ValueTracking.cpp revision 263508
1//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/ADT/SmallPtrSet.h"
17#include "llvm/Analysis/InstructionSimplify.h"
18#include "llvm/Analysis/MemoryBuiltins.h"
19#include "llvm/IR/Constants.h"
20#include "llvm/IR/DataLayout.h"
21#include "llvm/IR/GlobalAlias.h"
22#include "llvm/IR/GlobalVariable.h"
23#include "llvm/IR/Instructions.h"
24#include "llvm/IR/IntrinsicInst.h"
25#include "llvm/IR/LLVMContext.h"
26#include "llvm/IR/Metadata.h"
27#include "llvm/IR/Operator.h"
28#include "llvm/Support/ConstantRange.h"
29#include "llvm/Support/GetElementPtrTypeIterator.h"
30#include "llvm/Support/MathExtras.h"
31#include "llvm/Support/PatternMatch.h"
32#include <cstring>
33using namespace llvm;
34using namespace llvm::PatternMatch;
35
36const unsigned MaxDepth = 6;
37
38/// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
39/// unknown returns 0).  For vector types, returns the element type's bitwidth.
40static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
41  if (unsigned BitWidth = Ty->getScalarSizeInBits())
42    return BitWidth;
43
44  return TD ? TD->getPointerTypeSizeInBits(Ty) : 0;
45}
46
47static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
48                                    APInt &KnownZero, APInt &KnownOne,
49                                    APInt &KnownZero2, APInt &KnownOne2,
50                                    const DataLayout *TD, unsigned Depth) {
51  if (!Add) {
52    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
53      // We know that the top bits of C-X are clear if X contains less bits
54      // than C (i.e. no wrap-around can happen).  For example, 20-X is
55      // positive if we can prove that X is >= 0 and < 16.
56      if (!CLHS->getValue().isNegative()) {
57        unsigned BitWidth = KnownZero.getBitWidth();
58        unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
59        // NLZ can't be BitWidth with no sign bit
60        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
61        llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
62
63        // If all of the MaskV bits are known to be zero, then we know the
64        // output top bits are zero, because we now know that the output is
65        // from [0-C].
66        if ((KnownZero2 & MaskV) == MaskV) {
67          unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
68          // Top bits known zero.
69          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
70        }
71      }
72    }
73  }
74
75  unsigned BitWidth = KnownZero.getBitWidth();
76
77  // If one of the operands has trailing zeros, then the bits that the
78  // other operand has in those bit positions will be preserved in the
79  // result. For an add, this works with either operand. For a subtract,
80  // this only works if the known zeros are in the right operand.
81  APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
82  llvm::ComputeMaskedBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1);
83  assert((LHSKnownZero & LHSKnownOne) == 0 &&
84         "Bits known to be one AND zero?");
85  unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
86
87  llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
88  assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
89  unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
90
91  // Determine which operand has more trailing zeros, and use that
92  // many bits from the other operand.
93  if (LHSKnownZeroOut > RHSKnownZeroOut) {
94    if (Add) {
95      APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
96      KnownZero |= KnownZero2 & Mask;
97      KnownOne  |= KnownOne2 & Mask;
98    } else {
99      // If the known zeros are in the left operand for a subtract,
100      // fall back to the minimum known zeros in both operands.
101      KnownZero |= APInt::getLowBitsSet(BitWidth,
102                                        std::min(LHSKnownZeroOut,
103                                                 RHSKnownZeroOut));
104    }
105  } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
106    APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
107    KnownZero |= LHSKnownZero & Mask;
108    KnownOne  |= LHSKnownOne & Mask;
109  }
110
111  // Are we still trying to solve for the sign bit?
112  if (!KnownZero.isNegative() && !KnownOne.isNegative()) {
113    if (NSW) {
114      if (Add) {
115        // Adding two positive numbers can't wrap into negative
116        if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
117          KnownZero |= APInt::getSignBit(BitWidth);
118        // and adding two negative numbers can't wrap into positive.
119        else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
120          KnownOne |= APInt::getSignBit(BitWidth);
121      } else {
122        // Subtracting a negative number from a positive one can't wrap
123        if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
124          KnownZero |= APInt::getSignBit(BitWidth);
125        // neither can subtracting a positive number from a negative one.
126        else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
127          KnownOne |= APInt::getSignBit(BitWidth);
128      }
129    }
130  }
131}
132
133static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW,
134                                 APInt &KnownZero, APInt &KnownOne,
135                                 APInt &KnownZero2, APInt &KnownOne2,
136                                 const DataLayout *TD, unsigned Depth) {
137  unsigned BitWidth = KnownZero.getBitWidth();
138  ComputeMaskedBits(Op1, KnownZero, KnownOne, TD, Depth+1);
139  ComputeMaskedBits(Op0, KnownZero2, KnownOne2, TD, Depth+1);
140  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
141  assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
142
143  bool isKnownNegative = false;
144  bool isKnownNonNegative = false;
145  // If the multiplication is known not to overflow, compute the sign bit.
146  if (NSW) {
147    if (Op0 == Op1) {
148      // The product of a number with itself is non-negative.
149      isKnownNonNegative = true;
150    } else {
151      bool isKnownNonNegativeOp1 = KnownZero.isNegative();
152      bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
153      bool isKnownNegativeOp1 = KnownOne.isNegative();
154      bool isKnownNegativeOp0 = KnownOne2.isNegative();
155      // The product of two numbers with the same sign is non-negative.
156      isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
157        (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
158      // The product of a negative number and a non-negative number is either
159      // negative or zero.
160      if (!isKnownNonNegative)
161        isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
162                           isKnownNonZero(Op0, TD, Depth)) ||
163                          (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
164                           isKnownNonZero(Op1, TD, Depth));
165    }
166  }
167
168  // If low bits are zero in either operand, output low known-0 bits.
169  // Also compute a conserative estimate for high known-0 bits.
170  // More trickiness is possible, but this is sufficient for the
171  // interesting case of alignment computation.
172  KnownOne.clearAllBits();
173  unsigned TrailZ = KnownZero.countTrailingOnes() +
174                    KnownZero2.countTrailingOnes();
175  unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
176                             KnownZero2.countLeadingOnes(),
177                             BitWidth) - BitWidth;
178
179  TrailZ = std::min(TrailZ, BitWidth);
180  LeadZ = std::min(LeadZ, BitWidth);
181  KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
182              APInt::getHighBitsSet(BitWidth, LeadZ);
183
184  // Only make use of no-wrap flags if we failed to compute the sign bit
185  // directly.  This matters if the multiplication always overflows, in
186  // which case we prefer to follow the result of the direct computation,
187  // though as the program is invoking undefined behaviour we can choose
188  // whatever we like here.
189  if (isKnownNonNegative && !KnownOne.isNegative())
190    KnownZero.setBit(BitWidth - 1);
191  else if (isKnownNegative && !KnownZero.isNegative())
192    KnownOne.setBit(BitWidth - 1);
193}
194
195void llvm::computeMaskedBitsLoad(const MDNode &Ranges, APInt &KnownZero) {
196  unsigned BitWidth = KnownZero.getBitWidth();
197  unsigned NumRanges = Ranges.getNumOperands() / 2;
198  assert(NumRanges >= 1);
199
200  // Use the high end of the ranges to find leading zeros.
201  unsigned MinLeadingZeros = BitWidth;
202  for (unsigned i = 0; i < NumRanges; ++i) {
203    ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0));
204    ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1));
205    ConstantRange Range(Lower->getValue(), Upper->getValue());
206    if (Range.isWrappedSet())
207      MinLeadingZeros = 0; // -1 has no zeros
208    unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
209    MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
210  }
211
212  KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
213}
214/// ComputeMaskedBits - Determine which of the bits are known to be either zero
215/// or one and return them in the KnownZero/KnownOne bit sets.
216///
217/// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
218/// we cannot optimize based on the assumption that it is zero without changing
219/// it to be an explicit zero.  If we don't change it to zero, other code could
220/// optimized based on the contradictory assumption that it is non-zero.
221/// Because instcombine aggressively folds operations with undef args anyway,
222/// this won't lose us code quality.
223///
224/// This function is defined on values with integer type, values with pointer
225/// type (but only if TD is non-null), and vectors of integers.  In the case
226/// where V is a vector, known zero, and known one values are the
227/// same width as the vector element, and the bit is set only if it is true
228/// for all of the elements in the vector.
