InlineCost.cpp revision 263508
1//===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inline cost analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "inline-cost"
15#include "llvm/Analysis/InlineCost.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/SetVector.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Analysis/InstructionSimplify.h"
23#include "llvm/Analysis/TargetTransformInfo.h"
24#include "llvm/IR/CallingConv.h"
25#include "llvm/IR/DataLayout.h"
26#include "llvm/IR/GlobalAlias.h"
27#include "llvm/IR/IntrinsicInst.h"
28#include "llvm/IR/Operator.h"
29#include "llvm/InstVisitor.h"
30#include "llvm/Support/CallSite.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/GetElementPtrTypeIterator.h"
33#include "llvm/Support/raw_ostream.h"
34
35using namespace llvm;
36
37STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");
38
39namespace {
40
41class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
42  typedef InstVisitor<CallAnalyzer, bool> Base;
43  friend class InstVisitor<CallAnalyzer, bool>;
44
45  // DataLayout if available, or null.
46  const DataLayout *const TD;
47
48  /// The TargetTransformInfo available for this compilation.
49  const TargetTransformInfo &TTI;
50
51  // The called function.
52  Function &F;
53
54  int Threshold;
55  int Cost;
56
57  bool IsCallerRecursive;
58  bool IsRecursiveCall;
59  bool ExposesReturnsTwice;
60  bool HasDynamicAlloca;
61  bool ContainsNoDuplicateCall;
62  bool HasReturn;
63  bool HasIndirectBr;
64
65  /// Number of bytes allocated statically by the callee.
66  uint64_t AllocatedSize;
67  unsigned NumInstructions, NumVectorInstructions;
68  int FiftyPercentVectorBonus, TenPercentVectorBonus;
69  int VectorBonus;
70
71  // While we walk the potentially-inlined instructions, we build up and
72  // maintain a mapping of simplified values specific to this callsite. The
73  // idea is to propagate any special information we have about arguments to
74  // this call through the inlinable section of the function, and account for
75  // likely simplifications post-inlining. The most important aspect we track
76  // is CFG altering simplifications -- when we prove a basic block dead, that
77  // can cause dramatic shifts in the cost of inlining a function.
78  DenseMap<Value *, Constant *> SimplifiedValues;
79
80  // Keep track of the values which map back (through function arguments) to
81  // allocas on the caller stack which could be simplified through SROA.
82  DenseMap<Value *, Value *> SROAArgValues;
83
84  // The mapping of caller Alloca values to their accumulated cost savings. If
85  // we have to disable SROA for one of the allocas, this tells us how much
86  // cost must be added.
87  DenseMap<Value *, int> SROAArgCosts;
88
89  // Keep track of values which map to a pointer base and constant offset.
90  DenseMap<Value *, std::pair<Value *, APInt> > ConstantOffsetPtrs;
91
92  // Custom simplification helper routines.
93  bool isAllocaDerivedArg(Value *V);
94  bool lookupSROAArgAndCost(Value *V, Value *&Arg,
95                            DenseMap<Value *, int>::iterator &CostIt);
96  void disableSROA(DenseMap<Value *, int>::iterator CostIt);
97  void disableSROA(Value *V);
98  void accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
99                          int InstructionCost);
100  bool handleSROACandidate(bool IsSROAValid,
101                           DenseMap<Value *, int>::iterator CostIt,
102                           int InstructionCost);
103  bool isGEPOffsetConstant(GetElementPtrInst &GEP);
104  bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
105  bool simplifyCallSite(Function *F, CallSite CS);
106  ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);
107
108  // Custom analysis routines.
109  bool analyzeBlock(BasicBlock *BB);
110
111  // Disable several entry points to the visitor so we don't accidentally use
112  // them by declaring but not defining them here.
113  void visit(Module *);     void visit(Module &);
114  void visit(Function *);   void visit(Function &);
115  void visit(BasicBlock *); void visit(BasicBlock &);
116
117  // Provide base case for our instruction visit.
118  bool visitInstruction(Instruction &I);
119
120  // Our visit overrides.
121  bool visitAlloca(AllocaInst &I);
122  bool visitPHI(PHINode &I);
123  bool visitGetElementPtr(GetElementPtrInst &I);
124  bool visitBitCast(BitCastInst &I);
125  bool visitPtrToInt(PtrToIntInst &I);
126  bool visitIntToPtr(IntToPtrInst &I);
127  bool visitCastInst(CastInst &I);
128  bool visitUnaryInstruction(UnaryInstruction &I);
129  bool visitCmpInst(CmpInst &I);
130  bool visitSub(BinaryOperator &I);
131  bool visitBinaryOperator(BinaryOperator &I);
132  bool visitLoad(LoadInst &I);
133  bool visitStore(StoreInst &I);
134  bool visitExtractValue(ExtractValueInst &I);
135  bool visitInsertValue(InsertValueInst &I);
136  bool visitCallSite(CallSite CS);
137  bool visitReturnInst(ReturnInst &RI);
138  bool visitBranchInst(BranchInst &BI);
139  bool visitSwitchInst(SwitchInst &SI);
140  bool visitIndirectBrInst(IndirectBrInst &IBI);
141  bool visitResumeInst(ResumeInst &RI);
142  bool visitUnreachableInst(UnreachableInst &I);
143
144public:
145  CallAnalyzer(const DataLayout *TD, const TargetTransformInfo &TTI,
146               Function &Callee, int Threshold)
147      : TD(TD), TTI(TTI), F(Callee), Threshold(Threshold), Cost(0),
148        IsCallerRecursive(false), IsRecursiveCall(false),
149        ExposesReturnsTwice(false), HasDynamicAlloca(false),
150        ContainsNoDuplicateCall(false), HasReturn(false), HasIndirectBr(false),
151        AllocatedSize(0), NumInstructions(0), NumVectorInstructions(0),
152        FiftyPercentVectorBonus(0), TenPercentVectorBonus(0), VectorBonus(0),
153        NumConstantArgs(0), NumConstantOffsetPtrArgs(0), NumAllocaArgs(0),
154        NumConstantPtrCmps(0), NumConstantPtrDiffs(0),
155        NumInstructionsSimplified(0), SROACostSavings(0),
156        SROACostSavingsLost(0) {}
157
158  bool analyzeCall(CallSite CS);
159
160  int getThreshold() { return Threshold; }
161  int getCost() { return Cost; }
162
163  // Keep a bunch of stats about the cost savings found so we can print them
164  // out when debugging.
