamEntry::EndBlock:
1962      return error_code::success();
1963
1964    case BitstreamEntry::SubBlock:
1965      switch (Entry.ID) {
1966      case bitc::BLOCKINFO_BLOCK_ID:
1967        if (Stream.ReadBlockInfoBlock())
1968          return Error(MalformedBlock);
1969        break;
1970      case bitc::MODULE_BLOCK_ID:
1971        // Reject multiple MODULE_BLOCK's in a single bitstream.
1972        if (TheModule)
1973          return Error(InvalidMultipleBlocks);
1974        TheModule = M;
1975        if (error_code EC = ParseModule(false))
1976          return EC;
1977        if (LazyStreamer)
1978          return error_code::success();
1979        break;
1980      default:
1981        if (Stream.SkipBlock())
1982          return Error(InvalidRecord);
1983        break;
1984      }
1985      continue;
1986    case BitstreamEntry::Record:
1987      // There should be no records in the top-level of blocks.
1988
1989      // The ranlib in Xcode 4 will align archive members by appending newlines
1990      // to the end of them. If this file size is a multiple of 4 but not 8, we
1991      // have to read and ignore these final 4 bytes :-(
1992      if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 &&
1993          Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
1994          Stream.AtEndOfStream())
1995        return error_code::success();
1996
1997      return Error(InvalidRecord);
1998    }
1999  }
2000}
2001
2002error_code BitcodeReader::ParseModuleTriple(std::string &Triple) {
2003  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
2004    return Error(InvalidRecord);
2005
2006  SmallVector<uint64_t, 64> Record;
2007
2008  // Read all the records for this module.
2009  while (1) {
2010    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2011
2012    switch (Entry.Kind) {
2013    case BitstreamEntry::SubBlock: // Handled for us already.
2014    case BitstreamEntry::Error:
2015      return Error(MalformedBlock);
2016    case BitstreamEntry::EndBlock:
2017      return error_code::success();
2018    case BitstreamEntry::Record:
2019      // The interesting case.
2020      break;
2021    }
2022
2023    // Read a record.
2024    switch (Stream.readRecord(Entry.ID, Record)) {
2025    default: break;  // Default behavior, ignore unknown content.
2026    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
2027      std::string S;
2028      if (ConvertToString(Record, 0, S))
2029        return Error(InvalidRecord);
2030      Triple = S;
2031      break;
2032    }
2033    }
2034    Record.clear();
2035  }
2036}
2037
2038error_code BitcodeReader::ParseTriple(std::string &Triple) {
2039  if (error_code EC = InitStream())
2040    return EC;
2041
2042  // Sniff for the signature.
2043  if (Stream.Read(8) != 'B' ||
2044      Stream.Read(8) != 'C' ||
2045      Stream.Read(4) != 0x0 ||
2046      Stream.Read(4) != 0xC ||
2047      Stream.Read(4) != 0xE ||
2048      Stream.Read(4) != 0xD)
2049    return Error(InvalidBitcodeSignature);
2050
2051  // We expect a number of well-defined blocks, though we don't necessarily
2052  // need to understand them all.
2053  while (1) {
2054    BitstreamEntry Entry = Stream.advance();
2055
2056    switch (Entry.Kind) {
2057    case BitstreamEntry::Error:
2058      return Error(MalformedBlock);
2059    case BitstreamEntry::EndBlock:
2060      return error_code::success();
2061
2062    case BitstreamEntry::SubBlock:
2063      if (Entry.ID == bitc::MODULE_BLOCK_ID)
2064        return ParseModuleTriple(Triple);
2065
2066      // Ignore other sub-blocks.
2067      if (Stream.SkipBlock())
2068        return Error(MalformedBlock);
2069      continue;
2070
2071    case BitstreamEntry::Record:
2072      Stream.skipRecord(Entry.ID);
2073      continue;
2074    }
2075  }
2076}
2077
2078/// ParseMetadataAttachment - Parse metadata attachments.
2079error_code BitcodeReader::ParseMetadataAttachment() {
2080  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
2081    return Error(InvalidRecord);
2082
2083  SmallVector<uint64_t, 64> Record;
2084  while (1) {
2085    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2086
2087    switch (Entry.Kind) {
2088    case BitstreamEntry::SubBlock: // Handled for us already.
2089    case BitstreamEntry::Error:
2090      return Error(MalformedBlock);
2091    case BitstreamEntry::EndBlock:
2092      return error_code::success();
2093    case BitstreamEntry::Record:
2094      // The interesting case.
2095      break;
2096    }
2097
2098    // Read a metadata attachment record.
2099    Record.clear();
2100    switch (Stream.readRecord(Entry.ID, Record)) {
2101    default:  // Default behavior: ignore.
2102      break;
2103    case bitc::METADATA_ATTACHMENT: {
2104      unsigned RecordLength = Record.size();
2105      if (Record.empty() || (RecordLength - 1) % 2 == 1)
2106        return Error(InvalidRecord);
2107      Instruction *Inst = InstructionList[Record[0]];
2108      for (unsigned i = 1; i != RecordLength; i = i+2) {
2109        unsigned Kind = Record[i];
2110        DenseMap<unsigned, unsigned>::iterator I =
2111          MDKindMap.find(Kind);
2112        if (I == MDKindMap.end())
2113          return Error(InvalidID);
2114        Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
2115        Inst->setMetadata(I->second, cast<MDNode>(Node));
2116        if (I->second == LLVMContext::MD_tbaa)
2117          InstsWithTBAATag.push_back(Inst);
2118      }
2119      break;
2120    }
2121    }
2122  }
2123}
2124
2125/// ParseFunctionBody - Lazily parse the specified function body block.
2126error_code BitcodeReader::ParseFunctionBody(Function *F) {
2127  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
2128    return Error(InvalidRecord);
2129
2130  InstructionList.clear();
2131  unsigned ModuleValueListSize = ValueList.size();
2132  unsigned ModuleMDValueListSize = MDValueList.size();
2133
2134  // Add all the function arguments to the value table.
