LLParser.cpp revision 263508
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/ADT/SmallPtrSet.h"
16#include "llvm/AutoUpgrade.h"
17#include "llvm/IR/CallingConv.h"
18#include "llvm/IR/Constants.h"
19#include "llvm/IR/DerivedTypes.h"
20#include "llvm/IR/InlineAsm.h"
21#include "llvm/IR/Instructions.h"
22#include "llvm/IR/LLVMContext.h"
23#include "llvm/IR/Module.h"
24#include "llvm/IR/Operator.h"
25#include "llvm/IR/ValueSymbolTable.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28using namespace llvm;
29
30static std::string getTypeString(Type *T) {
31  std::string Result;
32  raw_string_ostream Tmp(Result);
33  Tmp << *T;
34  return Tmp.str();
35}
36
37/// Run: module ::= toplevelentity*
38bool LLParser::Run() {
39  // Prime the lexer.
40  Lex.Lex();
41
42  return ParseTopLevelEntities() ||
43         ValidateEndOfModule();
44}
45
46/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
47/// module.
48bool LLParser::ValidateEndOfModule() {
49  // Handle any instruction metadata forward references.
50  if (!ForwardRefInstMetadata.empty()) {
51    for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
52         I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
53         I != E; ++I) {
54      Instruction *Inst = I->first;
55      const std::vector<MDRef> &MDList = I->second;
56
57      for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
58        unsigned SlotNo = MDList[i].MDSlot;
59
60        if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
61          return Error(MDList[i].Loc, "use of undefined metadata '!" +
62                       Twine(SlotNo) + "'");
63        Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
64      }
65    }
66    ForwardRefInstMetadata.clear();
67  }
68
69  for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
70    UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
71
72  // Handle any function attribute group forward references.
73  for (std::map<Value*, std::vector<unsigned> >::iterator
74         I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end();
75         I != E; ++I) {
76    Value *V = I->first;
77    std::vector<unsigned> &Vec = I->second;
78    AttrBuilder B;
79
80    for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end();
81         VI != VE; ++VI)
82      B.merge(NumberedAttrBuilders[*VI]);
83
84    if (Function *Fn = dyn_cast<Function>(V)) {
85      AttributeSet AS = Fn->getAttributes();
86      AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
87      AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
88                               AS.getFnAttributes());
89
90      FnAttrs.merge(B);
91
92      // If the alignment was parsed as an attribute, move to the alignment
93      // field.
94      if (FnAttrs.hasAlignmentAttr()) {
95        Fn->setAlignment(FnAttrs.getAlignment());
96        FnAttrs.removeAttribute(Attribute::Alignment);
97      }
98
99      AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
100                            AttributeSet::get(Context,
101                                              AttributeSet::FunctionIndex,
102                                              FnAttrs));
103      Fn->setAttributes(AS);
104    } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
105      AttributeSet AS = CI->getAttributes();
106      AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
107      AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
108                               AS.getFnAttributes());
109      FnAttrs.merge(B);
110      AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
111                            AttributeSet::get(Context,
112                                              AttributeSet::FunctionIndex,
113                                              FnAttrs));
114      CI->setAttributes(AS);
115    } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
116      AttributeSet AS = II->getAttributes();
117      AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
118      AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
119                               AS.getFnAttributes());
120      FnAttrs.merge(B);
121      AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
122                            AttributeSet::get(Context,
123                                              AttributeSet::FunctionIndex,
124                                              FnAttrs));
125      II->setAttributes(AS);
126    } else {
127      llvm_unreachable("invalid object with forward attribute group reference");
128    }
129  }
130
131  // If there are entries in ForwardRefBlockAddresses at this point, they are
132  // references after the function was defined.  Resolve those now.
133  while (!ForwardRefBlockAddresses.empty()) {
134    // Okay, we are referencing an already-parsed function, resolve them now.
135    Function *TheFn = 0;
136    const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
137    if (Fn.Kind == ValID::t_GlobalName)
138      TheFn = M->getFunction(Fn.StrVal);
139    else if (Fn.UIntVal < NumberedVals.size())
140      TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
141
142    if (TheFn == 0)
143      return Error(Fn.Loc, "unknown function referenced by blockaddress");
144
145    // Resolve all these references.
146    if (ResolveForwardRefBlockAddresses(TheFn,
147                                      ForwardRefBlockAddresses.begin()->second,
148                                        0))
149      return true;
150
151    ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
152  }
153
154  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i)
155    if (NumberedTypes[i].second.isValid())
156      return Error(NumberedTypes[i].second,
157                   "use of undefined type '%" + Twine(i) + "'");
158
159  for (StringMap<std::pair<Type*, LocTy> >::iterator I =
160       NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
161    if (I->second.second.isValid())
162      return Error(I->second.second,
163                   "use of undefined type named '" + I->getKey() + "'");
164
165  if (!ForwardRefVals.empty())
166    return Error(ForwardRefVals.begin()->second.second,
167                 "use of undefined value '@" + ForwardRefVals.begin()->first +
168                 "'");
169
170  if (!ForwardRefValIDs.empty())
171    return Error(ForwardRefValIDs.begin()->second.second,
172                 "use of undefined value '@" +
173                 Twine(ForwardRefValIDs.begin()->first) + "'");
174
175  if (!ForwardRefMDNodes.empty())
176    return Error(ForwardRefMDNodes.begin()->second.second,
177                 "use of undefined metadata '!" +
178                 Twine(ForwardRefMDNodes.begin()->first) + "'");
179
180
181  // Look for intrinsic functions and CallInst that need to be upgraded
182  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
183    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
184
185  UpgradeDebugInfo(*M);
186
187  return false;
188}
189
190bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
191                             std::vector<std::pair<ValID, GlobalValue*> > &Refs,
192                                               PerFunctionState *PFS) {
193  // Loop over all the references, resolving them.
194  for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
195    BasicBlock *Res;
196    if (PFS) {
197      if (Refs[i].first.Kind == ValID::t_LocalName)
198        Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
199      else
200        Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
201    } else if (Refs[i].first.Kind == ValID::t_LocalID) {
202      return Error(Refs[i].first.Loc,
203       "cannot take address of numeric label after the function is defined");
204    } else {
205      Res = dyn_cast_or_null<BasicBlock>(
206                     TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
207    }
208
209    if (Res == 0)
210      return Error(Refs[i].first.Loc,
211                   "referenced value is not a basic block");
212
213    // Get the BlockAddress for this and update references to use it.
214    BlockAddress *BA = BlockAddress::get(TheFn, Res);
215    Refs[i].second->replaceAllUsesWith(BA);
216    Refs[i].second->eraseFromParent();
217  }
218  return false;
219}
220
221
222//===----------------------------------------------------------------------===//
223// Top-Level Entities
224//===----------------------------------------------------------------------===//
225
226bool LLParser::ParseTopLevelEntities() {
227  while (1) {
228    switch (Lex.getKind()) {
229    default:         return TokError("expected top-level entity");
230    case lltok::Eof: return false;
231    case lltok::kw_declare: if (ParseDeclare()) return true; break;
232    case lltok::kw_define:  if (ParseDefine()) return true; break;
233    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
234    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
235    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
236    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
237    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
238    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
239    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
240    case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
241    case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
242
243    // The Global variable production with no name can have many different
244    // optional leading prefixes, the production is:
245    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
246    //               OptionalAddrSpace OptionalUnNammedAddr
247    //               ('constant'|'global') ...
248    case lltok::kw_private:             // OptionalLinkage
249    case lltok::kw_linker_private:      // OptionalLinkage
250    case lltok::kw_linker_private_weak: // OptionalLinkage
251    case lltok::kw_internal:            // OptionalLinkage
252    case lltok::kw_weak:                // OptionalLinkage
253    case lltok::kw_weak_odr:            // OptionalLinkage
254    case lltok::kw_linkonce:            // OptionalLinkage
255    case lltok::kw_linkonce_odr:        // OptionalLinkage
256    case lltok::kw_appending:           // OptionalLinkage
257    case lltok::kw_dllexport:           // OptionalLinkage
258    case lltok::kw_common:              // OptionalLinkage
259    case lltok::kw_dllimport:           // OptionalLinkage
260    case lltok::kw_extern_weak:         // OptionalLinkage
261    case lltok::kw_external: {          // OptionalLinkage
262      unsigned Linkage, Visibility;
263      if (ParseOptionalLinkage(Linkage) ||
264          ParseOptionalVisibility(Visibility) ||
265          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
266        return true;
267      break;
268    }
269    case lltok::kw_default:       // OptionalVisibility
270    case lltok::kw_hidden:        // OptionalVisibility
271    case lltok::kw_protected: {   // OptionalVisibility
272      unsigned Visibility;
273      if (ParseOptionalVisibility(Visibility) ||
274          ParseGlobal("", SMLoc(), 0, false, Visibility))
275        return true;
276      break;
277    }
278
279    case lltok::kw_thread_local:  // OptionalThreadLocal
280    case lltok::kw_addrspace:     // OptionalAddrSpace
281    case lltok::kw_constant:      // GlobalType
282    case lltok::kw_global:        // GlobalType
283      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
284      break;
285
286    case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
287    }
288  }
289}
290
291
292/// toplevelentity
293///   ::= 'module' 'asm' STRINGCONSTANT
294bool LLParser::ParseModuleAsm() {
295  assert(Lex.getKind() == lltok::kw_module);
296  Lex.Lex();
297
298  std::string AsmStr;
299  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
300      ParseStringConstant(AsmStr)) return true;
301
302  M->appendModuleInlineAsm(AsmStr);
303  return false;
304}
305
306/// toplevelentity
307///   ::= 'target' 'triple' '=' STRINGCONSTANT
308///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
309bool LLParser::ParseTargetDefinition() {
310  assert(Lex.getKind() == lltok::kw_target);
311  std::string Str;
312  switch (Lex.Lex()) {
313  default: return TokError("unknown target property");
314  case lltok::kw_triple:
315    Lex.Lex();
316    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
317        ParseStringConstant(Str))
318      return true;
319    M->setTargetTriple(Str);
320    return false;
321  case lltok::kw_datalayout:
322    Lex.Lex();
323    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
324        ParseStringConstant(Str))
325      return true;
326    M->setDataLayout(Str);
327    return false;
328  }
329}
330
331/// toplevelentity
332///   ::= 'deplibs' '=' '[' ']'
333///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
334/// FIXME: Remove in 4.0. Currently parse, but ignore.
335bool LLParser::ParseDepLibs() {
336  assert(Lex.getKind() == lltok::kw_deplibs);
337  Lex.Lex();
338  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
339      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
340    return true;
341
342  if (EatIfPresent(lltok::rsquare))
343    return false;
344
345  do {
346    std::string Str;
347    if (ParseStringConstant(Str)) return true;
348  } while (EatIfPresent(lltok::comma));
349
350  return ParseToken(lltok::rsquare, "expected ']' at end of list");
351}
352
353/// ParseUnnamedType:
354///   ::= LocalVarID '=' 'type' type
355bool LLParser::ParseUnnamedType() {
356  LocTy TypeLoc = Lex.getLoc();
357  unsigned TypeID = Lex.getUIntVal();
358  Lex.Lex(); // eat LocalVarID;
359
360  if (ParseToken(lltok::equal, "expected '=' after name") ||
361      ParseToken(lltok::kw_type, "expected 'type' after '='"))
362    return true;
363
364  if (TypeID >= NumberedTypes.size())
365    NumberedTypes.resize(TypeID+1);
366
367  Type *Result = 0;
368  if (ParseStructDefinition(TypeLoc, "",
369                            NumberedTypes[TypeID], Result)) return true;
370
371  if (!isa<StructType>(Result)) {
372    std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
373    if (Entry.first)
374      return Error(TypeLoc, "non-struct types may not be recursive");
375    Entry.first = Result;
376    Entry.second = SMLoc();
377  }
378
379  return false;
380}
381
382
383/// toplevelentity
384///   ::= LocalVar '=' 'type' type
385bool LLParser::ParseNamedType() {
386  std::string Name = Lex.getStrVal();
387  LocTy NameLoc = Lex.getLoc();
388  Lex.Lex();  // eat LocalVar.
389
390  if (ParseToken(lltok::equal, "expected '=' after name") ||
391      ParseToken(lltok::kw_type, "expected 'type' after name"))
392    return true;
393
394  Type *Result = 0;
395  if (ParseStructDefinition(NameLoc, Name,
396                            NamedTypes[Name], Result)) return true;
397
398  if (!isa<StructType>(Result)) {
399    std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
400    if (Entry.first)
401      return Error(NameLoc, "non-struct types may not be recursive");
402    Entry.first = Result;
403    Entry.second = SMLoc();
404  }
405
406  return false;
407}
408
409
410/// toplevelentity
411///   ::= 'declare' FunctionHeader
412bool LLParser::ParseDeclare() {
413  assert(Lex.getKind() == lltok::kw_declare);
414  Lex.Lex();
415
416  Function *F;
417  return ParseFunctionHeader(F, false);
418}
419
420/// toplevelentity
421///   ::= 'define' FunctionHeader '{' ...
422bool LLParser::ParseDefine() {
423  assert(Lex.getKind() == lltok::kw_define);
424  Lex.Lex();
425
426  Function *F;
427  return ParseFunctionHeader(F, true) ||
428         ParseFunctionBody(*F);
429}
430
431/// ParseGlobalType
432///   ::= 'constant'
433///   ::= 'global'
434bool LLParser::ParseGlobalType(bool &IsConstant) {
435  if (Lex.getKind() == lltok::kw_constant)
436    IsConstant = true;
437  else if (Lex.getKind() == lltok::kw_global)
438    IsConstant = false;
439  else {
440    IsConstant = false;
441    return TokError("expected 'global' or 'constant'");
442  }
443  Lex.Lex();
444  return false;
445}
446
447/// ParseUnnamedGlobal:
448///   OptionalVisibility ALIAS ...
449///   OptionalLinkage OptionalVisibility ...   -> global variable
450///   GlobalID '=' OptionalVisibility ALIAS ...
451///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
452bool LLParser::ParseUnnamedGlobal() {
453  unsigned VarID = NumberedVals.size();
454  std::string Name;
455  LocTy NameLoc = Lex.getLoc();
456
457  // Handle the GlobalID form.
458  if (Lex.getKind() == lltok::GlobalID) {
459    if (Lex.getUIntVal() != VarID)
460      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
461                   Twine(VarID) + "'");
462    Lex.Lex(); // eat GlobalID;
463
464    if (ParseToken(lltok::equal, "expected '=' after name"))
465      return true;
466  }
467
468  bool HasLinkage;
469  unsigned Linkage, Visibility;
470  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
471      ParseOptionalVisibility(Visibility))
472    return true;
473
474  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
475    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
476  return ParseAlias(Name, NameLoc, Visibility);
477}
478
479/// ParseNamedGlobal:
480///   GlobalVar '=' OptionalVisibility ALIAS ...
481///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
482bool LLParser::ParseNamedGlobal() {
483  assert(Lex.getKind() == lltok::GlobalVar);
484  LocTy NameLoc = Lex.getLoc();
485  std::string Name = Lex.getStrVal();
486  Lex.Lex();
487
488  bool HasLinkage;
489  unsigned Linkage, Visibility;
490  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
491      ParseOptionalLinkage(Linkage, HasLinkage) ||
492      ParseOptionalVisibility(Visibility))
493    return true;
494
495  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
496    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
497  return ParseAlias(Name, NameLoc, Visibility);
498}
499
500// MDString:
501//   ::= '!' STRINGCONSTANT
502bool LLParser::ParseMDString(MDString *&Result) {
503  std::string Str;
504  if (ParseStringConstant(Str)) return true;
505  Result = MDString::get(Context, Str);
506  return false;
507}
508
509// MDNode:
510//   ::= '!' MDNodeNumber
511//
512/// This version of ParseMDNodeID returns the slot number and null in the case
513/// of a forward reference.
514bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
515  // !{ ..., !42, ... }
516  if (ParseUInt32(SlotNo)) return true;
517
518  // Check existing MDNode.
519  if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
520    Result = NumberedMetadata[SlotNo];
521  else
522    Result = 0;
523  return false;
524}
525
526bool LLParser::ParseMDNodeID(MDNode *&Result) {
527  // !{ ..., !42, ... }
528  unsigned MID = 0;
529  if (ParseMDNodeID(Result, MID)) return true;
530
531  // If not a forward reference, just return it now.
532  if (Result) return false;
533
534  // Otherwise, create MDNode forward reference.
535  MDNode *FwdNode = MDNode::getTemporary(Context, None);
536  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
537
538  if (NumberedMetadata.size() <= MID)
539    NumberedMetadata.resize(MID+1);
540  NumberedMetadata[MID] = FwdNode;
541  Result = FwdNode;
542  return false;
543}
544
545/// ParseNamedMetadata:
546///   !foo = !{ !1, !2 }
547bool LLParser::ParseNamedMetadata() {
548  assert(Lex.getKind() == lltok::MetadataVar);
549  std::string Name = Lex.getStrVal();
550  Lex.Lex();
551
552  if (ParseToken(lltok::equal, "expected '=' here") ||
553      ParseToken(lltok::exclaim, "Expected '!' here") ||
554      ParseToken(lltok::lbrace, "Expected '{' here"))
555    return true;
556
557  NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
558  if (Lex.getKind() != lltok::rbrace)
559    do {
560      if (ParseToken(lltok::exclaim, "Expected '!' here"))
561        return true;
562
563      MDNode *N = 0;
564      if (ParseMDNodeID(N)) return true;
565      NMD->addOperand(N);
566    } while (EatIfPresent(lltok::comma));
567
568  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
569    return true;
570
571  return false;
572}
573
574/// ParseStandaloneMetadata:
575///   !42 = !{...}
576bool LLParser::ParseStandaloneMetadata() {
577  assert(Lex.getKind() == lltok::exclaim);
578  Lex.Lex();
579  unsigned MetadataID = 0;
580
581  LocTy TyLoc;
582  Type *Ty = 0;
583  SmallVector<Value *, 16> Elts;
584  if (ParseUInt32(MetadataID) ||
585      ParseToken(lltok::equal, "expected '=' here") ||
586      ParseType(Ty, TyLoc) ||
587      ParseToken(lltok::exclaim, "Expected '!' here") ||
588      ParseToken(lltok::lbrace, "Expected '{' here") ||
589      ParseMDNodeVector(Elts, NULL) ||
590      ParseToken(lltok::rbrace, "expected end of metadata node"))
591    return true;
592
593  MDNode *Init = MDNode::get(Context, Elts);
594
595  // See if this was forward referenced, if so, handle it.