229void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
230                             const DataLayout *TD, unsigned Depth) {
231  assert(V && "No Value?");
232  assert(Depth <= MaxDepth && "Limit Search Depth");
233  unsigned BitWidth = KnownZero.getBitWidth();
234
235  assert((V->getType()->isIntOrIntVectorTy() ||
236          V->getType()->getScalarType()->isPointerTy()) &&
237         "Not integer or pointer type!");
238  assert((!TD ||
239          TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
240         (!V->getType()->isIntOrIntVectorTy() ||
241          V->getType()->getScalarSizeInBits() == BitWidth) &&
242         KnownZero.getBitWidth() == BitWidth &&
243         KnownOne.getBitWidth() == BitWidth &&
244         "V, Mask, KnownOne and KnownZero should have same BitWidth");
245
246  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
247    // We know all of the bits for a constant!
248    KnownOne = CI->getValue();
249    KnownZero = ~KnownOne;
250    return;
251  }
252  // Null and aggregate-zero are all-zeros.
253  if (isa<ConstantPointerNull>(V) ||
254      isa<ConstantAggregateZero>(V)) {
255    KnownOne.clearAllBits();
256    KnownZero = APInt::getAllOnesValue(BitWidth);
257    return;
258  }
259  // Handle a constant vector by taking the intersection of the known bits of
260  // each element.  There is no real need to handle ConstantVector here, because
261  // we don't handle undef in any particularly useful way.
262  if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
263    // We know that CDS must be a vector of integers. Take the intersection of
264    // each element.
265    KnownZero.setAllBits(); KnownOne.setAllBits();
266    APInt Elt(KnownZero.getBitWidth(), 0);
267    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
268      Elt = CDS->getElementAsInteger(i);
269      KnownZero &= ~Elt;
270      KnownOne &= Elt;
271    }
272    return;
273  }
274
275  // The address of an aligned GlobalValue has trailing zeros.
276  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
277    unsigned Align = GV->getAlignment();
278    if (Align == 0 && TD) {
279      if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
280        Type *ObjectType = GVar->getType()->getElementType();
281        if (ObjectType->isSized()) {
282          // If the object is defined in the current Module, we'll be giving
283          // it the preferred alignment. Otherwise, we have to assume that it
284          // may only have the minimum ABI alignment.
285          if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
286            Align = TD->getPreferredAlignment(GVar);
287          else
288            Align = TD->getABITypeAlignment(ObjectType);
289        }
290      }
291    }
292    if (Align > 0)
293      KnownZero = APInt::getLowBitsSet(BitWidth,
294                                       countTrailingZeros(Align));
295    else
296      KnownZero.clearAllBits();
297    KnownOne.clearAllBits();
298    return;
299  }
300  // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
301  // the bits of its aliasee.
302  if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
303    if (GA->mayBeOverridden()) {
304      KnownZero.clearAllBits(); KnownOne.clearAllBits();
305    } else {
306      ComputeMaskedBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1);
307    }
308    return;
309  }
310
311  if (Argument *A = dyn_cast<Argument>(V)) {
312    unsigned Align = 0;
313
314    if (A->hasByValAttr()) {
315      // Get alignment information off byval arguments if specified in the IR.
316      Align = A->getParamAlignment();
317    } else if (TD && A->hasStructRetAttr()) {
318      // An sret parameter has at least the ABI alignment of the return type.
319      Type *EltTy = cast<PointerType>(A->getType())->getElementType();
320      if (EltTy->isSized())
321        Align = TD->getABITypeAlignment(EltTy);
322    }
323
324    if (Align)
325      KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
326    return;
327  }
328
329  // Start out not knowing anything.
330  KnownZero.clearAllBits(); KnownOne.clearAllBits();
331
332  if (Depth == MaxDepth)
333    return;  // Limit search depth.
334
335  Operator *I = dyn_cast<Operator>(V);
336  if (!I) return;
337
338  APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
339  switch (I->getOpcode()) {
340  default: break;
341  case Instruction::Load:
342    if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
343      computeMaskedBitsLoad(*MD, KnownZero);
344    return;
345  case Instruction::And: {
346    // If either the LHS or the RHS are Zero, the result is zero.
347    ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
348    ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
349    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
350    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
351
352    // Output known-1 bits are only known if set in both the LHS & RHS.
353    KnownOne &= KnownOne2;
354    // Output known-0 are known to be clear if zero in either the LHS | RHS.
355    KnownZero |= KnownZero2;
356    return;
357  }
358  case Instruction::Or: {
359    ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
360    ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
361    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
362    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
363
364    // Output known-0 bits are only known if clear in both the LHS & RHS.
365    KnownZero &= KnownZero2;
366    // Output known-1 are known to be set if set in either the LHS | RHS.
367    KnownOne |= KnownOne2;
368    return;
369  }
370  case Instruction::Xor: {
371    ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
372    ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
373    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
374    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
375
376    // Output known-0 bits are known if clear or set in both the LHS & RHS.
377    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
378    // Output known-1 are known to be set if set in only one of the LHS, RHS.
379    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
380    KnownZero = KnownZeroOut;
381    return;
382  }
383  case Instruction::Mul: {
384    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
385    ComputeMaskedBitsMul(I->getOperand(0), I->getOperand(1), NSW,
386                         KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth);
387    break;
388  }
389  case Instruction::UDiv: {
390    // For the purposes of computing leading zeros we can conservatively
391    // treat a udiv as a logical right shift by the power of 2 known to
392    // be less than the denominator.
393    ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
394    unsigned LeadZ = KnownZero2.countLeadingOnes();
395
396    KnownOne2.clearAllBits();
397    KnownZero2.clearAllBits();
398    ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
399    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
400    if (RHSUnknownLeadingOnes != BitWidth)
401      LeadZ = std::min(BitWidth,
402                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
403
404    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
405    return;
406  }
407  case Instruction::Select:
408    ComputeMaskedBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1);
409    ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD,
410                      Depth+1);
411    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
412    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
413
414    // Only known if known in both the LHS and RHS.
415    KnownOne &= KnownOne2;
416    KnownZero &= KnownZero2;
417    return;
418  case Instruction::FPTrunc:
419  case Instruction::FPExt:
420  case Instruction::FPToUI:
421  case Instruction::FPToSI:
422  case Instruction::SIToFP:
423  case Instruction::UIToFP:
424    return; // Can't work with floating point.
425  case Instruction::PtrToInt:
426  case Instruction::IntToPtr:
427    // We can't handle these if we don't know the pointer size.
428    if (!TD) return;
429    // FALL THROUGH and handle them the same as zext/trunc.
430  case Instruction::ZExt:
431  case Instruction::Trunc: {
432    Type *SrcTy = I->getOperand(0)->getType();
433
434    unsigned SrcBitWidth;
435    // Note that we handle pointer operands here because of inttoptr/ptrtoint
436    // which fall through here.
437    if(TD) {
438      SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType());
439    } else {
440      SrcBitWidth = SrcTy->getScalarSizeInBits();
441      if (!SrcBitWidth) return;
442    }
443
444    assert(SrcBitWidth && "SrcBitWidth can't be zero");
445    KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
446    KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
447    ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
448    KnownZero = KnownZero.zextOrTrunc(BitWidth);
449    KnownOne = KnownOne.zextOrTrunc(BitWidth);
450    // Any top bits are known to be zero.
451    if (BitWidth > SrcBitWidth)
452      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
453    return;
454  }
455  case Instruction::BitCast: {
456    Type *SrcTy = I->getOperand(0)->getType();
457    if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
458        // TODO: For now, not handling conversions like:
459        // (bitcast i64 %x to <2 x i32>)
460        !I->getType()->isVectorTy()) {
461      ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
462      return;
463    }
464    break;
465  }
466  case Instruction::SExt: {
467    // Compute the bits in the result that are not present in the input.
468    unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
469
470    KnownZero = KnownZero.trunc(SrcBitWidth);
471    KnownOne = KnownOne.trunc(SrcBitWidth);
472    ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
473    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
474    KnownZero = KnownZero.zext(BitWidth);
475    KnownOne = KnownOne.zext(BitWidth);
476
477    // If the sign bit of the input is known set or clear, then we know the
478    // top bits of the result.
479    if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
480      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
481    else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
482      KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
483    return;
484  }
485  case Instruction::Shl:
486    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
487    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
488      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
489      ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
490      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
491      KnownZero <<= ShiftAmt;
492      KnownOne  <<= ShiftAmt;
493      KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
494      return;
495    }
496    break;
497  case Instruction::LShr:
498    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
499    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
500      // Compute the new bits that are at the top now.
501      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
502
503      // Unsigned shift right.
504      ComputeMaskedBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1);
505      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
506      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
507      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
508      // high bits known zero.
509      KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
510      return;
511    }
512    break;
513  case Instruction::AShr:
514    // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
515    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
516      // Compute the new bits that are at the top now.
517      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
518
519      // Signed shift right.
520      ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
521      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
522      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
523      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
524
525      APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
526      if (KnownZero[BitWidth-ShiftAmt-1])    // New bits are known zero.