2135  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
2136    ValueList.push_back(I);
2137
2138  unsigned NextValueNo = ValueList.size();
2139  BasicBlock *CurBB = 0;
2140  unsigned CurBBNo = 0;
2141
2142  DebugLoc LastLoc;
2143
2144  // Read all the records.
2145  SmallVector<uint64_t, 64> Record;
2146  while (1) {
2147    BitstreamEntry Entry = Stream.advance();
2148
2149    switch (Entry.Kind) {
2150    case BitstreamEntry::Error:
2151      return Error(MalformedBlock);
2152    case BitstreamEntry::EndBlock:
2153      goto OutOfRecordLoop;
2154
2155    case BitstreamEntry::SubBlock:
2156      switch (Entry.ID) {
2157      default:  // Skip unknown content.
2158        if (Stream.SkipBlock())
2159          return Error(InvalidRecord);
2160        break;
2161      case bitc::CONSTANTS_BLOCK_ID:
2162        if (error_code EC = ParseConstants())
2163          return EC;
2164        NextValueNo = ValueList.size();
2165        break;
2166      case bitc::VALUE_SYMTAB_BLOCK_ID:
2167        if (error_code EC = ParseValueSymbolTable())
2168          return EC;
2169        break;
2170      case bitc::METADATA_ATTACHMENT_ID:
2171        if (error_code EC = ParseMetadataAttachment())
2172          return EC;
2173        break;
2174      case bitc::METADATA_BLOCK_ID:
2175        if (error_code EC = ParseMetadata())
2176          return EC;
2177        break;
2178      }
2179      continue;
2180
2181    case BitstreamEntry::Record:
2182      // The interesting case.
2183      break;
2184    }
2185
2186    // Read a record.
2187    Record.clear();
2188    Instruction *I = 0;
2189    unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2190    switch (BitCode) {
2191    default: // Default behavior: reject
2192      return Error(InvalidValue);
2193    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
2194      if (Record.size() < 1 || Record[0] == 0)
2195        return Error(InvalidRecord);
2196      // Create all the basic blocks for the function.
2197      FunctionBBs.resize(Record[0]);
2198      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
2199        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
2200      CurBB = FunctionBBs[0];
2201      continue;
2202
2203    case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
2204      // This record indicates that the last instruction is at the same
2205      // location as the previous instruction with a location.
2206      I = 0;
2207
2208      // Get the last instruction emitted.
2209      if (CurBB && !CurBB->empty())
2210        I = &CurBB->back();
2211      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2212               !FunctionBBs[CurBBNo-1]->empty())
2213        I = &FunctionBBs[CurBBNo-1]->back();
2214
2215      if (I == 0)
2216        return Error(InvalidRecord);
2217      I->setDebugLoc(LastLoc);
2218      I = 0;
2219      continue;
2220
2221    case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
2222      I = 0;     // Get the last instruction emitted.
2223      if (CurBB && !CurBB->empty())
2224        I = &CurBB->back();
2225      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2226               !FunctionBBs[CurBBNo-1]->empty())
2227        I = &FunctionBBs[CurBBNo-1]->back();
2228      if (I == 0 || Record.size() < 4)
2229        return Error(InvalidRecord);
2230
2231      unsigned Line = Record[0], Col = Record[1];
2232      unsigned ScopeID = Record[2], IAID = Record[3];
2233
2234      MDNode *Scope = 0, *IA = 0;
2235      if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
2236      if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
2237      LastLoc = DebugLoc::get(Line, Col, Scope, IA);
2238      I->setDebugLoc(LastLoc);
2239      I = 0;
2240      continue;
2241    }
2242
2243    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
2244      unsigned OpNum = 0;
2245      Value *LHS, *RHS;
2246      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2247          popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
2248          OpNum+1 > Record.size())
2249        return Error(InvalidRecord);
2250
2251      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
2252      if (Opc == -1)
2253        return Error(InvalidRecord);
2254      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2255      InstructionList.push_back(I);
2256      if (OpNum < Record.size()) {
2257        if (Opc == Instruction::Add ||
2258            Opc == Instruction::Sub ||
2259            Opc == Instruction::Mul ||
2260            Opc == Instruction::Shl) {
2261          if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2262            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
2263          if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2264            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2265        } else if (Opc == Instruction::SDiv ||
2266                   Opc == Instruction::UDiv ||
2267                   Opc == Instruction::LShr ||
2268                   Opc == Instruction::AShr) {
2269          if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2270            cast<BinaryOperator>(I)->setIsExact(true);
2271        } else if (isa<FPMathOperator>(I)) {
2272          FastMathFlags FMF;
2273          if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra))
2274            FMF.setUnsafeAlgebra();
2275          if (0 != (Record[OpNum] & FastMathFlags::NoNaNs))
2276            FMF.setNoNaNs();
2277          if (0 != (Record[OpNum] & FastMathFlags::NoInfs))
2278            FMF.setNoInfs();
2279          if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros))
2280            FMF.setNoSignedZeros();
2281          if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal))
2282            FMF.setAllowReciprocal();
2283          if (FMF.any())
2284            I->setFastMathFlags(FMF);
2285        }
2286
2287      }
2288      break;
2289    }
2290    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
2291      unsigned OpNum = 0;
2292      Value *Op;
2293      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2294          OpNum+2 != Record.size())
2295        return Error(InvalidRecord);
2296
2297      Type *ResTy = getTypeByID(Record[OpNum]);
2298      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2299      if (Opc == -1 || ResTy == 0)
2300        return Error(InvalidRecord);
2301      Instruction *Temp = 0;
2302      if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
2303        if (Temp) {
2304          InstructionList.push_back(Temp);
2305          CurBB->getInstList().push_back(Temp);
2306        }
2307      } else {
2308        I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2309      }
2310      InstructionList.push_back(I);
2311      break;
2312    }
2313    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
2314    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2315      unsigned OpNum = 0;
2316      Value *BasePtr;
2317      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2318        return Error(InvalidRecord);
2319
2320      SmallVector<Value*, 16> GEPIdx;
2321      while (OpNum != Record.size()) {
2322        Value *Op;
2323        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2324          return Error(InvalidRecord);
2325        GEPIdx.push_back(Op);
2326      }
2327
2328      I = GetElementPtrInst::Create(BasePtr, GEPIdx);
2329      InstructionList.push_back(I);
2330      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
2331        cast<GetElementPtrInst>(I)->setIsInBounds(true);
2332      break;
2333    }
2334
2335    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