596  std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
597    FI = ForwardRefMDNodes.find(MetadataID);
598  if (FI != ForwardRefMDNodes.end()) {
599    MDNode *Temp = FI->second.first;
600    Temp->replaceAllUsesWith(Init);
601    MDNode::deleteTemporary(Temp);
602    ForwardRefMDNodes.erase(FI);
603
604    assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
605  } else {
606    if (MetadataID >= NumberedMetadata.size())
607      NumberedMetadata.resize(MetadataID+1);
608
609    if (NumberedMetadata[MetadataID] != 0)
610      return TokError("Metadata id is already used");
611    NumberedMetadata[MetadataID] = Init;
612  }
613
614  return false;
615}
616
617/// ParseAlias:
618///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
619/// Aliasee
620///   ::= TypeAndValue
621///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
622///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
623///
624/// Everything through visibility has already been parsed.
625///
626bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
627                          unsigned Visibility) {
628  assert(Lex.getKind() == lltok::kw_alias);
629  Lex.Lex();
630  LocTy LinkageLoc = Lex.getLoc();
631  unsigned L;
632  if (ParseOptionalLinkage(L))
633    return true;
634
635  GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
636
637  if(!GlobalAlias::isValidLinkage(Linkage))
638    return Error(LinkageLoc, "invalid linkage type for alias");
639
640  Constant *Aliasee;
641  LocTy AliaseeLoc = Lex.getLoc();
642  if (Lex.getKind() != lltok::kw_bitcast &&
643      Lex.getKind() != lltok::kw_getelementptr) {
644    if (ParseGlobalTypeAndValue(Aliasee)) return true;
645  } else {
646    // The bitcast dest type is not present, it is implied by the dest type.
647    ValID ID;
648    if (ParseValID(ID)) return true;
649    if (ID.Kind != ValID::t_Constant)
650      return Error(AliaseeLoc, "invalid aliasee");
651    Aliasee = ID.ConstantVal;
652  }
653
654  if (!Aliasee->getType()->isPointerTy())
655    return Error(AliaseeLoc, "alias must have pointer type");
656
657  // Okay, create the alias but do not insert it into the module yet.
658  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
659                                    (GlobalValue::LinkageTypes)Linkage, Name,
660                                    Aliasee);
661  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
662
663  // See if this value already exists in the symbol table.  If so, it is either
664  // a redefinition or a definition of a forward reference.
665  if (GlobalValue *Val = M->getNamedValue(Name)) {
666    // See if this was a redefinition.  If so, there is no entry in
667    // ForwardRefVals.
668    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
669      I = ForwardRefVals.find(Name);
670    if (I == ForwardRefVals.end())
671      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
672
673    // Otherwise, this was a definition of forward ref.  Verify that types
674    // agree.
675    if (Val->getType() != GA->getType())
676      return Error(NameLoc,
677              "forward reference and definition of alias have different types");
678
679    // If they agree, just RAUW the old value with the alias and remove the
680    // forward ref info.
681    Val->replaceAllUsesWith(GA);
682    Val->eraseFromParent();
683    ForwardRefVals.erase(I);
684  }
685
686  // Insert into the module, we know its name won't collide now.
687  M->getAliasList().push_back(GA);
688  assert(GA->getName() == Name && "Should not be a name conflict!");
689
690  return false;
691}
692
693/// ParseGlobal
694///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
695///       OptionalAddrSpace OptionalUnNammedAddr
696///       OptionalExternallyInitialized GlobalType Type Const
697///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
698///       OptionalAddrSpace OptionalUnNammedAddr
699///       OptionalExternallyInitialized GlobalType Type Const
700///
701/// Everything through visibility has been parsed already.
702///
703bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
704                           unsigned Linkage, bool HasLinkage,
705                           unsigned Visibility) {
706  unsigned AddrSpace;
707  bool IsConstant, UnnamedAddr, IsExternallyInitialized;
708  GlobalVariable::ThreadLocalMode TLM;
709  LocTy UnnamedAddrLoc;
710  LocTy IsExternallyInitializedLoc;
711  LocTy TyLoc;
712
713  Type *Ty = 0;
714  if (ParseOptionalThreadLocal(TLM) ||
715      ParseOptionalAddrSpace(AddrSpace) ||
716      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
717                         &UnnamedAddrLoc) ||
718      ParseOptionalToken(lltok::kw_externally_initialized,
719                         IsExternallyInitialized,
720                         &IsExternallyInitializedLoc) ||
721      ParseGlobalType(IsConstant) ||
722      ParseType(Ty, TyLoc))
723    return true;
724
725  // If the linkage is specified and is external, then no initializer is
726  // present.
727  Constant *Init = 0;
728  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
729                      Linkage != GlobalValue::ExternalWeakLinkage &&
730                      Linkage != GlobalValue::ExternalLinkage)) {
731    if (ParseGlobalValue(Ty, Init))
732      return true;
733  }
734
735  if (Ty->isFunctionTy() || Ty->isLabelTy())
736    return Error(TyLoc, "invalid type for global variable");
737
738  GlobalVariable *GV = 0;
739
740  // See if the global was forward referenced, if so, use the global.
741  if (!Name.empty()) {
742    if (GlobalValue *GVal = M->getNamedValue(Name)) {
743      if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
744        return Error(NameLoc, "redefinition of global '@" + Name + "'");
745      GV = cast<GlobalVariable>(GVal);
746    }
747  } else {
748    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
749      I = ForwardRefValIDs.find(NumberedVals.size());
750    if (I != ForwardRefValIDs.end()) {
751      GV = cast<GlobalVariable>(I->second.first);
752      ForwardRefValIDs.erase(I);
753    }
754  }
755
756  if (GV == 0) {
757    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
758                            Name, 0, GlobalVariable::NotThreadLocal,
759                            AddrSpace);
760  } else {
761    if (GV->getType()->getElementType() != Ty)
762      return Error(TyLoc,
763            "forward reference and definition of global have different types");
764
765    // Move the forward-reference to the correct spot in the module.
766    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
767  }
768
769  if (Name.empty())
770    NumberedVals.push_back(GV);
771
772  // Set the parsed properties on the global.
773  if (Init)
774    GV->setInitializer(Init);
775  GV->setConstant(IsConstant);
776  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
777  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
778  GV->setExternallyInitialized(IsExternallyInitialized);
779  GV->setThreadLocalMode(TLM);
780  GV->setUnnamedAddr(UnnamedAddr);
781
782  // Parse attributes on the global.
783  while (Lex.getKind() == lltok::comma) {
784    Lex.Lex();
785
786    if (Lex.getKind() == lltok::kw_section) {
787      Lex.Lex();
788      GV->setSection(Lex.getStrVal());
789      if (ParseToken(lltok::StringConstant, "expected global section string"))
790        return true;
791    } else if (Lex.getKind() == lltok::kw_align) {
792      unsigned Alignment;
793      if (ParseOptionalAlignment(Alignment)) return true;
794      GV->setAlignment(Alignment);
795    } else {
796      TokError("unknown global variable property!");
797    }
798  }
799
800  return false;
801}
802
803/// ParseUnnamedAttrGrp
804///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
805bool LLParser::ParseUnnamedAttrGrp() {
806  assert(Lex.getKind() == lltok::kw_attributes);
807  LocTy AttrGrpLoc = Lex.getLoc();
808  Lex.Lex();
809
810  assert(Lex.getKind() == lltok::AttrGrpID);
811  unsigned VarID = Lex.getUIntVal();
812  std::vector<unsigned> unused;
813  LocTy BuiltinLoc;
814  Lex.Lex();
815
816  if (ParseToken(lltok::equal, "expected '=' here") ||
817      ParseToken(lltok::lbrace, "expected '{' here") ||
818      ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
819                                 BuiltinLoc) ||
820      ParseToken(lltok::rbrace, "expected end of attribute group"))
821    return true;
822
823  if (!NumberedAttrBuilders[VarID].hasAttributes())
824    return Error(AttrGrpLoc, "attribute group has no attributes");
825
826  return false;
827}
828
829/// ParseFnAttributeValuePairs
830///   ::= <attr> | <attr> '=' <value>
831bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
832                                          std::vector<unsigned> &FwdRefAttrGrps,
833                                          bool inAttrGrp, LocTy &BuiltinLoc) {
834  bool HaveError = false;
835
836  B.clear();
837
838  while (true) {
839    lltok::Kind Token = Lex.getKind();
840    if (Token == lltok::kw_builtin)
841      BuiltinLoc = Lex.getLoc();
842    switch (Token) {
843    default:
844      if (!inAttrGrp) return HaveError;
845      return Error(Lex.getLoc(), "unterminated attribute group");
846    case lltok::rbrace:
847      // Finished.
848      return false;
849
850    case lltok::AttrGrpID: {
851      // Allow a function to reference an attribute group:
852      //
853      //   define void @foo() #1 { ... }
854      if (inAttrGrp)
855        HaveError |=
856          Error(Lex.getLoc(),
857              "cannot have an attribute group reference in an attribute group");
858
859      unsigned AttrGrpNum = Lex.getUIntVal();
860      if (inAttrGrp) break;
861
862      // Save the reference to the attribute group. We'll fill it in later.
863      FwdRefAttrGrps.push_back(AttrGrpNum);
864      break;
865    }
866    // Target-dependent attributes:
867    case lltok::StringConstant: {
868      std::string Attr = Lex.getStrVal();
869      Lex.Lex();
870      std::string Val;
871      if (EatIfPresent(lltok::equal) &&
872          ParseStringConstant(Val))
873        return true;
874
875      B.addAttribute(Attr, Val);
876      continue;
877    }
878
879    // Target-independent attributes:
880    case lltok::kw_align: {
881      // As a hack, we allow function alignment to be initially parsed as an
882      // attribute on a function declaration/definition or added to an attribute
883      // group and later moved to the alignment field.
884      unsigned Alignment;
885      if (inAttrGrp) {
886        Lex.Lex();
887        if (ParseToken(lltok::equal, "expected '=' here") ||
888            ParseUInt32(Alignment))
889          return true;
890      } else {
891        if (ParseOptionalAlignment(Alignment))
892          return true;
893      }
894      B.addAlignmentAttr(Alignment);
895      continue;
896    }
897    case lltok::kw_alignstack: {
898      unsigned Alignment;
899      if (inAttrGrp) {
900        Lex.Lex();
901        if (ParseToken(lltok::equal, "expected '=' here") ||
902            ParseUInt32(Alignment))
903          return true;
904      } else {
905        if (ParseOptionalStackAlignment(Alignment))
906          return true;
907      }
908      B.addStackAlignmentAttr(Alignment);
909      continue;
910    }
911    case lltok::kw_alwaysinline:      B.addAttribute(Attribute::AlwaysInline); break;
912    case lltok::kw_builtin:           B.addAttribute(Attribute::Builtin); break;
913    case lltok::kw_cold:              B.addAttribute(Attribute::Cold); break;
914    case lltok::kw_inlinehint:        B.addAttribute(Attribute::InlineHint); break;
915    case lltok::kw_minsize:           B.addAttribute(Attribute::MinSize); break;
916    case lltok::kw_naked:             B.addAttribute(Attribute::Naked); break;
917    case lltok::kw_nobuiltin:         B.addAttribute(Attribute::NoBuiltin); break;
918    case lltok::kw_noduplicate:       B.addAttribute(Attribute::NoDuplicate); break;
919    case lltok::kw_noimplicitfloat:   B.addAttribute(Attribute::NoImplicitFloat); break;
920    case lltok::kw_noinline:          B.addAttribute(Attribute::NoInline); break;
921    case lltok::kw_nonlazybind:       B.addAttribute(Attribute::NonLazyBind); break;
922    case lltok::kw_noredzone:         B.addAttribute(Attribute::NoRedZone); break;
923    case lltok::kw_noreturn:          B.addAttribute(Attribute::NoReturn); break;
924    case lltok::kw_nounwind:          B.addAttribute(Attribute::NoUnwind); break;
925    case lltok::kw_optnone:           B.addAttribute(Attribute::OptimizeNone); break;
926    case lltok::kw_optsize:           B.addAttribute(Attribute::OptimizeForSize); break;
927    case lltok::kw_readnone:          B.addAttribute(Attribute::ReadNone); break;
928    case lltok::kw_readonly:          B.addAttribute(Attribute::ReadOnly); break;
929    case lltok::kw_returns_twice:     B.addAttribute(Attribute::ReturnsTwice); break;
930    case lltok::kw_ssp:               B.addAttribute(Attribute::StackProtect); break;
931    case lltok::kw_sspreq:            B.addAttribute(Attribute::StackProtectReq); break;
932    case lltok::kw_sspstrong:         B.addAttribute(Attribute::StackProtectStrong); break;
933    case lltok::kw_sanitize_address:  B.addAttribute(Attribute::SanitizeAddress); break;
934    case lltok::kw_sanitize_thread:   B.addAttribute(Attribute::SanitizeThread); break;
935    case lltok::kw_sanitize_memory:   B.addAttribute(Attribute::SanitizeMemory); break;
936    case lltok::kw_uwtable:           B.addAttribute(Attribute::UWTable); break;
937
938    // Error handling.
939    case lltok::kw_inreg:
940    case lltok::kw_signext:
941    case lltok::kw_zeroext:
942      HaveError |=
943        Error(Lex.getLoc(),
944              "invalid use of attribute on a function");
945      break;
946    case lltok::kw_byval:
947    case lltok::kw_nest:
948    case lltok::kw_noalias:
949    case lltok::kw_nocapture:
950    case lltok::kw_returned:
951    case lltok::kw_sret:
952      HaveError |=
953        Error(Lex.getLoc(),
954              "invalid use of parameter-only attribute on a function");
955      break;
956    }
957
958    Lex.Lex();
959  }
960}
961
962//===----------------------------------------------------------------------===//
963// GlobalValue Reference/Resolution Routines.
964//===----------------------------------------------------------------------===//
965
966/// GetGlobalVal - Get a value with the specified name or ID, creating a
967/// forward reference record if needed.  This can return null if the value
968/// exists but does not have the right type.
969GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
970                                    LocTy Loc) {
971  PointerType *PTy = dyn_cast<PointerType>(Ty);
972  if (PTy == 0) {
973    Error(Loc, "global variable reference must have pointer type");
974    return 0;
975  }
976
977  // Look this name up in the normal function symbol table.
978  GlobalValue *Val =
979    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
980
981  // If this is a forward reference for the value, see if we already created a
982  // forward ref record.
983  if (Val == 0) {
984    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
985      I = ForwardRefVals.find(Name);
986    if (I != ForwardRefVals.end())
987      Val = I->second.first;
988  }
989
990  // If we have the value in the symbol table or fwd-ref table, return it.
991  if (Val) {
992    if (Val->getType() == Ty) return Val;
993    Error(Loc, "'@" + Name + "' defined with type '" +
994          getTypeString(Val->getType()) + "'");
995    return 0;
996  }
997
998  // Otherwise, create a new forward reference for this value and remember it.
999  GlobalValue *FwdVal;
1000  if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1001    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
1002  else
1003    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
1004                                GlobalValue::ExternalWeakLinkage, 0, Name,
1005                                0, GlobalVariable::NotThreadLocal,
1006                                PTy->getAddressSpace());
1007
1008  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1009  return FwdVal;
1010}
1011
1012GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1013  PointerType *PTy = dyn_cast<PointerType>(Ty);
1014  if (PTy == 0) {
1015    Error(Loc, "global variable reference must have pointer type");
1016    return 0;
1017  }
1018
1019  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1020
1021  // If this is a forward reference for the value, see if we already created a
1022  // forward ref record.
1023  if (Val == 0) {
1024    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
1025      I = ForwardRefValIDs.find(ID);
1026    if (I != ForwardRefValIDs.end())
1027      Val = I->second.first;
1028  }
1029
1030  // If we have the value in the symbol table or fwd-ref table, return it.
1031  if (Val) {
1032    if (Val->getType() == Ty) return Val;
1033    Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1034          getTypeString(Val->getType()) + "'");
1035    return 0;
1036  }
1037
1038  // Otherwise, create a new forward reference for this value and remember it.
1039  GlobalValue *FwdVal;
1040  if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1041    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
1042  else
1043    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
1044                                GlobalValue::ExternalWeakLinkage, 0, "");
1045
1046  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1047  return FwdVal;
1048}
1049
1050
1051//===----------------------------------------------------------------------===//
1052// Helper Routines.
1053//===----------------------------------------------------------------------===//
1054
1055/// ParseToken - If the current token has the specified kind, eat it and return
1056/// success.  Otherwise, emit the specified error and return failure.
1057bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1058  if (Lex.getKind() != T)
1059    return TokError(ErrMsg);
1060  Lex.Lex();
1061  return false;
1062}
1063
1064/// ParseStringConstant
1065///   ::= StringConstant
1066bool LLParser::ParseStringConstant(std::string &Result) {
1067  if (Lex.getKind() != lltok::StringConstant)
1068    return TokError("expected string constant");
1069  Result = Lex.getStrVal();
1070  Lex.Lex();
1071  return false;
1072}
1073
1074/// ParseUInt32
1075///   ::= uint32
1076bool LLParser::ParseUInt32(unsigned &Val) {
1077  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1078    return TokError("expected integer");
1079  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1080  if (Val64 != unsigned(Val64))
1081    return TokError("expected 32-bit integer (too large)");
1082  Val = Val64;
1083  Lex.Lex();
1084  return false;
1085}
1086
1087/// ParseTLSModel
1088///   := 'localdynamic'
1089///   := 'initialexec'
1090///   := 'localexec'
1091bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1092  switch (Lex.getKind()) {
1093    default:
1094      return TokError("expected localdynamic, initialexec or localexec");
1095    case lltok::kw_localdynamic:
1096      TLM = GlobalVariable::LocalDynamicTLSModel;
1097      break;
1098    case lltok::kw_initialexec:
1099      TLM = GlobalVariable::InitialExecTLSModel;
1100      break;
1101    case lltok::kw_localexec:
1102      TLM = GlobalVariable::LocalExecTLSModel;
1103      break;
1104  }
1105
1106  Lex.Lex();
1107  return false;
1108}
1109
1110/// ParseOptionalThreadLocal
1111///   := /*empty*/
1112///   := 'thread_local'
1113///   := 'thread_local' '(' tlsmodel ')'
1114bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1115  TLM = GlobalVariable::NotThreadLocal;
1116  if (!EatIfPresent(lltok::kw_thread_local))
1117    return false;
1118
1119  TLM = GlobalVariable::GeneralDynamicTLSModel;
1120  if (Lex.getKind() == lltok::lparen) {
1121    Lex.Lex();
1122    return ParseTLSModel(TLM) ||
1123      ParseToken(lltok::rparen, "expected ')' after thread local model");
1124  }
1125  return false;
1126}
1127
1128/// ParseOptionalAddrSpace
1129///   := /*empty*/
1130///   := 'addrspace' '(' uint32 ')'
1131bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1132  AddrSpace = 0;
1133  if (!EatIfPresent(lltok::kw_addrspace))
1134    return false;
1135  return ParseToken(lltok::lparen, "expected '(' in address space") ||
1136         ParseUInt32(AddrSpace) ||
1137         ParseToken(lltok::rparen, "expected ')' in address space");
1138}
1139
1140/// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1141bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1142  bool HaveError = false;
1143
1144  B.clear();
1145
1146  while (1) {
1147    lltok::Kind Token = Lex.getKind();
1148    switch (Token) {
1149    default:  // End of attributes.
