1249259Sdim//===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
2249259Sdim//
3249259Sdim//                     The LLVM Compiler Infrastructure
4249259Sdim//
5249259Sdim// This file is distributed under the University of Illinois Open Source
6249259Sdim// License. See LICENSE.TXT for details.
7249259Sdim//
8249259Sdim//===----------------------------------------------------------------------===//
9249259Sdim//
10249259Sdim// This file implements inline cost analysis.
11249259Sdim//
12249259Sdim//===----------------------------------------------------------------------===//
13249259Sdim
14249259Sdim#define DEBUG_TYPE "inline-cost"
15249259Sdim#include "llvm/Analysis/InlineCost.h"
16249259Sdim#include "llvm/ADT/STLExtras.h"
17249259Sdim#include "llvm/ADT/SetVector.h"
18249259Sdim#include "llvm/ADT/SmallPtrSet.h"
19249259Sdim#include "llvm/ADT/SmallVector.h"
20249259Sdim#include "llvm/ADT/Statistic.h"
21249259Sdim#include "llvm/Analysis/ConstantFolding.h"
22249259Sdim#include "llvm/Analysis/InstructionSimplify.h"
23249259Sdim#include "llvm/Analysis/TargetTransformInfo.h"
24249259Sdim#include "llvm/IR/CallingConv.h"
25249259Sdim#include "llvm/IR/DataLayout.h"
26249259Sdim#include "llvm/IR/GlobalAlias.h"
27249259Sdim#include "llvm/IR/IntrinsicInst.h"
28249259Sdim#include "llvm/IR/Operator.h"
29249259Sdim#include "llvm/InstVisitor.h"
30249259Sdim#include "llvm/Support/CallSite.h"
31249259Sdim#include "llvm/Support/Debug.h"
32249259Sdim#include "llvm/Support/GetElementPtrTypeIterator.h"
33249259Sdim#include "llvm/Support/raw_ostream.h"
34249259Sdim
35249259Sdimusing namespace llvm;
36249259Sdim
37249259SdimSTATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");
38249259Sdim
39249259Sdimnamespace {
40249259Sdim
41249259Sdimclass CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
42249259Sdim  typedef InstVisitor<CallAnalyzer, bool> Base;
43249259Sdim  friend class InstVisitor<CallAnalyzer, bool>;
44249259Sdim
45249259Sdim  // DataLayout if available, or null.
46249259Sdim  const DataLayout *const TD;
47249259Sdim
48249259Sdim  /// The TargetTransformInfo available for this compilation.
49249259Sdim  const TargetTransformInfo &TTI;
50249259Sdim
51249259Sdim  // The called function.
52249259Sdim  Function &F;
53249259Sdim
54249259Sdim  int Threshold;
55249259Sdim  int Cost;
56249259Sdim
57249259Sdim  bool IsCallerRecursive;
58249259Sdim  bool IsRecursiveCall;
59249259Sdim  bool ExposesReturnsTwice;
60249259Sdim  bool HasDynamicAlloca;
61249259Sdim  bool ContainsNoDuplicateCall;
62263508Sdim  bool HasReturn;
63263508Sdim  bool HasIndirectBr;
64249259Sdim
65249259Sdim  /// Number of bytes allocated statically by the callee.
66249259Sdim  uint64_t AllocatedSize;
67249259Sdim  unsigned NumInstructions, NumVectorInstructions;
68249259Sdim  int FiftyPercentVectorBonus, TenPercentVectorBonus;
69249259Sdim  int VectorBonus;
70249259Sdim
71249259Sdim  // While we walk the potentially-inlined instructions, we build up and
72249259Sdim  // maintain a mapping of simplified values specific to this callsite. The
73249259Sdim  // idea is to propagate any special information we have about arguments to
74249259Sdim  // this call through the inlinable section of the function, and account for
75249259Sdim  // likely simplifications post-inlining. The most important aspect we track
76249259Sdim  // is CFG altering simplifications -- when we prove a basic block dead, that
77249259Sdim  // can cause dramatic shifts in the cost of inlining a function.
78249259Sdim  DenseMap<Value *, Constant *> SimplifiedValues;
79249259Sdim
80249259Sdim  // Keep track of the values which map back (through function arguments) to
81249259Sdim  // allocas on the caller stack which could be simplified through SROA.
82249259Sdim  DenseMap<Value *, Value *> SROAArgValues;
83249259Sdim
84249259Sdim  // The mapping of caller Alloca values to their accumulated cost savings. If
85249259Sdim  // we have to disable SROA for one of the allocas, this tells us how much
86249259Sdim  // cost must be added.
87249259Sdim  DenseMap<Value *, int> SROAArgCosts;
88249259Sdim
89249259Sdim  // Keep track of values which map to a pointer base and constant offset.
90249259Sdim  DenseMap<Value *, std::pair<Value *, APInt> > ConstantOffsetPtrs;
91249259Sdim
92249259Sdim  // Custom simplification helper routines.
93249259Sdim  bool isAllocaDerivedArg(Value *V);
94249259Sdim  bool lookupSROAArgAndCost(Value *V, Value *&Arg,
95249259Sdim                            DenseMap<Value *, int>::iterator &CostIt);
96249259Sdim  void disableSROA(DenseMap<Value *, int>::iterator CostIt);
97249259Sdim  void disableSROA(Value *V);
98249259Sdim  void accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
99249259Sdim                          int InstructionCost);
100249259Sdim  bool handleSROACandidate(bool IsSROAValid,
101249259Sdim                           DenseMap<Value *, int>::iterator CostIt,
102249259Sdim                           int InstructionCost);
103249259Sdim  bool isGEPOffsetConstant(GetElementPtrInst &GEP);
104249259Sdim  bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
105249259Sdim  bool simplifyCallSite(Function *F, CallSite CS);
106249259Sdim  ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);
107249259Sdim
108249259Sdim  // Custom analysis routines.
109249259Sdim  bool analyzeBlock(BasicBlock *BB);
110249259Sdim
111249259Sdim  // Disable several entry points to the visitor so we don't accidentally use
112249259Sdim  // them by declaring but not defining them here.
113249259Sdim  void visit(Module *);     void visit(Module &);
114249259Sdim  void visit(Function *);   void visit(Function &);
115249259Sdim  void visit(BasicBlock *); void visit(BasicBlock &);
116249259Sdim
117249259Sdim  // Provide base case for our instruction visit.
118249259Sdim  bool visitInstruction(Instruction &I);
119249259Sdim
120249259Sdim  // Our visit overrides.
121249259Sdim  bool visitAlloca(AllocaInst &I);
122249259Sdim  bool visitPHI(PHINode &I);
123249259Sdim  bool visitGetElementPtr(GetElementPtrInst &I);
124249259Sdim  bool visitBitCast(BitCastInst &I);
125249259Sdim  bool visitPtrToInt(PtrToIntInst &I);
126249259Sdim  bool visitIntToPtr(IntToPtrInst &I);
127249259Sdim  bool visitCastInst(CastInst &I);
128249259Sdim  bool visitUnaryInstruction(UnaryInstruction &I);
129263508Sdim  bool visitCmpInst(CmpInst &I);
130249259Sdim  bool visitSub(BinaryOperator &I);
131249259Sdim  bool visitBinaryOperator(BinaryOperator &I);
132249259Sdim  bool visitLoad(LoadInst &I);
133249259Sdim  bool visitStore(StoreInst &I);
134249259Sdim  bool visitExtractValue(ExtractValueInst &I);
135249259Sdim  bool visitInsertValue(InsertValueInst &I);
136249259Sdim  bool visitCallSite(CallSite CS);
137263508Sdim  bool visitReturnInst(ReturnInst &RI);
138263508Sdim  bool visitBranchInst(BranchInst &BI);
139263508Sdim  bool visitSwitchInst(SwitchInst &SI);
140263508Sdim  bool visitIndirectBrInst(IndirectBrInst &IBI);
141263508Sdim  bool visitResumeInst(ResumeInst &RI);
142263508Sdim  bool visitUnreachableInst(UnreachableInst &I);
143249259Sdim
144249259Sdimpublic:
145249259Sdim  CallAnalyzer(const DataLayout *TD, const TargetTransformInfo &TTI,
146249259Sdim               Function &Callee, int Threshold)
147249259Sdim      : TD(TD), TTI(TTI), F(Callee), Threshold(Threshold), Cost(0),
148249259Sdim        IsCallerRecursive(false), IsRecursiveCall(false),
149249259Sdim        ExposesReturnsTwice(false), HasDynamicAlloca(false),
150263508Sdim        ContainsNoDuplicateCall(false), HasReturn(false), HasIndirectBr(false),
151263508Sdim        AllocatedSize(0), NumInstructions(0), NumVectorInstructions(0),
152263508Sdim        FiftyPercentVectorBonus(0), TenPercentVectorBonus(0), VectorBonus(0),
153263508Sdim        NumConstantArgs(0), NumConstantOffsetPtrArgs(0), NumAllocaArgs(0),
154263508Sdim        NumConstantPtrCmps(0), NumConstantPtrDiffs(0),
155263508Sdim        NumInstructionsSimplified(0), SROACostSavings(0),
156263508Sdim        SROACostSavingsLost(0) {}
157249259Sdim
158249259Sdim  bool analyzeCall(CallSite CS);
159249259Sdim
160249259Sdim  int getThreshold() { return Threshold; }
161249259Sdim  int getCost() { return Cost; }
162249259Sdim
163249259Sdim  // Keep a bunch of stats about the cost savings found so we can print them
164249259Sdim  // out when debugging.