527        KnownZero |= HighBits;
528      else if (KnownOne[BitWidth-ShiftAmt-1])  // New bits are known one.
529        KnownOne |= HighBits;
530      return;
531    }
532    break;
533  case Instruction::Sub: {
534    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
535    ComputeMaskedBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
536                            KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
537                            Depth);
538    break;
539  }
540  case Instruction::Add: {
541    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
542    ComputeMaskedBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
543                            KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
544                            Depth);
545    break;
546  }
547  case Instruction::SRem:
548    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
549      APInt RA = Rem->getValue().abs();
550      if (RA.isPowerOf2()) {
551        APInt LowBits = RA - 1;
552        ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
553
554        // The low bits of the first operand are unchanged by the srem.
555        KnownZero = KnownZero2 & LowBits;
556        KnownOne = KnownOne2 & LowBits;
557
558        // If the first operand is non-negative or has all low bits zero, then
559        // the upper bits are all zero.
560        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
561          KnownZero |= ~LowBits;
562
563        // If the first operand is negative and not all low bits are zero, then
564        // the upper bits are all one.
565        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
566          KnownOne |= ~LowBits;
567
568        assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
569      }
570    }
571
572    // The sign bit is the LHS's sign bit, except when the result of the
573    // remainder is zero.
574    if (KnownZero.isNonNegative()) {
575      APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
576      ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
577                        Depth+1);
578      // If it's known zero, our sign bit is also zero.
579      if (LHSKnownZero.isNegative())
580        KnownZero.setBit(BitWidth - 1);
581    }
582
583    break;
584  case Instruction::URem: {
585    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
586      APInt RA = Rem->getValue();
587      if (RA.isPowerOf2()) {
588        APInt LowBits = (RA - 1);
589        ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD,
590                          Depth+1);
591        assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
592        KnownZero |= ~LowBits;
593        KnownOne &= LowBits;
594        break;
595      }
596    }
597
598    // Since the result is less than or equal to either operand, any leading
599    // zero bits in either operand must also exist in the result.
600    ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
601    ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
602
603    unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
604                                KnownZero2.countLeadingOnes());
605    KnownOne.clearAllBits();
606    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
607    break;
608  }
609
610  case Instruction::Alloca: {
611    AllocaInst *AI = cast<AllocaInst>(V);
612    unsigned Align = AI->getAlignment();
613    if (Align == 0 && TD)
614      Align = TD->getABITypeAlignment(AI->getType()->getElementType());
615
616    if (Align > 0)
617      KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
618    break;
619  }
620  case Instruction::GetElementPtr: {
621    // Analyze all of the subscripts of this getelementptr instruction
622    // to determine if we can prove known low zero bits.
623    APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
624    ComputeMaskedBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
625                      Depth+1);
626    unsigned TrailZ = LocalKnownZero.countTrailingOnes();
627
628    gep_type_iterator GTI = gep_type_begin(I);
629    for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
630      Value *Index = I->getOperand(i);
631      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
632        // Handle struct member offset arithmetic.
633        if (!TD)
634          return;
635
636        // Handle case when index is vector zeroinitializer
637        Constant *CIndex = cast<Constant>(Index);
638        if (CIndex->isZeroValue())
639          continue;
640
641        if (CIndex->getType()->isVectorTy())
642          Index = CIndex->getSplatValue();
643
644        unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
645        const StructLayout *SL = TD->getStructLayout(STy);
646        uint64_t Offset = SL->getElementOffset(Idx);
647        TrailZ = std::min<unsigned>(TrailZ,
648                                    countTrailingZeros(Offset));
649      } else {
650        // Handle array index arithmetic.
651        Type *IndexedTy = GTI.getIndexedType();
652        if (!IndexedTy->isSized()) return;
653        unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
654        uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
655        LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
656        ComputeMaskedBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1);
657        TrailZ = std::min(TrailZ,
658                          unsigned(countTrailingZeros(TypeSize) +
659                                   LocalKnownZero.countTrailingOnes()));
660      }
661    }
662
663    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
664    break;
665  }
666  case Instruction::PHI: {
667    PHINode *P = cast<PHINode>(I);
668    // Handle the case of a simple two-predecessor recurrence PHI.
669    // There's a lot more that could theoretically be done here, but
670    // this is sufficient to catch some interesting cases.
671    if (P->getNumIncomingValues() == 2) {
672      for (unsigned i = 0; i != 2; ++i) {
673        Value *L = P->getIncomingValue(i);
674        Value *R = P->getIncomingValue(!i);
675        Operator *LU = dyn_cast<Operator>(L);
676        if (!LU)
677          continue;
678        unsigned Opcode = LU->getOpcode();
679        // Check for operations that have the property that if
680        // both their operands have low zero bits, the result
681        // will have low zero bits.
682        if (Opcode == Instruction::Add ||
683            Opcode == Instruction::Sub ||
684            Opcode == Instruction::And ||
685            Opcode == Instruction::Or ||
686            Opcode == Instruction::Mul) {
687          Value *LL = LU->getOperand(0);
688          Value *LR = LU->getOperand(1);
689          // Find a recurrence.
690          if (LL == I)
691            L = LR;
692          else if (LR == I)
693            L = LL;
694          else
695            break;
696          // Ok, we have a PHI of the form L op= R. Check for low
697          // zero bits.
698          ComputeMaskedBits(R, KnownZero2, KnownOne2, TD, Depth+1);
699
700          // We need to take the minimum number of known bits
701          APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
702          ComputeMaskedBits(L, KnownZero3, KnownOne3, TD, Depth+1);
703
704          KnownZero = APInt::getLowBitsSet(BitWidth,
705                                           std::min(KnownZero2.countTrailingOnes(),
706                                                    KnownZero3.countTrailingOnes()));
707          break;
708        }
709      }
710    }
711
712    // Unreachable blocks may have zero-operand PHI nodes.
713    if (P->getNumIncomingValues() == 0)
714      return;
715
716    // Otherwise take the unions of the known bit sets of the operands,
717    // taking conservative care to avoid excessive recursion.
718    if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
719      // Skip if every incoming value references to ourself.
720      if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
721        break;
722
723      KnownZero = APInt::getAllOnesValue(BitWidth);
724      KnownOne = APInt::getAllOnesValue(BitWidth);
725      for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
726        // Skip direct self references.
727        if (P->getIncomingValue(i) == P) continue;
728
729        KnownZero2 = APInt(BitWidth, 0);
730        KnownOne2 = APInt(BitWidth, 0);
731        // Recurse, but cap the recursion to one level, because we don't
732        // want to waste time spinning around in loops.
733        ComputeMaskedBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
734                          MaxDepth-1);
735        KnownZero &= KnownZero2;
736        KnownOne &= KnownOne2;
737        // If all bits have been ruled out, there's no need to check
738        // more operands.
739        if (!KnownZero && !KnownOne)
740          break;
741      }
742    }
743    break;
744  }
745  case Instruction::Call:
746    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
747      switch (II->getIntrinsicID()) {
748      default: break;
749      case Intrinsic::ctlz:
750      case Intrinsic::cttz: {
751        unsigned LowBits = Log2_32(BitWidth)+1;
752        // If this call is undefined for 0, the result will be less than 2^n.
753        if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
754          LowBits -= 1;
755        KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
756        break;
757      }
758      case Intrinsic::ctpop: {
759        unsigned LowBits = Log2_32(BitWidth)+1;
760        KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
761        break;
762      }
763      case Intrinsic::x86_sse42_crc32_64_64:
764        KnownZero = APInt::getHighBitsSet(64, 32);
765        break;
766      }
767    }
768    break;
769  case Instruction::ExtractValue:
770    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
771      ExtractValueInst *EVI = cast<ExtractValueInst>(I);
772      if (EVI->getNumIndices() != 1) break;
773      if (EVI->getIndices()[0] == 0) {
774        switch (II->getIntrinsicID()) {
775        default: break;
776        case Intrinsic::uadd_with_overflow:
777        case Intrinsic::sadd_with_overflow:
778          ComputeMaskedBitsAddSub(true, II->getArgOperand(0),
779                                  II->getArgOperand(1), false, KnownZero,
780                                  KnownOne, KnownZero2, KnownOne2, TD, Depth);
781          break;
782        case Intrinsic::usub_with_overflow:
783        case Intrinsic::ssub_with_overflow:
784          ComputeMaskedBitsAddSub(false, II->getArgOperand(0),
785                                  II->getArgOperand(1), false, KnownZero,
786                                  KnownOne, KnownZero2, KnownOne2, TD, Depth);
787          break;
788        case Intrinsic::umul_with_overflow:
789        case Intrinsic::smul_with_overflow:
790          ComputeMaskedBitsMul(II->getArgOperand(0), II->getArgOperand(1),
791                               false, KnownZero, KnownOne,
792                               KnownZero2, KnownOne2, TD, Depth);
793          break;
794        }
795      }
796    }
797  }
798}
799
800/// ComputeSignBit - Determine whether the sign bit is known to be zero or
801/// one.  Convenience wrapper around ComputeMaskedBits.