1150      return HaveError;
1151    case lltok::kw_align: {
1152      unsigned Alignment;
1153      if (ParseOptionalAlignment(Alignment))
1154        return true;
1155      B.addAlignmentAttr(Alignment);
1156      continue;
1157    }
1158    case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1159    case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1160    case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1161    case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1162    case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1163    case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1164    case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1165    case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1166    case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1167    case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1168    case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1169
1170    case lltok::kw_alignstack:
1171    case lltok::kw_alwaysinline:
1172    case lltok::kw_builtin:
1173    case lltok::kw_inlinehint:
1174    case lltok::kw_minsize:
1175    case lltok::kw_naked:
1176    case lltok::kw_nobuiltin:
1177    case lltok::kw_noduplicate:
1178    case lltok::kw_noimplicitfloat:
1179    case lltok::kw_noinline:
1180    case lltok::kw_nonlazybind:
1181    case lltok::kw_noredzone:
1182    case lltok::kw_noreturn:
1183    case lltok::kw_nounwind:
1184    case lltok::kw_optnone:
1185    case lltok::kw_optsize:
1186    case lltok::kw_returns_twice:
1187    case lltok::kw_sanitize_address:
1188    case lltok::kw_sanitize_memory:
1189    case lltok::kw_sanitize_thread:
1190    case lltok::kw_ssp:
1191    case lltok::kw_sspreq:
1192    case lltok::kw_sspstrong:
1193    case lltok::kw_uwtable:
1194      HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1195      break;
1196    }
1197
1198    Lex.Lex();
1199  }
1200}
1201
1202/// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1203bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1204  bool HaveError = false;
1205
1206  B.clear();
1207
1208  while (1) {
1209    lltok::Kind Token = Lex.getKind();
1210    switch (Token) {
1211    default:  // End of attributes.
1212      return HaveError;
1213    case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1214    case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1215    case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1216    case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1217
1218    // Error handling.
1219    case lltok::kw_align:
1220    case lltok::kw_byval:
1221    case lltok::kw_nest:
1222    case lltok::kw_nocapture:
1223    case lltok::kw_returned:
1224    case lltok::kw_sret:
1225      HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1226      break;
1227
1228    case lltok::kw_alignstack:
1229    case lltok::kw_alwaysinline:
1230    case lltok::kw_builtin:
1231    case lltok::kw_cold:
1232    case lltok::kw_inlinehint:
1233    case lltok::kw_minsize:
1234    case lltok::kw_naked:
1235    case lltok::kw_nobuiltin:
1236    case lltok::kw_noduplicate:
1237    case lltok::kw_noimplicitfloat:
1238    case lltok::kw_noinline:
1239    case lltok::kw_nonlazybind:
1240    case lltok::kw_noredzone:
1241    case lltok::kw_noreturn:
1242    case lltok::kw_nounwind:
1243    case lltok::kw_optnone:
1244    case lltok::kw_optsize:
1245    case lltok::kw_returns_twice:
1246    case lltok::kw_sanitize_address:
1247    case lltok::kw_sanitize_memory:
1248    case lltok::kw_sanitize_thread:
1249    case lltok::kw_ssp:
1250    case lltok::kw_sspreq:
1251    case lltok::kw_sspstrong:
1252    case lltok::kw_uwtable:
1253      HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1254      break;
1255
1256    case lltok::kw_readnone:
1257    case lltok::kw_readonly:
1258      HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1259    }
1260
1261    Lex.Lex();
1262  }
1263}
1264
1265/// ParseOptionalLinkage
1266///   ::= /*empty*/
1267///   ::= 'private'
1268///   ::= 'linker_private'
1269///   ::= 'linker_private_weak'
1270///   ::= 'internal'
1271///   ::= 'weak'
1272///   ::= 'weak_odr'
1273///   ::= 'linkonce'
1274///   ::= 'linkonce_odr'
1275///   ::= 'available_externally'
1276///   ::= 'appending'
1277///   ::= 'dllexport'
1278///   ::= 'common'
1279///   ::= 'dllimport'
1280///   ::= 'extern_weak'
1281///   ::= 'external'
1282bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1283  HasLinkage = false;
1284  switch (Lex.getKind()) {
1285  default:                       Res=GlobalValue::ExternalLinkage; return false;
1286  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
1287  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
1288  case lltok::kw_linker_private_weak:
1289    Res = GlobalValue::LinkerPrivateWeakLinkage;
1290    break;
1291  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
1292  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
1293  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
1294  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
1295  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
1296  case lltok::kw_available_externally:
1297    Res = GlobalValue::AvailableExternallyLinkage;
1298    break;
1299  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
1300  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
1301  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
1302  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
1303  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
1304  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
1305  }
1306  Lex.Lex();
1307  HasLinkage = true;
1308  return false;
1309}
1310
1311/// ParseOptionalVisibility
1312///   ::= /*empty*/
1313///   ::= 'default'
1314///   ::= 'hidden'
1315///   ::= 'protected'
1316///
1317bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1318  switch (Lex.getKind()) {
1319  default:                  Res = GlobalValue::DefaultVisibility; return false;
1320  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1321  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1322  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1323  }
1324  Lex.Lex();
1325  return false;
1326}
1327
1328/// ParseOptionalCallingConv
1329///   ::= /*empty*/
1330///   ::= 'ccc'
1331///   ::= 'fastcc'
1332///   ::= 'kw_intel_ocl_bicc'
1333///   ::= 'coldcc'
1334///   ::= 'x86_stdcallcc'
1335///   ::= 'x86_fastcallcc'
1336///   ::= 'x86_thiscallcc'
1337///   ::= 'arm_apcscc'
1338///   ::= 'arm_aapcscc'
1339///   ::= 'arm_aapcs_vfpcc'
1340///   ::= 'msp430_intrcc'
1341///   ::= 'ptx_kernel'
1342///   ::= 'ptx_device'
1343///   ::= 'spir_func'
1344///   ::= 'spir_kernel'
1345///   ::= 'x86_64_sysvcc'
1346///   ::= 'x86_64_win64cc'
1347///   ::= 'webkit_jscc'
1348///   ::= 'anyregcc'
1349///   ::= 'cc' UINT
1350///
1351bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1352  switch (Lex.getKind()) {
1353  default:                       CC = CallingConv::C; return false;
1354  case lltok::kw_ccc:            CC = CallingConv::C; break;
1355  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1356  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1357  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1358  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1359  case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1360  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1361  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1362  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1363  case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1364  case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1365  case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1366  case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1367  case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1368  case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1369  case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1370  case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break;
1371  case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1372  case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1373  case lltok::kw_cc: {
1374      unsigned ArbitraryCC;
1375      Lex.Lex();
1376      if (ParseUInt32(ArbitraryCC))
1377        return true;
1378      CC = static_cast<CallingConv::ID>(ArbitraryCC);
1379      return false;
1380    }
1381  }
1382
1383  Lex.Lex();
1384  return false;
1385}
1386
1387/// ParseInstructionMetadata
1388///   ::= !dbg !42 (',' !dbg !57)*
1389bool LLParser::ParseInstructionMetadata(Instruction *Inst,
1390                                        PerFunctionState *PFS) {
1391  do {
1392    if (Lex.getKind() != lltok::MetadataVar)
1393      return TokError("expected metadata after comma");
1394
1395    std::string Name = Lex.getStrVal();
1396    unsigned MDK = M->getMDKindID(Name);
1397    Lex.Lex();
1398
1399    MDNode *Node;
1400    SMLoc Loc = Lex.getLoc();
1401
1402    if (ParseToken(lltok::exclaim, "expected '!' here"))
1403      return true;
1404
1405    // This code is similar to that of ParseMetadataValue, however it needs to
1406    // have special-case code for a forward reference; see the comments on
1407    // ForwardRefInstMetadata for details. Also, MDStrings are not supported
1408    // at the top level here.
1409    if (Lex.getKind() == lltok::lbrace) {
1410      ValID ID;
1411      if (ParseMetadataListValue(ID, PFS))
1412        return true;
1413      assert(ID.Kind == ValID::t_MDNode);
1414      Inst->setMetadata(MDK, ID.MDNodeVal);
1415    } else {
1416      unsigned NodeID = 0;
1417      if (ParseMDNodeID(Node, NodeID))
1418        return true;
1419      if (Node) {
1420        // If we got the node, add it to the instruction.
1421        Inst->setMetadata(MDK, Node);
1422      } else {
1423        MDRef R = { Loc, MDK, NodeID };
1424        // Otherwise, remember that this should be resolved later.
1425        ForwardRefInstMetadata[Inst].push_back(R);
1426      }
1427    }
1428
1429    if (MDK == LLVMContext::MD_tbaa)
1430      InstsWithTBAATag.push_back(Inst);
1431
1432    // If this is the end of the list, we're done.
1433  } while (EatIfPresent(lltok::comma));
1434  return false;
1435}
1436
1437/// ParseOptionalAlignment
1438///   ::= /* empty */
1439///   ::= 'align' 4
1440bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1441  Alignment = 0;
1442  if (!EatIfPresent(lltok::kw_align))
1443    return false;
1444  LocTy AlignLoc = Lex.getLoc();
1445  if (ParseUInt32(Alignment)) return true;
1446  if (!isPowerOf2_32(Alignment))
1447    return Error(AlignLoc, "alignment is not a power of two");
1448  if (Alignment > Value::MaximumAlignment)
1449    return Error(AlignLoc, "huge alignments are not supported yet");
1450  return false;
1451}
1452
1453/// ParseOptionalCommaAlign
1454///   ::=
1455///   ::= ',' align 4
1456///
1457/// This returns with AteExtraComma set to true if it ate an excess comma at the
1458/// end.
1459bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1460                                       bool &AteExtraComma) {
1461  AteExtraComma = false;
1462  while (EatIfPresent(lltok::comma)) {
1463    // Metadata at the end is an early exit.
1464    if (Lex.getKind() == lltok::MetadataVar) {
1465      AteExtraComma = true;
1466      return false;
1467    }
1468
1469    if (Lex.getKind() != lltok::kw_align)
1470      return Error(Lex.getLoc(), "expected metadata or 'align'");
1471
1472    if (ParseOptionalAlignment(Alignment)) return true;
1473  }
1474
1475  return false;
1476}
1477
1478/// ParseScopeAndOrdering
1479///   if isAtomic: ::= 'singlethread'? AtomicOrdering
1480///   else: ::=
1481///
1482/// This sets Scope and Ordering to the parsed values.
1483bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1484                                     AtomicOrdering &Ordering) {
1485  if (!isAtomic)
1486    return false;
1487
1488  Scope = CrossThread;
1489  if (EatIfPresent(lltok::kw_singlethread))
1490    Scope = SingleThread;
1491  switch (Lex.getKind()) {
1492  default: return TokError("Expected ordering on atomic instruction");
1493  case lltok::kw_unordered: Ordering = Unordered; break;
1494  case lltok::kw_monotonic: Ordering = Monotonic; break;
1495  case lltok::kw_acquire: Ordering = Acquire; break;
1496  case lltok::kw_release: Ordering = Release; break;
1497  case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
1498  case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
1499  }
1500  Lex.Lex();
1501  return false;
1502}
1503
1504/// ParseOptionalStackAlignment
1505///   ::= /* empty */
1506///   ::= 'alignstack' '(' 4 ')'
1507bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1508  Alignment = 0;
1509  if (!EatIfPresent(lltok::kw_alignstack))
1510    return false;
1511  LocTy ParenLoc = Lex.getLoc();
1512  if (!EatIfPresent(lltok::lparen))
1513    return Error(ParenLoc, "expected '('");
1514  LocTy AlignLoc = Lex.getLoc();
1515  if (ParseUInt32(Alignment)) return true;
1516  ParenLoc = Lex.getLoc();
1517  if (!EatIfPresent(lltok::rparen))
1518    return Error(ParenLoc, "expected ')'");
1519  if (!isPowerOf2_32(Alignment))
1520    return Error(AlignLoc, "stack alignment is not a power of two");
1521  return false;
1522}
1523
1524/// ParseIndexList - This parses the index list for an insert/extractvalue
1525/// instruction.  This sets AteExtraComma in the case where we eat an extra
1526/// comma at the end of the line and find that it is followed by metadata.
1527/// Clients that don't allow metadata can call the version of this function that
1528/// only takes one argument.
1529///
1530/// ParseIndexList
1531///    ::=  (',' uint32)+
1532///
1533bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1534                              bool &AteExtraComma) {
1535  AteExtraComma = false;
1536
1537  if (Lex.getKind() != lltok::comma)
1538    return TokError("expected ',' as start of index list");
1539
1540  while (EatIfPresent(lltok::comma)) {
1541    if (Lex.getKind() == lltok::MetadataVar) {
1542      AteExtraComma = true;
1543      return false;
1544    }
1545    unsigned Idx = 0;
1546    if (ParseUInt32(Idx)) return true;
1547    Indices.push_back(Idx);
1548  }
1549
1550  return false;
1551}
1552
1553//===----------------------------------------------------------------------===//
1554// Type Parsing.
1555//===----------------------------------------------------------------------===//
1556
1557/// ParseType - Parse a type.
1558bool LLParser::ParseType(Type *&Result, bool AllowVoid) {
1559  SMLoc TypeLoc = Lex.getLoc();
1560  switch (Lex.getKind()) {
1561  default:
1562    return TokError("expected type");
1563  case lltok::Type:
1564    // Type ::= 'float' | 'void' (etc)
1565    Result = Lex.getTyVal();
1566    Lex.Lex();
1567    break;
1568  case lltok::lbrace:
1569    // Type ::= StructType
1570    if (ParseAnonStructType(Result, false))
1571      return true;
1572    break;
1573  case lltok::lsquare:
1574    // Type ::= '[' ... ']'
1575    Lex.Lex(); // eat the lsquare.
1576    if (ParseArrayVectorType(Result, false))
1577      return true;
1578    break;
1579  case lltok::less: // Either vector or packed struct.
1580    // Type ::= '<' ... '>'
1581    Lex.Lex();
1582    if (Lex.getKind() == lltok::lbrace) {
1583      if (ParseAnonStructType(Result, true) ||
1584          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1585        return true;
1586    } else if (ParseArrayVectorType(Result, true))
1587      return true;
1588    break;
1589  case lltok::LocalVar: {
1590    // Type ::= %foo
1591    std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1592
1593    // If the type hasn't been defined yet, create a forward definition and
1594    // remember where that forward def'n was seen (in case it never is defined).
1595    if (Entry.first == 0) {
1596      Entry.first = StructType::create(Context, Lex.getStrVal());
1597      Entry.second = Lex.getLoc();
1598    }
1599    Result = Entry.first;
1600    Lex.Lex();
1601    break;
1602  }
1603
1604  case lltok::LocalVarID: {
1605    // Type ::= %4
1606    if (Lex.getUIntVal() >= NumberedTypes.size())
1607      NumberedTypes.resize(Lex.getUIntVal()+1);
1608    std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1609
1610    // If the type hasn't been defined yet, create a forward definition and
1611    // remember where that forward def'n was seen (in case it never is defined).
1612    if (Entry.first == 0) {
1613      Entry.first = StructType::create(Context);
1614      Entry.second = Lex.getLoc();
1615    }
1616    Result = Entry.first;
1617    Lex.Lex();
1618    break;
1619  }
1620  }
1621
1622  // Parse the type suffixes.
1623  while (1) {
1624    switch (Lex.getKind()) {
1625    // End of type.
1626    default:
1627      if (!AllowVoid && Result->isVoidTy())
1628        return Error(TypeLoc, "void type only allowed for function results");
1629      return false;
1630
1631    // Type ::= Type '*'
1632    case lltok::star:
1633      if (Result->isLabelTy())
1634        return TokError("basic block pointers are invalid");
1635      if (Result->isVoidTy())
1636        return TokError("pointers to void are invalid - use i8* instead");
1637      if (!PointerType::isValidElementType(Result))
1638        return TokError("pointer to this type is invalid");
1639      Result = PointerType::getUnqual(Result);
1640      Lex.Lex();
1641      break;
1642
1643    // Type ::= Type 'addrspace' '(' uint32 ')' '*'
1644    case lltok::kw_addrspace: {
1645      if (Result->isLabelTy())
1646        return TokError("basic block pointers are invalid");
1647      if (Result->isVoidTy())
1648        return TokError("pointers to void are invalid; use i8* instead");
1649      if (!PointerType::isValidElementType(Result))
1650        return TokError("pointer to this type is invalid");
1651      unsigned AddrSpace;
1652      if (ParseOptionalAddrSpace(AddrSpace) ||
1653          ParseToken(lltok::star, "expected '*' in address space"))
1654        return true;
1655
1656      Result = PointerType::get(Result, AddrSpace);
1657      break;
1658    }
1659
1660    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1661    case lltok::lparen:
1662      if (ParseFunctionType(Result))
1663        return true;
1664      break;
1665    }
1666  }
1667}
1668
1669/// ParseParameterList
1670///    ::= '(' ')'
1671///    ::= '(' Arg (',' Arg)* ')'
1672///  Arg
1673///    ::= Type OptionalAttributes Value OptionalAttributes
1674bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1675                                  PerFunctionState &PFS) {
1676  if (ParseToken(lltok::lparen, "expected '(' in call"))
1677    return true;
1678
1679  unsigned AttrIndex = 1;
1680  while (Lex.getKind() != lltok::rparen) {
1681    // If this isn't the first argument, we need a comma.