165  unsigned NumConstantArgs;
166  unsigned NumConstantOffsetPtrArgs;
167  unsigned NumAllocaArgs;
168  unsigned NumConstantPtrCmps;
169  unsigned NumConstantPtrDiffs;
170  unsigned NumInstructionsSimplified;
171  unsigned SROACostSavings;
172  unsigned SROACostSavingsLost;
173
174  void dump();
175};
176
177} // namespace
178
179/// \brief Test whether the given value is an Alloca-derived function argument.
180bool CallAnalyzer::isAllocaDerivedArg(Value *V) {
181  return SROAArgValues.count(V);
182}
183
184/// \brief Lookup the SROA-candidate argument and cost iterator which V maps to.
185/// Returns false if V does not map to a SROA-candidate.
186bool CallAnalyzer::lookupSROAArgAndCost(
187    Value *V, Value *&Arg, DenseMap<Value *, int>::iterator &CostIt) {
188  if (SROAArgValues.empty() || SROAArgCosts.empty())
189    return false;
190
191  DenseMap<Value *, Value *>::iterator ArgIt = SROAArgValues.find(V);
192  if (ArgIt == SROAArgValues.end())
193    return false;
194
195  Arg = ArgIt->second;
196  CostIt = SROAArgCosts.find(Arg);
197  return CostIt != SROAArgCosts.end();
198}
199
200/// \brief Disable SROA for the candidate marked by this cost iterator.
201///
202/// This marks the candidate as no longer viable for SROA, and adds the cost
203/// savings associated with it back into the inline cost measurement.
204void CallAnalyzer::disableSROA(DenseMap<Value *, int>::iterator CostIt) {
205  // If we're no longer able to perform SROA we need to undo its cost savings
206  // and prevent subsequent analysis.
207  Cost += CostIt->second;
208  SROACostSavings -= CostIt->second;
209  SROACostSavingsLost += CostIt->second;
210  SROAArgCosts.erase(CostIt);
211}
212
213/// \brief If 'V' maps to a SROA candidate, disable SROA for it.
214void CallAnalyzer::disableSROA(Value *V) {
215  Value *SROAArg;
216  DenseMap<Value *, int>::iterator CostIt;
217  if (lookupSROAArgAndCost(V, SROAArg, CostIt))
218    disableSROA(CostIt);
219}
220
221/// \brief Accumulate the given cost for a particular SROA candidate.
222void CallAnalyzer::accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
223                                      int InstructionCost) {
224  CostIt->second += InstructionCost;
225  SROACostSavings += InstructionCost;
226}
227
228/// \brief Helper for the common pattern of handling a SROA candidate.
229/// Either accumulates the cost savings if the SROA remains valid, or disables
230/// SROA for the candidate.
231bool CallAnalyzer::handleSROACandidate(bool IsSROAValid,
232                                       DenseMap<Value *, int>::iterator CostIt,
233                                       int InstructionCost) {
234  if (IsSROAValid) {
235    accumulateSROACost(CostIt, InstructionCost);
236    return true;
237  }
238
239  disableSROA(CostIt);
240  return false;
241}
242
243/// \brief Check whether a GEP's indices are all constant.
244///
245/// Respects any simplified values known during the analysis of this callsite.
246bool CallAnalyzer::isGEPOffsetConstant(GetElementPtrInst &GEP) {
247  for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
248    if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I))
249      return false;
250
251  return true;
252}
253
254/// \brief Accumulate a constant GEP offset into an APInt if possible.
255///
256/// Returns false if unable to compute the offset for any reason. Respects any
257/// simplified values known during the analysis of this callsite.
258bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
259  if (!TD)
260    return false;
261
262  unsigned IntPtrWidth = TD->getPointerSizeInBits();
263  assert(IntPtrWidth == Offset.getBitWidth());
264
265  for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
266       GTI != GTE; ++GTI) {
267    ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
268    if (!OpC)
269      if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand()))
270        OpC = dyn_cast<ConstantInt>(SimpleOp);
271    if (!OpC)
272      return false;
273    if (OpC->isZero()) continue;
274
275    // Handle a struct index, which adds its field offset to the pointer.
276    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
277      unsigned ElementIdx = OpC->getZExtValue();
278      const StructLayout *SL = TD->getStructLayout(STy);
279      Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
280      continue;
281    }
282
283    APInt TypeSize(IntPtrWidth, TD->getTypeAllocSize(GTI.getIndexedType()));
284    Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
285  }
286  return true;
287}
288
289bool CallAnalyzer::visitAlloca(AllocaInst &I) {
290  // FIXME: Check whether inlining will turn a dynamic alloca into a static
291  // alloca, and handle that case.
292
293  // Accumulate the allocated size.
294  if (I.isStaticAlloca()) {
295    Type *Ty = I.getAllocatedType();
296    AllocatedSize += (TD ? TD->getTypeAllocSize(Ty) :
297                      Ty->getPrimitiveSizeInBits());
298  }
299
300  // We will happily inline static alloca instructions.
301  if (I.isStaticAlloca())
302    return Base::visitAlloca(I);
303
304  // FIXME: This is overly conservative. Dynamic allocas are inefficient for
305  // a variety of reasons, and so we would like to not inline them into
306  // functions which don't currently have a dynamic alloca. This simply
307  // disables inlining altogether in the presence of a dynamic alloca.
308  HasDynamicAlloca = true;
309  return false;
310}
311
312bool CallAnalyzer::visitPHI(PHINode &I) {
313  // FIXME: We should potentially be tracking values through phi nodes,
314  // especially when they collapse to a single value due to deleted CFG edges
315  // during inlining.