802void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
803                          const DataLayout *TD, unsigned Depth) {
804  unsigned BitWidth = getBitWidth(V->getType(), TD);
805  if (!BitWidth) {
806    KnownZero = false;
807    KnownOne = false;
808    return;
809  }
810  APInt ZeroBits(BitWidth, 0);
811  APInt OneBits(BitWidth, 0);
812  ComputeMaskedBits(V, ZeroBits, OneBits, TD, Depth);
813  KnownOne = OneBits[BitWidth - 1];
814  KnownZero = ZeroBits[BitWidth - 1];
815}
816
817/// isKnownToBeAPowerOfTwo - Return true if the given value is known to have exactly one
818/// bit set when defined. For vectors return true if every element is known to
819/// be a power of two when defined.  Supports values with integer or pointer
820/// types and vectors of integers.
821bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) {
822  if (Constant *C = dyn_cast<Constant>(V)) {
823    if (C->isNullValue())
824      return OrZero;
825    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
826      return CI->getValue().isPowerOf2();
827    // TODO: Handle vector constants.
828  }
829
830  // 1 << X is clearly a power of two if the one is not shifted off the end.  If
831  // it is shifted off the end then the result is undefined.
832  if (match(V, m_Shl(m_One(), m_Value())))
833    return true;
834
835  // (signbit) >>l X is clearly a power of two if the one is not shifted off the
836  // bottom.  If it is shifted off the bottom then the result is undefined.
837  if (match(V, m_LShr(m_SignBit(), m_Value())))
838    return true;
839
840  // The remaining tests are all recursive, so bail out if we hit the limit.
841  if (Depth++ == MaxDepth)
842    return false;
843
844  Value *X = 0, *Y = 0;
845  // A shift of a power of two is a power of two or zero.
846  if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
847                 match(V, m_Shr(m_Value(X), m_Value()))))
848    return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth);
849
850  if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
851    return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth);
852
853  if (SelectInst *SI = dyn_cast<SelectInst>(V))
854    return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth) &&
855      isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth);
856
857  if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
858    // A power of two and'd with anything is a power of two or zero.
859    if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth) ||
860        isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth))
861      return true;
862    // X & (-X) is always a power of two or zero.
863    if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
864      return true;
865    return false;
866  }
867
868  // Adding a power-of-two or zero to the same power-of-two or zero yields
869  // either the original power-of-two, a larger power-of-two or zero.
870  if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
871    OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
872    if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
873      if (match(X, m_And(m_Specific(Y), m_Value())) ||
874          match(X, m_And(m_Value(), m_Specific(Y))))
875        if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth))
876          return true;
877      if (match(Y, m_And(m_Specific(X), m_Value())) ||
878          match(Y, m_And(m_Value(), m_Specific(X))))
879        if (isKnownToBeAPowerOfTwo(X, OrZero, Depth))
880          return true;
881
882      unsigned BitWidth = V->getType()->getScalarSizeInBits();
883      APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
884      ComputeMaskedBits(X, LHSZeroBits, LHSOneBits, 0, Depth);
885
886      APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
887      ComputeMaskedBits(Y, RHSZeroBits, RHSOneBits, 0, Depth);
888      // If i8 V is a power of two or zero:
889      //  ZeroBits: 1 1 1 0 1 1 1 1
890      // ~ZeroBits: 0 0 0 1 0 0 0 0
891      if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
892        // If OrZero isn't set, we cannot give back a zero result.
893        // Make sure either the LHS or RHS has a bit set.
894        if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
895          return true;
896    }
897  }
898
899  // An exact divide or right shift can only shift off zero bits, so the result
900  // is a power of two only if the first operand is a power of two and not
901  // copying a sign bit (sdiv int_min, 2).
902  if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
903      match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
904    return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, Depth);
905  }
906
907  return false;
908}
909
910/// \brief Test whether a GEP's result is known to be non-null.
911///
912/// Uses properties inherent in a GEP to try to determine whether it is known
913/// to be non-null.
914///
915/// Currently this routine does not support vector GEPs.
916static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
917                              unsigned Depth) {
918  if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
919    return false;
920
921  // FIXME: Support vector-GEPs.
922  assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
923
924  // If the base pointer is non-null, we cannot walk to a null address with an
925  // inbounds GEP in address space zero.
926  if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth))
927    return true;
928
929  // Past this, if we don't have DataLayout, we can't do much.
930  if (!DL)
931    return false;
932
933  // Walk the GEP operands and see if any operand introduces a non-zero offset.
934  // If so, then the GEP cannot produce a null pointer, as doing so would
935  // inherently violate the inbounds contract within address space zero.
936  for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
937       GTI != GTE; ++GTI) {
938    // Struct types are easy -- they must always be indexed by a constant.
939    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
940      ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
941      unsigned ElementIdx = OpC->getZExtValue();
942      const StructLayout *SL = DL->getStructLayout(STy);
943      uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
944      if (ElementOffset > 0)
945        return true;
946      continue;
947    }
948
949    // If we have a zero-sized type, the index doesn't matter. Keep looping.
950    if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0)
951      continue;
952
953    // Fast path the constant operand case both for efficiency and so we don't
954    // increment Depth when just zipping down an all-constant GEP.
955    if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
956      if (!OpC->isZero())
957        return true;
958      continue;
959    }
960
961    // We post-increment Depth here because while isKnownNonZero increments it
962    // as well, when we pop back up that increment won't persist. We don't want
963    // to recurse 10k times just because we have 10k GEP operands. We don't
964    // bail completely out because we want to handle constant GEPs regardless
965    // of depth.
966    if (Depth++ >= MaxDepth)
967      continue;
968
969    if (isKnownNonZero(GTI.getOperand(), DL, Depth))
970      return true;
971  }
972
973  return false;
974}
975
976/// isKnownNonZero - Return true if the given value is known to be non-zero
977/// when defined.  For vectors return true if every element is known to be
978/// non-zero when defined.  Supports values with integer or pointer type and
979/// vectors of integers.
980bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
981  if (Constant *C = dyn_cast<Constant>(V)) {
982    if (C->isNullValue())
983      return false;
984    if (isa<ConstantInt>(C))
985      // Must be non-zero due to null test above.
986      return true;
987    // TODO: Handle vectors
988    return false;
989  }
990
991  // The remaining tests are all recursive, so bail out if we hit the limit.
992  if (Depth++ >= MaxDepth)
993    return false;
994
995  // Check for pointer simplifications.
996  if (V->getType()->isPointerTy()) {
997    if (isKnownNonNull(V))
998      return true;
999    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
1000      if (isGEPKnownNonNull(GEP, TD, Depth))
1001        return true;
1002  }
1003
1004  unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD);
1005
1006  // X | Y != 0 if X != 0 or Y != 0.
1007  Value *X = 0, *Y = 0;
1008  if (match(V, m_Or(m_Value(X), m_Value(Y))))
1009    return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
1010
1011  // ext X != 0 if X != 0.
1012  if (isa<SExtInst>(V) || isa<ZExtInst>(V))
1013    return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
1014
1015  // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
1016  // if the lowest bit is shifted off the end.
1017  if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
1018    // shl nuw can't remove any non-zero bits.
1019    OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1020    if (BO->hasNoUnsignedWrap())
1021      return isKnownNonZero(X, TD, Depth);
1022
1023    APInt KnownZero(BitWidth, 0);
1024    APInt KnownOne(BitWidth, 0);
1025    ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
1026    if (KnownOne[0])
1027      return true;
1028  }
1029  // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
1030  // defined if the sign bit is shifted off the end.
1031  else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
1032    // shr exact can only shift out zero bits.
1033    PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
1034    if (BO->isExact())
1035      return isKnownNonZero(X, TD, Depth);
1036
1037    bool XKnownNonNegative, XKnownNegative;
1038    ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
1039    if (XKnownNegative)
1040      return true;
1041  }
1042  // div exact can only produce a zero if the dividend is zero.
1043  else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
1044    return isKnownNonZero(X, TD, Depth);
1045  }
1046  // X + Y.
1047  else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1048    bool XKnownNonNegative, XKnownNegative;
1049    bool YKnownNonNegative, YKnownNegative;
1050    ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
1051    ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
1052
1053    // If X and Y are both non-negative (as signed values) then their sum is not
1054    // zero unless both X and Y are zero.