1682    if (!ArgList.empty() &&
1683        ParseToken(lltok::comma, "expected ',' in argument list"))
1684      return true;
1685
1686    // Parse the argument.
1687    LocTy ArgLoc;
1688    Type *ArgTy = 0;
1689    AttrBuilder ArgAttrs;
1690    Value *V;
1691    if (ParseType(ArgTy, ArgLoc))
1692      return true;
1693
1694    // Otherwise, handle normal operands.
1695    if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
1696      return true;
1697    ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(),
1698                                                             AttrIndex++,
1699                                                             ArgAttrs)));
1700  }
1701
1702  Lex.Lex();  // Lex the ')'.
1703  return false;
1704}
1705
1706
1707
1708/// ParseArgumentList - Parse the argument list for a function type or function
1709/// prototype.
1710///   ::= '(' ArgTypeListI ')'
1711/// ArgTypeListI
1712///   ::= /*empty*/
1713///   ::= '...'
1714///   ::= ArgTypeList ',' '...'
1715///   ::= ArgType (',' ArgType)*
1716///
1717bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
1718                                 bool &isVarArg){
1719  isVarArg = false;
1720  assert(Lex.getKind() == lltok::lparen);
1721  Lex.Lex(); // eat the (.
1722
1723  if (Lex.getKind() == lltok::rparen) {
1724    // empty
1725  } else if (Lex.getKind() == lltok::dotdotdot) {
1726    isVarArg = true;
1727    Lex.Lex();
1728  } else {
1729    LocTy TypeLoc = Lex.getLoc();
1730    Type *ArgTy = 0;
1731    AttrBuilder Attrs;
1732    std::string Name;
1733
1734    if (ParseType(ArgTy) ||
1735        ParseOptionalParamAttrs(Attrs)) return true;
1736
1737    if (ArgTy->isVoidTy())
1738      return Error(TypeLoc, "argument can not have void type");
1739
1740    if (Lex.getKind() == lltok::LocalVar) {
1741      Name = Lex.getStrVal();
1742      Lex.Lex();
1743    }
1744
1745    if (!FunctionType::isValidArgumentType(ArgTy))
1746      return Error(TypeLoc, "invalid type for function argument");
1747
1748    unsigned AttrIndex = 1;
1749    ArgList.push_back(ArgInfo(TypeLoc, ArgTy,
1750                              AttributeSet::get(ArgTy->getContext(),
1751                                                AttrIndex++, Attrs), Name));
1752
1753    while (EatIfPresent(lltok::comma)) {
1754      // Handle ... at end of arg list.
1755      if (EatIfPresent(lltok::dotdotdot)) {
1756        isVarArg = true;
1757        break;
1758      }
1759
1760      // Otherwise must be an argument type.
1761      TypeLoc = Lex.getLoc();
1762      if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
1763
1764      if (ArgTy->isVoidTy())
1765        return Error(TypeLoc, "argument can not have void type");
1766
1767      if (Lex.getKind() == lltok::LocalVar) {
1768        Name = Lex.getStrVal();
1769        Lex.Lex();
1770      } else {
1771        Name = "";
1772      }
1773
1774      if (!ArgTy->isFirstClassType())
1775        return Error(TypeLoc, "invalid type for function argument");
1776
1777      ArgList.push_back(ArgInfo(TypeLoc, ArgTy,
1778                                AttributeSet::get(ArgTy->getContext(),
1779                                                  AttrIndex++, Attrs),
1780                                Name));
1781    }
1782  }
1783
1784  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1785}
1786
1787/// ParseFunctionType
1788///  ::= Type ArgumentList OptionalAttrs
1789bool LLParser::ParseFunctionType(Type *&Result) {
1790  assert(Lex.getKind() == lltok::lparen);
1791
1792  if (!FunctionType::isValidReturnType(Result))
1793    return TokError("invalid function return type");
1794
1795  SmallVector<ArgInfo, 8> ArgList;
1796  bool isVarArg;
1797  if (ParseArgumentList(ArgList, isVarArg))
1798    return true;
1799
1800  // Reject names on the arguments lists.
1801  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1802    if (!ArgList[i].Name.empty())
1803      return Error(ArgList[i].Loc, "argument name invalid in function type");
1804    if (ArgList[i].Attrs.hasAttributes(i + 1))
1805      return Error(ArgList[i].Loc,
1806                   "argument attributes invalid in function type");
1807  }
1808
1809  SmallVector<Type*, 16> ArgListTy;
1810  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1811    ArgListTy.push_back(ArgList[i].Ty);
1812
1813  Result = FunctionType::get(Result, ArgListTy, isVarArg);
1814  return false;
1815}
1816
1817/// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
1818/// other structs.
1819bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
1820  SmallVector<Type*, 8> Elts;
1821  if (ParseStructBody(Elts)) return true;
1822
1823  Result = StructType::get(Context, Elts, Packed);
1824  return false;
1825}
1826
1827/// ParseStructDefinition - Parse a struct in a 'type' definition.
1828bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
1829                                     std::pair<Type*, LocTy> &Entry,
1830                                     Type *&ResultTy) {
1831  // If the type was already defined, diagnose the redefinition.
1832  if (Entry.first && !Entry.second.isValid())
1833    return Error(TypeLoc, "redefinition of type");
1834
1835  // If we have opaque, just return without filling in the definition for the
1836  // struct.  This counts as a definition as far as the .ll file goes.
1837  if (EatIfPresent(lltok::kw_opaque)) {
1838    // This type is being defined, so clear the location to indicate this.
1839    Entry.second = SMLoc();
1840
1841    // If this type number has never been uttered, create it.
1842    if (Entry.first == 0)
1843      Entry.first = StructType::create(Context, Name);
1844    ResultTy = Entry.first;
1845    return false;
1846  }
1847
1848  // If the type starts with '<', then it is either a packed struct or a vector.
1849  bool isPacked = EatIfPresent(lltok::less);
1850
1851  // If we don't have a struct, then we have a random type alias, which we
1852  // accept for compatibility with old files.  These types are not allowed to be
1853  // forward referenced and not allowed to be recursive.
1854  if (Lex.getKind() != lltok::lbrace) {
1855    if (Entry.first)
1856      return Error(TypeLoc, "forward references to non-struct type");
1857
1858    ResultTy = 0;
1859    if (isPacked)
1860      return ParseArrayVectorType(ResultTy, true);
1861    return ParseType(ResultTy);
1862  }
1863
1864  // This type is being defined, so clear the location to indicate this.
1865  Entry.second = SMLoc();
1866
1867  // If this type number has never been uttered, create it.
1868  if (Entry.first == 0)
1869    Entry.first = StructType::create(Context, Name);
1870
1871  StructType *STy = cast<StructType>(Entry.first);
1872
1873  SmallVector<Type*, 8> Body;
1874  if (ParseStructBody(Body) ||
1875      (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
1876    return true;
1877
1878  STy->setBody(Body, isPacked);
1879  ResultTy = STy;
1880  return false;
1881}
1882
1883
1884/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1885///   StructType
1886///     ::= '{' '}'
1887///     ::= '{' Type (',' Type)* '}'
1888///     ::= '<' '{' '}' '>'
1889///     ::= '<' '{' Type (',' Type)* '}' '>'
1890bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
1891  assert(Lex.getKind() == lltok::lbrace);
1892  Lex.Lex(); // Consume the '{'
1893
1894  // Handle the empty struct.
1895  if (EatIfPresent(lltok::rbrace))
1896    return false;
1897
1898  LocTy EltTyLoc = Lex.getLoc();
1899  Type *Ty = 0;
1900  if (ParseType(Ty)) return true;
1901  Body.push_back(Ty);
1902
1903  if (!StructType::isValidElementType(Ty))
1904    return Error(EltTyLoc, "invalid element type for struct");
1905
1906  while (EatIfPresent(lltok::comma)) {
1907    EltTyLoc = Lex.getLoc();
1908    if (ParseType(Ty)) return true;
1909
1910    if (!StructType::isValidElementType(Ty))
1911      return Error(EltTyLoc, "invalid element type for struct");
1912
1913    Body.push_back(Ty);
1914  }
1915
1916  return ParseToken(lltok::rbrace, "expected '}' at end of struct");
1917}
1918
1919/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1920/// token has already been consumed.
1921///   Type
1922///     ::= '[' APSINTVAL 'x' Types ']'
1923///     ::= '<' APSINTVAL 'x' Types '>'
1924bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
1925  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1926      Lex.getAPSIntVal().getBitWidth() > 64)
1927    return TokError("expected number in address space");
1928
1929  LocTy SizeLoc = Lex.getLoc();
1930  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1931  Lex.Lex();
1932
1933  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1934      return true;
1935
1936  LocTy TypeLoc = Lex.getLoc();
1937  Type *EltTy = 0;
1938  if (ParseType(EltTy)) return true;
1939
1940  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1941                 "expected end of sequential type"))
1942    return true;
1943
1944  if (isVector) {
1945    if (Size == 0)
1946      return Error(SizeLoc, "zero element vector is illegal");
1947    if ((unsigned)Size != Size)
1948      return Error(SizeLoc, "size too large for vector");
1949    if (!VectorType::isValidElementType(EltTy))
1950      return Error(TypeLoc, "invalid vector element type");
1951    Result = VectorType::get(EltTy, unsigned(Size));
1952  } else {
1953    if (!ArrayType::isValidElementType(EltTy))
1954      return Error(TypeLoc, "invalid array element type");
1955    Result = ArrayType::get(EltTy, Size);
1956  }
1957  return false;
1958}
1959
1960//===----------------------------------------------------------------------===//
1961// Function Semantic Analysis.
1962//===----------------------------------------------------------------------===//
1963
1964LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1965                                             int functionNumber)
1966  : P(p), F(f), FunctionNumber(functionNumber) {
1967
1968  // Insert unnamed arguments into the NumberedVals list.
1969  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1970       AI != E; ++AI)
1971    if (!AI->hasName())
1972      NumberedVals.push_back(AI);
1973}
1974
1975LLParser::PerFunctionState::~PerFunctionState() {
1976  // If there were any forward referenced non-basicblock values, delete them.
1977  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1978       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1979    if (!isa<BasicBlock>(I->second.first)) {
1980      I->second.first->replaceAllUsesWith(
1981                           UndefValue::get(I->second.first->getType()));
1982      delete I->second.first;
1983      I->second.first = 0;
1984    }
1985
1986  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1987       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1988    if (!isa<BasicBlock>(I->second.first)) {
1989      I->second.first->replaceAllUsesWith(
1990                           UndefValue::get(I->second.first->getType()));
1991      delete I->second.first;
1992      I->second.first = 0;
1993    }
1994}
1995
1996bool LLParser::PerFunctionState::FinishFunction() {
1997  // Check to see if someone took the address of labels in this block.
1998  if (!P.ForwardRefBlockAddresses.empty()) {
1999    ValID FunctionID;
2000    if (!F.getName().empty()) {
2001      FunctionID.Kind = ValID::t_GlobalName;
2002      FunctionID.StrVal = F.getName();
2003    } else {
2004      FunctionID.Kind = ValID::t_GlobalID;
2005      FunctionID.UIntVal = FunctionNumber;
2006    }
2007
2008    std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
2009      FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
2010    if (FRBAI != P.ForwardRefBlockAddresses.end()) {
2011      // Resolve all these references.
2012      if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
2013        return true;
2014
2015      P.ForwardRefBlockAddresses.erase(FRBAI);
2016    }
2017  }
2018
2019  if (!ForwardRefVals.empty())
2020    return P.Error(ForwardRefVals.begin()->second.second,
2021                   "use of undefined value '%" + ForwardRefVals.begin()->first +
2022                   "'");
2023  if (!ForwardRefValIDs.empty())
2024    return P.Error(ForwardRefValIDs.begin()->second.second,
2025                   "use of undefined value '%" +
2026                   Twine(ForwardRefValIDs.begin()->first) + "'");
2027  return false;
2028}
2029
2030
2031/// GetVal - Get a value with the specified name or ID, creating a
2032/// forward reference record if needed.  This can return null if the value
2033/// exists but does not have the right type.
2034Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
2035                                          Type *Ty, LocTy Loc) {
2036  // Look this name up in the normal function symbol table.
2037  Value *Val = F.getValueSymbolTable().lookup(Name);
2038
2039  // If this is a forward reference for the value, see if we already created a
2040  // forward ref record.
2041  if (Val == 0) {
2042    std::map<std::string, std::pair<Value*, LocTy> >::iterator
2043      I = ForwardRefVals.find(Name);
2044    if (I != ForwardRefVals.end())
2045      Val = I->second.first;
2046  }
2047
2048  // If we have the value in the symbol table or fwd-ref table, return it.
2049  if (Val) {
2050    if (Val->getType() == Ty) return Val;
2051    if (Ty->isLabelTy())
2052      P.Error(Loc, "'%" + Name + "' is not a basic block");
2053    else
2054      P.Error(Loc, "'%" + Name + "' defined with type '" +
2055              getTypeString(Val->getType()) + "'");
2056    return 0;
2057  }
2058
2059  // Don't make placeholders with invalid type.
2060  if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
2061    P.Error(Loc, "invalid use of a non-first-class type");
2062    return 0;
2063  }
2064
2065  // Otherwise, create a new forward reference for this value and remember it.
2066  Value *FwdVal;
2067  if (Ty->isLabelTy())
2068    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2069  else
2070    FwdVal = new Argument(Ty, Name);
2071
2072  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2073  return FwdVal;
2074}
2075
2076Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty,
2077                                          LocTy Loc) {
2078  // Look this name up in the normal function symbol table.
2079  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
2080
2081  // If this is a forward reference for the value, see if we already created a
2082  // forward ref record.
2083  if (Val == 0) {
2084    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
2085      I = ForwardRefValIDs.find(ID);
2086    if (I != ForwardRefValIDs.end())
2087      Val = I->second.first;
2088  }
2089
2090  // If we have the value in the symbol table or fwd-ref table, return it.
2091  if (Val) {
2092    if (Val->getType() == Ty) return Val;
2093    if (Ty->isLabelTy())
2094      P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2095    else
2096      P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2097              getTypeString(Val->getType()) + "'");
2098    return 0;
2099  }
2100
2101  if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
2102    P.Error(Loc, "invalid use of a non-first-class type");
2103    return 0;
2104  }
2105
2106  // Otherwise, create a new forward reference for this value and remember it.
2107  Value *FwdVal;
2108  if (Ty->isLabelTy())
2109    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2110  else
2111    FwdVal = new Argument(Ty);
2112
2113  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2114  return FwdVal;
2115}
2116
2117/// SetInstName - After an instruction is parsed and inserted into its
2118/// basic block, this installs its name.
2119bool LLParser::PerFunctionState::SetInstName(int NameID,
2120                                             const std::string &NameStr,
2121                                             LocTy NameLoc, Instruction *Inst) {
2122  // If this instruction has void type, it cannot have a name or ID specified.
2123  if (Inst->getType()->isVoidTy()) {
2124    if (NameID != -1 || !NameStr.empty())
2125      return P.Error(NameLoc, "instructions returning void cannot have a name");
2126    return false;
2127  }
2128
2129  // If this was a numbered instruction, verify that the instruction is the
2130  // expected value and resolve any forward references.
2131  if (NameStr.empty()) {
2132    // If neither a name nor an ID was specified, just use the next ID.
2133    if (NameID == -1)
2134      NameID = NumberedVals.size();
2135
2136    if (unsigned(NameID) != NumberedVals.size())
2137      return P.Error(NameLoc, "instruction expected to be numbered '%" +
2138                     Twine(NumberedVals.size()) + "'");
2139
2140    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
2141      ForwardRefValIDs.find(NameID);
2142    if (FI != ForwardRefValIDs.end()) {
2143      if (FI->second.first->getType() != Inst->getType())
2144        return P.Error(NameLoc, "instruction forward referenced with type '" +
2145                       getTypeString(FI->second.first->getType()) + "'");
2146      FI->second.first->replaceAllUsesWith(Inst);
2147      delete FI->second.first;
2148      ForwardRefValIDs.erase(FI);
2149    }
2150
2151    NumberedVals.push_back(Inst);
2152    return false;
2153  }
2154
2155  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2156  std::map<std::string, std::pair<Value*, LocTy> >::iterator
2157    FI = ForwardRefVals.find(NameStr);
2158  if (FI != ForwardRefVals.end()) {
2159    if (FI->second.first->getType() != Inst->getType())
2160      return P.Error(NameLoc, "instruction forward referenced with type '" +
2161                     getTypeString(FI->second.first->getType()) + "'");
2162    FI->second.first->replaceAllUsesWith(Inst);
2163    delete FI->second.first;
2164    ForwardRefVals.erase(FI);
2165  }
2166
2167  // Set the name on the instruction.
2168  Inst->setName(NameStr);
2169
2170  if (Inst->getName() != NameStr)
2171    return P.Error(NameLoc, "multiple definition of local value named '" +
2172                   NameStr + "'");
2173  return false;
2174}
2175
2176/// GetBB - Get a basic block with the specified name or ID, creating a
2177/// forward reference record if needed.
2178BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2179                                              LocTy Loc) {
2180  return cast_or_null<BasicBlock>(GetVal(Name,
2181                                        Type::getLabelTy(F.getContext()), Loc));
2182}
2183
2184BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2185  return cast_or_null<BasicBlock>(GetVal(ID,
2186                                        Type::getLabelTy(F.getContext()), Loc));
2187}
2188
2189/// DefineBB - Define the specified basic block, which is either named or
2190/// unnamed.  If there is an error, this returns null otherwise it returns
2191/// the block being defined.
2192BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2193                                                 LocTy Loc) {
2194  BasicBlock *BB;
2195  if (Name.empty())
2196    BB = GetBB(NumberedVals.size(), Loc);
2197  else
2198    BB = GetBB(Name, Loc);
2199  if (BB == 0) return 0; // Already diagnosed error.
2200
2201  // Move the block to the end of the function.  Forward ref'd blocks are
2202  // inserted wherever they happen to be referenced.
2203  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2204
2205  // Remove the block from forward ref sets.
2206  if (Name.empty()) {
2207    ForwardRefValIDs.erase(NumberedVals.size());
2208    NumberedVals.push_back(BB);
2209  } else {
2210    // BB forward references are already in the function symbol table.