165249259Sdim  unsigned NumConstantArgs;
166249259Sdim  unsigned NumConstantOffsetPtrArgs;
167249259Sdim  unsigned NumAllocaArgs;
168249259Sdim  unsigned NumConstantPtrCmps;
169249259Sdim  unsigned NumConstantPtrDiffs;
170249259Sdim  unsigned NumInstructionsSimplified;
171249259Sdim  unsigned SROACostSavings;
172249259Sdim  unsigned SROACostSavingsLost;
173249259Sdim
174249259Sdim  void dump();
175249259Sdim};
176249259Sdim
177249259Sdim} // namespace
178249259Sdim
179249259Sdim/// \brief Test whether the given value is an Alloca-derived function argument.
180249259Sdimbool CallAnalyzer::isAllocaDerivedArg(Value *V) {
181249259Sdim  return SROAArgValues.count(V);
182249259Sdim}
183249259Sdim
184249259Sdim/// \brief Lookup the SROA-candidate argument and cost iterator which V maps to.
185249259Sdim/// Returns false if V does not map to a SROA-candidate.
186249259Sdimbool CallAnalyzer::lookupSROAArgAndCost(
187249259Sdim    Value *V, Value *&Arg, DenseMap<Value *, int>::iterator &CostIt) {
188249259Sdim  if (SROAArgValues.empty() || SROAArgCosts.empty())
189249259Sdim    return false;
190249259Sdim
191249259Sdim  DenseMap<Value *, Value *>::iterator ArgIt = SROAArgValues.find(V);
192249259Sdim  if (ArgIt == SROAArgValues.end())
193249259Sdim    return false;
194249259Sdim
195249259Sdim  Arg = ArgIt->second;
196249259Sdim  CostIt = SROAArgCosts.find(Arg);
197249259Sdim  return CostIt != SROAArgCosts.end();
198249259Sdim}
199249259Sdim
200249259Sdim/// \brief Disable SROA for the candidate marked by this cost iterator.
201249259Sdim///
202249259Sdim/// This marks the candidate as no longer viable for SROA, and adds the cost
203249259Sdim/// savings associated with it back into the inline cost measurement.
204249259Sdimvoid CallAnalyzer::disableSROA(DenseMap<Value *, int>::iterator CostIt) {
205249259Sdim  // If we're no longer able to perform SROA we need to undo its cost savings
206249259Sdim  // and prevent subsequent analysis.
207249259Sdim  Cost += CostIt->second;
208249259Sdim  SROACostSavings -= CostIt->second;
209249259Sdim  SROACostSavingsLost += CostIt->second;
210249259Sdim  SROAArgCosts.erase(CostIt);
211249259Sdim}
212249259Sdim
213249259Sdim/// \brief If 'V' maps to a SROA candidate, disable SROA for it.
214249259Sdimvoid CallAnalyzer::disableSROA(Value *V) {
215249259Sdim  Value *SROAArg;
216249259Sdim  DenseMap<Value *, int>::iterator CostIt;
217249259Sdim  if (lookupSROAArgAndCost(V, SROAArg, CostIt))
218249259Sdim    disableSROA(CostIt);
219249259Sdim}
220249259Sdim
221249259Sdim/// \brief Accumulate the given cost for a particular SROA candidate.
222249259Sdimvoid CallAnalyzer::accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
223249259Sdim                                      int InstructionCost) {
224249259Sdim  CostIt->second += InstructionCost;
225249259Sdim  SROACostSavings += InstructionCost;
226249259Sdim}
227249259Sdim
228249259Sdim/// \brief Helper for the common pattern of handling a SROA candidate.
229249259Sdim/// Either accumulates the cost savings if the SROA remains valid, or disables
230249259Sdim/// SROA for the candidate.
231249259Sdimbool CallAnalyzer::handleSROACandidate(bool IsSROAValid,
232249259Sdim                                       DenseMap<Value *, int>::iterator CostIt,
233249259Sdim                                       int InstructionCost) {
234249259Sdim  if (IsSROAValid) {
235249259Sdim    accumulateSROACost(CostIt, InstructionCost);
236249259Sdim    return true;
237249259Sdim  }
238249259Sdim
239249259Sdim  disableSROA(CostIt);
240249259Sdim  return false;
241249259Sdim}
242249259Sdim
243249259Sdim/// \brief Check whether a GEP's indices are all constant.
244249259Sdim///
245249259Sdim/// Respects any simplified values known during the analysis of this callsite.
246249259Sdimbool CallAnalyzer::isGEPOffsetConstant(GetElementPtrInst &GEP) {
247249259Sdim  for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
248249259Sdim    if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I))
249249259Sdim      return false;
250249259Sdim
251249259Sdim  return true;
252249259Sdim}
253249259Sdim
254249259Sdim/// \brief Accumulate a constant GEP offset into an APInt if possible.
255249259Sdim///
256249259Sdim/// Returns false if unable to compute the offset for any reason. Respects any
257249259Sdim/// simplified values known during the analysis of this callsite.
258249259Sdimbool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
259249259Sdim  if (!TD)
260249259Sdim    return false;
261249259Sdim
262249259Sdim  unsigned IntPtrWidth = TD->getPointerSizeInBits();
263249259Sdim  assert(IntPtrWidth == Offset.getBitWidth());
264249259Sdim
265249259Sdim  for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
266249259Sdim       GTI != GTE; ++GTI) {
267249259Sdim    ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
268249259Sdim    if (!OpC)
269249259Sdim      if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand()))
270249259Sdim        OpC = dyn_cast<ConstantInt>(SimpleOp);
271249259Sdim    if (!OpC)
272249259Sdim      return false;
273249259Sdim    if (OpC->isZero()) continue;
274249259Sdim
275249259Sdim    // Handle a struct index, which adds its field offset to the pointer.
276249259Sdim    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
277249259Sdim      unsigned ElementIdx = OpC->getZExtValue();
278249259Sdim      const StructLayout *SL = TD->getStructLayout(STy);
279249259Sdim      Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
280249259Sdim      continue;
281249259Sdim    }
282249259Sdim
283249259Sdim    APInt TypeSize(IntPtrWidth, TD->getTypeAllocSize(GTI.getIndexedType()));
284249259Sdim    Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
285249259Sdim  }
286249259Sdim  return true;
287249259Sdim}
288249259Sdim
289249259Sdimbool CallAnalyzer::visitAlloca(AllocaInst &I) {
290249259Sdim  // FIXME: Check whether inlining will turn a dynamic alloca into a static
291249259Sdim  // alloca, and handle that case.
292249259Sdim
293249259Sdim  // Accumulate the allocated size.
294249259Sdim  if (I.isStaticAlloca()) {
295249259Sdim    Type *Ty = I.getAllocatedType();
296249259Sdim    AllocatedSize += (TD ? TD->getTypeAllocSize(Ty) :
297249259Sdim                      Ty->getPrimitiveSizeInBits());
298249259Sdim  }
299249259Sdim
300249259Sdim  // We will happily inline static alloca instructions.
301249259Sdim  if (I.isStaticAlloca())
302249259Sdim    return Base::visitAlloca(I);
303249259Sdim
304249259Sdim  // FIXME: This is overly conservative. Dynamic allocas are inefficient for
305249259Sdim  // a variety of reasons, and so we would like to not inline them into
306249259Sdim  // functions which don't currently have a dynamic alloca. This simply
307249259Sdim  // disables inlining altogether in the presence of a dynamic alloca.