316
317  // FIXME: We need to propagate SROA *disabling* through phi nodes, even
318  // though we don't want to propagate it's bonuses. The idea is to disable
319  // SROA if it *might* be used in an inappropriate manner.
320
321  // Phi nodes are always zero-cost.
322  return true;
323}
324
325bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
326  Value *SROAArg;
327  DenseMap<Value *, int>::iterator CostIt;
328  bool SROACandidate = lookupSROAArgAndCost(I.getPointerOperand(),
329                                            SROAArg, CostIt);
330
331  // Try to fold GEPs of constant-offset call site argument pointers. This
332  // requires target data and inbounds GEPs.
333  if (TD && I.isInBounds()) {
334    // Check if we have a base + offset for the pointer.
335    Value *Ptr = I.getPointerOperand();
336    std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Ptr);
337    if (BaseAndOffset.first) {
338      // Check if the offset of this GEP is constant, and if so accumulate it
339      // into Offset.
340      if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) {
341        // Non-constant GEPs aren't folded, and disable SROA.
342        if (SROACandidate)
343          disableSROA(CostIt);
344        return false;
345      }
346
347      // Add the result as a new mapping to Base + Offset.
348      ConstantOffsetPtrs[&I] = BaseAndOffset;
349
350      // Also handle SROA candidates here, we already know that the GEP is
351      // all-constant indexed.
352      if (SROACandidate)
353        SROAArgValues[&I] = SROAArg;
354
355      return true;
356    }
357  }
358
359  if (isGEPOffsetConstant(I)) {
360    if (SROACandidate)
361      SROAArgValues[&I] = SROAArg;
362
363    // Constant GEPs are modeled as free.
364    return true;
365  }
366
367  // Variable GEPs will require math and will disable SROA.
368  if (SROACandidate)
369    disableSROA(CostIt);
370  return false;
371}
372
373bool CallAnalyzer::visitBitCast(BitCastInst &I) {
374  // Propagate constants through bitcasts.
375  Constant *COp = dyn_cast<Constant>(I.getOperand(0));
376  if (!COp)
377    COp = SimplifiedValues.lookup(I.getOperand(0));
378  if (COp)
379    if (Constant *C = ConstantExpr::getBitCast(COp, I.getType())) {
380      SimplifiedValues[&I] = C;
381      return true;
382    }
383
384  // Track base/offsets through casts
385  std::pair<Value *, APInt> BaseAndOffset
386    = ConstantOffsetPtrs.lookup(I.getOperand(0));
387  // Casts don't change the offset, just wrap it up.
388  if (BaseAndOffset.first)
389    ConstantOffsetPtrs[&I] = BaseAndOffset;
390
391  // Also look for SROA candidates here.
392  Value *SROAArg;
393  DenseMap<Value *, int>::iterator CostIt;
394  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
395    SROAArgValues[&I] = SROAArg;
396
397  // Bitcasts are always zero cost.
398  return true;
399}
400
401bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
402  // Propagate constants through ptrtoint.
403  Constant *COp = dyn_cast<Constant>(I.getOperand(0));
404  if (!COp)
405    COp = SimplifiedValues.lookup(I.getOperand(0));
406  if (COp)
407    if (Constant *C = ConstantExpr::getPtrToInt(COp, I.getType())) {
408      SimplifiedValues[&I] = C;
409      return true;
410    }
411
412  // Track base/offset pairs when converted to a plain integer provided the
413  // integer is large enough to represent the pointer.
414  unsigned IntegerSize = I.getType()->getScalarSizeInBits();
415  if (TD && IntegerSize >= TD->getPointerSizeInBits()) {
416    std::pair<Value *, APInt> BaseAndOffset
417      = ConstantOffsetPtrs.lookup(I.getOperand(0));
418    if (BaseAndOffset.first)
419      ConstantOffsetPtrs[&I] = BaseAndOffset;
420  }
421
422  // This is really weird. Technically, ptrtoint will disable SROA. However,
423  // unless that ptrtoint is *used* somewhere in the live basic blocks after
424  // inlining, it will be nuked, and SROA should proceed. All of the uses which
425  // would block SROA would also block SROA if applied directly to a pointer,
426  // and so we can just add the integer in here. The only places where SROA is
427  // preserved either cannot fire on an integer, or won't in-and-of themselves
428  // disable SROA (ext) w/o some later use that we would see and disable.
429  Value *SROAArg;
430  DenseMap<Value *, int>::iterator CostIt;
431  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
432    SROAArgValues[&I] = SROAArg;
433
434  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
435}
436
437bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
438  // Propagate constants through ptrtoint.
439  Constant *COp = dyn_cast<Constant>(I.getOperand(0));
440  if (!COp)
441    COp = SimplifiedValues.lookup(I.getOperand(0));
442  if (COp)
443    if (Constant *C = ConstantExpr::getIntToPtr(COp, I.getType())) {
444      SimplifiedValues[&I] = C;
445      return true;
446    }
447
448  // Track base/offset pairs when round-tripped through a pointer without
449  // modifications provided the integer is not too large.
450  Value *Op = I.getOperand(0);
451  unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
452  if (TD && IntegerSize <= TD->getPointerSizeInBits()) {
453    std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
454    if (BaseAndOffset.first)
455      ConstantOffsetPtrs[&I] = BaseAndOffset;
456  }
457
458  // "Propagate" SROA here in the same manner as we do for ptrtoint above.
459  Value *SROAArg;
460  DenseMap<Value *, int>::iterator CostIt;
461  if (lookupSROAArgAndCost(Op, SROAArg, CostIt))
462    SROAArgValues[&I] = SROAArg;
463
464  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
465}
466
467bool CallAnalyzer::visitCastInst(CastInst &I) {
468  // Propagate constants through ptrtoint.
469  Constant *COp = dyn_cast<Constant>(I.getOperand(0));
470  if (!COp)
471    COp = SimplifiedValues.lookup(I.getOperand(0));
472  if (COp)
473    if (Constant *C = ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) {
474      SimplifiedValues[&I] = C;
475      return true;
476    }
477
478  // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere.