2211    ForwardRefVals.erase(Name);
2212  }
2213
2214  return BB;
2215}
2216
2217//===----------------------------------------------------------------------===//
2218// Constants.
2219//===----------------------------------------------------------------------===//
2220
2221/// ParseValID - Parse an abstract value that doesn't necessarily have a
2222/// type implied.  For example, if we parse "4" we don't know what integer type
2223/// it has.  The value will later be combined with its type and checked for
2224/// sanity.  PFS is used to convert function-local operands of metadata (since
2225/// metadata operands are not just parsed here but also converted to values).
2226/// PFS can be null when we are not parsing metadata values inside a function.
2227bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2228  ID.Loc = Lex.getLoc();
2229  switch (Lex.getKind()) {
2230  default: return TokError("expected value token");
2231  case lltok::GlobalID:  // @42
2232    ID.UIntVal = Lex.getUIntVal();
2233    ID.Kind = ValID::t_GlobalID;
2234    break;
2235  case lltok::GlobalVar:  // @foo
2236    ID.StrVal = Lex.getStrVal();
2237    ID.Kind = ValID::t_GlobalName;
2238    break;
2239  case lltok::LocalVarID:  // %42
2240    ID.UIntVal = Lex.getUIntVal();
2241    ID.Kind = ValID::t_LocalID;
2242    break;
2243  case lltok::LocalVar:  // %foo
2244    ID.StrVal = Lex.getStrVal();
2245    ID.Kind = ValID::t_LocalName;
2246    break;
2247  case lltok::exclaim:   // !42, !{...}, or !"foo"
2248    return ParseMetadataValue(ID, PFS);
2249  case lltok::APSInt:
2250    ID.APSIntVal = Lex.getAPSIntVal();
2251    ID.Kind = ValID::t_APSInt;
2252    break;
2253  case lltok::APFloat:
2254    ID.APFloatVal = Lex.getAPFloatVal();
2255    ID.Kind = ValID::t_APFloat;
2256    break;
2257  case lltok::kw_true:
2258    ID.ConstantVal = ConstantInt::getTrue(Context);
2259    ID.Kind = ValID::t_Constant;
2260    break;
2261  case lltok::kw_false:
2262    ID.ConstantVal = ConstantInt::getFalse(Context);
2263    ID.Kind = ValID::t_Constant;
2264    break;
2265  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2266  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2267  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2268
2269  case lltok::lbrace: {
2270    // ValID ::= '{' ConstVector '}'
2271    Lex.Lex();
2272    SmallVector<Constant*, 16> Elts;
2273    if (ParseGlobalValueVector(Elts) ||
2274        ParseToken(lltok::rbrace, "expected end of struct constant"))
2275      return true;
2276
2277    ID.ConstantStructElts = new Constant*[Elts.size()];
2278    ID.UIntVal = Elts.size();
2279    memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2280    ID.Kind = ValID::t_ConstantStruct;
2281    return false;
2282  }
2283  case lltok::less: {
2284    // ValID ::= '<' ConstVector '>'         --> Vector.
2285    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2286    Lex.Lex();
2287    bool isPackedStruct = EatIfPresent(lltok::lbrace);
2288
2289    SmallVector<Constant*, 16> Elts;
2290    LocTy FirstEltLoc = Lex.getLoc();
2291    if (ParseGlobalValueVector(Elts) ||
2292        (isPackedStruct &&
2293         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2294        ParseToken(lltok::greater, "expected end of constant"))
2295      return true;
2296
2297    if (isPackedStruct) {
2298      ID.ConstantStructElts = new Constant*[Elts.size()];
2299      memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2300      ID.UIntVal = Elts.size();
2301      ID.Kind = ValID::t_PackedConstantStruct;
2302      return false;
2303    }
2304
2305    if (Elts.empty())
2306      return Error(ID.Loc, "constant vector must not be empty");
2307
2308    if (!Elts[0]->getType()->isIntegerTy() &&
2309        !Elts[0]->getType()->isFloatingPointTy() &&
2310        !Elts[0]->getType()->isPointerTy())
2311      return Error(FirstEltLoc,
2312            "vector elements must have integer, pointer or floating point type");
2313
2314    // Verify that all the vector elements have the same type.
2315    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2316      if (Elts[i]->getType() != Elts[0]->getType())
2317        return Error(FirstEltLoc,
2318                     "vector element #" + Twine(i) +
2319                    " is not of type '" + getTypeString(Elts[0]->getType()));
2320
2321    ID.ConstantVal = ConstantVector::get(Elts);
2322    ID.Kind = ValID::t_Constant;
2323    return false;
2324  }
2325  case lltok::lsquare: {   // Array Constant
2326    Lex.Lex();
2327    SmallVector<Constant*, 16> Elts;
2328    LocTy FirstEltLoc = Lex.getLoc();
2329    if (ParseGlobalValueVector(Elts) ||
2330        ParseToken(lltok::rsquare, "expected end of array constant"))
2331      return true;
2332
2333    // Handle empty element.
2334    if (Elts.empty()) {
2335      // Use undef instead of an array because it's inconvenient to determine
2336      // the element type at this point, there being no elements to examine.
2337      ID.Kind = ValID::t_EmptyArray;
2338      return false;
2339    }
2340
2341    if (!Elts[0]->getType()->isFirstClassType())
2342      return Error(FirstEltLoc, "invalid array element type: " +
2343                   getTypeString(Elts[0]->getType()));
2344
2345    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2346
2347    // Verify all elements are correct type!
2348    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2349      if (Elts[i]->getType() != Elts[0]->getType())
2350        return Error(FirstEltLoc,
2351                     "array element #" + Twine(i) +
2352                     " is not of type '" + getTypeString(Elts[0]->getType()));
2353    }
2354
2355    ID.ConstantVal = ConstantArray::get(ATy, Elts);
2356    ID.Kind = ValID::t_Constant;
2357    return false;
2358  }
2359  case lltok::kw_c:  // c "foo"
2360    Lex.Lex();
2361    ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2362                                                  false);
2363    if (ParseToken(lltok::StringConstant, "expected string")) return true;
2364    ID.Kind = ValID::t_Constant;
2365    return false;
2366
2367  case lltok::kw_asm: {
2368    // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2369    //             STRINGCONSTANT
2370    bool HasSideEffect, AlignStack, AsmDialect;
2371    Lex.Lex();
2372    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2373        ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2374        ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2375        ParseStringConstant(ID.StrVal) ||
2376        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2377        ParseToken(lltok::StringConstant, "expected constraint string"))
2378      return true;
2379    ID.StrVal2 = Lex.getStrVal();
2380    ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2381      (unsigned(AsmDialect)<<2);
2382    ID.Kind = ValID::t_InlineAsm;
2383    return false;
2384  }
2385
2386  case lltok::kw_blockaddress: {
2387    // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2388    Lex.Lex();
2389
2390    ValID Fn, Label;
2391
2392    if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2393        ParseValID(Fn) ||
2394        ParseToken(lltok::comma, "expected comma in block address expression")||
2395        ParseValID(Label) ||
2396        ParseToken(lltok::rparen, "expected ')' in block address expression"))
2397      return true;
2398
2399    if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2400      return Error(Fn.Loc, "expected function name in blockaddress");
2401    if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2402      return Error(Label.Loc, "expected basic block name in blockaddress");
2403
2404    // Make a global variable as a placeholder for this reference.
2405    GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2406                                           false, GlobalValue::InternalLinkage,
2407                                                0, "");
2408    ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2409    ID.ConstantVal = FwdRef;
2410    ID.Kind = ValID::t_Constant;
2411    return false;
2412  }
2413
2414  case lltok::kw_trunc:
2415  case lltok::kw_zext:
2416  case lltok::kw_sext:
2417  case lltok::kw_fptrunc:
2418  case lltok::kw_fpext:
2419  case lltok::kw_bitcast:
2420  case lltok::kw_addrspacecast:
2421  case lltok::kw_uitofp:
2422  case lltok::kw_sitofp:
2423  case lltok::kw_fptoui:
2424  case lltok::kw_fptosi:
2425  case lltok::kw_inttoptr:
2426  case lltok::kw_ptrtoint: {
2427    unsigned Opc = Lex.getUIntVal();
2428    Type *DestTy = 0;
2429    Constant *SrcVal;
2430    Lex.Lex();
2431    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2432        ParseGlobalTypeAndValue(SrcVal) ||
2433        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2434        ParseType(DestTy) ||
2435        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2436      return true;
2437    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2438      return Error(ID.Loc, "invalid cast opcode for cast from '" +
2439                   getTypeString(SrcVal->getType()) + "' to '" +
2440                   getTypeString(DestTy) + "'");
2441    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2442                                                 SrcVal, DestTy);
2443    ID.Kind = ValID::t_Constant;
2444    return false;
2445  }
2446  case lltok::kw_extractvalue: {
2447    Lex.Lex();
2448    Constant *Val;
2449    SmallVector<unsigned, 4> Indices;
2450    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2451        ParseGlobalTypeAndValue(Val) ||
2452        ParseIndexList(Indices) ||
2453        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2454      return true;
2455
2456    if (!Val->getType()->isAggregateType())
2457      return Error(ID.Loc, "extractvalue operand must be aggregate type");
2458    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2459      return Error(ID.Loc, "invalid indices for extractvalue");
2460    ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2461    ID.Kind = ValID::t_Constant;
2462    return false;
2463  }
2464  case lltok::kw_insertvalue: {
2465    Lex.Lex();
2466    Constant *Val0, *Val1;
2467    SmallVector<unsigned, 4> Indices;
2468    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2469        ParseGlobalTypeAndValue(Val0) ||
2470        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2471        ParseGlobalTypeAndValue(Val1) ||
2472        ParseIndexList(Indices) ||
2473        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2474      return true;
2475    if (!Val0->getType()->isAggregateType())
2476      return Error(ID.Loc, "insertvalue operand must be aggregate type");
2477    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
2478      return Error(ID.Loc, "invalid indices for insertvalue");
2479    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2480    ID.Kind = ValID::t_Constant;
2481    return false;
2482  }
2483  case lltok::kw_icmp:
2484  case lltok::kw_fcmp: {
2485    unsigned PredVal, Opc = Lex.getUIntVal();
2486    Constant *Val0, *Val1;
2487    Lex.Lex();
2488    if (ParseCmpPredicate(PredVal, Opc) ||
2489        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2490        ParseGlobalTypeAndValue(Val0) ||
2491        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2492        ParseGlobalTypeAndValue(Val1) ||
2493        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2494      return true;
2495
2496    if (Val0->getType() != Val1->getType())
2497      return Error(ID.Loc, "compare operands must have the same type");
2498
2499    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2500
2501    if (Opc == Instruction::FCmp) {
2502      if (!Val0->getType()->isFPOrFPVectorTy())
2503        return Error(ID.Loc, "fcmp requires floating point operands");
2504      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2505    } else {
2506      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2507      if (!Val0->getType()->isIntOrIntVectorTy() &&
2508          !Val0->getType()->getScalarType()->isPointerTy())
2509        return Error(ID.Loc, "icmp requires pointer or integer operands");
2510      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2511    }
2512    ID.Kind = ValID::t_Constant;
2513    return false;
2514  }
2515
2516  // Binary Operators.
2517  case lltok::kw_add:
2518  case lltok::kw_fadd:
2519  case lltok::kw_sub:
2520  case lltok::kw_fsub:
2521  case lltok::kw_mul:
2522  case lltok::kw_fmul:
2523  case lltok::kw_udiv:
2524  case lltok::kw_sdiv:
2525  case lltok::kw_fdiv:
2526  case lltok::kw_urem:
2527  case lltok::kw_srem:
2528  case lltok::kw_frem:
2529  case lltok::kw_shl:
2530  case lltok::kw_lshr:
2531  case lltok::kw_ashr: {
2532    bool NUW = false;
2533    bool NSW = false;
2534    bool Exact = false;
2535    unsigned Opc = Lex.getUIntVal();
2536    Constant *Val0, *Val1;
2537    Lex.Lex();
2538    LocTy ModifierLoc = Lex.getLoc();
2539    if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2540        Opc == Instruction::Mul || Opc == Instruction::Shl) {
2541      if (EatIfPresent(lltok::kw_nuw))
2542        NUW = true;
2543      if (EatIfPresent(lltok::kw_nsw)) {
2544        NSW = true;
2545        if (EatIfPresent(lltok::kw_nuw))
2546          NUW = true;
2547      }
2548    } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2549               Opc == Instruction::LShr || Opc == Instruction::AShr) {
2550      if (EatIfPresent(lltok::kw_exact))
2551        Exact = true;
2552    }
2553    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2554        ParseGlobalTypeAndValue(Val0) ||
2555        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2556        ParseGlobalTypeAndValue(Val1) ||
2557        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2558      return true;
2559    if (Val0->getType() != Val1->getType())
2560      return Error(ID.Loc, "operands of constexpr must have same type");
2561    if (!Val0->getType()->isIntOrIntVectorTy()) {
2562      if (NUW)
2563        return Error(ModifierLoc, "nuw only applies to integer operations");
2564      if (NSW)
2565        return Error(ModifierLoc, "nsw only applies to integer operations");
2566    }
2567    // Check that the type is valid for the operator.
2568    switch (Opc) {
2569    case Instruction::Add:
2570    case Instruction::Sub:
2571    case Instruction::Mul:
2572    case Instruction::UDiv:
2573    case Instruction::SDiv:
2574    case Instruction::URem:
2575    case Instruction::SRem:
2576    case Instruction::Shl:
2577    case Instruction::AShr:
2578    case Instruction::LShr:
2579      if (!Val0->getType()->isIntOrIntVectorTy())
2580        return Error(ID.Loc, "constexpr requires integer operands");
2581      break;
2582    case Instruction::FAdd:
2583    case Instruction::FSub:
2584    case Instruction::FMul:
2585    case Instruction::FDiv:
2586    case Instruction::FRem:
2587      if (!Val0->getType()->isFPOrFPVectorTy())
2588        return Error(ID.Loc, "constexpr requires fp operands");
2589      break;
2590    default: llvm_unreachable("Unknown binary operator!");
2591    }
2592    unsigned Flags = 0;
2593    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2594    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2595    if (Exact) Flags |= PossiblyExactOperator::IsExact;
2596    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2597    ID.ConstantVal = C;
2598    ID.Kind = ValID::t_Constant;
2599    return false;
2600  }
2601
2602  // Logical Operations
2603  case lltok::kw_and:
2604  case lltok::kw_or:
2605  case lltok::kw_xor: {
2606    unsigned Opc = Lex.getUIntVal();
2607    Constant *Val0, *Val1;
2608    Lex.Lex();
2609    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2610        ParseGlobalTypeAndValue(Val0) ||
2611        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2612        ParseGlobalTypeAndValue(Val1) ||
2613        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2614      return true;
2615    if (Val0->getType() != Val1->getType())
2616      return Error(ID.Loc, "operands of constexpr must have same type");
2617    if (!Val0->getType()->isIntOrIntVectorTy())
2618      return Error(ID.Loc,
2619                   "constexpr requires integer or integer vector operands");
2620    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2621    ID.Kind = ValID::t_Constant;
2622    return false;
2623  }
2624
2625  case lltok::kw_getelementptr:
2626  case lltok::kw_shufflevector:
2627  case lltok::kw_insertelement:
2628  case lltok::kw_extractelement:
2629  case lltok::kw_select: {
2630    unsigned Opc = Lex.getUIntVal();
2631    SmallVector<Constant*, 16> Elts;
2632    bool InBounds = false;
2633    Lex.Lex();
2634    if (Opc == Instruction::GetElementPtr)
2635      InBounds = EatIfPresent(lltok::kw_inbounds);
2636    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2637        ParseGlobalValueVector(Elts) ||
2638        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2639      return true;
2640
2641    if (Opc == Instruction::GetElementPtr) {
2642      if (Elts.size() == 0 ||
2643          !Elts[0]->getType()->getScalarType()->isPointerTy())
2644        return Error(ID.Loc, "getelementptr requires pointer operand");
2645
2646      ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2647      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices))
2648        return Error(ID.Loc, "invalid indices for getelementptr");
2649      ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices,
2650                                                      InBounds);
2651    } else if (Opc == Instruction::Select) {
2652      if (Elts.size() != 3)
2653        return Error(ID.Loc, "expected three operands to select");
2654      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2655                                                              Elts[2]))
2656        return Error(ID.Loc, Reason);
2657      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2658    } else if (Opc == Instruction::ShuffleVector) {
2659      if (Elts.size() != 3)
2660        return Error(ID.Loc, "expected three operands to shufflevector");
2661      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2662        return Error(ID.Loc, "invalid operands to shufflevector");
2663      ID.ConstantVal =
2664                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2665    } else if (Opc == Instruction::ExtractElement) {
2666      if (Elts.size() != 2)
2667        return Error(ID.Loc, "expected two operands to extractelement");
2668      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2669        return Error(ID.Loc, "invalid extractelement operands");
2670      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2671    } else {
2672      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2673      if (Elts.size() != 3)
2674      return Error(ID.Loc, "expected three operands to insertelement");
2675      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2676        return Error(ID.Loc, "invalid insertelement operands");
2677      ID.ConstantVal =
2678                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2679    }
2680
2681    ID.Kind = ValID::t_Constant;
2682    return false;
2683  }
2684  }
2685
2686  Lex.Lex();
2687  return false;
2688}
2689
2690/// ParseGlobalValue - Parse a global value with the specified type.
2691bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
2692  C = 0;
2693  ValID ID;
2694  Value *V = NULL;
2695  bool Parsed = ParseValID(ID) ||
2696                ConvertValIDToValue(Ty, ID, V, NULL);
2697  if (V && !(C = dyn_cast<Constant>(V)))
2698    return Error(ID.Loc, "global values must be constants");
2699  return Parsed;
2700}
2701
2702bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2703  Type *Ty = 0;
2704  return ParseType(Ty) ||
2705         ParseGlobalValue(Ty, V);
2706}
2707
2708/// ParseGlobalValueVector
2709///   ::= /*empty*/
2710///   ::= TypeAndValue (',' TypeAndValue)*
2711bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2712  // Empty list.