308249259Sdim  HasDynamicAlloca = true;
309249259Sdim  return false;
310249259Sdim}
311249259Sdim
312249259Sdimbool CallAnalyzer::visitPHI(PHINode &I) {
313249259Sdim  // FIXME: We should potentially be tracking values through phi nodes,
314249259Sdim  // especially when they collapse to a single value due to deleted CFG edges
315249259Sdim  // during inlining.
316249259Sdim
317249259Sdim  // FIXME: We need to propagate SROA *disabling* through phi nodes, even
318249259Sdim  // though we don't want to propagate it's bonuses. The idea is to disable
319249259Sdim  // SROA if it *might* be used in an inappropriate manner.
320249259Sdim
321249259Sdim  // Phi nodes are always zero-cost.
322249259Sdim  return true;
323249259Sdim}
324249259Sdim
325249259Sdimbool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
326249259Sdim  Value *SROAArg;
327249259Sdim  DenseMap<Value *, int>::iterator CostIt;
328249259Sdim  bool SROACandidate = lookupSROAArgAndCost(I.getPointerOperand(),
329249259Sdim                                            SROAArg, CostIt);
330249259Sdim
331249259Sdim  // Try to fold GEPs of constant-offset call site argument pointers. This
332249259Sdim  // requires target data and inbounds GEPs.
333249259Sdim  if (TD && I.isInBounds()) {
334249259Sdim    // Check if we have a base + offset for the pointer.
335249259Sdim    Value *Ptr = I.getPointerOperand();
336249259Sdim    std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Ptr);
337249259Sdim    if (BaseAndOffset.first) {
338249259Sdim      // Check if the offset of this GEP is constant, and if so accumulate it
339249259Sdim      // into Offset.
340249259Sdim      if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) {
341249259Sdim        // Non-constant GEPs aren't folded, and disable SROA.
342249259Sdim        if (SROACandidate)
343249259Sdim          disableSROA(CostIt);
344249259Sdim        return false;
345249259Sdim      }
346249259Sdim
347249259Sdim      // Add the result as a new mapping to Base + Offset.
348249259Sdim      ConstantOffsetPtrs[&I] = BaseAndOffset;
349249259Sdim
350249259Sdim      // Also handle SROA candidates here, we already know that the GEP is
351249259Sdim      // all-constant indexed.
352249259Sdim      if (SROACandidate)
353249259Sdim        SROAArgValues[&I] = SROAArg;
354249259Sdim
355249259Sdim      return true;
356249259Sdim    }
357249259Sdim  }
358249259Sdim
359249259Sdim  if (isGEPOffsetConstant(I)) {
360249259Sdim    if (SROACandidate)
361249259Sdim      SROAArgValues[&I] = SROAArg;
362249259Sdim
363249259Sdim    // Constant GEPs are modeled as free.
364249259Sdim    return true;
365249259Sdim  }
366249259Sdim
367249259Sdim  // Variable GEPs will require math and will disable SROA.
368249259Sdim  if (SROACandidate)
369249259Sdim    disableSROA(CostIt);
370249259Sdim  return false;
371249259Sdim}
372249259Sdim
373249259Sdimbool CallAnalyzer::visitBitCast(BitCastInst &I) {
374249259Sdim  // Propagate constants through bitcasts.
375249259Sdim  Constant *COp = dyn_cast<Constant>(I.getOperand(0));
376249259Sdim  if (!COp)
377249259Sdim    COp = SimplifiedValues.lookup(I.getOperand(0));
378249259Sdim  if (COp)
379249259Sdim    if (Constant *C = ConstantExpr::getBitCast(COp, I.getType())) {
380249259Sdim      SimplifiedValues[&I] = C;
381249259Sdim      return true;
382249259Sdim    }
383249259Sdim
384249259Sdim  // Track base/offsets through casts
385249259Sdim  std::pair<Value *, APInt> BaseAndOffset
386249259Sdim    = ConstantOffsetPtrs.lookup(I.getOperand(0));
387249259Sdim  // Casts don't change the offset, just wrap it up.
388249259Sdim  if (BaseAndOffset.first)
389249259Sdim    ConstantOffsetPtrs[&I] = BaseAndOffset;
390249259Sdim
391249259Sdim  // Also look for SROA candidates here.
392249259Sdim  Value *SROAArg;
393249259Sdim  DenseMap<Value *, int>::iterator CostIt;
394249259Sdim  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
395249259Sdim    SROAArgValues[&I] = SROAArg;
396249259Sdim
397249259Sdim  // Bitcasts are always zero cost.
398249259Sdim  return true;
399249259Sdim}
400249259Sdim
401249259Sdimbool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
402249259Sdim  // Propagate constants through ptrtoint.
403249259Sdim  Constant *COp = dyn_cast<Constant>(I.getOperand(0));
404249259Sdim  if (!COp)
405249259Sdim    COp = SimplifiedValues.lookup(I.getOperand(0));
406249259Sdim  if (COp)
407249259Sdim    if (Constant *C = ConstantExpr::getPtrToInt(COp, I.getType())) {
408249259Sdim      SimplifiedValues[&I] = C;
409249259Sdim      return true;
410249259Sdim    }
411249259Sdim
412249259Sdim  // Track base/offset pairs when converted to a plain integer provided the
413249259Sdim  // integer is large enough to represent the pointer.
414249259Sdim  unsigned IntegerSize = I.getType()->getScalarSizeInBits();
415249259Sdim  if (TD && IntegerSize >= TD->getPointerSizeInBits()) {
416249259Sdim    std::pair<Value *, APInt> BaseAndOffset
417249259Sdim      = ConstantOffsetPtrs.lookup(I.getOperand(0));
418249259Sdim    if (BaseAndOffset.first)
419249259Sdim      ConstantOffsetPtrs[&I] = BaseAndOffset;
420249259Sdim  }
421249259Sdim
422249259Sdim  // This is really weird. Technically, ptrtoint will disable SROA. However,
423249259Sdim  // unless that ptrtoint is *used* somewhere in the live basic blocks after
424249259Sdim  // inlining, it will be nuked, and SROA should proceed. All of the uses which
425249259Sdim  // would block SROA would also block SROA if applied directly to a pointer,
426249259Sdim  // and so we can just add the integer in here. The only places where SROA is
427249259Sdim  // preserved either cannot fire on an integer, or won't in-and-of themselves
428249259Sdim  // disable SROA (ext) w/o some later use that we would see and disable.
429249259Sdim  Value *SROAArg;
430249259Sdim  DenseMap<Value *, int>::iterator CostIt;
431249259Sdim  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
432249259Sdim    SROAArgValues[&I] = SROAArg;
433249259Sdim
434249259Sdim  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
435249259Sdim}
436249259Sdim
437249259Sdimbool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
438249259Sdim  // Propagate constants through ptrtoint.
439249259Sdim  Constant *COp = dyn_cast<Constant>(I.getOperand(0));
440249259Sdim  if (!COp)
441249259Sdim    COp = SimplifiedValues.lookup(I.getOperand(0));
442249259Sdim  if (COp)
443249259Sdim    if (Constant *C = ConstantExpr::getIntToPtr(COp, I.getType())) {
444249259Sdim      SimplifiedValues[&I] = C;
445249259Sdim      return true;
446249259Sdim    }
447249259Sdim
448249259Sdim  // Track base/offset pairs when round-tripped through a pointer without
449249259Sdim  // modifications provided the integer is not too large.
450249259Sdim  Value *Op = I.getOperand(0);
451249259Sdim  unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
452249259Sdim  if (TD && IntegerSize <= TD->getPointerSizeInBits()) {
453249259Sdim    std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
454249259Sdim    if (BaseAndOffset.first)
455249259Sdim      ConstantOffsetPtrs[&I] = BaseAndOffset;
456249259Sdim  }
457249259Sdim
458249259Sdim  // "Propagate" SROA here in the same manner as we do for ptrtoint above.
459249259Sdim  Value *SROAArg;
460249259Sdim  DenseMap<Value *, int>::iterator CostIt;
461249259Sdim  if (lookupSROAArgAndCost(Op, SROAArg, CostIt))
462249259Sdim    SROAArgValues[&I] = SROAArg;
463249259Sdim
464249259Sdim  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
465249259Sdim}
466249259Sdim
467249259Sdimbool CallAnalyzer::visitCastInst(CastInst &I) {
468249259Sdim  // Propagate constants through ptrtoint.
469249259Sdim  Constant *COp = dyn_cast<Constant>(I.getOperand(0));
470249259Sdim  if (!COp)
471249259Sdim    COp = SimplifiedValues.lookup(I.getOperand(0));
472249259Sdim  if (COp)
473249259Sdim    if (Constant *C = ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) {
474249259Sdim      SimplifiedValues[&I] = C;
475249259Sdim      return true;
476249259Sdim    }
477249259Sdim
478249259Sdim  // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere.