2336                                       // EXTRACTVAL: [opty, opval, n x indices]
2337      unsigned OpNum = 0;
2338      Value *Agg;
2339      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2340        return Error(InvalidRecord);
2341
2342      SmallVector<unsigned, 4> EXTRACTVALIdx;
2343      for (unsigned RecSize = Record.size();
2344           OpNum != RecSize; ++OpNum) {
2345        uint64_t Index = Record[OpNum];
2346        if ((unsigned)Index != Index)
2347          return Error(InvalidValue);
2348        EXTRACTVALIdx.push_back((unsigned)Index);
2349      }
2350
2351      I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
2352      InstructionList.push_back(I);
2353      break;
2354    }
2355
2356    case bitc::FUNC_CODE_INST_INSERTVAL: {
2357                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
2358      unsigned OpNum = 0;
2359      Value *Agg;
2360      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2361        return Error(InvalidRecord);
2362      Value *Val;
2363      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
2364        return Error(InvalidRecord);
2365
2366      SmallVector<unsigned, 4> INSERTVALIdx;
2367      for (unsigned RecSize = Record.size();
2368           OpNum != RecSize; ++OpNum) {
2369        uint64_t Index = Record[OpNum];
2370        if ((unsigned)Index != Index)
2371          return Error(InvalidValue);
2372        INSERTVALIdx.push_back((unsigned)Index);
2373      }
2374
2375      I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
2376      InstructionList.push_back(I);
2377      break;
2378    }
2379
2380    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2381      // obsolete form of select
2382      // handles select i1 ... in old bitcode
2383      unsigned OpNum = 0;
2384      Value *TrueVal, *FalseVal, *Cond;
2385      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2386          popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
2387          popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
2388        return Error(InvalidRecord);
2389
2390      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2391      InstructionList.push_back(I);
2392      break;
2393    }
2394
2395    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2396      // new form of select
2397      // handles select i1 or select [N x i1]
2398      unsigned OpNum = 0;
2399      Value *TrueVal, *FalseVal, *Cond;
2400      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2401          popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
2402          getValueTypePair(Record, OpNum, NextValueNo, Cond))
2403        return Error(InvalidRecord);
2404
2405      // select condition can be either i1 or [N x i1]
2406      if (VectorType* vector_type =
2407          dyn_cast<VectorType>(Cond->getType())) {
2408        // expect <n x i1>
2409        if (vector_type->getElementType() != Type::getInt1Ty(Context))
2410          return Error(InvalidTypeForValue);
2411      } else {
2412        // expect i1
2413        if (Cond->getType() != Type::getInt1Ty(Context))
2414          return Error(InvalidTypeForValue);
2415      }
2416
2417      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2418      InstructionList.push_back(I);
2419      break;
2420    }
2421
2422    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2423      unsigned OpNum = 0;
2424      Value *Vec, *Idx;
2425      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2426          popValue(Record, OpNum, NextValueNo, Type::getInt32Ty(Context), Idx))
2427        return Error(InvalidRecord);
2428      I = ExtractElementInst::Create(Vec, Idx);
2429      InstructionList.push_back(I);
2430      break;
2431    }
2432
2433    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2434      unsigned OpNum = 0;
2435      Value *Vec, *Elt, *Idx;
2436      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2437          popValue(Record, OpNum, NextValueNo,
2438                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2439          popValue(Record, OpNum, NextValueNo, Type::getInt32Ty(Context), Idx))
2440        return Error(InvalidRecord);
2441      I = InsertElementInst::Create(Vec, Elt, Idx);
2442      InstructionList.push_back(I);
2443      break;
2444    }
2445
2446    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2447      unsigned OpNum = 0;
2448      Value *Vec1, *Vec2, *Mask;
2449      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2450          popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
2451        return Error(InvalidRecord);
2452
2453      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2454        return Error(InvalidRecord);
2455      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2456      InstructionList.push_back(I);
2457      break;
2458    }
2459
2460    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2461      // Old form of ICmp/FCmp returning bool
2462      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2463      // both legal on vectors but had different behaviour.
2464    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2465      // FCmp/ICmp returning bool or vector of bool
2466
2467      unsigned OpNum = 0;
2468      Value *LHS, *RHS;
2469      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2470          popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
2471          OpNum+1 != Record.size())
2472        return Error(InvalidRecord);
2473
2474      if (LHS->getType()->isFPOrFPVectorTy())
2475        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2476      else
2477        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2478      InstructionList.push_back(I);
2479      break;
2480    }
2481
2482    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2483      {
2484        unsigned Size = Record.size();
2485        if (Size == 0) {
2486          I = ReturnInst::Create(Context);
2487          InstructionList.push_back(I);
2488          break;
2489        }
2490
2491        unsigned OpNum = 0;
2492        Value *Op = NULL;
2493        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2494          return Error(InvalidRecord);
2495        if (OpNum != Record.size())
2496          return Error(InvalidRecord);
2497
2498        I = ReturnInst::Create(Context, Op);
2499        InstructionList.push_back(I);
2500        break;
2501      }
2502    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2503      if (Record.size() != 1 && Record.size() != 3)
2504        return Error(InvalidRecord);
2505      BasicBlock *TrueDest = getBasicBlock(Record[0]);
2506      if (TrueDest == 0)
2507        return Error(InvalidRecord);
2508
2509      if (Record.size() == 1) {
2510        I = BranchInst::Create(TrueDest);
2511        InstructionList.push_back(I);
2512      }
2513      else {
2514        BasicBlock *FalseDest = getBasicBlock(Record[1]);
2515        Value *Cond = getValue(Record, 2, NextValueNo,
2516                               Type::getInt1Ty(Context));
2517        if (FalseDest == 0 || Cond == 0)
2518          return Error(InvalidRecord);
2519        I = BranchInst::Create(TrueDest, FalseDest, Cond);
2520        InstructionList.push_back(I);
2521      }
2522      break;
2523    }
2524    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2525      // Check magic
2526      if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
2527        // "New" SwitchInst format with case ranges. The changes to write this
2528        // format were reverted but we still recognize bitcode that uses it.