2713  if (Lex.getKind() == lltok::rbrace ||
2714      Lex.getKind() == lltok::rsquare ||
2715      Lex.getKind() == lltok::greater ||
2716      Lex.getKind() == lltok::rparen)
2717    return false;
2718
2719  Constant *C;
2720  if (ParseGlobalTypeAndValue(C)) return true;
2721  Elts.push_back(C);
2722
2723  while (EatIfPresent(lltok::comma)) {
2724    if (ParseGlobalTypeAndValue(C)) return true;
2725    Elts.push_back(C);
2726  }
2727
2728  return false;
2729}
2730
2731bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
2732  assert(Lex.getKind() == lltok::lbrace);
2733  Lex.Lex();
2734
2735  SmallVector<Value*, 16> Elts;
2736  if (ParseMDNodeVector(Elts, PFS) ||
2737      ParseToken(lltok::rbrace, "expected end of metadata node"))
2738    return true;
2739
2740  ID.MDNodeVal = MDNode::get(Context, Elts);
2741  ID.Kind = ValID::t_MDNode;
2742  return false;
2743}
2744
2745/// ParseMetadataValue
2746///  ::= !42
2747///  ::= !{...}
2748///  ::= !"string"
2749bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
2750  assert(Lex.getKind() == lltok::exclaim);
2751  Lex.Lex();
2752
2753  // MDNode:
2754  // !{ ... }
2755  if (Lex.getKind() == lltok::lbrace)
2756    return ParseMetadataListValue(ID, PFS);
2757
2758  // Standalone metadata reference
2759  // !42
2760  if (Lex.getKind() == lltok::APSInt) {
2761    if (ParseMDNodeID(ID.MDNodeVal)) return true;
2762    ID.Kind = ValID::t_MDNode;
2763    return false;
2764  }
2765
2766  // MDString:
2767  //   ::= '!' STRINGCONSTANT
2768  if (ParseMDString(ID.MDStringVal)) return true;
2769  ID.Kind = ValID::t_MDString;
2770  return false;
2771}
2772
2773
2774//===----------------------------------------------------------------------===//
2775// Function Parsing.
2776//===----------------------------------------------------------------------===//
2777
2778bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
2779                                   PerFunctionState *PFS) {
2780  if (Ty->isFunctionTy())
2781    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2782
2783  switch (ID.Kind) {
2784  case ValID::t_LocalID:
2785    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2786    V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2787    return (V == 0);
2788  case ValID::t_LocalName:
2789    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2790    V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2791    return (V == 0);
2792  case ValID::t_InlineAsm: {
2793    PointerType *PTy = dyn_cast<PointerType>(Ty);
2794    FunctionType *FTy =
2795      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2796    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2797      return Error(ID.Loc, "invalid type for inline asm constraint string");
2798    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1,
2799                       (ID.UIntVal>>1)&1, (InlineAsm::AsmDialect(ID.UIntVal>>2)));
2800    return false;
2801  }
2802  case ValID::t_MDNode:
2803    if (!Ty->isMetadataTy())
2804      return Error(ID.Loc, "metadata value must have metadata type");
2805    V = ID.MDNodeVal;
2806    return false;
2807  case ValID::t_MDString:
2808    if (!Ty->isMetadataTy())
2809      return Error(ID.Loc, "metadata value must have metadata type");
2810    V = ID.MDStringVal;
2811    return false;
2812  case ValID::t_GlobalName:
2813    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2814    return V == 0;
2815  case ValID::t_GlobalID:
2816    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2817    return V == 0;
2818  case ValID::t_APSInt:
2819    if (!Ty->isIntegerTy())
2820      return Error(ID.Loc, "integer constant must have integer type");
2821    ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2822    V = ConstantInt::get(Context, ID.APSIntVal);
2823    return false;
2824  case ValID::t_APFloat:
2825    if (!Ty->isFloatingPointTy() ||
2826        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2827      return Error(ID.Loc, "floating point constant invalid for type");
2828
2829    // The lexer has no type info, so builds all half, float, and double FP
2830    // constants as double.  Fix this here.  Long double does not need this.
2831    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
2832      bool Ignored;
2833      if (Ty->isHalfTy())
2834        ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
2835                              &Ignored);
2836      else if (Ty->isFloatTy())
2837        ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2838                              &Ignored);
2839    }
2840    V = ConstantFP::get(Context, ID.APFloatVal);
2841
2842    if (V->getType() != Ty)
2843      return Error(ID.Loc, "floating point constant does not have type '" +
2844                   getTypeString(Ty) + "'");
2845
2846    return false;
2847  case ValID::t_Null:
2848    if (!Ty->isPointerTy())
2849      return Error(ID.Loc, "null must be a pointer type");
2850    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2851    return false;
2852  case ValID::t_Undef:
2853    // FIXME: LabelTy should not be a first-class type.
2854    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2855      return Error(ID.Loc, "invalid type for undef constant");
2856    V = UndefValue::get(Ty);
2857    return false;
2858  case ValID::t_EmptyArray:
2859    if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
2860      return Error(ID.Loc, "invalid empty array initializer");
2861    V = UndefValue::get(Ty);
2862    return false;
2863  case ValID::t_Zero:
2864    // FIXME: LabelTy should not be a first-class type.
2865    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2866      return Error(ID.Loc, "invalid type for null constant");
2867    V = Constant::getNullValue(Ty);
2868    return false;
2869  case ValID::t_Constant:
2870    if (ID.ConstantVal->getType() != Ty)
2871      return Error(ID.Loc, "constant expression type mismatch");
2872
2873    V = ID.ConstantVal;
2874    return false;
2875  case ValID::t_ConstantStruct:
2876  case ValID::t_PackedConstantStruct:
2877    if (StructType *ST = dyn_cast<StructType>(Ty)) {
2878      if (ST->getNumElements() != ID.UIntVal)
2879        return Error(ID.Loc,
2880                     "initializer with struct type has wrong # elements");
2881      if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
2882        return Error(ID.Loc, "packed'ness of initializer and type don't match");
2883
2884      // Verify that the elements are compatible with the structtype.
2885      for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
2886        if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
2887          return Error(ID.Loc, "element " + Twine(i) +
2888                    " of struct initializer doesn't match struct element type");
2889
2890      V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts,
2891                                               ID.UIntVal));
2892    } else
2893      return Error(ID.Loc, "constant expression type mismatch");
2894    return false;
2895  }
2896  llvm_unreachable("Invalid ValID");
2897}
2898
2899bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
2900  V = 0;
2901  ValID ID;
2902  return ParseValID(ID, PFS) ||
2903         ConvertValIDToValue(Ty, ID, V, PFS);
2904}
2905
2906bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
2907  Type *Ty = 0;
2908  return ParseType(Ty) ||
2909         ParseValue(Ty, V, PFS);
2910}
2911
2912bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2913                                      PerFunctionState &PFS) {
2914  Value *V;
2915  Loc = Lex.getLoc();
2916  if (ParseTypeAndValue(V, PFS)) return true;
2917  if (!isa<BasicBlock>(V))
2918    return Error(Loc, "expected a basic block");
2919  BB = cast<BasicBlock>(V);
2920  return false;
2921}
2922
2923
2924/// FunctionHeader
2925///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2926///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2927///       OptionalAlign OptGC OptionalPrefix
2928bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2929  // Parse the linkage.
2930  LocTy LinkageLoc = Lex.getLoc();
2931  unsigned Linkage;
2932
2933  unsigned Visibility;
2934  AttrBuilder RetAttrs;
2935  CallingConv::ID CC;
2936  Type *RetType = 0;
2937  LocTy RetTypeLoc = Lex.getLoc();
2938  if (ParseOptionalLinkage(Linkage) ||
2939      ParseOptionalVisibility(Visibility) ||
2940      ParseOptionalCallingConv(CC) ||
2941      ParseOptionalReturnAttrs(RetAttrs) ||
2942      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2943    return true;
2944
2945  // Verify that the linkage is ok.
2946  switch ((GlobalValue::LinkageTypes)Linkage) {
2947  case GlobalValue::ExternalLinkage:
2948    break; // always ok.
2949  case GlobalValue::DLLImportLinkage:
2950  case GlobalValue::ExternalWeakLinkage:
2951    if (isDefine)
2952      return Error(LinkageLoc, "invalid linkage for function definition");
2953    break;
2954  case GlobalValue::PrivateLinkage:
2955  case GlobalValue::LinkerPrivateLinkage:
2956  case GlobalValue::LinkerPrivateWeakLinkage:
2957  case GlobalValue::InternalLinkage:
2958  case GlobalValue::AvailableExternallyLinkage:
2959  case GlobalValue::LinkOnceAnyLinkage:
2960  case GlobalValue::LinkOnceODRLinkage:
2961  case GlobalValue::WeakAnyLinkage:
2962  case GlobalValue::WeakODRLinkage:
2963  case GlobalValue::DLLExportLinkage:
2964    if (!isDefine)
2965      return Error(LinkageLoc, "invalid linkage for function declaration");
2966    break;
2967  case GlobalValue::AppendingLinkage:
2968  case GlobalValue::CommonLinkage:
2969    return Error(LinkageLoc, "invalid function linkage type");
2970  }
2971
2972  if (!FunctionType::isValidReturnType(RetType))
2973    return Error(RetTypeLoc, "invalid function return type");
2974
2975  LocTy NameLoc = Lex.getLoc();
2976
2977  std::string FunctionName;
2978  if (Lex.getKind() == lltok::GlobalVar) {
2979    FunctionName = Lex.getStrVal();
2980  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2981    unsigned NameID = Lex.getUIntVal();
2982
2983    if (NameID != NumberedVals.size())
2984      return TokError("function expected to be numbered '%" +
2985                      Twine(NumberedVals.size()) + "'");
2986  } else {
2987    return TokError("expected function name");
2988  }
2989
2990  Lex.Lex();
2991
2992  if (Lex.getKind() != lltok::lparen)
2993    return TokError("expected '(' in function argument list");
2994
2995  SmallVector<ArgInfo, 8> ArgList;
2996  bool isVarArg;
2997  AttrBuilder FuncAttrs;
2998  std::vector<unsigned> FwdRefAttrGrps;
2999  LocTy BuiltinLoc;
3000  std::string Section;
3001  unsigned Alignment;
3002  std::string GC;
3003  bool UnnamedAddr;
3004  LocTy UnnamedAddrLoc;
3005  Constant *Prefix = 0;
3006
3007  if (ParseArgumentList(ArgList, isVarArg) ||
3008      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
3009                         &UnnamedAddrLoc) ||
3010      ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
3011                                 BuiltinLoc) ||
3012      (EatIfPresent(lltok::kw_section) &&
3013       ParseStringConstant(Section)) ||
3014      ParseOptionalAlignment(Alignment) ||
3015      (EatIfPresent(lltok::kw_gc) &&
3016       ParseStringConstant(GC)) ||
3017      (EatIfPresent(lltok::kw_prefix) &&
3018       ParseGlobalTypeAndValue(Prefix)))
3019    return true;
3020
3021  if (FuncAttrs.contains(Attribute::Builtin))
3022    return Error(BuiltinLoc, "'builtin' attribute not valid on function");
3023
3024  // If the alignment was parsed as an attribute, move to the alignment field.
3025  if (FuncAttrs.hasAlignmentAttr()) {
3026    Alignment = FuncAttrs.getAlignment();
3027    FuncAttrs.removeAttribute(Attribute::Alignment);
3028  }
3029
3030  // Okay, if we got here, the function is syntactically valid.  Convert types
3031  // and do semantic checks.
3032  std::vector<Type*> ParamTypeList;
3033  SmallVector<AttributeSet, 8> Attrs;
3034
3035  if (RetAttrs.hasAttributes())
3036    Attrs.push_back(AttributeSet::get(RetType->getContext(),
3037                                      AttributeSet::ReturnIndex,
3038                                      RetAttrs));
3039
3040  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3041    ParamTypeList.push_back(ArgList[i].Ty);
3042    if (ArgList[i].Attrs.hasAttributes(i + 1)) {
3043      AttrBuilder B(ArgList[i].Attrs, i + 1);
3044      Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
3045    }
3046  }
3047
3048  if (FuncAttrs.hasAttributes())
3049    Attrs.push_back(AttributeSet::get(RetType->getContext(),
3050                                      AttributeSet::FunctionIndex,
3051                                      FuncAttrs));
3052
3053  AttributeSet PAL = AttributeSet::get(Context, Attrs);
3054
3055  if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
3056    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
3057
3058  FunctionType *FT =
3059    FunctionType::get(RetType, ParamTypeList, isVarArg);
3060  PointerType *PFT = PointerType::getUnqual(FT);
3061
3062  Fn = 0;
3063  if (!FunctionName.empty()) {
3064    // If this was a definition of a forward reference, remove the definition
3065    // from the forward reference table and fill in the forward ref.
3066    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
3067      ForwardRefVals.find(FunctionName);
3068    if (FRVI != ForwardRefVals.end()) {
3069      Fn = M->getFunction(FunctionName);
3070      if (!Fn)
3071        return Error(FRVI->second.second, "invalid forward reference to "
3072                     "function as global value!");
3073      if (Fn->getType() != PFT)
3074        return Error(FRVI->second.second, "invalid forward reference to "
3075                     "function '" + FunctionName + "' with wrong type!");
3076
3077      ForwardRefVals.erase(FRVI);
3078    } else if ((Fn = M->getFunction(FunctionName))) {
3079      // Reject redefinitions.
3080      return Error(NameLoc, "invalid redefinition of function '" +
3081                   FunctionName + "'");
3082    } else if (M->getNamedValue(FunctionName)) {
3083      return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
3084    }
3085
3086  } else {
3087    // If this is a definition of a forward referenced function, make sure the
3088    // types agree.
3089    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
3090      = ForwardRefValIDs.find(NumberedVals.size());
3091    if (I != ForwardRefValIDs.end()) {
3092      Fn = cast<Function>(I->second.first);
3093      if (Fn->getType() != PFT)
3094        return Error(NameLoc, "type of definition and forward reference of '@" +
3095                     Twine(NumberedVals.size()) + "' disagree");
3096      ForwardRefValIDs.erase(I);
3097    }
3098  }
3099
3100  if (Fn == 0)
3101    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
3102  else // Move the forward-reference to the correct spot in the module.
3103    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
3104
3105  if (FunctionName.empty())
3106    NumberedVals.push_back(Fn);
3107
3108  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
3109  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
3110  Fn->setCallingConv(CC);
3111  Fn->setAttributes(PAL);
3112  Fn->setUnnamedAddr(UnnamedAddr);
3113  Fn->setAlignment(Alignment);
3114  Fn->setSection(Section);
3115  if (!GC.empty()) Fn->setGC(GC.c_str());
3116  Fn->setPrefixData(Prefix);
3117  ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
3118
3119  // Add all of the arguments we parsed to the function.
3120  Function::arg_iterator ArgIt = Fn->arg_begin();
3121  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
3122    // If the argument has a name, insert it into the argument symbol table.
3123    if (ArgList[i].Name.empty()) continue;
3124
3125    // Set the name, if it conflicted, it will be auto-renamed.
3126    ArgIt->setName(ArgList[i].Name);
3127
3128    if (ArgIt->getName() != ArgList[i].Name)
3129      return Error(ArgList[i].Loc, "redefinition of argument '%" +
3130                   ArgList[i].Name + "'");
3131  }
3132
3133  return false;
3134}
3135
3136
3137/// ParseFunctionBody
3138///   ::= '{' BasicBlock+ '}'
3139///
3140bool LLParser::ParseFunctionBody(Function &Fn) {
3141  if (Lex.getKind() != lltok::lbrace)
3142    return TokError("expected '{' in function body");
3143  Lex.Lex();  // eat the {.
3144
3145  int FunctionNumber = -1;
3146  if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
3147
3148  PerFunctionState PFS(*this, Fn, FunctionNumber);
3149
3150  // We need at least one basic block.
3151  if (Lex.getKind() == lltok::rbrace)
3152    return TokError("function body requires at least one basic block");
3153
3154  while (Lex.getKind() != lltok::rbrace)
3155    if (ParseBasicBlock(PFS)) return true;
3156
3157  // Eat the }.
3158  Lex.Lex();
3159
3160  // Verify function is ok.
3161  return PFS.FinishFunction();
3162}
3163
3164/// ParseBasicBlock
3165///   ::= LabelStr? Instruction*
3166bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
3167  // If this basic block starts out with a name, remember it.
3168  std::string Name;
3169  LocTy NameLoc = Lex.getLoc();
3170  if (Lex.getKind() == lltok::LabelStr) {
3171    Name = Lex.getStrVal();
3172    Lex.Lex();
3173  }
3174
3175  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
3176  if (BB == 0) return true;
3177
3178  std::string NameStr;
3179
3180  // Parse the instructions in this block until we get a terminator.
3181  Instruction *Inst;
3182  do {
3183    // This instruction may have three possibilities for a name: a) none
3184    // specified, b) name specified "%foo =", c) number specified: "%4 =".
3185    LocTy NameLoc = Lex.getLoc();
3186    int NameID = -1;
3187    NameStr = "";
3188
3189    if (Lex.getKind() == lltok::LocalVarID) {
3190      NameID = Lex.getUIntVal();
3191      Lex.Lex();
3192      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
3193        return true;
3194    } else if (Lex.getKind() == lltok::LocalVar) {
3195      NameStr = Lex.getStrVal();
3196      Lex.Lex();
3197      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
3198        return true;
3199    }
3200
3201    switch (ParseInstruction(Inst, BB, PFS)) {
3202    default: llvm_unreachable("Unknown ParseInstruction result!");
3203    case InstError: return true;
3204    case InstNormal:
3205      BB->getInstList().push_back(Inst);
3206
3207      // With a normal result, we check to see if the instruction is followed by
3208      // a comma and metadata.
3209      if (EatIfPresent(lltok::comma))
3210        if (ParseInstructionMetadata(Inst, &PFS))
3211          return true;
3212      break;
3213    case InstExtraComma:
3214      BB->getInstList().push_back(Inst);
3215
3216      // If the instruction parser ate an extra comma at the end of it, it
3217      // *must* be followed by metadata.
3218      if (ParseInstructionMetadata(Inst, &PFS))
3219        return true;
3220      break;
3221    }
3222
3223    // Set the name on the instruction.
3224    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
3225  } while (!isa<TerminatorInst>(Inst));
3226
3227  return false;
3228}
3229
3230//===----------------------------------------------------------------------===//
3231// Instruction Parsing.
3232//===----------------------------------------------------------------------===//
3233
3234/// ParseInstruction - Parse one of the many different instructions.