479249259Sdim  disableSROA(I.getOperand(0));
480249259Sdim
481249259Sdim  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
482249259Sdim}
483249259Sdim
484249259Sdimbool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) {
485249259Sdim  Value *Operand = I.getOperand(0);
486249259Sdim  Constant *COp = dyn_cast<Constant>(Operand);
487249259Sdim  if (!COp)
488249259Sdim    COp = SimplifiedValues.lookup(Operand);
489249259Sdim  if (COp)
490249259Sdim    if (Constant *C = ConstantFoldInstOperands(I.getOpcode(), I.getType(),
491249259Sdim                                               COp, TD)) {
492249259Sdim      SimplifiedValues[&I] = C;
493249259Sdim      return true;
494249259Sdim    }
495249259Sdim
496249259Sdim  // Disable any SROA on the argument to arbitrary unary operators.
497249259Sdim  disableSROA(Operand);
498249259Sdim
499249259Sdim  return false;
500249259Sdim}
501249259Sdim
502263508Sdimbool CallAnalyzer::visitCmpInst(CmpInst &I) {
503249259Sdim  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
504249259Sdim  // First try to handle simplified comparisons.
505249259Sdim  if (!isa<Constant>(LHS))
506249259Sdim    if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
507249259Sdim      LHS = SimpleLHS;
508249259Sdim  if (!isa<Constant>(RHS))
509249259Sdim    if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
510249259Sdim      RHS = SimpleRHS;
511263508Sdim  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
512249259Sdim    if (Constant *CRHS = dyn_cast<Constant>(RHS))
513263508Sdim      if (Constant *C = ConstantExpr::getCompare(I.getPredicate(), CLHS, CRHS)) {
514249259Sdim        SimplifiedValues[&I] = C;
515249259Sdim        return true;
516249259Sdim      }
517263508Sdim  }
518249259Sdim
519263508Sdim  if (I.getOpcode() == Instruction::FCmp)
520263508Sdim    return false;
521263508Sdim
522249259Sdim  // Otherwise look for a comparison between constant offset pointers with
523249259Sdim  // a common base.
524249259Sdim  Value *LHSBase, *RHSBase;
525249259Sdim  APInt LHSOffset, RHSOffset;
526249259Sdim  llvm::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
527249259Sdim  if (LHSBase) {
528249259Sdim    llvm::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
529249259Sdim    if (RHSBase && LHSBase == RHSBase) {
530249259Sdim      // We have common bases, fold the icmp to a constant based on the
531249259Sdim      // offsets.
532249259Sdim      Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
533249259Sdim      Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
534249259Sdim      if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
535249259Sdim        SimplifiedValues[&I] = C;
536249259Sdim        ++NumConstantPtrCmps;
537249259Sdim        return true;
538249259Sdim      }
539249259Sdim    }
540249259Sdim  }
541249259Sdim
542249259Sdim  // If the comparison is an equality comparison with null, we can simplify it
543249259Sdim  // for any alloca-derived argument.
544249259Sdim  if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)))
545249259Sdim    if (isAllocaDerivedArg(I.getOperand(0))) {
546249259Sdim      // We can actually predict the result of comparisons between an
547249259Sdim      // alloca-derived value and null. Note that this fires regardless of
548249259Sdim      // SROA firing.
549249259Sdim      bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
550249259Sdim      SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
551249259Sdim                                        : ConstantInt::getFalse(I.getType());
552249259Sdim      return true;
553249259Sdim    }
554249259Sdim
555249259Sdim  // Finally check for SROA candidates in comparisons.
556249259Sdim  Value *SROAArg;
557249259Sdim  DenseMap<Value *, int>::iterator CostIt;
558249259Sdim  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
559249259Sdim    if (isa<ConstantPointerNull>(I.getOperand(1))) {
560249259Sdim      accumulateSROACost(CostIt, InlineConstants::InstrCost);
561249259Sdim      return true;
562249259Sdim    }
563249259Sdim
564249259Sdim    disableSROA(CostIt);
565249259Sdim  }
566249259Sdim
567249259Sdim  return false;
568249259Sdim}
569249259Sdim
570249259Sdimbool CallAnalyzer::visitSub(BinaryOperator &I) {
571249259Sdim  // Try to handle a special case: we can fold computing the difference of two
572249259Sdim  // constant-related pointers.
573249259Sdim  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
574249259Sdim  Value *LHSBase, *RHSBase;
575249259Sdim  APInt LHSOffset, RHSOffset;
576249259Sdim  llvm::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
577249259Sdim  if (LHSBase) {
578249259Sdim    llvm::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
579249259Sdim    if (RHSBase && LHSBase == RHSBase) {
580249259Sdim      // We have common bases, fold the subtract to a constant based on the
581249259Sdim      // offsets.
582249259Sdim      Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
583249259Sdim      Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
584249259Sdim      if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) {
585249259Sdim        SimplifiedValues[&I] = C;
586249259Sdim        ++NumConstantPtrDiffs;
587249259Sdim        return true;
588249259Sdim      }
589249259Sdim    }
590249259Sdim  }
591249259Sdim
592249259Sdim  // Otherwise, fall back to the generic logic for simplifying and handling
593249259Sdim  // instructions.
594249259Sdim  return Base::visitSub(I);
595249259Sdim}
596249259Sdim
597249259Sdimbool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
598249259Sdim  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
599249259Sdim  if (!isa<Constant>(LHS))
600249259Sdim    if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
601249259Sdim      LHS = SimpleLHS;
602249259Sdim  if (!isa<Constant>(RHS))
603249259Sdim    if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
604249259Sdim      RHS = SimpleRHS;
605249259Sdim  Value *SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, TD);
606249259Sdim  if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) {
607249259Sdim    SimplifiedValues[&I] = C;
608249259Sdim    return true;
609249259Sdim  }
610249259Sdim
611249259Sdim  // Disable any SROA on arguments to arbitrary, unsimplified binary operators.
612249259Sdim  disableSROA(LHS);
613249259Sdim  disableSROA(RHS);
614249259Sdim
615249259Sdim  return false;
616249259Sdim}
617249259Sdim
618249259Sdimbool CallAnalyzer::visitLoad(LoadInst &I) {
619249259Sdim  Value *SROAArg;
620249259Sdim  DenseMap<Value *, int>::iterator CostIt;
621249259Sdim  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
622249259Sdim    if (I.isSimple()) {
623249259Sdim      accumulateSROACost(CostIt, InlineConstants::InstrCost);
624249259Sdim      return true;
625249259Sdim    }
626249259Sdim
627249259Sdim    disableSROA(CostIt);
628249259Sdim  }
629249259Sdim
630249259Sdim  return false;
631249259Sdim}
632249259Sdim
633249259Sdimbool CallAnalyzer::visitStore(StoreInst &I) {
634249259Sdim  Value *SROAArg;
635249259Sdim  DenseMap<Value *, int>::iterator CostIt;
636249259Sdim  if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
637249259Sdim    if (I.isSimple()) {
638249259Sdim      accumulateSROACost(CostIt, InlineConstants::InstrCost);
639249259Sdim      return true;
640249259Sdim    }
641249259Sdim
642249259Sdim    disableSROA(CostIt);
643249259Sdim  }
644249259Sdim
645249259Sdim  return false;
646249259Sdim}
647249259Sdim
648249259Sdimbool CallAnalyzer::visitExtractValue(ExtractValueInst &I) {
649249259Sdim  // Constant folding for extract value is trivial.
650249259Sdim  Constant *C = dyn_cast<Constant>(I.getAggregateOperand());
651249259Sdim  if (!C)
652249259Sdim    C = SimplifiedValues.lookup(I.getAggregateOperand());
653249259Sdim  if (C) {
654249259Sdim    SimplifiedValues[&I] = ConstantExpr::getExtractValue(C, I.getIndices());
655249259Sdim    return true;
656249259Sdim  }
657249259Sdim
658249259Sdim  // SROA can look through these but give them a cost.
659249259Sdim  return false;
660249259Sdim}
661249259Sdim
662249259Sdimbool CallAnalyzer::visitInsertValue(InsertValueInst &I) {
663249259Sdim  // Constant folding for insert value is trivial.