2529        // Hopefully someday we will have support for case ranges and can use
2530        // this format again.
2531
2532        Type *OpTy = getTypeByID(Record[1]);
2533        unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
2534
2535        Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
2536        BasicBlock *Default = getBasicBlock(Record[3]);
2537        if (OpTy == 0 || Cond == 0 || Default == 0)
2538          return Error(InvalidRecord);
2539
2540        unsigned NumCases = Record[4];
2541
2542        SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2543        InstructionList.push_back(SI);
2544
2545        unsigned CurIdx = 5;
2546        for (unsigned i = 0; i != NumCases; ++i) {
2547          SmallVector<ConstantInt*, 1> CaseVals;
2548          unsigned NumItems = Record[CurIdx++];
2549          for (unsigned ci = 0; ci != NumItems; ++ci) {
2550            bool isSingleNumber = Record[CurIdx++];
2551
2552            APInt Low;
2553            unsigned ActiveWords = 1;
2554            if (ValueBitWidth > 64)
2555              ActiveWords = Record[CurIdx++];
2556            Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
2557                                ValueBitWidth);
2558            CurIdx += ActiveWords;
2559
2560            if (!isSingleNumber) {
2561              ActiveWords = 1;
2562              if (ValueBitWidth > 64)
2563                ActiveWords = Record[CurIdx++];
2564              APInt High =
2565                  ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
2566                                ValueBitWidth);
2567              CurIdx += ActiveWords;
2568
2569              // FIXME: It is not clear whether values in the range should be
2570              // compared as signed or unsigned values. The partially
2571              // implemented changes that used this format in the past used
2572              // unsigned comparisons.
2573              for ( ; Low.ule(High); ++Low)
2574                CaseVals.push_back(ConstantInt::get(Context, Low));
2575            } else
2576              CaseVals.push_back(ConstantInt::get(Context, Low));
2577          }
2578          BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
2579          for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
2580                 cve = CaseVals.end(); cvi != cve; ++cvi)
2581            SI->addCase(*cvi, DestBB);
2582        }
2583        I = SI;
2584        break;
2585      }
2586
2587      // Old SwitchInst format without case ranges.
2588
2589      if (Record.size() < 3 || (Record.size() & 1) == 0)
2590        return Error(InvalidRecord);
2591      Type *OpTy = getTypeByID(Record[0]);
2592      Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
2593      BasicBlock *Default = getBasicBlock(Record[2]);
2594      if (OpTy == 0 || Cond == 0 || Default == 0)
2595        return Error(InvalidRecord);
2596      unsigned NumCases = (Record.size()-3)/2;
2597      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2598      InstructionList.push_back(SI);
2599      for (unsigned i = 0, e = NumCases; i != e; ++i) {
2600        ConstantInt *CaseVal =
2601          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2602        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2603        if (CaseVal == 0 || DestBB == 0) {
2604          delete SI;
2605          return Error(InvalidRecord);
2606        }
2607        SI->addCase(CaseVal, DestBB);
2608      }
2609      I = SI;
2610      break;
2611    }
2612    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2613      if (Record.size() < 2)
2614        return Error(InvalidRecord);
2615      Type *OpTy = getTypeByID(Record[0]);
2616      Value *Address = getValue(Record, 1, NextValueNo, OpTy);
2617      if (OpTy == 0 || Address == 0)
2618        return Error(InvalidRecord);
2619      unsigned NumDests = Record.size()-2;
2620      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2621      InstructionList.push_back(IBI);
2622      for (unsigned i = 0, e = NumDests; i != e; ++i) {
2623        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2624          IBI->addDestination(DestBB);
2625        } else {
2626          delete IBI;
2627          return Error(InvalidRecord);
2628        }
2629      }
2630      I = IBI;
2631      break;
2632    }
2633
2634    case bitc::FUNC_CODE_INST_INVOKE: {
2635      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2636      if (Record.size() < 4)
2637        return Error(InvalidRecord);
2638      AttributeSet PAL = getAttributes(Record[0]);
2639      unsigned CCInfo = Record[1];
2640      BasicBlock *NormalBB = getBasicBlock(Record[2]);
2641      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2642
2643      unsigned OpNum = 4;
2644      Value *Callee;
2645      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2646        return Error(InvalidRecord);
2647
2648      PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2649      FunctionType *FTy = !CalleeTy ? 0 :
2650        dyn_cast<FunctionType>(CalleeTy->getElementType());
2651
2652      // Check that the right number of fixed parameters are here.
2653      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2654          Record.size() < OpNum+FTy->getNumParams())
2655        return Error(InvalidRecord);
2656
2657      SmallVector<Value*, 16> Ops;
2658      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2659        Ops.push_back(getValue(Record, OpNum, NextValueNo,
2660                               FTy->getParamType(i)));
2661        if (Ops.back() == 0)
2662          return Error(InvalidRecord);
2663      }
2664
2665      if (!FTy->isVarArg()) {
2666        if (Record.size() != OpNum)
2667          return Error(InvalidRecord);
2668      } else {
2669        // Read type/value pairs for varargs params.