1055    if (XKnownNonNegative && YKnownNonNegative)
1056      if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
1057        return true;
1058
1059    // If X and Y are both negative (as signed values) then their sum is not
1060    // zero unless both X and Y equal INT_MIN.
1061    if (BitWidth && XKnownNegative && YKnownNegative) {
1062      APInt KnownZero(BitWidth, 0);
1063      APInt KnownOne(BitWidth, 0);
1064      APInt Mask = APInt::getSignedMaxValue(BitWidth);
1065      // The sign bit of X is set.  If some other bit is set then X is not equal
1066      // to INT_MIN.
1067      ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
1068      if ((KnownOne & Mask) != 0)
1069        return true;
1070      // The sign bit of Y is set.  If some other bit is set then Y is not equal
1071      // to INT_MIN.
1072      ComputeMaskedBits(Y, KnownZero, KnownOne, TD, Depth);
1073      if ((KnownOne & Mask) != 0)
1074        return true;
1075    }
1076
1077    // The sum of a non-negative number and a power of two is not zero.
1078    if (XKnownNonNegative && isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth))
1079      return true;
1080    if (YKnownNonNegative && isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth))
1081      return true;
1082  }
1083  // X * Y.
1084  else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1085    OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1086    // If X and Y are non-zero then so is X * Y as long as the multiplication
1087    // does not overflow.
1088    if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
1089        isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth))
1090      return true;
1091  }
1092  // (C ? X : Y) != 0 if X != 0 and Y != 0.
1093  else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1094    if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
1095        isKnownNonZero(SI->getFalseValue(), TD, Depth))
1096      return true;
1097  }
1098
1099  if (!BitWidth) return false;
1100  APInt KnownZero(BitWidth, 0);
1101  APInt KnownOne(BitWidth, 0);
1102  ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
1103  return KnownOne != 0;
1104}
1105
1106/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1107/// this predicate to simplify operations downstream.  Mask is known to be zero
1108/// for bits that V cannot have.
1109///
1110/// This function is defined on values with integer type, values with pointer
1111/// type (but only if TD is non-null), and vectors of integers.  In the case
1112/// where V is a vector, the mask, known zero, and known one values are the
1113/// same width as the vector element, and the bit is set only if it is true
1114/// for all of the elements in the vector.
1115bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
1116                             const DataLayout *TD, unsigned Depth) {
1117  APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
1118  ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
1119  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1120  return (KnownZero & Mask) == Mask;
1121}
1122
1123
1124
1125/// ComputeNumSignBits - Return the number of times the sign bit of the
1126/// register is replicated into the other bits.  We know that at least 1 bit
1127/// is always equal to the sign bit (itself), but other cases can give us
1128/// information.  For example, immediately after an "ashr X, 2", we know that
1129/// the top 3 bits are all equal to each other, so we return 3.
1130///
1131/// 'Op' must have a scalar integer type.
1132///
1133unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
1134                                  unsigned Depth) {
1135  assert((TD || V->getType()->isIntOrIntVectorTy()) &&
1136         "ComputeNumSignBits requires a DataLayout object to operate "
1137         "on non-integer values!");
1138  Type *Ty = V->getType();
1139  unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
1140                         Ty->getScalarSizeInBits();
1141  unsigned Tmp, Tmp2;
1142  unsigned FirstAnswer = 1;
1143
1144  // Note that ConstantInt is handled by the general ComputeMaskedBits case
1145  // below.
1146
1147  if (Depth == 6)
1148    return 1;  // Limit search depth.
1149
1150  Operator *U = dyn_cast<Operator>(V);
1151  switch (Operator::getOpcode(V)) {
1152  default: break;
1153  case Instruction::SExt:
1154    Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
1155    return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
1156
1157  case Instruction::AShr: {
1158    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1159    // ashr X, C   -> adds C sign bits.  Vectors too.
1160    const APInt *ShAmt;
1161    if (match(U->getOperand(1), m_APInt(ShAmt))) {
1162      Tmp += ShAmt->getZExtValue();
1163      if (Tmp > TyBits) Tmp = TyBits;
1164    }
1165    return Tmp;
1166  }
1167  case Instruction::Shl: {
1168    const APInt *ShAmt;
1169    if (match(U->getOperand(1), m_APInt(ShAmt))) {
1170      // shl destroys sign bits.
1171      Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1172      Tmp2 = ShAmt->getZExtValue();
1173      if (Tmp2 >= TyBits ||      // Bad shift.
1174          Tmp2 >= Tmp) break;    // Shifted all sign bits out.
1175      return Tmp - Tmp2;
1176    }
1177    break;
1178  }
1179  case Instruction::And:
1180  case Instruction::Or:
1181  case Instruction::Xor:    // NOT is handled here.
1182    // Logical binary ops preserve the number of sign bits at the worst.
1183    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1184    if (Tmp != 1) {
1185      Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1186      FirstAnswer = std::min(Tmp, Tmp2);
1187      // We computed what we know about the sign bits as our first
1188      // answer. Now proceed to the generic code that uses
1189      // ComputeMaskedBits, and pick whichever answer is better.
1190    }
1191    break;
1192
1193  case Instruction::Select:
1194    Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1195    if (Tmp == 1) return 1;  // Early out.
1196    Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
1197    return std::min(Tmp, Tmp2);
1198
1199  case Instruction::Add:
1200    // Add can have at most one carry bit.  Thus we know that the output
1201    // is, at worst, one more bit than the inputs.
1202    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1203    if (Tmp == 1) return 1;  // Early out.
1204
1205    // Special case decrementing a value (ADD X, -1):
1206    if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
1207      if (CRHS->isAllOnesValue()) {
1208        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1209        ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
1210
1211        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1212        // sign bits set.
1213        if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
1214          return TyBits;
1215
1216        // If we are subtracting one from a positive number, there is no carry
1217        // out of the result.
1218        if (KnownZero.isNegative())
1219          return Tmp;
1220      }
1221
1222    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1223    if (Tmp2 == 1) return 1;
1224    return std::min(Tmp, Tmp2)-1;
1225
1226  case Instruction::Sub:
1227    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1228    if (Tmp2 == 1) return 1;
1229
1230    // Handle NEG.
1231    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
1232      if (CLHS->isNullValue()) {
1233        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1234        ComputeMaskedBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
1235        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1236        // sign bits set.
1237        if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
1238          return TyBits;
1239
1240        // If the input is known to be positive (the sign bit is known clear),
1241        // the output of the NEG has the same number of sign bits as the input.
1242        if (KnownZero.isNegative())
1243          return Tmp2;
1244
1245        // Otherwise, we treat this like a SUB.
1246      }
1247
1248    // Sub can have at most one carry bit.  Thus we know that the output
1249    // is, at worst, one more bit than the inputs.
1250    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1251    if (Tmp == 1) return 1;  // Early out.
1252    return std::min(Tmp, Tmp2)-1;
1253
1254  case Instruction::PHI: {
1255    PHINode *PN = cast<PHINode>(U);
1256    // Don't analyze large in-degree PHIs.
1257    if (PN->getNumIncomingValues() > 4) break;
1258
1259    // Take the minimum of all incoming values.  This can't infinitely loop
1260    // because of our depth threshold.
1261    Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
1262    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1263      if (Tmp == 1) return Tmp;
1264      Tmp = std::min(Tmp,
1265                     ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
1266    }
1267    return Tmp;
1268  }
1269
1270  case Instruction::Trunc:
1271    // FIXME: it's tricky to do anything useful for this, but it is an important
1272    // case for targets like X86.
1273    break;
1274  }
1275
1276  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1277  // use this information.
1278  APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1279  APInt Mask;
1280  ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
1281
1282  if (KnownZero.isNegative()) {        // sign bit is 0
1283    Mask = KnownZero;
1284  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1285    Mask = KnownOne;
1286  } else {
1287    // Nothing known.
1288    return FirstAnswer;
1289  }
1290
1291  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1292  // the number of identical bits in the top of the input value.
1293  Mask = ~Mask;
1294  Mask <<= Mask.getBitWidth()-TyBits;
1295  // Return # leading zeros.  We use 'min' here in case Val was zero before
1296  // shifting.  We don't want to return '64' as for an i32 "0".
1297  return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1298}
1299
1300/// ComputeMultiple - This function computes the integer multiple of Base that
1301/// equals V.  If successful, it returns true and returns the multiple in
1302/// Multiple.  If unsuccessful, it returns false. It looks
1303/// through SExt instructions only if LookThroughSExt is true.