664249259Sdim  Constant *AggC = dyn_cast<Constant>(I.getAggregateOperand());
665249259Sdim  if (!AggC)
666249259Sdim    AggC = SimplifiedValues.lookup(I.getAggregateOperand());
667249259Sdim  Constant *InsertedC = dyn_cast<Constant>(I.getInsertedValueOperand());
668249259Sdim  if (!InsertedC)
669249259Sdim    InsertedC = SimplifiedValues.lookup(I.getInsertedValueOperand());
670249259Sdim  if (AggC && InsertedC) {
671249259Sdim    SimplifiedValues[&I] = ConstantExpr::getInsertValue(AggC, InsertedC,
672249259Sdim                                                        I.getIndices());
673249259Sdim    return true;
674249259Sdim  }
675249259Sdim
676249259Sdim  // SROA can look through these but give them a cost.
677249259Sdim  return false;
678249259Sdim}
679249259Sdim
680249259Sdim/// \brief Try to simplify a call site.
681249259Sdim///
682249259Sdim/// Takes a concrete function and callsite and tries to actually simplify it by
683249259Sdim/// analyzing the arguments and call itself with instsimplify. Returns true if
684249259Sdim/// it has simplified the callsite to some other entity (a constant), making it
685249259Sdim/// free.
686249259Sdimbool CallAnalyzer::simplifyCallSite(Function *F, CallSite CS) {
687249259Sdim  // FIXME: Using the instsimplify logic directly for this is inefficient
688249259Sdim  // because we have to continually rebuild the argument list even when no
689249259Sdim  // simplifications can be performed. Until that is fixed with remapping
690249259Sdim  // inside of instsimplify, directly constant fold calls here.
691249259Sdim  if (!canConstantFoldCallTo(F))
692249259Sdim    return false;
693249259Sdim
694249259Sdim  // Try to re-map the arguments to constants.
695249259Sdim  SmallVector<Constant *, 4> ConstantArgs;
696249259Sdim  ConstantArgs.reserve(CS.arg_size());
697249259Sdim  for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
698249259Sdim       I != E; ++I) {
699249259Sdim    Constant *C = dyn_cast<Constant>(*I);
700249259Sdim    if (!C)
701249259Sdim      C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(*I));
702249259Sdim    if (!C)
703249259Sdim      return false; // This argument doesn't map to a constant.
704249259Sdim
705249259Sdim    ConstantArgs.push_back(C);
706249259Sdim  }
707249259Sdim  if (Constant *C = ConstantFoldCall(F, ConstantArgs)) {
708249259Sdim    SimplifiedValues[CS.getInstruction()] = C;
709249259Sdim    return true;
710249259Sdim  }
711249259Sdim
712249259Sdim  return false;
713249259Sdim}
714249259Sdim
715249259Sdimbool CallAnalyzer::visitCallSite(CallSite CS) {
716263508Sdim  if (CS.hasFnAttr(Attribute::ReturnsTwice) &&
717249259Sdim      !F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
718249259Sdim                                      Attribute::ReturnsTwice)) {
719249259Sdim    // This aborts the entire analysis.
720249259Sdim    ExposesReturnsTwice = true;
721249259Sdim    return false;
722249259Sdim  }
723249259Sdim  if (CS.isCall() &&
724249259Sdim      cast<CallInst>(CS.getInstruction())->hasFnAttr(Attribute::NoDuplicate))
725249259Sdim    ContainsNoDuplicateCall = true;
726249259Sdim
727249259Sdim  if (Function *F = CS.getCalledFunction()) {
728249259Sdim    // When we have a concrete function, first try to simplify it directly.
729249259Sdim    if (simplifyCallSite(F, CS))
730249259Sdim      return true;
731249259Sdim
732249259Sdim    // Next check if it is an intrinsic we know about.
733249259Sdim    // FIXME: Lift this into part of the InstVisitor.
734249259Sdim    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
735249259Sdim      switch (II->getIntrinsicID()) {
736249259Sdim      default:
737249259Sdim        return Base::visitCallSite(CS);
738249259Sdim
739249259Sdim      case Intrinsic::memset:
740249259Sdim      case Intrinsic::memcpy:
741249259Sdim      case Intrinsic::memmove:
742249259Sdim        // SROA can usually chew through these intrinsics, but they aren't free.
743249259Sdim        return false;
744249259Sdim      }
745249259Sdim    }
746249259Sdim
747249259Sdim    if (F == CS.getInstruction()->getParent()->getParent()) {
748249259Sdim      // This flag will fully abort the analysis, so don't bother with anything
749249259Sdim      // else.
750249259Sdim      IsRecursiveCall = true;
751249259Sdim      return false;
752249259Sdim    }
753249259Sdim
754249259Sdim    if (TTI.isLoweredToCall(F)) {
755249259Sdim      // We account for the average 1 instruction per call argument setup
756249259Sdim      // here.
757249259Sdim      Cost += CS.arg_size() * InlineConstants::InstrCost;
758249259Sdim
759249259Sdim      // Everything other than inline ASM will also have a significant cost
760249259Sdim      // merely from making the call.
761249259Sdim      if (!isa<InlineAsm>(CS.getCalledValue()))
762249259Sdim        Cost += InlineConstants::CallPenalty;
763249259Sdim    }
764249259Sdim
765249259Sdim    return Base::visitCallSite(CS);
766249259Sdim  }
767249259Sdim
768249259Sdim  // Otherwise we're in a very special case -- an indirect function call. See
769249259Sdim  // if we can be particularly clever about this.
770249259Sdim  Value *Callee = CS.getCalledValue();
771249259Sdim
772249259Sdim  // First, pay the price of the argument setup. We account for the average
773249259Sdim  // 1 instruction per call argument setup here.
774249259Sdim  Cost += CS.arg_size() * InlineConstants::InstrCost;
775249259Sdim
776249259Sdim  // Next, check if this happens to be an indirect function call to a known
777249259Sdim  // function in this inline context. If not, we've done all we can.
778249259Sdim  Function *F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee));
779249259Sdim  if (!F)
780249259Sdim    return Base::visitCallSite(CS);
781249259Sdim
782249259Sdim  // If we have a constant that we are calling as a function, we can peer
783249259Sdim  // through it and see the function target. This happens not infrequently
784249259Sdim  // during devirtualization and so we want to give it a hefty bonus for
785249259Sdim  // inlining, but cap that bonus in the event that inlining wouldn't pan
786249259Sdim  // out. Pretend to inline the function, with a custom threshold.
787249259Sdim  CallAnalyzer CA(TD, TTI, *F, InlineConstants::IndirectCallThreshold);
788249259Sdim  if (CA.analyzeCall(CS)) {
789249259Sdim    // We were able to inline the indirect call! Subtract the cost from the
790249259Sdim    // bonus we want to apply, but don't go below zero.
791249259Sdim    Cost -= std::max(0, InlineConstants::IndirectCallThreshold - CA.getCost());
792249259Sdim  }
793249259Sdim
794249259Sdim  return Base::visitCallSite(CS);
795249259Sdim}
796249259Sdim
797263508Sdimbool CallAnalyzer::visitReturnInst(ReturnInst &RI) {
798263508Sdim  // At least one return instruction will be free after inlining.
799263508Sdim  bool Free = !HasReturn;
800263508Sdim  HasReturn = true;
801263508Sdim  return Free;
802263508Sdim}
803263508Sdim
804263508Sdimbool CallAnalyzer::visitBranchInst(BranchInst &BI) {
805263508Sdim  // We model unconditional branches as essentially free -- they really
806263508Sdim  // shouldn't exist at all, but handling them makes the behavior of the
807263508Sdim  // inliner more regular and predictable. Interestingly, conditional branches
808263508Sdim  // which will fold away are also free.
809263508Sdim  return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) ||
810263508Sdim         dyn_cast_or_null<ConstantInt>(
811263508Sdim             SimplifiedValues.lookup(BI.getCondition()));
812263508Sdim}
813263508Sdim
814263508Sdimbool CallAnalyzer::visitSwitchInst(SwitchInst &SI) {
815263508Sdim  // We model unconditional switches as free, see the comments on handling
816263508Sdim  // branches.
817263508Sdim  return isa<ConstantInt>(SI.getCondition()) ||
818263508Sdim         dyn_cast_or_null<ConstantInt>(
819263508Sdim             SimplifiedValues.lookup(SI.getCondition()));
820263508Sdim}
821263508Sdim
822263508Sdimbool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) {
823263508Sdim  // We never want to inline functions that contain an indirectbr.  This is
824263508Sdim  // incorrect because all the blockaddress's (in static global initializers
825263508Sdim  // for example) would be referring to the original function, and this
826263508Sdim  // indirect jump would jump from the inlined copy of the function into the
827263508Sdim  // original function which is extremely undefined behavior.