479  disableSROA(I.getOperand(0));
480
481  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
482}
483
484bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) {
485  Value *Operand = I.getOperand(0);
486  Constant *COp = dyn_cast<Constant>(Operand);
487  if (!COp)
488    COp = SimplifiedValues.lookup(Operand);
489  if (COp)
490    if (Constant *C = ConstantFoldInstOperands(I.getOpcode(), I.getType(),
491                                               COp, TD)) {
492      SimplifiedValues[&I] = C;
493      return true;
494    }
495
496  // Disable any SROA on the argument to arbitrary unary operators.
497  disableSROA(Operand);
498
499  return false;
500}
501
502bool CallAnalyzer::visitCmpInst(CmpInst &I) {
503  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
504  // First try to handle simplified comparisons.
505  if (!isa<Constant>(LHS))
506    if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
507      LHS = SimpleLHS;
508  if (!isa<Constant>(RHS))
509    if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
510      RHS = SimpleRHS;
511  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
512    if (Constant *CRHS = dyn_cast<Constant>(RHS))
513      if (Constant *C = ConstantExpr::getCompare(I.getPredicate(), CLHS, CRHS)) {
514        SimplifiedValues[&I] = C;
515        return true;
516      }
517  }
518
519  if (I.getOpcode() == Instruction::FCmp)
520    return false;
521
522  // Otherwise look for a comparison between constant offset pointers with
523  // a common base.
524  Value *LHSBase, *RHSBase;
525  APInt LHSOffset, RHSOffset;
526  llvm::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
527  if (LHSBase) {
528    llvm::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
529    if (RHSBase && LHSBase == RHSBase) {
530      // We have common bases, fold the icmp to a constant based on the
531      // offsets.
532      Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
533      Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
534      if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
535        SimplifiedValues[&I] = C;
536        ++NumConstantPtrCmps;
537        return true;
538      }
539    }
540  }
541
542  // If the comparison is an equality comparison with null, we can simplify it
543  // for any alloca-derived argument.
544  if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)))
545    if (isAllocaDerivedArg(I.getOperand(0))) {
546      // We can actually predict the result of comparisons between an
547      // alloca-derived value and null. Note that this fires regardless of
548      // SROA firing.
549      bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
550      SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
551                                        : ConstantInt::getFalse(I.getType());
552      return true;
553    }
554
555  // Finally check for SROA candidates in comparisons.
556  Value *SROAArg;
557  DenseMap<Value *, int>::iterator CostIt;
558  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
559    if (isa<ConstantPointerNull>(I.getOperand(1))) {
560      accumulateSROACost(CostIt, InlineConstants::InstrCost);
561      return true;
562    }
563
564    disableSROA(CostIt);
565  }
566
567  return false;
568}
569
570bool CallAnalyzer::visitSub(BinaryOperator &I) {
571  // Try to handle a special case: we can fold computing the difference of two
572  // constant-related pointers.
573  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
574  Value *LHSBase, *RHSBase;
575  APInt LHSOffset, RHSOffset;
576  llvm::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
577  if (LHSBase) {
578    llvm::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
579    if (RHSBase && LHSBase == RHSBase) {
580      // We have common bases, fold the subtract to a constant based on the
581      // offsets.
582      Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
583      Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
584      if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) {
585        SimplifiedValues[&I] = C;
586        ++NumConstantPtrDiffs;
587        return true;
588      }
589    }
590  }
591
592  // Otherwise, fall back to the generic logic for simplifying and handling
593  // instructions.
594  return Base::visitSub(I);
595}
596
597bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
598  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
599  if (!isa<Constant>(LHS))
600    if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
601      LHS = SimpleLHS;
602  if (!isa<Constant>(RHS))
603    if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
604      RHS = SimpleRHS;
605  Value *SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, TD);
606  if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) {
607    SimplifiedValues[&I] = C;
608    return true;
609  }
610
611  // Disable any SROA on arguments to arbitrary, unsimplified binary operators.
612  disableSROA(LHS);
613  disableSROA(RHS);
614
615  return false;
616}
617
618bool CallAnalyzer::visitLoad(LoadInst &I) {
619  Value *SROAArg;
620  DenseMap<Value *, int>::iterator CostIt;
621  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
622    if (I.isSimple()) {
623      accumulateSROACost(CostIt, InlineConstants::InstrCost);
624      return true;
625    }
626
627    disableSROA(CostIt);
628  }
629
630  return false;
631}
632
633bool CallAnalyzer::visitStore(StoreInst &I) {
634  Value *SROAArg;
635  DenseMap<Value *, int>::iterator CostIt;
636  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
637    if (I.isSimple()) {
638      accumulateSROACost(CostIt, InlineConstants::InstrCost);
639      return true;
640    }
641
642    disableSROA(CostIt);
643  }
644
645  return false;
646}
647
648bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) {
649  // Constant folding for extract value is trivial.
650  Constant *C = dyn_cast<Constant>(I.getAggregateOperand());
651  if (!C)
652    C = SimplifiedValues.lookup(I.getAggregateOperand());
653  if (C) {
654    SimplifiedValues[&I] = ConstantExpr::getExtractValue(C, I.getIndices());
655    return true;
656  }
657
658  // SROA can look through these but give them a cost.
659  return false;
660}
661
662bool CallAnalyzer::visitInsertValue(InsertValueInst &I) {
663  // Constant folding for insert value is trivial.
664  Constant *AggC = dyn_cast<Constant>(I.getAggregateOperand());
665  if (!AggC)
666    AggC = SimplifiedValues.lookup(I.getAggregateOperand());
667  Constant *InsertedC = dyn_cast<Constant>(I.getInsertedValueOperand());
668  if (!InsertedC)
669    InsertedC = SimplifiedValues.lookup(I.getInsertedValueOperand());
670  if (AggC && InsertedC) {
671    SimplifiedValues[&I] = ConstantExpr::getInsertValue(AggC, InsertedC,
672                                                        I.getIndices());
673    return true;
674  }
675
676  // SROA can look through these but give them a cost.
677  return false;
678}
679
680/// \brief Try to simplify a call site.