2670        while (OpNum != Record.size()) {
2671          Value *Op;
2672          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2673            return Error(InvalidRecord);
2674          Ops.push_back(Op);
2675        }
2676      }
2677
2678      I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
2679      InstructionList.push_back(I);
2680      cast<InvokeInst>(I)->setCallingConv(
2681        static_cast<CallingConv::ID>(CCInfo));
2682      cast<InvokeInst>(I)->setAttributes(PAL);
2683      break;
2684    }
2685    case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
2686      unsigned Idx = 0;
2687      Value *Val = 0;
2688      if (getValueTypePair(Record, Idx, NextValueNo, Val))
2689        return Error(InvalidRecord);
2690      I = ResumeInst::Create(Val);
2691      InstructionList.push_back(I);
2692      break;
2693    }
2694    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2695      I = new UnreachableInst(Context);
2696      InstructionList.push_back(I);
2697      break;
2698    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2699      if (Record.size() < 1 || ((Record.size()-1)&1))
2700        return Error(InvalidRecord);
2701      Type *Ty = getTypeByID(Record[0]);
2702      if (!Ty)
2703        return Error(InvalidRecord);
2704
2705      PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
2706      InstructionList.push_back(PN);
2707
2708      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2709        Value *V;
2710        // With the new function encoding, it is possible that operands have
2711        // negative IDs (for forward references).  Use a signed VBR
2712        // representation to keep the encoding small.
2713        if (UseRelativeIDs)
2714          V = getValueSigned(Record, 1+i, NextValueNo, Ty);
2715        else
2716          V = getValue(Record, 1+i, NextValueNo, Ty);
2717        BasicBlock *BB = getBasicBlock(Record[2+i]);
2718        if (!V || !BB)
2719          return Error(InvalidRecord);
2720        PN->addIncoming(V, BB);
2721      }
2722      I = PN;
2723      break;
2724    }
2725
2726    case bitc::FUNC_CODE_INST_LANDINGPAD: {
2727      // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
2728      unsigned Idx = 0;
2729      if (Record.size() < 4)
2730        return Error(InvalidRecord);
2731      Type *Ty = getTypeByID(Record[Idx++]);
2732      if (!Ty)
2733        return Error(InvalidRecord);
2734      Value *PersFn = 0;
2735      if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
2736        return Error(InvalidRecord);
2737
2738      bool IsCleanup = !!Record[Idx++];
2739      unsigned NumClauses = Record[Idx++];
2740      LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses);
2741      LP->setCleanup(IsCleanup);
2742      for (unsigned J = 0; J != NumClauses; ++J) {
2743        LandingPadInst::ClauseType CT =
2744          LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
2745        Value *Val;
2746
2747        if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
2748          delete LP;
2749          return Error(InvalidRecord);
2750        }
2751
2752        assert((CT != LandingPadInst::Catch ||
2753                !isa<ArrayType>(Val->getType())) &&
2754               "Catch clause has a invalid type!");
2755        assert((CT != LandingPadInst::Filter ||
2756                isa<ArrayType>(Val->getType())) &&
2757               "Filter clause has invalid type!");
2758        LP->addClause(Val);
2759      }
2760
2761      I = LP;
2762      InstructionList.push_back(I);
2763      break;
2764    }
2765
2766    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2767      if (Record.size() != 4)
2768        return Error(InvalidRecord);
2769      PointerType *Ty =
2770        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2771      Type *OpTy = getTypeByID(Record[1]);
2772      Value *Size = getFnValueByID(Record[2], OpTy);
2773      unsigned Align = Record[3];
2774      if (!Ty || !Size)
2775        return Error(InvalidRecord);
2776      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2777      InstructionList.push_back(I);
2778      break;
2779    }
2780    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2781      unsigned OpNum = 0;
2782      Value *Op;
2783      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2784          OpNum+2 != Record.size())
2785        return Error(InvalidRecord);
2786
2787      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2788      InstructionList.push_back(I);
2789      break;
2790    }
2791    case bitc::FUNC_CODE_INST_LOADATOMIC: {
2792       // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
2793      unsigned OpNum = 0;
2794      Value *Op;
2795      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2796          OpNum+4 != Record.size())
2797        return Error(InvalidRecord);
2798
2799
2800      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2801      if (Ordering == NotAtomic || Ordering == Release ||
2802          Ordering == AcquireRelease)
2803        return Error(InvalidRecord);
2804      if (Ordering != NotAtomic && Record[OpNum] == 0)
2805        return Error(InvalidRecord);
2806      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2807
2808      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1,
2809                       Ordering, SynchScope);
2810      InstructionList.push_back(I);
2811      break;
2812    }
2813    case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
2814      unsigned OpNum = 0;
2815      Value *Val, *Ptr;
2816      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2817          popValue(Record, OpNum, NextValueNo,
2818                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2819          OpNum+2 != Record.size())
2820        return Error(InvalidRecord);
2821
2822      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2823      InstructionList.push_back(I);
2824      break;
2825    }
2826    case bitc::FUNC_CODE_INST_STOREATOMIC: {
2827      // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
2828      unsigned OpNum = 0;
2829      Value *Val, *Ptr;
2830      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2831          popValue(Record, OpNum, NextValueNo,
2832                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2833          OpNum+4 != Record.size())
2834        return Error(InvalidRecord);
2835
2836      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2837      if (Ordering == NotAtomic || Ordering == Acquire ||
2838          Ordering == AcquireRelease)
2839        return Error(InvalidRecord);
2840      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2841      if (Ordering != NotAtomic && Record[OpNum] == 0)
2842        return Error(InvalidRecord);
2843
2844      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1,
2845                        Ordering, SynchScope);
2846      InstructionList.push_back(I);
2847      break;
2848    }
2849    case bitc::FUNC_CODE_INST_CMPXCHG: {
2850      // CMPXCHG:[ptrty, ptr, cmp, new, vol, ordering, synchscope]
2851      unsigned OpNum = 0;
2852      Value *Ptr, *Cmp, *New;