828263508Sdim  // FIXME: This logic isn't really right; we can safely inline functions with
829263508Sdim  // indirectbr's as long as no other function or global references the
830263508Sdim  // blockaddress of a block within the current function.  And as a QOI issue,
831263508Sdim  // if someone is using a blockaddress without an indirectbr, and that
832263508Sdim  // reference somehow ends up in another function or global, we probably don't
833263508Sdim  // want to inline this function.
834263508Sdim  HasIndirectBr = true;
835263508Sdim  return false;
836263508Sdim}
837263508Sdim
838263508Sdimbool CallAnalyzer::visitResumeInst(ResumeInst &RI) {
839263508Sdim  // FIXME: It's not clear that a single instruction is an accurate model for
840263508Sdim  // the inline cost of a resume instruction.
841263508Sdim  return false;
842263508Sdim}
843263508Sdim
844263508Sdimbool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) {
845263508Sdim  // FIXME: It might be reasonably to discount the cost of instructions leading
846263508Sdim  // to unreachable as they have the lowest possible impact on both runtime and
847263508Sdim  // code size.
848263508Sdim  return true; // No actual code is needed for unreachable.
849263508Sdim}
850263508Sdim
851249259Sdimbool CallAnalyzer::visitInstruction(Instruction &I) {
852249259Sdim  // Some instructions are free. All of the free intrinsics can also be
853249259Sdim  // handled by SROA, etc.
854249259Sdim  if (TargetTransformInfo::TCC_Free == TTI.getUserCost(&I))
855249259Sdim    return true;
856249259Sdim
857249259Sdim  // We found something we don't understand or can't handle. Mark any SROA-able
858249259Sdim  // values in the operand list as no longer viable.
859249259Sdim  for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI)
860249259Sdim    disableSROA(*OI);
861249259Sdim
862249259Sdim  return false;
863249259Sdim}
864249259Sdim
865249259Sdim
866249259Sdim/// \brief Analyze a basic block for its contribution to the inline cost.
867249259Sdim///
868249259Sdim/// This method walks the analyzer over every instruction in the given basic
869249259Sdim/// block and accounts for their cost during inlining at this callsite. It
870249259Sdim/// aborts early if the threshold has been exceeded or an impossible to inline
871249259Sdim/// construct has been detected. It returns false if inlining is no longer
872249259Sdim/// viable, and true if inlining remains viable.
873249259Sdimbool CallAnalyzer::analyzeBlock(BasicBlock *BB) {
874263508Sdim  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
875249259Sdim    ++NumInstructions;
876249259Sdim    if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy())
877249259Sdim      ++NumVectorInstructions;
878249259Sdim
879249259Sdim    // If the instruction simplified to a constant, there is no cost to this
880249259Sdim    // instruction. Visit the instructions using our InstVisitor to account for
881249259Sdim    // all of the per-instruction logic. The visit tree returns true if we
882249259Sdim    // consumed the instruction in any way, and false if the instruction's base
883249259Sdim    // cost should count against inlining.
884249259Sdim    if (Base::visit(I))
885249259Sdim      ++NumInstructionsSimplified;
886249259Sdim    else
887249259Sdim      Cost += InlineConstants::InstrCost;
888249259Sdim
889249259Sdim    // If the visit this instruction detected an uninlinable pattern, abort.
890263508Sdim    if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca ||
891263508Sdim        HasIndirectBr)
892249259Sdim      return false;
893249259Sdim
894249259Sdim    // If the caller is a recursive function then we don't want to inline
895249259Sdim    // functions which allocate a lot of stack space because it would increase
896249259Sdim    // the caller stack usage dramatically.
897249259Sdim    if (IsCallerRecursive &&
898249259Sdim        AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller)
899249259Sdim      return false;
900249259Sdim
901249259Sdim    if (NumVectorInstructions > NumInstructions/2)
902249259Sdim      VectorBonus = FiftyPercentVectorBonus;
903249259Sdim    else if (NumVectorInstructions > NumInstructions/10)
904249259Sdim      VectorBonus = TenPercentVectorBonus;
905249259Sdim    else
906249259Sdim      VectorBonus = 0;
907249259Sdim
908249259Sdim    // Check if we've past the threshold so we don't spin in huge basic
909249259Sdim    // blocks that will never inline.
910249259Sdim    if (Cost > (Threshold + VectorBonus))
911249259Sdim      return false;
912249259Sdim  }
913249259Sdim
914249259Sdim  return true;
915249259Sdim}
916249259Sdim
917249259Sdim/// \brief Compute the base pointer and cumulative constant offsets for V.
918249259Sdim///
919249259Sdim/// This strips all constant offsets off of V, leaving it the base pointer, and
920249259Sdim/// accumulates the total constant offset applied in the returned constant. It
921249259Sdim/// returns 0 if V is not a pointer, and returns the constant '0' if there are
922249259Sdim/// no constant offsets applied.
923249259SdimConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
924249259Sdim  if (!TD || !V->getType()->isPointerTy())
925249259Sdim    return 0;
926249259Sdim
927249259Sdim  unsigned IntPtrWidth = TD->getPointerSizeInBits();
928249259Sdim  APInt Offset = APInt::getNullValue(IntPtrWidth);
929249259Sdim
930249259Sdim  // Even though we don't look through PHI nodes, we could be called on an
931249259Sdim  // instruction in an unreachable block, which may be on a cycle.
932249259Sdim  SmallPtrSet<Value *, 4> Visited;
933249259Sdim  Visited.insert(V);
934249259Sdim  do {
935249259Sdim    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
936249259Sdim      if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
937249259Sdim        return 0;
938249259Sdim      V = GEP->getPointerOperand();
939249259Sdim    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
940249259Sdim      V = cast<Operator>(V)->getOperand(0);
941249259Sdim    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
942249259Sdim      if (GA->mayBeOverridden())
943249259Sdim        break;
944249259Sdim      V = GA->getAliasee();
945249259Sdim    } else {
946249259Sdim      break;
947249259Sdim    }
948249259Sdim    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
949249259Sdim  } while (Visited.insert(V));
950249259Sdim
951249259Sdim  Type *IntPtrTy = TD->getIntPtrType(V->getContext());
952249259Sdim  return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset));
953249259Sdim}
954249259Sdim
955249259Sdim/// \brief Analyze a call site for potential inlining.
956249259Sdim///
957249259Sdim/// Returns true if inlining this call is viable, and false if it is not
958249259Sdim/// viable. It computes the cost and adjusts the threshold based on numerous
959249259Sdim/// factors and heuristics. If this method returns false but the computed cost
960249259Sdim/// is below the computed threshold, then inlining was forcibly disabled by
961249259Sdim/// some artifact of the routine.
962249259Sdimbool CallAnalyzer::analyzeCall(CallSite CS) {
963249259Sdim  ++NumCallsAnalyzed;
964249259Sdim
965249259Sdim  // Track whether the post-inlining function would have more than one basic
966249259Sdim  // block. A single basic block is often intended for inlining. Balloon the
967249259Sdim  // threshold by 50% until we pass the single-BB phase.
968249259Sdim  bool SingleBB = true;
969249259Sdim  int SingleBBBonus = Threshold / 2;
970249259Sdim  Threshold += SingleBBBonus;
971249259Sdim
972249259Sdim  // Perform some tweaks to the cost and threshold based on the direct
973249259Sdim  // callsite information.
974249259Sdim
975249259Sdim  // We want to more aggressively inline vector-dense kernels, so up the
976249259Sdim  // threshold, and we'll lower it if the % of vector instructions gets too
977249259Sdim  // low.
978249259Sdim  assert(NumInstructions == 0);
979249259Sdim  assert(NumVectorInstructions == 0);
980249259Sdim  FiftyPercentVectorBonus = Threshold;
981249259Sdim  TenPercentVectorBonus = Threshold / 2;
982249259Sdim
983249259Sdim  // Give out bonuses per argument, as the instructions setting them up will
984249259Sdim  // be gone after inlining.
985249259Sdim  for (unsigned I = 0, E = CS.arg_size(); I != E; ++I) {
986249259Sdim    if (TD && CS.isByValArgument(I)) {
987249259Sdim      // We approximate the number of loads and stores needed by dividing the
988249259Sdim      // size of the byval type by the target's pointer size.
989249259Sdim      PointerType *PTy = cast<PointerType>(CS.getArgument(I)->getType());
990249259Sdim      unsigned TypeSize = TD->getTypeSizeInBits(PTy->getElementType());
991249259Sdim      unsigned PointerSize = TD->getPointerSizeInBits();
992249259Sdim      // Ceiling division.