681///
682/// Takes a concrete function and callsite and tries to actually simplify it by
683/// analyzing the arguments and call itself with instsimplify. Returns true if
684/// it has simplified the callsite to some other entity (a constant), making it
685/// free.
686bool CallAnalyzer::simplifyCallSite(Function *F, CallSite CS) {
687  // FIXME: Using the instsimplify logic directly for this is inefficient
688  // because we have to continually rebuild the argument list even when no
689  // simplifications can be performed. Until that is fixed with remapping
690  // inside of instsimplify, directly constant fold calls here.
691  if (!canConstantFoldCallTo(F))
692    return false;
693
694  // Try to re-map the arguments to constants.
695  SmallVector<Constant *, 4> ConstantArgs;
696  ConstantArgs.reserve(CS.arg_size());
697  for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
698       I != E; ++I) {
699    Constant *C = dyn_cast<Constant>(*I);
700    if (!C)
701      C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(*I));
702    if (!C)
703      return false; // This argument doesn't map to a constant.
704
705    ConstantArgs.push_back(C);
706  }
707  if (Constant *C = ConstantFoldCall(F, ConstantArgs)) {
708    SimplifiedValues[CS.getInstruction()] = C;
709    return true;
710  }
711
712  return false;
713}
714
715bool CallAnalyzer::visitCallSite(CallSite CS) {
716  if (CS.hasFnAttr(Attribute::ReturnsTwice) &&
717      !F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
718                                      Attribute::ReturnsTwice)) {
719    // This aborts the entire analysis.
720    ExposesReturnsTwice = true;
721    return false;
722  }
723  if (CS.isCall() &&
724      cast<CallInst>(CS.getInstruction())->hasFnAttr(Attribute::NoDuplicate))
725    ContainsNoDuplicateCall = true;
726
727  if (Function *F = CS.getCalledFunction()) {
728    // When we have a concrete function, first try to simplify it directly.
729    if (simplifyCallSite(F, CS))
730      return true;
731
732    // Next check if it is an intrinsic we know about.
733    // FIXME: Lift this into part of the InstVisitor.
734    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
735      switch (II->getIntrinsicID()) {
736      default:
737        return Base::visitCallSite(CS);
738
739      case Intrinsic::memset:
740      case Intrinsic::memcpy:
741      case Intrinsic::memmove:
742        // SROA can usually chew through these intrinsics, but they aren't free.
743        return false;
744      }
745    }
746
747    if (F == CS.getInstruction()->getParent()->getParent()) {
748      // This flag will fully abort the analysis, so don't bother with anything
749      // else.
750      IsRecursiveCall = true;
751      return false;
752    }
753
754    if (TTI.isLoweredToCall(F)) {
755      // We account for the average 1 instruction per call argument setup
756      // here.
757      Cost += CS.arg_size() * InlineConstants::InstrCost;
758
759      // Everything other than inline ASM will also have a significant cost
760      // merely from making the call.
761      if (!isa<InlineAsm>(CS.getCalledValue()))
762        Cost += InlineConstants::CallPenalty;
763    }
764
765    return Base::visitCallSite(CS);
766  }
767
768  // Otherwise we're in a very special case -- an indirect function call. See
769  // if we can be particularly clever about this.
770  Value *Callee = CS.getCalledValue();
771
772  // First, pay the price of the argument setup. We account for the average
773  // 1 instruction per call argument setup here.
774  Cost += CS.arg_size() * InlineConstants::InstrCost;
775
776  // Next, check if this happens to be an indirect function call to a known
777  // function in this inline context. If not, we've done all we can.
778  Function *F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee));
779  if (!F)
780    return Base::visitCallSite(CS);
781
782  // If we have a constant that we are calling as a function, we can peer
783  // through it and see the function target. This happens not infrequently
784  // during devirtualization and so we want to give it a hefty bonus for
785  // inlining, but cap that bonus in the event that inlining wouldn't pan
786  // out. Pretend to inline the function, with a custom threshold.
787  CallAnalyzer CA(TD, TTI, *F, InlineConstants::IndirectCallThreshold);
788  if (CA.analyzeCall(CS)) {
789    // We were able to inline the indirect call! Subtract the cost from the
790    // bonus we want to apply, but don't go below zero.
791    Cost -= std::max(0, InlineConstants::IndirectCallThreshold - CA.getCost());
792  }
793
794  return Base::visitCallSite(CS);
795}
796
797bool CallAnalyzer::visitReturnInst(ReturnInst &RI) {
798  // At least one return instruction will be free after inlining.
799  bool Free = !HasReturn;
800  HasReturn = true;
801  return Free;
802}
803
804bool CallAnalyzer::visitBranchInst(BranchInst &BI) {
805  // We model unconditional branches as essentially free -- they really
806  // shouldn't exist at all, but handling them makes the behavior of the
807  // inliner more regular and predictable. Interestingly, conditional branches
808  // which will fold away are also free.
809  return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) ||
810         dyn_cast_or_null<ConstantInt>(
811             SimplifiedValues.lookup(BI.getCondition()));
812}
813
814bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) {
815  // We model unconditional switches as free, see the comments on handling
816  // branches.
817  return isa<ConstantInt>(SI.getCondition()) ||
818         dyn_cast_or_null<ConstantInt>(
819             SimplifiedValues.lookup(SI.getCondition()));
820}
821
822bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) {
823  // We never want to inline functions that contain an indirectbr.  This is
824  // incorrect because all the blockaddress's (in static global initializers
825  // for example) would be referring to the original function, and this
826  // indirect jump would jump from the inlined copy of the function into the
827  // original function which is extremely undefined behavior.
828  // FIXME: This logic isn't really right; we can safely inline functions with
829  // indirectbr's as long as no other function or global references the
830  // blockaddress of a block within the current function.  And as a QOI issue,
831  // if someone is using a blockaddress without an indirectbr, and that
832  // reference somehow ends up in another function or global, we probably don't
833  // want to inline this function.
834  HasIndirectBr = true;
835  return false;
836}
837
838bool CallAnalyzer::visitResumeInst(ResumeInst &RI) {
839  // FIXME: It's not clear that a single instruction is an accurate model for
840  // the inline cost of a resume instruction.