2853      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2854          popValue(Record, OpNum, NextValueNo,
2855                    cast<PointerType>(Ptr->getType())->getElementType(), Cmp) ||
2856          popValue(Record, OpNum, NextValueNo,
2857                    cast<PointerType>(Ptr->getType())->getElementType(), New) ||
2858          OpNum+3 != Record.size())
2859        return Error(InvalidRecord);
2860      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+1]);
2861      if (Ordering == NotAtomic || Ordering == Unordered)
2862        return Error(InvalidRecord);
2863      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]);
2864      I = new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, SynchScope);
2865      cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
2866      InstructionList.push_back(I);
2867      break;
2868    }
2869    case bitc::FUNC_CODE_INST_ATOMICRMW: {
2870      // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
2871      unsigned OpNum = 0;
2872      Value *Ptr, *Val;
2873      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2874          popValue(Record, OpNum, NextValueNo,
2875                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2876          OpNum+4 != Record.size())
2877        return Error(InvalidRecord);
2878      AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]);
2879      if (Operation < AtomicRMWInst::FIRST_BINOP ||
2880          Operation > AtomicRMWInst::LAST_BINOP)
2881        return Error(InvalidRecord);
2882      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2883      if (Ordering == NotAtomic || Ordering == Unordered)
2884        return Error(InvalidRecord);
2885      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2886      I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
2887      cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
2888      InstructionList.push_back(I);
2889      break;
2890    }
2891    case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
2892      if (2 != Record.size())
2893        return Error(InvalidRecord);
2894      AtomicOrdering Ordering = GetDecodedOrdering(Record[0]);
2895      if (Ordering == NotAtomic || Ordering == Unordered ||
2896          Ordering == Monotonic)
2897        return Error(InvalidRecord);
2898      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]);
2899      I = new FenceInst(Context, Ordering, SynchScope);
2900      InstructionList.push_back(I);
2901      break;
2902    }
2903    case bitc::FUNC_CODE_INST_CALL: {
2904      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2905      if (Record.size() < 3)
2906        return Error(InvalidRecord);
2907
2908      AttributeSet PAL = getAttributes(Record[0]);
2909      unsigned CCInfo = Record[1];
2910
2911      unsigned OpNum = 2;
2912      Value *Callee;
2913      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2914        return Error(InvalidRecord);
2915
2916      PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2917      FunctionType *FTy = 0;
2918      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2919      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2920        return Error(InvalidRecord);
2921
2922      SmallVector<Value*, 16> Args;
2923      // Read the fixed params.
2924      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2925        if (FTy->getParamType(i)->isLabelTy())
2926          Args.push_back(getBasicBlock(Record[OpNum]));
2927        else
2928          Args.push_back(getValue(Record, OpNum, NextValueNo,
2929                                  FTy->getParamType(i)));
2930        if (Args.back() == 0)
2931          return Error(InvalidRecord);
2932      }
2933
2934      // Read type/value pairs for varargs params.
2935      if (!FTy->isVarArg()) {
2936        if (OpNum != Record.size())
2937          return Error(InvalidRecord);
2938      } else {
2939        while (OpNum != Record.size()) {
2940          Value *Op;
2941          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2942            return Error(InvalidRecord);
2943          Args.push_back(Op);
2944        }
2945      }
2946
2947      I = CallInst::Create(Callee, Args);
2948      InstructionList.push_back(I);
2949      cast<CallInst>(I)->setCallingConv(
2950        static_cast<CallingConv::ID>(CCInfo>>1));
2951      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2952      cast<CallInst>(I)->setAttributes(PAL);
2953      break;
2954    }
2955    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2956      if (Record.size() < 3)
2957        return Error(InvalidRecord);
2958      Type *OpTy = getTypeByID(Record[0]);
2959      Value *Op = getValue(Record, 1, NextValueNo, OpTy);
2960      Type *ResTy = getTypeByID(Record[2]);
2961      if (!OpTy || !Op || !ResTy)
2962        return Error(InvalidRecord);
2963      I = new VAArgInst(Op, ResTy);
2964      InstructionList.push_back(I);
2965      break;
2966    }
2967    }
2968
2969    // Add instruction to end of current BB.  If there is no current BB, reject
2970    // this file.
2971    if (CurBB == 0) {
2972      delete I;
2973      return Error(InvalidInstructionWithNoBB);
2974    }
2975    CurBB->getInstList().push_back(I);
2976
2977    // If this was a terminator instruction, move to the next block.
2978    if (isa<TerminatorInst>(I)) {
2979      ++CurBBNo;
2980      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2981    }
2982
2983    // Non-void values get registered in the value table for future use.
2984    if (I && !I->getType()->isVoidTy())
2985      ValueList.AssignValue(I, NextValueNo++);
2986  }
2987
2988OutOfRecordLoop:
2989
2990  // Check the function list for unresolved values.
2991  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2992    if (A->getParent() == 0) {
2993      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2994      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2995        if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2996          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2997          delete A;
2998        }
2999      }
3000      return Error(NeverResolvedValueFoundInFunction);
3001    }
3002  }
3003
3004  // FIXME: Check for unresolved forward-declared metadata references
3005  // and clean up leaks.
3006
3007  // See if anything took the address of blocks in this function.  If so,
3008  // resolve them now.
3009  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
3010    BlockAddrFwdRefs.find(F);
3011  if (BAFRI != BlockAddrFwdRefs.end()) {
3012    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
3013    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
3014      unsigned BlockIdx = RefList[i].first;
3015      if (BlockIdx >= FunctionBBs.size())
3016        return Error(InvalidID);
3017
3018      GlobalVariable *FwdRef = RefList[i].second;
3019      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
3020      FwdRef->eraseFromParent();
3021    }
3022
3023    BlockAddrFwdRefs.erase(BAFRI);
3024  }
3025
3026  // Trim the value list down to the size it was before we parsed this function.