993249259Sdim      unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
994249259Sdim
995249259Sdim      // If it generates more than 8 stores it is likely to be expanded as an
996249259Sdim      // inline memcpy so we take that as an upper bound. Otherwise we assume
997249259Sdim      // one load and one store per word copied.
998249259Sdim      // FIXME: The maxStoresPerMemcpy setting from the target should be used
999249259Sdim      // here instead of a magic number of 8, but it's not available via
1000249259Sdim      // DataLayout.
1001249259Sdim      NumStores = std::min(NumStores, 8U);
1002249259Sdim
1003249259Sdim      Cost -= 2 * NumStores * InlineConstants::InstrCost;
1004249259Sdim    } else {
1005249259Sdim      // For non-byval arguments subtract off one instruction per call
1006249259Sdim      // argument.
1007249259Sdim      Cost -= InlineConstants::InstrCost;
1008249259Sdim    }
1009249259Sdim  }
1010249259Sdim
1011249259Sdim  // If there is only one call of the function, and it has internal linkage,
1012249259Sdim  // the cost of inlining it drops dramatically.
1013249259Sdim  bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() &&
1014249259Sdim    &F == CS.getCalledFunction();
1015249259Sdim  if (OnlyOneCallAndLocalLinkage)
1016249259Sdim    Cost += InlineConstants::LastCallToStaticBonus;
1017249259Sdim
1018249259Sdim  // If the instruction after the call, or if the normal destination of the
1019249259Sdim  // invoke is an unreachable instruction, the function is noreturn. As such,
1020249259Sdim  // there is little point in inlining this unless there is literally zero
1021249259Sdim  // cost.
1022249259Sdim  Instruction *Instr = CS.getInstruction();
1023249259Sdim  if (InvokeInst *II = dyn_cast<InvokeInst>(Instr)) {
1024249259Sdim    if (isa<UnreachableInst>(II->getNormalDest()->begin()))
1025249259Sdim      Threshold = 1;
1026249259Sdim  } else if (isa<UnreachableInst>(++BasicBlock::iterator(Instr)))
1027249259Sdim    Threshold = 1;
1028249259Sdim
1029249259Sdim  // If this function uses the coldcc calling convention, prefer not to inline
1030249259Sdim  // it.
1031249259Sdim  if (F.getCallingConv() == CallingConv::Cold)
1032249259Sdim    Cost += InlineConstants::ColdccPenalty;
1033249259Sdim
1034249259Sdim  // Check if we're done. This can happen due to bonuses and penalties.
1035249259Sdim  if (Cost > Threshold)
1036249259Sdim    return false;
1037249259Sdim
1038249259Sdim  if (F.empty())
1039249259Sdim    return true;
1040249259Sdim
1041249259Sdim  Function *Caller = CS.getInstruction()->getParent()->getParent();
1042249259Sdim  // Check if the caller function is recursive itself.
1043249259Sdim  for (Value::use_iterator U = Caller->use_begin(), E = Caller->use_end();
1044249259Sdim       U != E; ++U) {
1045249259Sdim    CallSite Site(cast<Value>(*U));
1046249259Sdim    if (!Site)
1047249259Sdim      continue;
1048249259Sdim    Instruction *I = Site.getInstruction();
1049249259Sdim    if (I->getParent()->getParent() == Caller) {
1050249259Sdim      IsCallerRecursive = true;
1051249259Sdim      break;
1052249259Sdim    }
1053249259Sdim  }
1054249259Sdim
1055249259Sdim  // Populate our simplified values by mapping from function arguments to call
1056249259Sdim  // arguments with known important simplifications.
1057249259Sdim  CallSite::arg_iterator CAI = CS.arg_begin();
1058249259Sdim  for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end();
1059249259Sdim       FAI != FAE; ++FAI, ++CAI) {
1060249259Sdim    assert(CAI != CS.arg_end());
1061249259Sdim    if (Constant *C = dyn_cast<Constant>(CAI))
1062249259Sdim      SimplifiedValues[FAI] = C;
1063249259Sdim
1064249259Sdim    Value *PtrArg = *CAI;
1065249259Sdim    if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) {
1066249259Sdim      ConstantOffsetPtrs[FAI] = std::make_pair(PtrArg, C->getValue());
1067249259Sdim
1068249259Sdim      // We can SROA any pointer arguments derived from alloca instructions.
1069249259Sdim      if (isa<AllocaInst>(PtrArg)) {
1070249259Sdim        SROAArgValues[FAI] = PtrArg;
1071249259Sdim        SROAArgCosts[PtrArg] = 0;
1072249259Sdim      }
1073249259Sdim    }
1074249259Sdim  }
1075249259Sdim  NumConstantArgs = SimplifiedValues.size();
1076249259Sdim  NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size();
1077249259Sdim  NumAllocaArgs = SROAArgValues.size();
1078249259Sdim
1079249259Sdim  // The worklist of live basic blocks in the callee *after* inlining. We avoid
1080249259Sdim  // adding basic blocks of the callee which can be proven to be dead for this
1081249259Sdim  // particular call site in order to get more accurate cost estimates. This
1082249259Sdim  // requires a somewhat heavyweight iteration pattern: we need to walk the
1083249259Sdim  // basic blocks in a breadth-first order as we insert live successors. To
1084249259Sdim  // accomplish this, prioritizing for small iterations because we exit after
1085249259Sdim  // crossing our threshold, we use a small-size optimized SetVector.
1086249259Sdim  typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>,
1087249259Sdim                                  SmallPtrSet<BasicBlock *, 16> > BBSetVector;
1088249259Sdim  BBSetVector BBWorklist;
1089249259Sdim  BBWorklist.insert(&F.getEntryBlock());
1090249259Sdim  // Note that we *must not* cache the size, this loop grows the worklist.
1091249259Sdim  for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
1092249259Sdim    // Bail out the moment we cross the threshold. This means we'll under-count
1093249259Sdim    // the cost, but only when undercounting doesn't matter.
1094249259Sdim    if (Cost > (Threshold + VectorBonus))
1095249259Sdim      break;
1096249259Sdim
1097249259Sdim    BasicBlock *BB = BBWorklist[Idx];
1098249259Sdim    if (BB->empty())
1099249259Sdim      continue;
1100249259Sdim
1101249259Sdim    // Analyze the cost of this block. If we blow through the threshold, this
1102249259Sdim    // returns false, and we can bail on out.
1103249259Sdim    if (!analyzeBlock(BB)) {
1104263508Sdim      if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca ||
1105263508Sdim          HasIndirectBr)
1106249259Sdim        return false;
1107249259Sdim
1108249259Sdim      // If the caller is a recursive function then we don't want to inline
1109249259Sdim      // functions which allocate a lot of stack space because it would increase
1110249259Sdim      // the caller stack usage dramatically.
1111249259Sdim      if (IsCallerRecursive &&
1112249259Sdim          AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller)
1113249259Sdim        return false;
1114249259Sdim
1115249259Sdim      break;
1116249259Sdim    }
1117249259Sdim
1118263508Sdim    TerminatorInst *TI = BB->getTerminator();
1119263508Sdim
1120249259Sdim    // Add in the live successors by first checking whether we have terminator
1121249259Sdim    // that may be simplified based on the values simplified by this call.
1122249259Sdim    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1123249259Sdim      if (BI->isConditional()) {
1124249259Sdim        Value *Cond = BI->getCondition();
1125249259Sdim        if (ConstantInt *SimpleCond
1126249259Sdim              = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
1127249259Sdim          BBWorklist.insert(BI->getSuccessor(SimpleCond->isZero() ? 1 : 0));
1128249259Sdim          continue;
1129249259Sdim        }
1130249259Sdim      }
1131249259Sdim    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1132249259Sdim      Value *Cond = SI->getCondition();
1133249259Sdim      if (ConstantInt *SimpleCond
1134249259Sdim            = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
1135249259Sdim        BBWorklist.insert(SI->findCaseValue(SimpleCond).getCaseSuccessor());
1136249259Sdim        continue;
1137249259Sdim      }
1138249259Sdim    }
1139249259Sdim
1140249259Sdim    // If we're unable to select a particular successor, just count all of
1141249259Sdim    // them.
1142249259Sdim    for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize;
1143249259Sdim         ++TIdx)
1144249259Sdim      BBWorklist.insert(TI->getSuccessor(TIdx));
1145249259Sdim
1146249259Sdim    // If we had any successors at this point, than post-inlining is likely to
1147249259Sdim    // have them as well. Note that we assume any basic blocks which existed
1148249259Sdim    // due to branches or switches which folded above will also fold after
1149249259Sdim    // inlining.
1150249259Sdim    if (SingleBB && TI->getNumSuccessors() > 1) {
1151249259Sdim      // Take off the bonus we applied to the threshold.