841  return false;
842}
843
844bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) {
845  // FIXME: It might be reasonably to discount the cost of instructions leading
846  // to unreachable as they have the lowest possible impact on both runtime and
847  // code size.
848  return true; // No actual code is needed for unreachable.
849}
850
851bool CallAnalyzer::visitInstruction(Instruction &I) {
852  // Some instructions are free. All of the free intrinsics can also be
853  // handled by SROA, etc.
854  if (TargetTransformInfo::TCC_Free == TTI.getUserCost(&I))
855    return true;
856
857  // We found something we don't understand or can't handle. Mark any SROA-able
858  // values in the operand list as no longer viable.
859  for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI)
860    disableSROA(*OI);
861
862  return false;
863}
864
865
866/// \brief Analyze a basic block for its contribution to the inline cost.
867///
868/// This method walks the analyzer over every instruction in the given basic
869/// block and accounts for their cost during inlining at this callsite. It
870/// aborts early if the threshold has been exceeded or an impossible to inline
871/// construct has been detected. It returns false if inlining is no longer
872/// viable, and true if inlining remains viable.
873bool CallAnalyzer::analyzeBlock(BasicBlock *BB) {
874  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
875    ++NumInstructions;
876    if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy())
877      ++NumVectorInstructions;
878
879    // If the instruction simplified to a constant, there is no cost to this
880    // instruction. Visit the instructions using our InstVisitor to account for
881    // all of the per-instruction logic. The visit tree returns true if we
882    // consumed the instruction in any way, and false if the instruction's base
883    // cost should count against inlining.
884    if (Base::visit(I))
885      ++NumInstructionsSimplified;
886    else
887      Cost += InlineConstants::InstrCost;
888
889    // If the visit this instruction detected an uninlinable pattern, abort.
890    if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca ||
891        HasIndirectBr)
892      return false;
893
894    // If the caller is a recursive function then we don't want to inline
895    // functions which allocate a lot of stack space because it would increase
896    // the caller stack usage dramatically.
897    if (IsCallerRecursive &&
898        AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller)
899      return false;
900
901    if (NumVectorInstructions > NumInstructions/2)
902      VectorBonus = FiftyPercentVectorBonus;
903    else if (NumVectorInstructions > NumInstructions/10)
904      VectorBonus = TenPercentVectorBonus;
905    else
906      VectorBonus = 0;
907
908    // Check if we've past the threshold so we don't spin in huge basic
909    // blocks that will never inline.
910    if (Cost > (Threshold + VectorBonus))
911      return false;
912  }
913
914  return true;
915}
916
917/// \brief Compute the base pointer and cumulative constant offsets for V.
918///
919/// This strips all constant offsets off of V, leaving it the base pointer, and
920/// accumulates the total constant offset applied in the returned constant. It
921/// returns 0 if V is not a pointer, and returns the constant '0' if there are
922/// no constant offsets applied.
923ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
924  if (!TD || !V->getType()->isPointerTy())
925    return 0;
926
927  unsigned IntPtrWidth = TD->getPointerSizeInBits();
928  APInt Offset = APInt::getNullValue(IntPtrWidth);
929
930  // Even though we don't look through PHI nodes, we could be called on an
931  // instruction in an unreachable block, which may be on a cycle.
932  SmallPtrSet<Value *, 4> Visited;
933  Visited.insert(V);
934  do {
935    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
936      if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
937        return 0;
938      V = GEP->getPointerOperand();
939    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
940      V = cast<Operator>(V)->getOperand(0);
941    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
942      if (GA->mayBeOverridden())
943        break;
944      V = GA->getAliasee();
945    } else {
946      break;
947    }
948    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
949  } while (Visited.insert(V));
950
951  Type *IntPtrTy = TD->getIntPtrType(V->getContext());
952  return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset));
953}
954
955/// \brief Analyze a call site for potential inlining.
956///
957/// Returns true if inlining this call is viable, and false if it is not
958/// viable. It computes the cost and adjusts the threshold based on numerous
959/// factors and heuristics. If this method returns false but the computed cost
960/// is below the computed threshold, then inlining was forcibly disabled by
961/// some artifact of the routine.
962bool CallAnalyzer::analyzeCall(CallSite CS) {
963  ++NumCallsAnalyzed;
964
965  // Track whether the post-inlining function would have more than one basic
966  // block. A single basic block is often intended for inlining. Balloon the
967  // threshold by 50% until we pass the single-BB phase.
968  bool SingleBB = true;
969  int SingleBBBonus = Threshold / 2;
970  Threshold += SingleBBBonus;
971
972  // Perform some tweaks to the cost and threshold based on the direct
973  // callsite information.
974
975  // We want to more aggressively inline vector-dense kernels, so up the
976  // threshold, and we'll lower it if the % of vector instructions gets too
977  // low.
978  assert(NumInstructions == 0);
979  assert(NumVectorInstructions == 0);
980  FiftyPercentVectorBonus = Threshold;
981  TenPercentVectorBonus = Threshold / 2;
982
983  // Give out bonuses per argument, as the instructions setting them up will
984  // be gone after inlining.
985  for (unsigned I = 0, E = CS.arg_size(); I != E; ++I) {
986    if (TD && CS.isByValArgument(I)) {
987      // We approximate the number of loads and stores needed by dividing the
988      // size of the byval type by the target's pointer size.
989      PointerType *PTy = cast<PointerType>(CS.getArgument(I)->getType());
990      unsigned TypeSize = TD->getTypeSizeInBits(PTy->getElementType());
991      unsigned PointerSize = TD->getPointerSizeInBits();
992      // Ceiling division.
993      unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
994
995      // If it generates more than 8 stores it is likely to be expanded as an
996      // inline memcpy so we take that as an upper bound. Otherwise we assume
997      // one load and one store per word copied.
998      // FIXME: The maxStoresPerMemcpy setting from the target should be used
999      // here instead of a magic number of 8, but it's not available via
1000      // DataLayout.