3027  ValueList.shrinkTo(ModuleValueListSize);
3028  MDValueList.shrinkTo(ModuleMDValueListSize);
3029  std::vector<BasicBlock*>().swap(FunctionBBs);
3030  return error_code::success();
3031}
3032
3033/// Find the function body in the bitcode stream
3034error_code BitcodeReader::FindFunctionInStream(Function *F,
3035       DenseMap<Function*, uint64_t>::iterator DeferredFunctionInfoIterator) {
3036  while (DeferredFunctionInfoIterator->second == 0) {
3037    if (Stream.AtEndOfStream())
3038      return Error(CouldNotFindFunctionInStream);
3039    // ParseModule will parse the next body in the stream and set its
3040    // position in the DeferredFunctionInfo map.
3041    if (error_code EC = ParseModule(true))
3042      return EC;
3043  }
3044  return error_code::success();
3045}
3046
3047//===----------------------------------------------------------------------===//
3048// GVMaterializer implementation
3049//===----------------------------------------------------------------------===//
3050
3051
3052bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
3053  if (const Function *F = dyn_cast<Function>(GV)) {
3054    return F->isDeclaration() &&
3055      DeferredFunctionInfo.count(const_cast<Function*>(F));
3056  }
3057  return false;
3058}
3059
3060error_code BitcodeReader::Materialize(GlobalValue *GV) {
3061  Function *F = dyn_cast<Function>(GV);
3062  // If it's not a function or is already material, ignore the request.
3063  if (!F || !F->isMaterializable())
3064    return error_code::success();
3065
3066  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
3067  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
3068  // If its position is recorded as 0, its body is somewhere in the stream
3069  // but we haven't seen it yet.
3070  if (DFII->second == 0 && LazyStreamer)
3071    if (error_code EC = FindFunctionInStream(F, DFII))
3072      return EC;
3073
3074  // Move the bit stream to the saved position of the deferred function body.
3075  Stream.JumpToBit(DFII->second);
3076
3077  if (error_code EC = ParseFunctionBody(F))
3078    return EC;
3079
3080  // Upgrade any old intrinsic calls in the function.
3081  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
3082       E = UpgradedIntrinsics.end(); I != E; ++I) {
3083    if (I->first != I->second) {
3084      for (Value::use_iterator UI = I->first->use_begin(),
3085           UE = I->first->use_end(); UI != UE; ) {
3086        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
3087          UpgradeIntrinsicCall(CI, I->second);
3088      }
3089    }
3090  }
3091
3092  return error_code::success();
3093}
3094
3095bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
3096  const Function *F = dyn_cast<Function>(GV);
3097  if (!F || F->isDeclaration())
3098    return false;
3099  return DeferredFunctionInfo.count(const_cast<Function*>(F));
3100}
3101
3102void BitcodeReader::Dematerialize(GlobalValue *GV) {
3103  Function *F = dyn_cast<Function>(GV);
3104  // If this function isn't dematerializable, this is a noop.
3105  if (!F || !isDematerializable(F))
3106    return;
3107
3108  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
3109
3110  // Just forget the function body, we can remat it later.
3111  F->deleteBody();
3112}
3113
3114
3115error_code BitcodeReader::MaterializeModule(Module *M) {
3116  assert(M == TheModule &&
3117         "Can only Materialize the Module this BitcodeReader is attached to.");
3118  // Iterate over the module, deserializing any functions that are still on
3119  // disk.
3120  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
3121       F != E; ++F) {
3122    if (F->isMaterializable()) {
3123      if (error_code EC = Materialize(F))
3124        return EC;
3125    }
3126  }
3127  // At this point, if there are any function bodies, the current bit is
3128  // pointing to the END_BLOCK record after them. Now make sure the rest
3129  // of the bits in the module have been read.
3130  if (NextUnreadBit)
3131    ParseModule(true);
3132
3133  // Upgrade any intrinsic calls that slipped through (should not happen!) and
3134  // delete the old functions to clean up. We can't do this unless the entire
3135  // module is materialized because there could always be another function body
3136  // with calls to the old function.
3137  for (std::vector<std::pair<Function*, Function*> >::iterator I =
3138       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
3139    if (I->first != I->second) {
3140      for (Value::use_iterator UI = I->first->use_begin(),
3141           UE = I->first->use_end(); UI != UE; ) {
3142        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
3143          UpgradeIntrinsicCall(CI, I->second);
3144      }
3145      if (!I->first->use_empty())
3146        I->first->replaceAllUsesWith(I->second);
3147      I->first->eraseFromParent();
3148    }
3149  }
3150  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
3151
3152  for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
3153    UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
3154
3155  UpgradeDebugInfo(*M);
3156  return error_code::success();
3157}
3158
3159error_code BitcodeReader::InitStream() {
3160  if (LazyStreamer)
3161    return InitLazyStream();
3162  return InitStreamFromBuffer();
3163}
3164
3165error_code BitcodeReader::InitStreamFromBuffer() {
3166  const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
3167  const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
3168
3169  if (Buffer->getBufferSize() & 3) {
3170    if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
3171      return Error(InvalidBitcodeSignature);
3172    else
3173      return Error(BitcodeStreamInvalidSize);
3174  }
3175
3176  // If we have a wrapper header, parse it and ignore the non-bc file contents.
3177  // The magic number is 0x0B17C0DE stored in little endian.
3178  if (isBitcodeWrapper(BufPtr, BufEnd))
3179    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
3180      return Error(InvalidBitcodeWrapperHeader);
3181
3182  StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
3183  Stream.init(*StreamFile);
3184
3185  return error_code::success();
3186}
3187
3188error_code BitcodeReader::InitLazyStream() {
3189  // Check and strip off the bitcode wrapper; BitstreamReader expects never to
3190  // see it.