1304bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
1305                           bool LookThroughSExt, unsigned Depth) {
1306  const unsigned MaxDepth = 6;
1307
1308  assert(V && "No Value?");
1309  assert(Depth <= MaxDepth && "Limit Search Depth");
1310  assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
1311
1312  Type *T = V->getType();
1313
1314  ConstantInt *CI = dyn_cast<ConstantInt>(V);
1315
1316  if (Base == 0)
1317    return false;
1318
1319  if (Base == 1) {
1320    Multiple = V;
1321    return true;
1322  }
1323
1324  ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
1325  Constant *BaseVal = ConstantInt::get(T, Base);
1326  if (CO && CO == BaseVal) {
1327    // Multiple is 1.
1328    Multiple = ConstantInt::get(T, 1);
1329    return true;
1330  }
1331
1332  if (CI && CI->getZExtValue() % Base == 0) {
1333    Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
1334    return true;
1335  }
1336
1337  if (Depth == MaxDepth) return false;  // Limit search depth.
1338
1339  Operator *I = dyn_cast<Operator>(V);
1340  if (!I) return false;
1341
1342  switch (I->getOpcode()) {
1343  default: break;
1344  case Instruction::SExt:
1345    if (!LookThroughSExt) return false;
1346    // otherwise fall through to ZExt
1347  case Instruction::ZExt:
1348    return ComputeMultiple(I->getOperand(0), Base, Multiple,
1349                           LookThroughSExt, Depth+1);
1350  case Instruction::Shl:
1351  case Instruction::Mul: {
1352    Value *Op0 = I->getOperand(0);
1353    Value *Op1 = I->getOperand(1);
1354
1355    if (I->getOpcode() == Instruction::Shl) {
1356      ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
1357      if (!Op1CI) return false;
1358      // Turn Op0 << Op1 into Op0 * 2^Op1
1359      APInt Op1Int = Op1CI->getValue();
1360      uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
1361      APInt API(Op1Int.getBitWidth(), 0);
1362      API.setBit(BitToSet);
1363      Op1 = ConstantInt::get(V->getContext(), API);
1364    }
1365
1366    Value *Mul0 = NULL;
1367    if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1368      if (Constant *Op1C = dyn_cast<Constant>(Op1))
1369        if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
1370          if (Op1C->getType()->getPrimitiveSizeInBits() <
1371              MulC->getType()->getPrimitiveSizeInBits())
1372            Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
1373          if (Op1C->getType()->getPrimitiveSizeInBits() >
1374              MulC->getType()->getPrimitiveSizeInBits())
1375            MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
1376
1377          // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1378          Multiple = ConstantExpr::getMul(MulC, Op1C);
1379          return true;
1380        }
1381
1382      if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
1383        if (Mul0CI->getValue() == 1) {
1384          // V == Base * Op1, so return Op1
1385          Multiple = Op1;
1386          return true;
1387        }
1388    }
1389
1390    Value *Mul1 = NULL;
1391    if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1392      if (Constant *Op0C = dyn_cast<Constant>(Op0))
1393        if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
1394          if (Op0C->getType()->getPrimitiveSizeInBits() <
1395              MulC->getType()->getPrimitiveSizeInBits())
1396            Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
1397          if (Op0C->getType()->getPrimitiveSizeInBits() >
1398              MulC->getType()->getPrimitiveSizeInBits())
1399            MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
1400
1401          // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1402          Multiple = ConstantExpr::getMul(MulC, Op0C);
1403          return true;
1404        }
1405
1406      if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
1407        if (Mul1CI->getValue() == 1) {
1408          // V == Base * Op0, so return Op0
1409          Multiple = Op0;
1410          return true;
1411        }
1412    }
1413  }
1414  }
1415
1416  // We could not determine if V is a multiple of Base.
1417  return false;
1418}
1419
1420/// CannotBeNegativeZero - Return true if we can prove that the specified FP
1421/// value is never equal to -0.0.
1422///
1423/// NOTE: this function will need to be revisited when we support non-default
1424/// rounding modes!
1425///
1426bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1427  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1428    return !CFP->getValueAPF().isNegZero();
1429
1430  if (Depth == 6)
1431    return 1;  // Limit search depth.
1432
1433  const Operator *I = dyn_cast<Operator>(V);
1434  if (I == 0) return false;
1435
1436  // Check if the nsz fast-math flag is set
1437  if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
1438    if (FPO->hasNoSignedZeros())
1439      return true;
1440
1441  // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
1442  if (I->getOpcode() == Instruction::FAdd)
1443    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
1444      if (CFP->isNullValue())
1445        return true;
1446
1447  // sitofp and uitofp turn into +0.0 for zero.
1448  if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
1449    return true;
1450
1451  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1452    // sqrt(-0.0) = -0.0, no other negative results are possible.
1453    if (II->getIntrinsicID() == Intrinsic::sqrt)
1454      return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
1455
1456  if (const CallInst *CI = dyn_cast<CallInst>(I))
1457    if (const Function *F = CI->getCalledFunction()) {
1458      if (F->isDeclaration()) {
1459        // abs(x) != -0.0
1460        if (F->getName() == "abs") return true;
1461        // fabs[lf](x) != -0.0
1462        if (F->getName() == "fabs") return true;
1463        if (F->getName() == "fabsf") return true;
1464        if (F->getName() == "fabsl") return true;
1465        if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
1466            F->getName() == "sqrtl")
1467          return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
1468      }
1469    }
1470
1471  return false;
1472}
1473
1474/// isBytewiseValue - If the specified value can be set by repeating the same
1475/// byte in memory, return the i8 value that it is represented with.  This is
1476/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
1477/// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
1478/// byte store (e.g. i16 0x1234), return null.
1479Value *llvm::isBytewiseValue(Value *V) {
1480  // All byte-wide stores are splatable, even of arbitrary variables.
1481  if (V->getType()->isIntegerTy(8)) return V;
1482
1483  // Handle 'null' ConstantArrayZero etc.
1484  if (Constant *C = dyn_cast<Constant>(V))
1485    if (C->isNullValue())
1486      return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
1487
1488  // Constant float and double values can be handled as integer values if the
1489  // corresponding integer value is "byteable".  An important case is 0.0.
1490  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1491    if (CFP->getType()->isFloatTy())
1492      V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
1493    if (CFP->getType()->isDoubleTy())
1494      V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
1495    // Don't handle long double formats, which have strange constraints.
1496  }
1497
1498  // We can handle constant integers that are power of two in size and a
1499  // multiple of 8 bits.
1500  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1501    unsigned Width = CI->getBitWidth();
1502    if (isPowerOf2_32(Width) && Width > 8) {
1503      // We can handle this value if the recursive binary decomposition is the
1504      // same at all levels.
1505      APInt Val = CI->getValue();
1506      APInt Val2;
1507      while (Val.getBitWidth() != 8) {
1508        unsigned NextWidth = Val.getBitWidth()/2;
1509        Val2  = Val.lshr(NextWidth);
1510        Val2 = Val2.trunc(Val.getBitWidth()/2);
1511        Val = Val.trunc(Val.getBitWidth()/2);
1512
1513        // If the top/bottom halves aren't the same, reject it.
1514        if (Val != Val2)
1515          return 0;
1516      }
1517      return ConstantInt::get(V->getContext(), Val);
1518    }
1519  }
1520
1521  // A ConstantDataArray/Vector is splatable if all its members are equal and
1522  // also splatable.
1523  if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
1524    Value *Elt = CA->getElementAsConstant(0);
1525    Value *Val = isBytewiseValue(Elt);
1526    if (!Val)
1527      return 0;
1528
1529    for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
1530      if (CA->getElementAsConstant(I) != Elt)
1531        return 0;
1532
1533    return Val;
1534  }
1535
1536  // Conceptually, we could handle things like:
1537  //   %a = zext i8 %X to i16
1538  //   %b = shl i16 %a, 8
1539  //   %c = or i16 %a, %b
1540  // but until there is an example that actually needs this, it doesn't seem
1541  // worth worrying about.
1542  return 0;
1543}
1544
1545
1546// This is the recursive version of BuildSubAggregate. It takes a few different
1547// arguments. Idxs is the index within the nested struct From that we are
1548// looking at now (which is of type IndexedType). IdxSkip is the number of
1549// indices from Idxs that should be left out when inserting into the resulting
1550// struct. To is the result struct built so far, new insertvalue instructions
1551// build on that.
1552static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
1553                                SmallVectorImpl<unsigned> &Idxs,
1554                                unsigned IdxSkip,
1555                                Instruction *InsertBefore) {
1556  llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
1557  if (STy) {
1558    // Save the original To argument so we can modify it
1559    Value *OrigTo = To;
1560    // General case, the type indexed by Idxs is a struct
1561    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1562      // Process each struct element recursively
1563      Idxs.push_back(i);
1564      Value *PrevTo = To;
1565      To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
1566                             InsertBefore);
1567      Idxs.pop_back();
1568      if (!To) {
1569        // Couldn't find any inserted value for this index? Cleanup
1570        while (PrevTo != OrigTo) {
1571          InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
1572          PrevTo = Del->getAggregateOperand();
1573          Del->eraseFromParent();
1574        }
1575        // Stop processing elements
1576        break;
1577      }
1578    }
1579    // If we successfully found a value for each of our subaggregates
1580    if (To)
1581      return To;
1582  }
1583  // Base case, the type indexed by SourceIdxs is not a struct, or not all of
1584  // the struct's elements had a value that was inserted directly. In the latter
1585  // case, perhaps we can't determine each of the subelements individually, but
1586  // we might be able to find the complete struct somewhere.