1001      NumStores = std::min(NumStores, 8U);
1002
1003      Cost -= 2 * NumStores * InlineConstants::InstrCost;
1004    } else {
1005      // For non-byval arguments subtract off one instruction per call
1006      // argument.
1007      Cost -= InlineConstants::InstrCost;
1008    }
1009  }
1010
1011  // If there is only one call of the function, and it has internal linkage,
1012  // the cost of inlining it drops dramatically.
1013  bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() &&
1014    &F == CS.getCalledFunction();
1015  if (OnlyOneCallAndLocalLinkage)
1016    Cost += InlineConstants::LastCallToStaticBonus;
1017
1018  // If the instruction after the call, or if the normal destination of the
1019  // invoke is an unreachable instruction, the function is noreturn. As such,
1020  // there is little point in inlining this unless there is literally zero
1021  // cost.
1022  Instruction *Instr = CS.getInstruction();
1023  if (InvokeInst *II = dyn_cast<InvokeInst>(Instr)) {
1024    if (isa<UnreachableInst>(II->getNormalDest()->begin()))
1025      Threshold = 1;
1026  } else if (isa<UnreachableInst>(++BasicBlock::iterator(Instr)))
1027    Threshold = 1;
1028
1029  // If this function uses the coldcc calling convention, prefer not to inline
1030  // it.
1031  if (F.getCallingConv() == CallingConv::Cold)
1032    Cost += InlineConstants::ColdccPenalty;
1033
1034  // Check if we're done. This can happen due to bonuses and penalties.
1035  if (Cost > Threshold)
1036    return false;
1037
1038  if (F.empty())
1039    return true;
1040
1041  Function *Caller = CS.getInstruction()->getParent()->getParent();
1042  // Check if the caller function is recursive itself.
1043  for (Value::use_iterator U = Caller->use_begin(), E = Caller->use_end();
1044       U != E; ++U) {
1045    CallSite Site(cast<Value>(*U));
1046    if (!Site)
1047      continue;
1048    Instruction *I = Site.getInstruction();
1049    if (I->getParent()->getParent() == Caller) {
1050      IsCallerRecursive = true;
1051      break;
1052    }
1053  }
1054
1055  // Populate our simplified values by mapping from function arguments to call
1056  // arguments with known important simplifications.
1057  CallSite::arg_iterator CAI = CS.arg_begin();
1058  for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end();
1059       FAI != FAE; ++FAI, ++CAI) {
1060    assert(CAI != CS.arg_end());
1061    if (Constant *C = dyn_cast<Constant>(CAI))
1062      SimplifiedValues[FAI] = C;
1063
1064    Value *PtrArg = *CAI;
1065    if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) {
1066      ConstantOffsetPtrs[FAI] = std::make_pair(PtrArg, C->getValue());
1067
1068      // We can SROA any pointer arguments derived from alloca instructions.
1069      if (isa<AllocaInst>(PtrArg)) {
1070        SROAArgValues[FAI] = PtrArg;
1071        SROAArgCosts[PtrArg] = 0;
1072      }
1073    }
1074  }
1075  NumConstantArgs = SimplifiedValues.size();
1076  NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size();
1077  NumAllocaArgs = SROAArgValues.size();
1078
1079  // The worklist of live basic blocks in the callee *after* inlining. We avoid
1080  // adding basic blocks of the callee which can be proven to be dead for this
1081  // particular call site in order to get more accurate cost estimates. This
1082  // requires a somewhat heavyweight iteration pattern: we need to walk the
1083  // basic blocks in a breadth-first order as we insert live successors. To
1084  // accomplish this, prioritizing for small iterations because we exit after
1085  // crossing our threshold, we use a small-size optimized SetVector.
1086  typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>,
1087                                  SmallPtrSet<BasicBlock *, 16> > BBSetVector;
1088  BBSetVector BBWorklist;
1089  BBWorklist.insert(&F.getEntryBlock());
1090  // Note that we *must not* cache the size, this loop grows the worklist.
1091  for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
1092    // Bail out the moment we cross the threshold. This means we'll under-count
1093    // the cost, but only when undercounting doesn't matter.
1094    if (Cost > (Threshold + VectorBonus))
1095      break;
1096
1097    BasicBlock *BB = BBWorklist[Idx];
1098    if (BB->empty())
1099      continue;
1100
1101    // Analyze the cost of this block. If we blow through the threshold, this
1102    // returns false, and we can bail on out.
1103    if (!analyzeBlock(BB)) {
1104      if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca ||
1105          HasIndirectBr)
1106        return false;
1107
1108      // If the caller is a recursive function then we don't want to inline
1109      // functions which allocate a lot of stack space because it would increase
1110      // the caller stack usage dramatically.
1111      if (IsCallerRecursive &&
1112          AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller)
1113        return false;
1114
1115      break;
1116    }
1117
1118    TerminatorInst *TI = BB->getTerminator();
1119
1120    // Add in the live successors by first checking whether we have terminator
1121    // that may be simplified based on the values simplified by this call.
1122    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1123      if (BI->isConditional()) {
1124        Value *Cond = BI->getCondition();
1125        if (ConstantInt *SimpleCond
1126              = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
1127          BBWorklist.insert(BI->getSuccessor(SimpleCond->isZero() ? 1 : 0));
1128          continue;
1129        }
1130      }
1131    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1132      Value *Cond = SI->getCondition();
1133      if (ConstantInt *SimpleCond
1134            = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
1135        BBWorklist.insert(SI->findCaseValue(SimpleCond).getCaseSuccessor());
1136        continue;
1137      }
1138    }
1139
1140    // If we're unable to select a particular successor, just count all of
1141    // them.
1142    for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize;
1143         ++TIdx)
1144      BBWorklist.insert(TI->getSuccessor(TIdx));
1145
1146    // If we had any successors at this point, than post-inlining is likely to
1147    // have them as well. Note that we assume any basic blocks which existed
1148    // due to branches or switches which folded above will also fold after
1149    // inlining.
1150    if (SingleBB && TI->getNumSuccessors() > 1) {
1151      // Take off the bonus we applied to the threshold.