3191  StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer);
3192  StreamFile.reset(new BitstreamReader(Bytes));
3193  Stream.init(*StreamFile);
3194
3195  unsigned char buf[16];
3196  if (Bytes->readBytes(0, 16, buf) == -1)
3197    return Error(BitcodeStreamInvalidSize);
3198
3199  if (!isBitcode(buf, buf + 16))
3200    return Error(InvalidBitcodeSignature);
3201
3202  if (isBitcodeWrapper(buf, buf + 4)) {
3203    const unsigned char *bitcodeStart = buf;
3204    const unsigned char *bitcodeEnd = buf + 16;
3205    SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
3206    Bytes->dropLeadingBytes(bitcodeStart - buf);
3207    Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart);
3208  }
3209  return error_code::success();
3210}
3211
3212namespace {
3213class BitcodeErrorCategoryType : public _do_message {
3214  const char *name() const LLVM_OVERRIDE {
3215    return "llvm.bitcode";
3216  }
3217  std::string message(int IE) const LLVM_OVERRIDE {
3218    BitcodeReader::ErrorType E = static_cast<BitcodeReader::ErrorType>(IE);
3219    switch (E) {
3220    case BitcodeReader::BitcodeStreamInvalidSize:
3221      return "Bitcode stream length should be >= 16 bytes and a multiple of 4";
3222    case BitcodeReader::ConflictingMETADATA_KINDRecords:
3223      return "Conflicting METADATA_KIND records";
3224    case BitcodeReader::CouldNotFindFunctionInStream:
3225      return "Could not find function in stream";
3226    case BitcodeReader::ExpectedConstant:
3227      return "Expected a constant";
3228    case BitcodeReader::InsufficientFunctionProtos:
3229      return "Insufficient function protos";
3230    case BitcodeReader::InvalidBitcodeSignature:
3231      return "Invalid bitcode signature";
3232    case BitcodeReader::InvalidBitcodeWrapperHeader:
3233      return "Invalid bitcode wrapper header";
3234    case BitcodeReader::InvalidConstantReference:
3235      return "Invalid ronstant reference";
3236    case BitcodeReader::InvalidID:
3237      return "Invalid ID";
3238    case BitcodeReader::InvalidInstructionWithNoBB:
3239      return "Invalid instruction with no BB";
3240    case BitcodeReader::InvalidRecord:
3241      return "Invalid record";
3242    case BitcodeReader::InvalidTypeForValue:
3243      return "Invalid type for value";
3244    case BitcodeReader::InvalidTYPETable:
3245      return "Invalid TYPE table";
3246    case BitcodeReader::InvalidType:
3247      return "Invalid type";
3248    case BitcodeReader::MalformedBlock:
3249      return "Malformed block";
3250    case BitcodeReader::MalformedGlobalInitializerSet:
3251      return "Malformed global initializer set";
3252    case BitcodeReader::InvalidMultipleBlocks:
3253      return "Invalid multiple blocks";
3254    case BitcodeReader::NeverResolvedValueFoundInFunction:
3255      return "Never resolved value found in function";
3256    case BitcodeReader::InvalidValue:
3257      return "Invalid value";
3258    }
3259    llvm_unreachable("Unknown error type!");
3260  }
3261};
3262}
3263
3264const error_category &BitcodeReader::BitcodeErrorCategory() {
3265  static BitcodeErrorCategoryType O;
3266  return O;
3267}
3268
3269//===----------------------------------------------------------------------===//
3270// External interface
3271//===----------------------------------------------------------------------===//
3272
3273/// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
3274///
3275Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
3276                                   LLVMContext& Context,
3277                                   std::string *ErrMsg) {
3278  Module *M = new Module(Buffer->getBufferIdentifier(), Context);
3279  BitcodeReader *R = new BitcodeReader(Buffer, Context);
3280  M->setMaterializer(R);
3281  if (error_code EC = R->ParseBitcodeInto(M)) {
3282    if (ErrMsg)
3283      *ErrMsg = EC.message();
3284
3285    delete M;  // Also deletes R.
3286    return 0;
3287  }
3288  // Have the BitcodeReader dtor delete 'Buffer'.
3289  R->setBufferOwned(true);
3290
3291  R->materializeForwardReferencedFunctions();
3292
3293  return M;
3294}
3295
3296
3297Module *llvm::getStreamedBitcodeModule(const std::string &name,
3298                                       DataStreamer *streamer,
3299                                       LLVMContext &Context,
3300                                       std::string *ErrMsg) {
3301  Module *M = new Module(name, Context);
3302  BitcodeReader *R = new BitcodeReader(streamer, Context);
3303  M->setMaterializer(R);
3304  if (error_code EC = R->ParseBitcodeInto(M)) {
3305    if (ErrMsg)
3306      *ErrMsg = EC.message();
3307    delete M;  // Also deletes R.
3308    return 0;
3309  }
3310  R->setBufferOwned(false); // no buffer to delete
3311  return M;
3312}
3313
3314/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
3315/// If an error occurs, return null and fill in *ErrMsg if non-null.
3316Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
3317                               std::string *ErrMsg){
3318  Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
3319  if (!M) return 0;
3320
3321  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
3322  // there was an error.
3323  static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
3324
3325  // Read in the entire module, and destroy the BitcodeReader.
3326  if (M->MaterializeAllPermanently(ErrMsg)) {
3327    delete M;
3328    return 0;
3329  }
3330
3331  // TODO: Restore the use-lists to the in-memory state when the bitcode was
3332  // written.  We must defer until the Module has been fully materialized.
3333
3334  return M;
3335}
3336
3337std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
3338                                         LLVMContext& Context,
3339                                         std::string *ErrMsg) {
3340  BitcodeReader *R = new BitcodeReader(Buffer, Context);
3341  // Don't let the BitcodeReader dtor delete 'Buffer'.
3342  R->setBufferOwned(false);
3343
3344  std::string Triple("");
3345  if (error_code EC = R->ParseTriple(Triple))
3346    if (ErrMsg)
3347      *ErrMsg = EC.message();
3348
3349  delete R;
3350  return Triple;
3351}
3352