3235///
3236int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
3237                               PerFunctionState &PFS) {
3238  lltok::Kind Token = Lex.getKind();
3239  if (Token == lltok::Eof)
3240    return TokError("found end of file when expecting more instructions");
3241  LocTy Loc = Lex.getLoc();
3242  unsigned KeywordVal = Lex.getUIntVal();
3243  Lex.Lex();  // Eat the keyword.
3244
3245  switch (Token) {
3246  default:                    return Error(Loc, "expected instruction opcode");
3247  // Terminator Instructions.
3248  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
3249  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
3250  case lltok::kw_br:          return ParseBr(Inst, PFS);
3251  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
3252  case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
3253  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
3254  case lltok::kw_resume:      return ParseResume(Inst, PFS);
3255  // Binary Operators.
3256  case lltok::kw_add:
3257  case lltok::kw_sub:
3258  case lltok::kw_mul:
3259  case lltok::kw_shl: {
3260    bool NUW = EatIfPresent(lltok::kw_nuw);
3261    bool NSW = EatIfPresent(lltok::kw_nsw);
3262    if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
3263
3264    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
3265
3266    if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
3267    if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
3268    return false;
3269  }
3270  case lltok::kw_fadd:
3271  case lltok::kw_fsub:
3272  case lltok::kw_fmul:
3273  case lltok::kw_fdiv:
3274  case lltok::kw_frem: {
3275    FastMathFlags FMF = EatFastMathFlagsIfPresent();
3276    int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
3277    if (Res != 0)
3278      return Res;
3279    if (FMF.any())
3280      Inst->setFastMathFlags(FMF);
3281    return 0;
3282  }
3283
3284  case lltok::kw_sdiv:
3285  case lltok::kw_udiv:
3286  case lltok::kw_lshr:
3287  case lltok::kw_ashr: {
3288    bool Exact = EatIfPresent(lltok::kw_exact);
3289
3290    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
3291    if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
3292    return false;
3293  }
3294
3295  case lltok::kw_urem:
3296  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
3297  case lltok::kw_and:
3298  case lltok::kw_or:
3299  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
3300  case lltok::kw_icmp:
3301  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
3302  // Casts.
3303  case lltok::kw_trunc:
3304  case lltok::kw_zext:
3305  case lltok::kw_sext:
3306  case lltok::kw_fptrunc:
3307  case lltok::kw_fpext:
3308  case lltok::kw_bitcast:
3309  case lltok::kw_addrspacecast:
3310  case lltok::kw_uitofp:
3311  case lltok::kw_sitofp:
3312  case lltok::kw_fptoui:
3313  case lltok::kw_fptosi:
3314  case lltok::kw_inttoptr:
3315  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
3316  // Other.
3317  case lltok::kw_select:         return ParseSelect(Inst, PFS);
3318  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
3319  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
3320  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
3321  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
3322  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
3323  case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
3324  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
3325  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
3326  // Memory.
3327  case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
3328  case lltok::kw_load:           return ParseLoad(Inst, PFS);
3329  case lltok::kw_store:          return ParseStore(Inst, PFS);
3330  case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
3331  case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
3332  case lltok::kw_fence:          return ParseFence(Inst, PFS);
3333  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
3334  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
3335  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
3336  }
3337}
3338
3339/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
3340bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
3341  if (Opc == Instruction::FCmp) {
3342    switch (Lex.getKind()) {
3343    default: return TokError("expected fcmp predicate (e.g. 'oeq')");
3344    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
3345    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
3346    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
3347    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
3348    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
3349    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
3350    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
3351    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
3352    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
3353    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
3354    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
3355    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
3356    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
3357    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
3358    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
3359    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
3360    }
3361  } else {
3362    switch (Lex.getKind()) {
3363    default: return TokError("expected icmp predicate (e.g. 'eq')");
3364    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
3365    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
3366    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3367    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3368    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3369    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3370    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3371    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3372    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3373    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3374    }
3375  }
3376  Lex.Lex();
3377  return false;
3378}
3379
3380//===----------------------------------------------------------------------===//
3381// Terminator Instructions.
3382//===----------------------------------------------------------------------===//
3383
3384/// ParseRet - Parse a return instruction.
3385///   ::= 'ret' void (',' !dbg, !1)*
3386///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
3387bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3388                        PerFunctionState &PFS) {
3389  SMLoc TypeLoc = Lex.getLoc();
3390  Type *Ty = 0;
3391  if (ParseType(Ty, true /*void allowed*/)) return true;
3392
3393  Type *ResType = PFS.getFunction().getReturnType();
3394
3395  if (Ty->isVoidTy()) {
3396    if (!ResType->isVoidTy())
3397      return Error(TypeLoc, "value doesn't match function result type '" +
3398                   getTypeString(ResType) + "'");
3399
3400    Inst = ReturnInst::Create(Context);
3401    return false;
3402  }
3403
3404  Value *RV;
3405  if (ParseValue(Ty, RV, PFS)) return true;
3406
3407  if (ResType != RV->getType())
3408    return Error(TypeLoc, "value doesn't match function result type '" +
3409                 getTypeString(ResType) + "'");
3410
3411  Inst = ReturnInst::Create(Context, RV);
3412  return false;
3413}
3414
3415
3416/// ParseBr
3417///   ::= 'br' TypeAndValue
3418///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3419bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3420  LocTy Loc, Loc2;
3421  Value *Op0;
3422  BasicBlock *Op1, *Op2;
3423  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3424
3425  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3426    Inst = BranchInst::Create(BB);
3427    return false;
3428  }
3429
3430  if (Op0->getType() != Type::getInt1Ty(Context))
3431    return Error(Loc, "branch condition must have 'i1' type");
3432
3433  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3434      ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3435      ParseToken(lltok::comma, "expected ',' after true destination") ||
3436      ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3437    return true;
3438
3439  Inst = BranchInst::Create(Op1, Op2, Op0);
3440  return false;
3441}
3442
3443/// ParseSwitch
3444///  Instruction
3445///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3446///  JumpTable
3447///    ::= (TypeAndValue ',' TypeAndValue)*
3448bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3449  LocTy CondLoc, BBLoc;
3450  Value *Cond;
3451  BasicBlock *DefaultBB;
3452  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3453      ParseToken(lltok::comma, "expected ',' after switch condition") ||
3454      ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3455      ParseToken(lltok::lsquare, "expected '[' with switch table"))
3456    return true;
3457
3458  if (!Cond->getType()->isIntegerTy())
3459    return Error(CondLoc, "switch condition must have integer type");
3460
3461  // Parse the jump table pairs.
3462  SmallPtrSet<Value*, 32> SeenCases;
3463  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3464  while (Lex.getKind() != lltok::rsquare) {
3465    Value *Constant;
3466    BasicBlock *DestBB;
3467
3468    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3469        ParseToken(lltok::comma, "expected ',' after case value") ||
3470        ParseTypeAndBasicBlock(DestBB, PFS))
3471      return true;
3472
3473    if (!SeenCases.insert(Constant))
3474      return Error(CondLoc, "duplicate case value in switch");
3475    if (!isa<ConstantInt>(Constant))
3476      return Error(CondLoc, "case value is not a constant integer");
3477
3478    Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3479  }
3480
3481  Lex.Lex();  // Eat the ']'.
3482
3483  SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3484  for (unsigned i = 0, e = Table.size(); i != e; ++i)
3485    SI->addCase(Table[i].first, Table[i].second);
3486  Inst = SI;
3487  return false;
3488}
3489
3490/// ParseIndirectBr
3491///  Instruction
3492///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3493bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3494  LocTy AddrLoc;
3495  Value *Address;
3496  if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3497      ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3498      ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3499    return true;
3500
3501  if (!Address->getType()->isPointerTy())
3502    return Error(AddrLoc, "indirectbr address must have pointer type");
3503
3504  // Parse the destination list.
3505  SmallVector<BasicBlock*, 16> DestList;
3506
3507  if (Lex.getKind() != lltok::rsquare) {
3508    BasicBlock *DestBB;
3509    if (ParseTypeAndBasicBlock(DestBB, PFS))
3510      return true;
3511    DestList.push_back(DestBB);
3512
3513    while (EatIfPresent(lltok::comma)) {
3514      if (ParseTypeAndBasicBlock(DestBB, PFS))
3515        return true;
3516      DestList.push_back(DestBB);
3517    }
3518  }
3519
3520  if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3521    return true;
3522
3523  IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3524  for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3525    IBI->addDestination(DestList[i]);
3526  Inst = IBI;
3527  return false;
3528}
3529
3530
3531/// ParseInvoke
3532///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3533///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3534bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3535  LocTy CallLoc = Lex.getLoc();
3536  AttrBuilder RetAttrs, FnAttrs;
3537  std::vector<unsigned> FwdRefAttrGrps;
3538  LocTy NoBuiltinLoc;
3539  CallingConv::ID CC;
3540  Type *RetType = 0;
3541  LocTy RetTypeLoc;
3542  ValID CalleeID;
3543  SmallVector<ParamInfo, 16> ArgList;
3544
3545  BasicBlock *NormalBB, *UnwindBB;
3546  if (ParseOptionalCallingConv(CC) ||
3547      ParseOptionalReturnAttrs(RetAttrs) ||
3548      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3549      ParseValID(CalleeID) ||
3550      ParseParameterList(ArgList, PFS) ||
3551      ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
3552                                 NoBuiltinLoc) ||
3553      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3554      ParseTypeAndBasicBlock(NormalBB, PFS) ||
3555      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3556      ParseTypeAndBasicBlock(UnwindBB, PFS))
3557    return true;
3558
3559  // If RetType is a non-function pointer type, then this is the short syntax
3560  // for the call, which means that RetType is just the return type.  Infer the
3561  // rest of the function argument types from the arguments that are present.
3562  PointerType *PFTy = 0;
3563  FunctionType *Ty = 0;
3564  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3565      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3566    // Pull out the types of all of the arguments...
3567    std::vector<Type*> ParamTypes;
3568    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3569      ParamTypes.push_back(ArgList[i].V->getType());
3570
3571    if (!FunctionType::isValidReturnType(RetType))
3572      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3573
3574    Ty = FunctionType::get(RetType, ParamTypes, false);
3575    PFTy = PointerType::getUnqual(Ty);
3576  }
3577
3578  // Look up the callee.
3579  Value *Callee;
3580  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3581
3582  // Set up the Attribute for the function.
3583  SmallVector<AttributeSet, 8> Attrs;
3584  if (RetAttrs.hasAttributes())
3585    Attrs.push_back(AttributeSet::get(RetType->getContext(),
3586                                      AttributeSet::ReturnIndex,
3587                                      RetAttrs));
3588
3589  SmallVector<Value*, 8> Args;
3590
3591  // Loop through FunctionType's arguments and ensure they are specified
3592  // correctly.  Also, gather any parameter attributes.
3593  FunctionType::param_iterator I = Ty->param_begin();
3594  FunctionType::param_iterator E = Ty->param_end();
3595  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3596    Type *ExpectedTy = 0;
3597    if (I != E) {
3598      ExpectedTy = *I++;
3599    } else if (!Ty->isVarArg()) {
3600      return Error(ArgList[i].Loc, "too many arguments specified");
3601    }
3602
3603    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3604      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3605                   getTypeString(ExpectedTy) + "'");
3606    Args.push_back(ArgList[i].V);
3607    if (ArgList[i].Attrs.hasAttributes(i + 1)) {
3608      AttrBuilder B(ArgList[i].Attrs, i + 1);
3609      Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
3610    }
3611  }
3612
3613  if (I != E)
3614    return Error(CallLoc, "not enough parameters specified for call");
3615
3616  if (FnAttrs.hasAttributes())
3617    Attrs.push_back(AttributeSet::get(RetType->getContext(),
3618                                      AttributeSet::FunctionIndex,
3619                                      FnAttrs));
3620
3621  // Finish off the Attribute and check them
3622  AttributeSet PAL = AttributeSet::get(Context, Attrs);
3623
3624  InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args);
3625  II->setCallingConv(CC);
3626  II->setAttributes(PAL);
3627  ForwardRefAttrGroups[II] = FwdRefAttrGrps;
3628  Inst = II;
3629  return false;
3630}
3631
3632/// ParseResume
3633///   ::= 'resume' TypeAndValue
3634bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
3635  Value *Exn; LocTy ExnLoc;
3636  if (ParseTypeAndValue(Exn, ExnLoc, PFS))
3637    return true;
3638
3639  ResumeInst *RI = ResumeInst::Create(Exn);
3640  Inst = RI;
3641  return false;
3642}
3643
3644//===----------------------------------------------------------------------===//
3645// Binary Operators.
3646//===----------------------------------------------------------------------===//
3647
3648/// ParseArithmetic
3649///  ::= ArithmeticOps TypeAndValue ',' Value
3650///
3651/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3652/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3653bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3654                               unsigned Opc, unsigned OperandType) {
3655  LocTy Loc; Value *LHS, *RHS;
3656  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3657      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3658      ParseValue(LHS->getType(), RHS, PFS))
3659    return true;
3660
3661  bool Valid;
3662  switch (OperandType) {
3663  default: llvm_unreachable("Unknown operand type!");
3664  case 0: // int or FP.
3665    Valid = LHS->getType()->isIntOrIntVectorTy() ||
3666            LHS->getType()->isFPOrFPVectorTy();
3667    break;
3668  case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
3669  case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
3670  }
3671
3672  if (!Valid)
3673    return Error(Loc, "invalid operand type for instruction");
3674
3675  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3676  return false;
3677}
3678
3679/// ParseLogical
3680///  ::= ArithmeticOps TypeAndValue ',' Value {
3681bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3682                            unsigned Opc) {
3683  LocTy Loc; Value *LHS, *RHS;
3684  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3685      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3686      ParseValue(LHS->getType(), RHS, PFS))
3687    return true;
3688
3689  if (!LHS->getType()->isIntOrIntVectorTy())
3690    return Error(Loc,"instruction requires integer or integer vector operands");
3691
3692  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3693  return false;
3694}
3695
3696
3697/// ParseCompare
3698///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3699///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3700bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3701                            unsigned Opc) {
3702  // Parse the integer/fp comparison predicate.
3703  LocTy Loc;
3704  unsigned Pred;
3705  Value *LHS, *RHS;
3706  if (ParseCmpPredicate(Pred, Opc) ||
3707      ParseTypeAndValue(LHS, Loc, PFS) ||
3708      ParseToken(lltok::comma, "expected ',' after compare value") ||
3709      ParseValue(LHS->getType(), RHS, PFS))
3710    return true;
3711
3712  if (Opc == Instruction::FCmp) {
3713    if (!LHS->getType()->isFPOrFPVectorTy())
3714      return Error(Loc, "fcmp requires floating point operands");
3715    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3716  } else {
3717    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3718    if (!LHS->getType()->isIntOrIntVectorTy() &&
3719        !LHS->getType()->getScalarType()->isPointerTy())
3720      return Error(Loc, "icmp requires integer operands");
3721    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3722  }
3723  return false;
3724}
3725
3726//===----------------------------------------------------------------------===//
3727// Other Instructions.
3728//===----------------------------------------------------------------------===//
3729
3730
3731/// ParseCast
3732///   ::= CastOpc TypeAndValue 'to' Type
3733bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3734                         unsigned Opc) {
3735  LocTy Loc;
3736  Value *Op;
3737  Type *DestTy = 0;
3738  if (ParseTypeAndValue(Op, Loc, PFS) ||
3739      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3740      ParseType(DestTy))
3741    return true;
3742
3743  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3744    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3745    return Error(Loc, "invalid cast opcode for cast from '" +
3746                 getTypeString(Op->getType()) + "' to '" +
3747                 getTypeString(DestTy) + "'");
3748  }
3749  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3750  return false;
3751}
3752
3753/// ParseSelect
3754///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3755bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3756  LocTy Loc;
3757  Value *Op0, *Op1, *Op2;
3758  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3759      ParseToken(lltok::comma, "expected ',' after select condition") ||
3760      ParseTypeAndValue(Op1, PFS) ||
3761      ParseToken(lltok::comma, "expected ',' after select value") ||
3762      ParseTypeAndValue(Op2, PFS))
3763    return true;
3764
3765  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3766    return Error(Loc, Reason);
3767
3768  Inst = SelectInst::Create(Op0, Op1, Op2);
3769  return false;
3770}
3771
3772/// ParseVA_Arg
3773///   ::= 'va_arg' TypeAndValue ',' Type
3774bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3775  Value *Op;
3776  Type *EltTy = 0;
3777  LocTy TypeLoc;
3778  if (ParseTypeAndValue(Op, PFS) ||
3779      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3780      ParseType(EltTy, TypeLoc))
3781    return true;
3782
3783  if (!EltTy->isFirstClassType())
3784    return Error(TypeLoc, "va_arg requires operand with first class type");
3785
3786  Inst = new VAArgInst(Op, EltTy);
3787  return false;
3788}
3789
3790/// ParseExtractElement
3791///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3792bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3793  LocTy Loc;
3794  Value *Op0, *Op1;
3795  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3796      ParseToken(lltok::comma, "expected ',' after extract value") ||
3797      ParseTypeAndValue(Op1, PFS))
3798    return true;
3799
3800  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3801    return Error(Loc, "invalid extractelement operands");
3802
3803  Inst = ExtractElementInst::Create(Op0, Op1);
3804  return false;
3805}
3806
3807/// ParseInsertElement
3808///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3809bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3810  LocTy Loc;
3811  Value *Op0, *Op1, *Op2;
3812  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3813      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3814      ParseTypeAndValue(Op1, PFS) ||
3815      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3816      ParseTypeAndValue(Op2, PFS))
3817    return true;
3818
3819  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3820    return Error(Loc, "invalid insertelement operands");
3821
3822  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3823  return false;
3824}
3825
3826/// ParseShuffleVector
3827///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3828bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3829  LocTy Loc;
3830  Value *Op0, *Op1, *Op2;
3831  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3832      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3833      ParseTypeAndValue(Op1, PFS) ||
3834      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3835      ParseTypeAndValue(Op2, PFS))
3836    return true;
3837
3838  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3839    return Error(Loc, "invalid shufflevector operands");
3840
3841  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3842  return false;
3843}
3844
3845/// ParsePHI
3846///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3847int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3848  Type *Ty = 0;  LocTy TypeLoc;
3849  Value *Op0, *Op1;
3850
3851  if (ParseType(Ty, TypeLoc) ||
3852      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3853      ParseValue(Ty, Op0, PFS) ||
3854      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3855      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3856      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3857    return true;
3858
3859  bool AteExtraComma = false;
3860  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3861  while (1) {
3862    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3863
3864    if (!EatIfPresent(lltok::comma))
3865      break;
3866
3867    if (Lex.getKind() == lltok::MetadataVar) {
3868      AteExtraComma = true;
3869      break;
3870    }
3871
3872    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3873        ParseValue(Ty, Op0, PFS) ||
3874        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3875        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3876        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3877      return true;
3878  }
3879
3880  if (!Ty->isFirstClassType())
3881    return Error(TypeLoc, "phi node must have first class type");
3882
3883  PHINode *PN = PHINode::Create(Ty, PHIVals.size());
3884  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3885    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3886  Inst = PN;
3887  return AteExtraComma ? InstExtraComma : InstNormal;
3888}
3889
3890/// ParseLandingPad
3891///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
3892/// Clause
3893///   ::= 'catch' TypeAndValue
3894///   ::= 'filter'
3895///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
3896bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
3897  Type *Ty = 0; LocTy TyLoc;
3898  Value *PersFn; LocTy PersFnLoc;
3899
3900  if (ParseType(Ty, TyLoc) ||
3901      ParseToken(lltok::kw_personality, "expected 'personality'") ||
3902      ParseTypeAndValue(PersFn, PersFnLoc, PFS))
3903    return true;
3904
3905  LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0);
3906  LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
3907
3908  while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
3909    LandingPadInst::ClauseType CT;
3910    if (EatIfPresent(lltok::kw_catch))
3911      CT = LandingPadInst::Catch;
3912    else if (EatIfPresent(lltok::kw_filter))
3913      CT = LandingPadInst::Filter;
3914    else
3915      return TokError("expected 'catch' or 'filter' clause type");
3916
3917    Value *V; LocTy VLoc;
3918    if (ParseTypeAndValue(V, VLoc, PFS)) {
3919      delete LP;
3920      return true;
3921    }
3922
3923    // A 'catch' type expects a non-array constant. A filter clause expects an
3924    // array constant.