1587
1588  // Find the value that is at that particular spot
1589  Value *V = FindInsertedValue(From, Idxs);
1590
1591  if (!V)
1592    return NULL;
1593
1594  // Insert the value in the new (sub) aggregrate
1595  return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
1596                                       "tmp", InsertBefore);
1597}
1598
1599// This helper takes a nested struct and extracts a part of it (which is again a
1600// struct) into a new value. For example, given the struct:
1601// { a, { b, { c, d }, e } }
1602// and the indices "1, 1" this returns
1603// { c, d }.
1604//
1605// It does this by inserting an insertvalue for each element in the resulting
1606// struct, as opposed to just inserting a single struct. This will only work if
1607// each of the elements of the substruct are known (ie, inserted into From by an
1608// insertvalue instruction somewhere).
1609//
1610// All inserted insertvalue instructions are inserted before InsertBefore
1611static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
1612                                Instruction *InsertBefore) {
1613  assert(InsertBefore && "Must have someplace to insert!");
1614  Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
1615                                                             idx_range);
1616  Value *To = UndefValue::get(IndexedType);
1617  SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
1618  unsigned IdxSkip = Idxs.size();
1619
1620  return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
1621}
1622
1623/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
1624/// the scalar value indexed is already around as a register, for example if it
1625/// were inserted directly into the aggregrate.
1626///
1627/// If InsertBefore is not null, this function will duplicate (modified)
1628/// insertvalues when a part of a nested struct is extracted.
1629Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
1630                               Instruction *InsertBefore) {
1631  // Nothing to index? Just return V then (this is useful at the end of our
1632  // recursion).
1633  if (idx_range.empty())
1634    return V;
1635  // We have indices, so V should have an indexable type.
1636  assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
1637         "Not looking at a struct or array?");
1638  assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
1639         "Invalid indices for type?");
1640
1641  if (Constant *C = dyn_cast<Constant>(V)) {
1642    C = C->getAggregateElement(idx_range[0]);
1643    if (C == 0) return 0;
1644    return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
1645  }
1646
1647  if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
1648    // Loop the indices for the insertvalue instruction in parallel with the
1649    // requested indices
1650    const unsigned *req_idx = idx_range.begin();
1651    for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1652         i != e; ++i, ++req_idx) {
1653      if (req_idx == idx_range.end()) {
1654        // We can't handle this without inserting insertvalues
1655        if (!InsertBefore)
1656          return 0;
1657
1658        // The requested index identifies a part of a nested aggregate. Handle
1659        // this specially. For example,
1660        // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
1661        // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
1662        // %C = extractvalue {i32, { i32, i32 } } %B, 1
1663        // This can be changed into
1664        // %A = insertvalue {i32, i32 } undef, i32 10, 0
1665        // %C = insertvalue {i32, i32 } %A, i32 11, 1
1666        // which allows the unused 0,0 element from the nested struct to be
1667        // removed.
1668        return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
1669                                 InsertBefore);
1670      }
1671
1672      // This insert value inserts something else than what we are looking for.
1673      // See if the (aggregrate) value inserted into has the value we are
1674      // looking for, then.
1675      if (*req_idx != *i)
1676        return FindInsertedValue(I->getAggregateOperand(), idx_range,
1677                                 InsertBefore);
1678    }
1679    // If we end up here, the indices of the insertvalue match with those
1680    // requested (though possibly only partially). Now we recursively look at
1681    // the inserted value, passing any remaining indices.
1682    return FindInsertedValue(I->getInsertedValueOperand(),
1683                             makeArrayRef(req_idx, idx_range.end()),
1684                             InsertBefore);
1685  }
1686
1687  if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
1688    // If we're extracting a value from an aggregrate that was extracted from
1689    // something else, we can extract from that something else directly instead.
1690    // However, we will need to chain I's indices with the requested indices.
1691
1692    // Calculate the number of indices required
1693    unsigned size = I->getNumIndices() + idx_range.size();
1694    // Allocate some space to put the new indices in
1695    SmallVector<unsigned, 5> Idxs;
1696    Idxs.reserve(size);
1697    // Add indices from the extract value instruction
1698    Idxs.append(I->idx_begin(), I->idx_end());
1699
1700    // Add requested indices
1701    Idxs.append(idx_range.begin(), idx_range.end());
1702
1703    assert(Idxs.size() == size
1704           && "Number of indices added not correct?");
1705
1706    return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
1707  }
1708  // Otherwise, we don't know (such as, extracting from a function return value
1709  // or load instruction)
1710  return 0;
1711}
1712
1713/// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
1714/// it can be expressed as a base pointer plus a constant offset.  Return the
1715/// base and offset to the caller.
1716Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
1717                                              const DataLayout *DL) {
1718  // Without DataLayout, conservatively assume 64-bit offsets, which is
1719  // the widest we support.
1720  unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(Ptr->getType()) : 64;
1721  APInt ByteOffset(BitWidth, 0);
1722  while (1) {
1723    if (Ptr->getType()->isVectorTy())
1724      break;
1725
1726    if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1727      if (DL) {
1728        APInt GEPOffset(BitWidth, 0);
1729        if (!GEP->accumulateConstantOffset(*DL, GEPOffset))
1730          break;
1731
1732        ByteOffset += GEPOffset;
1733      }
1734
1735      Ptr = GEP->getPointerOperand();
1736    } else if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1737      Ptr = cast<Operator>(Ptr)->getOperand(0);
1738    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1739      if (GA->mayBeOverridden())
1740        break;
1741      Ptr = GA->getAliasee();
1742    } else {
1743      break;
1744    }
1745  }
1746  Offset = ByteOffset.getSExtValue();
1747  return Ptr;
1748}
1749
1750
1751/// getConstantStringInfo - This function computes the length of a
1752/// null-terminated C string pointed to by V.  If successful, it returns true
1753/// and returns the string in Str.  If unsuccessful, it returns false.
1754bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
1755                                 uint64_t Offset, bool TrimAtNul) {
1756  assert(V);
1757
1758  // Look through bitcast instructions and geps.
1759  V = V->stripPointerCasts();
1760
1761  // If the value is a GEP instructionor  constant expression, treat it as an
1762  // offset.
1763  if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1764    // Make sure the GEP has exactly three arguments.
1765    if (GEP->getNumOperands() != 3)
1766      return false;
1767
1768    // Make sure the index-ee is a pointer to array of i8.
1769    PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1770    ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
1771    if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
1772      return false;
1773
1774    // Check to make sure that the first operand of the GEP is an integer and
1775    // has value 0 so that we are sure we're indexing into the initializer.
1776    const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
1777    if (FirstIdx == 0 || !FirstIdx->isZero())
1778      return false;
1779
1780    // If the second index isn't a ConstantInt, then this is a variable index
1781    // into the array.  If this occurs, we can't say anything meaningful about
1782    // the string.
1783    uint64_t StartIdx = 0;
1784    if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
1785      StartIdx = CI->getZExtValue();
1786    else
1787      return false;
1788    return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
1789  }
1790
1791  // The GEP instruction, constant or instruction, must reference a global
1792  // variable that is a constant and is initialized. The referenced constant
1793  // initializer is the array that we'll use for optimization.
1794  const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
1795  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
1796    return false;
1797
1798  // Handle the all-zeros case
1799  if (GV->getInitializer()->isNullValue()) {
1800    // This is a degenerate case. The initializer is constant zero so the
1801    // length of the string must be zero.
1802    Str = "";
1803    return true;
1804  }
1805
1806  // Must be a Constant Array
1807  const ConstantDataArray *Array =
1808    dyn_cast<ConstantDataArray>(GV->getInitializer());
1809  if (Array == 0 || !Array->isString())
1810    return false;
1811
1812  // Get the number of elements in the array
1813  uint64_t NumElts = Array->getType()->getArrayNumElements();
1814
1815  // Start out with the entire array in the StringRef.
1816  Str = Array->getAsString();
1817
1818  if (Offset > NumElts)
1819    return false;
1820
1821  // Skip over 'offset' bytes.
1822  Str = Str.substr(Offset);
1823
1824  if (TrimAtNul) {
1825    // Trim off the \0 and anything after it.  If the array is not nul
1826    // terminated, we just return the whole end of string.  The client may know
1827    // some other way that the string is length-bound.