1152      Threshold -= SingleBBBonus;
1153      SingleBB = false;
1154    }
1155  }
1156
1157  // If this is a noduplicate call, we can still inline as long as
1158  // inlining this would cause the removal of the caller (so the instruction
1159  // is not actually duplicated, just moved).
1160  if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall)
1161    return false;
1162
1163  Threshold += VectorBonus;
1164
1165  return Cost < Threshold;
1166}
1167
1168#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1169/// \brief Dump stats about this call's analysis.
1170void CallAnalyzer::dump() {
1171#define DEBUG_PRINT_STAT(x) llvm::dbgs() << "      " #x ": " << x << "\n"
1172  DEBUG_PRINT_STAT(NumConstantArgs);
1173  DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs);
1174  DEBUG_PRINT_STAT(NumAllocaArgs);
1175  DEBUG_PRINT_STAT(NumConstantPtrCmps);
1176  DEBUG_PRINT_STAT(NumConstantPtrDiffs);
1177  DEBUG_PRINT_STAT(NumInstructionsSimplified);
1178  DEBUG_PRINT_STAT(SROACostSavings);
1179  DEBUG_PRINT_STAT(SROACostSavingsLost);
1180  DEBUG_PRINT_STAT(ContainsNoDuplicateCall);
1181#undef DEBUG_PRINT_STAT
1182}
1183#endif
1184
1185INITIALIZE_PASS_BEGIN(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis",
1186                      true, true)
1187INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
1188INITIALIZE_PASS_END(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis",
1189                    true, true)
1190
1191char InlineCostAnalysis::ID = 0;
1192
1193InlineCostAnalysis::InlineCostAnalysis() : CallGraphSCCPass(ID), TD(0) {}
1194
1195InlineCostAnalysis::~InlineCostAnalysis() {}
1196
1197void InlineCostAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
1198  AU.setPreservesAll();
1199  AU.addRequired<TargetTransformInfo>();
1200  CallGraphSCCPass::getAnalysisUsage(AU);
1201}
1202
1203bool InlineCostAnalysis::runOnSCC(CallGraphSCC &SCC) {
1204  TD = getAnalysisIfAvailable<DataLayout>();
1205  TTI = &getAnalysis<TargetTransformInfo>();
1206  return false;
1207}
1208
1209InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, int Threshold) {
1210  return getInlineCost(CS, CS.getCalledFunction(), Threshold);
1211}
1212
1213/// \brief Test that two functions either have or have not the given attribute
1214///        at the same time.
1215static bool attributeMatches(Function *F1, Function *F2,
1216                             Attribute::AttrKind Attr) {
1217  return F1->hasFnAttribute(Attr) == F2->hasFnAttribute(Attr);
1218}
1219
1220/// \brief Test that there are no attribute conflicts between Caller and Callee
1221///        that prevent inlining.
1222static bool functionsHaveCompatibleAttributes(Function *Caller,
1223                                              Function *Callee) {
1224  return attributeMatches(Caller, Callee, Attribute::SanitizeAddress) &&
1225         attributeMatches(Caller, Callee, Attribute::SanitizeMemory) &&
1226         attributeMatches(Caller, Callee, Attribute::SanitizeThread);
1227}
1228
1229InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, Function *Callee,
1230                                             int Threshold) {
1231  // Cannot inline indirect calls.
1232  if (!Callee)
1233    return llvm::InlineCost::getNever();
1234
1235  // Calls to functions with always-inline attributes should be inlined
1236  // whenever possible.
1237  if (Callee->hasFnAttribute(Attribute::AlwaysInline)) {
1238    if (isInlineViable(*Callee))
1239      return llvm::InlineCost::getAlways();
1240    return llvm::InlineCost::getNever();
1241  }
1242
1243  // Never inline functions with conflicting attributes (unless callee has
1244  // always-inline attribute).
1245  if (!functionsHaveCompatibleAttributes(CS.getCaller(), Callee))
1246    return llvm::InlineCost::getNever();
1247
1248  // Don't inline this call if the caller has the optnone attribute.
1249  if (CS.getCaller()->hasFnAttribute(Attribute::OptimizeNone))
1250    return llvm::InlineCost::getNever();
1251
1252  // Don't inline functions which can be redefined at link-time to mean
1253  // something else.  Don't inline functions marked noinline or call sites
1254  // marked noinline.
1255  if (Callee->mayBeOverridden() ||
1256      Callee->hasFnAttribute(Attribute::NoInline) || CS.isNoInline())
1257    return llvm::InlineCost::getNever();
1258
1259  DEBUG(llvm::dbgs() << "      Analyzing call of " << Callee->getName()
1260        << "...\n");
1261
1262  CallAnalyzer CA(TD, *TTI, *Callee, Threshold);
1263  bool ShouldInline = CA.analyzeCall(CS);
1264
1265  DEBUG(CA.dump());
1266
1267  // Check if there was a reason to force inlining or no inlining.
1268  if (!ShouldInline && CA.getCost() < CA.getThreshold())
1269    return InlineCost::getNever();
1270  if (ShouldInline && CA.getCost() >= CA.getThreshold())
1271    return InlineCost::getAlways();
1272
1273  return llvm::InlineCost::get(CA.getCost(), CA.getThreshold());
1274}
1275
1276bool InlineCostAnalysis::isInlineViable(Function &F) {
1277  bool ReturnsTwice =
1278    F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
1279                                   Attribute::ReturnsTwice);
1280  for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
1281    // Disallow inlining of functions which contain an indirect branch.
1282    if (isa<IndirectBrInst>(BI->getTerminator()))
1283      return false;
1284
1285    for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;
1286         ++II) {
1287      CallSite CS(II);
1288      if (!CS)
1289        continue;
1290
1291      // Disallow recursive calls.
1292      if (&F == CS.getCalledFunction())
1293        return false;
1294
1295      // Disallow calls which expose returns-twice to a function not previously
1296      // attributed as such.
1297      if (!ReturnsTwice && CS.isCall() &&
1298          cast<CallInst>(CS.getInstruction())->canReturnTwice())
1299        return false;
1300    }
1301  }
1302
1303  return true;
1304}
1305