3925    if (CT == LandingPadInst::Catch) {
3926      if (isa<ArrayType>(V->getType()))
3927        Error(VLoc, "'catch' clause has an invalid type");
3928    } else {
3929      if (!isa<ArrayType>(V->getType()))
3930        Error(VLoc, "'filter' clause has an invalid type");
3931    }
3932
3933    LP->addClause(V);
3934  }
3935
3936  Inst = LP;
3937  return false;
3938}
3939
3940/// ParseCall
3941///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3942///       ParameterList OptionalAttrs
3943bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3944                         bool isTail) {
3945  AttrBuilder RetAttrs, FnAttrs;
3946  std::vector<unsigned> FwdRefAttrGrps;
3947  LocTy BuiltinLoc;
3948  CallingConv::ID CC;
3949  Type *RetType = 0;
3950  LocTy RetTypeLoc;
3951  ValID CalleeID;
3952  SmallVector<ParamInfo, 16> ArgList;
3953  LocTy CallLoc = Lex.getLoc();
3954
3955  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3956      ParseOptionalCallingConv(CC) ||
3957      ParseOptionalReturnAttrs(RetAttrs) ||
3958      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3959      ParseValID(CalleeID) ||
3960      ParseParameterList(ArgList, PFS) ||
3961      ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
3962                                 BuiltinLoc))
3963    return true;
3964
3965  // If RetType is a non-function pointer type, then this is the short syntax
3966  // for the call, which means that RetType is just the return type.  Infer the
3967  // rest of the function argument types from the arguments that are present.
3968  PointerType *PFTy = 0;
3969  FunctionType *Ty = 0;
3970  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3971      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3972    // Pull out the types of all of the arguments...
3973    std::vector<Type*> ParamTypes;
3974    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3975      ParamTypes.push_back(ArgList[i].V->getType());
3976
3977    if (!FunctionType::isValidReturnType(RetType))
3978      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3979
3980    Ty = FunctionType::get(RetType, ParamTypes, false);
3981    PFTy = PointerType::getUnqual(Ty);
3982  }
3983
3984  // Look up the callee.
3985  Value *Callee;
3986  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3987
3988  // Set up the Attribute for the function.
3989  SmallVector<AttributeSet, 8> Attrs;
3990  if (RetAttrs.hasAttributes())
3991    Attrs.push_back(AttributeSet::get(RetType->getContext(),
3992                                      AttributeSet::ReturnIndex,
3993                                      RetAttrs));
3994
3995  SmallVector<Value*, 8> Args;
3996
3997  // Loop through FunctionType's arguments and ensure they are specified
3998  // correctly.  Also, gather any parameter attributes.
3999  FunctionType::param_iterator I = Ty->param_begin();
4000  FunctionType::param_iterator E = Ty->param_end();
4001  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
4002    Type *ExpectedTy = 0;
4003    if (I != E) {
4004      ExpectedTy = *I++;
4005    } else if (!Ty->isVarArg()) {
4006      return Error(ArgList[i].Loc, "too many arguments specified");
4007    }
4008
4009    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
4010      return Error(ArgList[i].Loc, "argument is not of expected type '" +
4011                   getTypeString(ExpectedTy) + "'");
4012    Args.push_back(ArgList[i].V);
4013    if (ArgList[i].Attrs.hasAttributes(i + 1)) {
4014      AttrBuilder B(ArgList[i].Attrs, i + 1);
4015      Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
4016    }
4017  }
4018
4019  if (I != E)
4020    return Error(CallLoc, "not enough parameters specified for call");
4021
4022  if (FnAttrs.hasAttributes())
4023    Attrs.push_back(AttributeSet::get(RetType->getContext(),
4024                                      AttributeSet::FunctionIndex,
4025                                      FnAttrs));
4026
4027  // Finish off the Attribute and check them
4028  AttributeSet PAL = AttributeSet::get(Context, Attrs);
4029
4030  CallInst *CI = CallInst::Create(Callee, Args);
4031  CI->setTailCall(isTail);
4032  CI->setCallingConv(CC);
4033  CI->setAttributes(PAL);
4034  ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
4035  Inst = CI;
4036  return false;
4037}
4038
4039//===----------------------------------------------------------------------===//
4040// Memory Instructions.
4041//===----------------------------------------------------------------------===//
4042
4043/// ParseAlloc
4044///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
4045int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
4046  Value *Size = 0;
4047  LocTy SizeLoc;
4048  unsigned Alignment = 0;
4049  Type *Ty = 0;
4050  if (ParseType(Ty)) return true;
4051
4052  bool AteExtraComma = false;
4053  if (EatIfPresent(lltok::comma)) {
4054    if (Lex.getKind() == lltok::kw_align) {
4055      if (ParseOptionalAlignment(Alignment)) return true;
4056    } else if (Lex.getKind() == lltok::MetadataVar) {
4057      AteExtraComma = true;
4058    } else {
4059      if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
4060          ParseOptionalCommaAlign(Alignment, AteExtraComma))
4061        return true;
4062    }
4063  }
4064
4065  if (Size && !Size->getType()->isIntegerTy())
4066    return Error(SizeLoc, "element count must have integer type");
4067
4068  Inst = new AllocaInst(Ty, Size, Alignment);
4069  return AteExtraComma ? InstExtraComma : InstNormal;
4070}
4071
4072/// ParseLoad
4073///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
4074///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
4075///       'singlethread'? AtomicOrdering (',' 'align' i32)?
4076int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
4077  Value *Val; LocTy Loc;
4078  unsigned Alignment = 0;
4079  bool AteExtraComma = false;
4080  bool isAtomic = false;
4081  AtomicOrdering Ordering = NotAtomic;
4082  SynchronizationScope Scope = CrossThread;
4083
4084  if (Lex.getKind() == lltok::kw_atomic) {
4085    isAtomic = true;
4086    Lex.Lex();
4087  }
4088
4089  bool isVolatile = false;
4090  if (Lex.getKind() == lltok::kw_volatile) {
4091    isVolatile = true;
4092    Lex.Lex();
4093  }
4094
4095  if (ParseTypeAndValue(Val, Loc, PFS) ||
4096      ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
4097      ParseOptionalCommaAlign(Alignment, AteExtraComma))
4098    return true;
4099
4100  if (!Val->getType()->isPointerTy() ||
4101      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
4102    return Error(Loc, "load operand must be a pointer to a first class type");
4103  if (isAtomic && !Alignment)
4104    return Error(Loc, "atomic load must have explicit non-zero alignment");
4105  if (Ordering == Release || Ordering == AcquireRelease)
4106    return Error(Loc, "atomic load cannot use Release ordering");
4107
4108  Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope);
4109  return AteExtraComma ? InstExtraComma : InstNormal;
4110}
4111
4112/// ParseStore
4113
4114///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
4115///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
4116///       'singlethread'? AtomicOrdering (',' 'align' i32)?
4117int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
4118  Value *Val, *Ptr; LocTy Loc, PtrLoc;
4119  unsigned Alignment = 0;
4120  bool AteExtraComma = false;
4121  bool isAtomic = false;
4122  AtomicOrdering Ordering = NotAtomic;
4123  SynchronizationScope Scope = CrossThread;
4124
4125  if (Lex.getKind() == lltok::kw_atomic) {
4126    isAtomic = true;
4127    Lex.Lex();
4128  }
4129
4130  bool isVolatile = false;
4131  if (Lex.getKind() == lltok::kw_volatile) {
4132    isVolatile = true;
4133    Lex.Lex();
4134  }
4135
4136  if (ParseTypeAndValue(Val, Loc, PFS) ||
4137      ParseToken(lltok::comma, "expected ',' after store operand") ||
4138      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
4139      ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
4140      ParseOptionalCommaAlign(Alignment, AteExtraComma))
4141    return true;
4142
4143  if (!Ptr->getType()->isPointerTy())
4144    return Error(PtrLoc, "store operand must be a pointer");
4145  if (!Val->getType()->isFirstClassType())
4146    return Error(Loc, "store operand must be a first class value");
4147  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
4148    return Error(Loc, "stored value and pointer type do not match");
4149  if (isAtomic && !Alignment)
4150    return Error(Loc, "atomic store must have explicit non-zero alignment");
4151  if (Ordering == Acquire || Ordering == AcquireRelease)
4152    return Error(Loc, "atomic store cannot use Acquire ordering");
4153
4154  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
4155  return AteExtraComma ? InstExtraComma : InstNormal;
4156}
4157
4158/// ParseCmpXchg
4159///   ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue
4160///       'singlethread'? AtomicOrdering
4161int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
4162  Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
4163  bool AteExtraComma = false;
4164  AtomicOrdering Ordering = NotAtomic;
4165  SynchronizationScope Scope = CrossThread;
4166  bool isVolatile = false;
4167
4168  if (EatIfPresent(lltok::kw_volatile))
4169    isVolatile = true;
4170
4171  if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
4172      ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
4173      ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
4174      ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
4175      ParseTypeAndValue(New, NewLoc, PFS) ||
4176      ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
4177    return true;
4178
4179  if (Ordering == Unordered)
4180    return TokError("cmpxchg cannot be unordered");
4181  if (!Ptr->getType()->isPointerTy())
4182    return Error(PtrLoc, "cmpxchg operand must be a pointer");
4183  if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
4184    return Error(CmpLoc, "compare value and pointer type do not match");
4185  if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
4186    return Error(NewLoc, "new value and pointer type do not match");
4187  if (!New->getType()->isIntegerTy())
4188    return Error(NewLoc, "cmpxchg operand must be an integer");
4189  unsigned Size = New->getType()->getPrimitiveSizeInBits();
4190  if (Size < 8 || (Size & (Size - 1)))
4191    return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
4192                         " integer");
4193
4194  AtomicCmpXchgInst *CXI =
4195    new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope);
4196  CXI->setVolatile(isVolatile);
4197  Inst = CXI;
4198  return AteExtraComma ? InstExtraComma : InstNormal;
4199}
4200
4201/// ParseAtomicRMW
4202///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
4203///       'singlethread'? AtomicOrdering
4204int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
4205  Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
4206  bool AteExtraComma = false;
4207  AtomicOrdering Ordering = NotAtomic;
4208  SynchronizationScope Scope = CrossThread;
4209  bool isVolatile = false;
4210  AtomicRMWInst::BinOp Operation;
4211
4212  if (EatIfPresent(lltok::kw_volatile))
4213    isVolatile = true;
4214
4215  switch (Lex.getKind()) {
4216  default: return TokError("expected binary operation in atomicrmw");
4217  case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
4218  case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
4219  case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
4220  case lltok::kw_and: Operation = AtomicRMWInst::And; break;
4221  case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
4222  case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
4223  case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
4224  case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
4225  case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
4226  case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
4227  case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
4228  }
4229  Lex.Lex();  // Eat the operation.
4230
4231  if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
4232      ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
4233      ParseTypeAndValue(Val, ValLoc, PFS) ||
4234      ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
4235    return true;
4236
4237  if (Ordering == Unordered)
4238    return TokError("atomicrmw cannot be unordered");
4239  if (!Ptr->getType()->isPointerTy())
4240    return Error(PtrLoc, "atomicrmw operand must be a pointer");
4241  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
4242    return Error(ValLoc, "atomicrmw value and pointer type do not match");
4243  if (!Val->getType()->isIntegerTy())
4244    return Error(ValLoc, "atomicrmw operand must be an integer");
4245  unsigned Size = Val->getType()->getPrimitiveSizeInBits();
4246  if (Size < 8 || (Size & (Size - 1)))
4247    return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
4248                         " integer");
4249
4250  AtomicRMWInst *RMWI =
4251    new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
4252  RMWI->setVolatile(isVolatile);
4253  Inst = RMWI;
4254  return AteExtraComma ? InstExtraComma : InstNormal;
4255}
4256
4257/// ParseFence
4258///   ::= 'fence' 'singlethread'? AtomicOrdering
4259int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
4260  AtomicOrdering Ordering = NotAtomic;
4261  SynchronizationScope Scope = CrossThread;
4262  if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
4263    return true;
4264
4265  if (Ordering == Unordered)
4266    return TokError("fence cannot be unordered");
4267  if (Ordering == Monotonic)
4268    return TokError("fence cannot be monotonic");
4269
4270  Inst = new FenceInst(Context, Ordering, Scope);
4271  return InstNormal;
4272}
4273
4274/// ParseGetElementPtr
4275///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
4276int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
4277  Value *Ptr = 0;
4278  Value *Val = 0;
4279  LocTy Loc, EltLoc;
4280
4281  bool InBounds = EatIfPresent(lltok::kw_inbounds);
4282
4283  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
4284
4285  Type *BaseType = Ptr->getType();
4286  PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
4287  if (!BasePointerType)
4288    return Error(Loc, "base of getelementptr must be a pointer");
4289
4290  SmallVector<Value*, 16> Indices;
4291  bool AteExtraComma = false;
4292  while (EatIfPresent(lltok::comma)) {
4293    if (Lex.getKind() == lltok::MetadataVar) {
4294      AteExtraComma = true;
4295      break;
4296    }
4297    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
4298    if (!Val->getType()->getScalarType()->isIntegerTy())
4299      return Error(EltLoc, "getelementptr index must be an integer");
4300    if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy())
4301      return Error(EltLoc, "getelementptr index type missmatch");
4302    if (Val->getType()->isVectorTy()) {
4303      unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements();
4304      unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements();
4305      if (ValNumEl != PtrNumEl)
4306        return Error(EltLoc,
4307          "getelementptr vector index has a wrong number of elements");
4308    }
4309    Indices.push_back(Val);
4310  }
4311
4312  if (!Indices.empty() && !BasePointerType->getElementType()->isSized())
4313    return Error(Loc, "base element of getelementptr must be sized");
4314
4315  if (!GetElementPtrInst::getIndexedType(BaseType, Indices))
4316    return Error(Loc, "invalid getelementptr indices");
4317  Inst = GetElementPtrInst::Create(Ptr, Indices);
4318  if (InBounds)
4319    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
4320  return AteExtraComma ? InstExtraComma : InstNormal;
4321}
4322
4323/// ParseExtractValue
4324///   ::= 'extractvalue' TypeAndValue (',' uint32)+
4325int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
4326  Value *Val; LocTy Loc;
4327  SmallVector<unsigned, 4> Indices;
4328  bool AteExtraComma;
4329  if (ParseTypeAndValue(Val, Loc, PFS) ||
4330      ParseIndexList(Indices, AteExtraComma))
4331    return true;
4332
4333  if (!Val->getType()->isAggregateType())
4334    return Error(Loc, "extractvalue operand must be aggregate type");
4335
4336  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
4337    return Error(Loc, "invalid indices for extractvalue");
4338  Inst = ExtractValueInst::Create(Val, Indices);
4339  return AteExtraComma ? InstExtraComma : InstNormal;
4340}
4341
4342/// ParseInsertValue
4343///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
4344int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
4345  Value *Val0, *Val1; LocTy Loc0, Loc1;
4346  SmallVector<unsigned, 4> Indices;
4347  bool AteExtraComma;
4348  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
4349      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
4350      ParseTypeAndValue(Val1, Loc1, PFS) ||
4351      ParseIndexList(Indices, AteExtraComma))
4352    return true;
4353
4354  if (!Val0->getType()->isAggregateType())
4355    return Error(Loc0, "insertvalue operand must be aggregate type");
4356
4357  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
4358    return Error(Loc0, "invalid indices for insertvalue");
4359  Inst = InsertValueInst::Create(Val0, Val1, Indices);
4360  return AteExtraComma ? InstExtraComma : InstNormal;
4361}
4362
4363//===----------------------------------------------------------------------===//
4364// Embedded metadata.
4365//===----------------------------------------------------------------------===//
4366
4367/// ParseMDNodeVector
4368///   ::= Element (',' Element)*
4369/// Element
4370///   ::= 'null' | TypeAndValue
4371bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
4372                                 PerFunctionState *PFS) {
4373  // Check for an empty list.
4374  if (Lex.getKind() == lltok::rbrace)
4375    return false;
4376
4377  do {
4378    // Null is a special case since it is typeless.
4379    if (EatIfPresent(lltok::kw_null)) {
4380      Elts.push_back(0);
4381      continue;
4382    }
4383
4384    Value *V = 0;
4385    if (ParseTypeAndValue(V, PFS)) return true;
4386    Elts.push_back(V);
4387  } while (EatIfPresent(lltok::comma));
4388
4389  return false;
4390}
4391