1828    Str = Str.substr(0, Str.find('\0'));
1829  }
1830  return true;
1831}
1832
1833// These next two are very similar to the above, but also look through PHI
1834// nodes.
1835// TODO: See if we can integrate these two together.
1836
1837/// GetStringLengthH - If we can compute the length of the string pointed to by
1838/// the specified pointer, return 'len+1'.  If we can't, return 0.
1839static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
1840  // Look through noop bitcast instructions.
1841  V = V->stripPointerCasts();
1842
1843  // If this is a PHI node, there are two cases: either we have already seen it
1844  // or we haven't.
1845  if (PHINode *PN = dyn_cast<PHINode>(V)) {
1846    if (!PHIs.insert(PN))
1847      return ~0ULL;  // already in the set.
1848
1849    // If it was new, see if all the input strings are the same length.
1850    uint64_t LenSoFar = ~0ULL;
1851    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1852      uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
1853      if (Len == 0) return 0; // Unknown length -> unknown.
1854
1855      if (Len == ~0ULL) continue;
1856
1857      if (Len != LenSoFar && LenSoFar != ~0ULL)
1858        return 0;    // Disagree -> unknown.
1859      LenSoFar = Len;
1860    }
1861
1862    // Success, all agree.
1863    return LenSoFar;
1864  }
1865
1866  // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
1867  if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1868    uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
1869    if (Len1 == 0) return 0;
1870    uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
1871    if (Len2 == 0) return 0;
1872    if (Len1 == ~0ULL) return Len2;
1873    if (Len2 == ~0ULL) return Len1;
1874    if (Len1 != Len2) return 0;
1875    return Len1;
1876  }
1877
1878  // Otherwise, see if we can read the string.
1879  StringRef StrData;
1880  if (!getConstantStringInfo(V, StrData))
1881    return 0;
1882
1883  return StrData.size()+1;
1884}
1885
1886/// GetStringLength - If we can compute the length of the string pointed to by
1887/// the specified pointer, return 'len+1'.  If we can't, return 0.
1888uint64_t llvm::GetStringLength(Value *V) {
1889  if (!V->getType()->isPointerTy()) return 0;
1890
1891  SmallPtrSet<PHINode*, 32> PHIs;
1892  uint64_t Len = GetStringLengthH(V, PHIs);
1893  // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
1894  // an empty string as a length.
1895  return Len == ~0ULL ? 1 : Len;
1896}
1897
1898Value *
1899llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
1900  if (!V->getType()->isPointerTy())
1901    return V;
1902  for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
1903    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1904      V = GEP->getPointerOperand();
1905    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
1906      V = cast<Operator>(V)->getOperand(0);
1907    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1908      if (GA->mayBeOverridden())
1909        return V;
1910      V = GA->getAliasee();
1911    } else {
1912      // See if InstructionSimplify knows any relevant tricks.
1913      if (Instruction *I = dyn_cast<Instruction>(V))
1914        // TODO: Acquire a DominatorTree and use it.
1915        if (Value *Simplified = SimplifyInstruction(I, TD, 0)) {
1916          V = Simplified;
1917          continue;
1918        }
1919
1920      return V;
1921    }
1922    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
1923  }
1924  return V;
1925}
1926
1927void
1928llvm::GetUnderlyingObjects(Value *V,
1929                           SmallVectorImpl<Value *> &Objects,
1930                           const DataLayout *TD,
1931                           unsigned MaxLookup) {
1932  SmallPtrSet<Value *, 4> Visited;
1933  SmallVector<Value *, 4> Worklist;
1934  Worklist.push_back(V);
1935  do {
1936    Value *P = Worklist.pop_back_val();
1937    P = GetUnderlyingObject(P, TD, MaxLookup);
1938
1939    if (!Visited.insert(P))
1940      continue;
1941
1942    if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
1943      Worklist.push_back(SI->getTrueValue());
1944      Worklist.push_back(SI->getFalseValue());
1945      continue;
1946    }
1947
1948    if (PHINode *PN = dyn_cast<PHINode>(P)) {
1949      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1950        Worklist.push_back(PN->getIncomingValue(i));
1951      continue;
1952    }
1953
1954    Objects.push_back(P);
1955  } while (!Worklist.empty());
1956}
1957
1958/// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
1959/// are lifetime markers.
1960///
1961bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
1962  for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
1963       UI != UE; ++UI) {
1964    const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI);
1965    if (!II) return false;
1966
1967    if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1968        II->getIntrinsicID() != Intrinsic::lifetime_end)
1969      return false;
1970  }
1971  return true;
1972}
1973
1974bool llvm::isSafeToSpeculativelyExecute(const Value *V,
1975                                        const DataLayout *TD) {
1976  const Operator *Inst = dyn_cast<Operator>(V);
1977  if (!Inst)
1978    return false;
1979
1980  for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
1981    if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
1982      if (C->canTrap())
1983        return false;
1984
1985  switch (Inst->getOpcode()) {
1986  default:
1987    return true;
1988  case Instruction::UDiv:
1989  case Instruction::URem:
1990    // x / y is undefined if y == 0, but calcuations like x / 3 are safe.
1991    return isKnownNonZero(Inst->getOperand(1), TD);
1992  case Instruction::SDiv:
1993  case Instruction::SRem: {
1994    Value *Op = Inst->getOperand(1);
1995    // x / y is undefined if y == 0
1996    if (!isKnownNonZero(Op, TD))
1997      return false;
1998    // x / y might be undefined if y == -1
1999    unsigned BitWidth = getBitWidth(Op->getType(), TD);
2000    if (BitWidth == 0)
2001      return false;
2002    APInt KnownZero(BitWidth, 0);
2003    APInt KnownOne(BitWidth, 0);
2004    ComputeMaskedBits(Op, KnownZero, KnownOne, TD);
2005    return !!KnownZero;
2006  }
2007  case Instruction::Load: {
2008    const LoadInst *LI = cast<LoadInst>(Inst);
2009    if (!LI->isUnordered())
2010      return false;
2011    return LI->getPointerOperand()->isDereferenceablePointer();
2012  }
2013  case Instruction::Call: {
2014   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
2015     switch (II->getIntrinsicID()) {
2016       // These synthetic intrinsics have no side-effects, and just mark
2017       // information about their operands.
2018       // FIXME: There are other no-op synthetic instructions that potentially
2019       // should be considered at least *safe* to speculate...
2020       case Intrinsic::dbg_declare:
2021       case Intrinsic::dbg_value:
2022         return true;
2023
2024       case Intrinsic::bswap:
2025       case Intrinsic::ctlz:
2026       case Intrinsic::ctpop:
2027       case Intrinsic::cttz:
2028       case Intrinsic::objectsize:
2029       case Intrinsic::sadd_with_overflow:
2030       case Intrinsic::smul_with_overflow:
2031       case Intrinsic::ssub_with_overflow:
2032       case Intrinsic::uadd_with_overflow:
2033       case Intrinsic::umul_with_overflow:
2034       case Intrinsic::usub_with_overflow:
2035         return true;
2036       // TODO: some fp intrinsics are marked as having the same error handling
2037       // as libm. They're safe to speculate when they won't error.
2038       // TODO: are convert_{from,to}_fp16 safe?
2039       // TODO: can we list target-specific intrinsics here?
2040       default: break;
2041     }
2042   }
2043    return false; // The called function could have undefined behavior or
2044                  // side-effects, even if marked readnone nounwind.
2045  }
2046  case Instruction::VAArg:
2047  case Instruction::Alloca:
2048  case Instruction::Invoke:
2049  case Instruction::PHI:
2050  case Instruction::Store:
2051  case Instruction::Ret:
2052  case Instruction::Br:
2053  case Instruction::IndirectBr:
2054  case Instruction::Switch:
2055  case Instruction::Unreachable:
2056  case Instruction::Fence:
2057  case Instruction::LandingPad:
2058  case Instruction::AtomicRMW:
2059  case Instruction::AtomicCmpXchg:
2060  case Instruction::Resume:
2061    return false; // Misc instructions which have effects
2062  }
2063}
2064
2065/// isKnownNonNull - Return true if we know that the specified value is never
2066/// null.
2067bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
2068  // Alloca never returns null, malloc might.
2069  if (isa<AllocaInst>(V)) return true;
2070
2071  // A byval argument is never null.
2072  if (const Argument *A = dyn_cast<Argument>(V))
2073    return A->hasByValAttr();
2074
2075  // Global values are not null unless extern weak.
2076  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2077    return !GV->hasExternalWeakLinkage();
2078
2079  // operator new never returns null.
2080  if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true))
2081    return true;
2082
2083  return false;
2084}
2085