1152249259Sdim      Threshold -= SingleBBBonus;
1153249259Sdim      SingleBB = false;
1154249259Sdim    }
1155249259Sdim  }
1156249259Sdim
1157249259Sdim  // If this is a noduplicate call, we can still inline as long as
1158249259Sdim  // inlining this would cause the removal of the caller (so the instruction
1159249259Sdim  // is not actually duplicated, just moved).
1160249259Sdim  if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall)
1161249259Sdim    return false;
1162249259Sdim
1163249259Sdim  Threshold += VectorBonus;
1164249259Sdim
1165249259Sdim  return Cost < Threshold;
1166249259Sdim}
1167249259Sdim
1168249259Sdim#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1169249259Sdim/// \brief Dump stats about this call's analysis.
1170249259Sdimvoid CallAnalyzer::dump() {
1171249259Sdim#define DEBUG_PRINT_STAT(x) llvm::dbgs() << "      " #x ": " << x << "\n"
1172249259Sdim  DEBUG_PRINT_STAT(NumConstantArgs);
1173249259Sdim  DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs);
1174249259Sdim  DEBUG_PRINT_STAT(NumAllocaArgs);
1175249259Sdim  DEBUG_PRINT_STAT(NumConstantPtrCmps);
1176249259Sdim  DEBUG_PRINT_STAT(NumConstantPtrDiffs);
1177249259Sdim  DEBUG_PRINT_STAT(NumInstructionsSimplified);
1178249259Sdim  DEBUG_PRINT_STAT(SROACostSavings);
1179249259Sdim  DEBUG_PRINT_STAT(SROACostSavingsLost);
1180249259Sdim  DEBUG_PRINT_STAT(ContainsNoDuplicateCall);
1181249259Sdim#undef DEBUG_PRINT_STAT
1182249259Sdim}
1183249259Sdim#endif
1184249259Sdim
1185249259SdimINITIALIZE_PASS_BEGIN(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis",
1186249259Sdim                      true, true)
1187249259SdimINITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
1188249259SdimINITIALIZE_PASS_END(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis",
1189249259Sdim                    true, true)
1190249259Sdim
1191249259Sdimchar InlineCostAnalysis::ID = 0;
1192249259Sdim
1193249259SdimInlineCostAnalysis::InlineCostAnalysis() : CallGraphSCCPass(ID), TD(0) {}
1194249259Sdim
1195249259SdimInlineCostAnalysis::~InlineCostAnalysis() {}
1196249259Sdim
1197249259Sdimvoid InlineCostAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
1198249259Sdim  AU.setPreservesAll();
1199249259Sdim  AU.addRequired<TargetTransformInfo>();
1200249259Sdim  CallGraphSCCPass::getAnalysisUsage(AU);
1201249259Sdim}
1202249259Sdim
1203249259Sdimbool InlineCostAnalysis::runOnSCC(CallGraphSCC &SCC) {
1204249259Sdim  TD = getAnalysisIfAvailable<DataLayout>();
1205249259Sdim  TTI = &getAnalysis<TargetTransformInfo>();
1206249259Sdim  return false;
1207249259Sdim}
1208249259Sdim
1209249259SdimInlineCost InlineCostAnalysis::getInlineCost(CallSite CS, int Threshold) {
1210249259Sdim  return getInlineCost(CS, CS.getCalledFunction(), Threshold);
1211249259Sdim}
1212249259Sdim
1213263508Sdim/// \brief Test that two functions either have or have not the given attribute
1214263508Sdim///        at the same time.
1215263508Sdimstatic bool attributeMatches(Function *F1, Function *F2,
1216263508Sdim                             Attribute::AttrKind Attr) {
1217263508Sdim  return F1->hasFnAttribute(Attr) == F2->hasFnAttribute(Attr);
1218263508Sdim}
1219263508Sdim
1220263508Sdim/// \brief Test that there are no attribute conflicts between Caller and Callee
1221263508Sdim///        that prevent inlining.
1222263508Sdimstatic bool functionsHaveCompatibleAttributes(Function *Caller,
1223263508Sdim                                              Function *Callee) {
1224263508Sdim  return attributeMatches(Caller, Callee, Attribute::SanitizeAddress) &&
1225263508Sdim         attributeMatches(Caller, Callee, Attribute::SanitizeMemory) &&
1226263508Sdim         attributeMatches(Caller, Callee, Attribute::SanitizeThread);
1227263508Sdim}
1228263508Sdim
1229249259SdimInlineCost InlineCostAnalysis::getInlineCost(CallSite CS, Function *Callee,
1230249259Sdim                                             int Threshold) {
1231249259Sdim  // Cannot inline indirect calls.
1232249259Sdim  if (!Callee)
1233249259Sdim    return llvm::InlineCost::getNever();
1234249259Sdim
1235249259Sdim  // Calls to functions with always-inline attributes should be inlined
1236249259Sdim  // whenever possible.
1237263508Sdim  if (Callee->hasFnAttribute(Attribute::AlwaysInline)) {
1238249259Sdim    if (isInlineViable(*Callee))
1239249259Sdim      return llvm::InlineCost::getAlways();
1240249259Sdim    return llvm::InlineCost::getNever();
1241249259Sdim  }
1242249259Sdim
1243263508Sdim  // Never inline functions with conflicting attributes (unless callee has
1244263508Sdim  // always-inline attribute).
1245263508Sdim  if (!functionsHaveCompatibleAttributes(CS.getCaller(), Callee))
1246263508Sdim    return llvm::InlineCost::getNever();
1247263508Sdim
1248263508Sdim  // Don't inline this call if the caller has the optnone attribute.
1249263508Sdim  if (CS.getCaller()->hasFnAttribute(Attribute::OptimizeNone))
1250263508Sdim    return llvm::InlineCost::getNever();
1251263508Sdim
1252249259Sdim  // Don't inline functions which can be redefined at link-time to mean
1253249259Sdim  // something else.  Don't inline functions marked noinline or call sites
1254249259Sdim  // marked noinline.
1255249259Sdim  if (Callee->mayBeOverridden() ||
1256263508Sdim      Callee->hasFnAttribute(Attribute::NoInline) || CS.isNoInline())
1257249259Sdim    return llvm::InlineCost::getNever();
1258249259Sdim
1259249259Sdim  DEBUG(llvm::dbgs() << "      Analyzing call of " << Callee->getName()
1260249259Sdim        << "...\n");
1261249259Sdim
1262249259Sdim  CallAnalyzer CA(TD, *TTI, *Callee, Threshold);
1263249259Sdim  bool ShouldInline = CA.analyzeCall(CS);
1264249259Sdim
1265249259Sdim  DEBUG(CA.dump());
1266249259Sdim
1267249259Sdim  // Check if there was a reason to force inlining or no inlining.
1268249259Sdim  if (!ShouldInline && CA.getCost() < CA.getThreshold())
1269249259Sdim    return InlineCost::getNever();
1270249259Sdim  if (ShouldInline && CA.getCost() >= CA.getThreshold())
1271249259Sdim    return InlineCost::getAlways();
1272249259Sdim
1273249259Sdim  return llvm::InlineCost::get(CA.getCost(), CA.getThreshold());
1274249259Sdim}
1275249259Sdim
1276249259Sdimbool InlineCostAnalysis::isInlineViable(Function &F) {
1277249259Sdim  bool ReturnsTwice =
1278249259Sdim    F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
1279249259Sdim                                   Attribute::ReturnsTwice);
1280249259Sdim  for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
1281249259Sdim    // Disallow inlining of functions which contain an indirect branch.
1282249259Sdim    if (isa<IndirectBrInst>(BI->getTerminator()))
1283249259Sdim      return false;
1284249259Sdim
1285249259Sdim    for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;
1286249259Sdim         ++II) {
1287249259Sdim      CallSite CS(II);
1288249259Sdim      if (!CS)
1289249259Sdim        continue;
1290249259Sdim
1291249259Sdim      // Disallow recursive calls.
1292249259Sdim      if (&F == CS.getCalledFunction())
1293249259Sdim        return false;
1294249259Sdim
1295249259Sdim      // Disallow calls which expose returns-twice to a function not previously
1296249259Sdim      // attributed as such.
1297249259Sdim      if (!ReturnsTwice && CS.isCall() &&
1298249259Sdim          cast<CallInst>(CS.getInstruction())->canReturnTwice())
1299249259Sdim        return false;
1300249259Sdim    }
1301249259Sdim  }
1302249259Sdim
1303249259Sdim  return true;
1304249259Sdim}
1305