1193323Sed//===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
2193323Sed//
3193323Sed//                     The LLVM Compiler Infrastructure
4193323Sed//
5193323Sed// This file is distributed under the University of Illinois Open Source
6193323Sed// License. See LICENSE.TXT for details.
7193323Sed//
8193323Sed//===----------------------------------------------------------------------===//
9193323Sed//
10193323Sed// This simple pass provides alias and mod/ref information for global values
11193323Sed// that do not have their address taken, and keeps track of whether functions
12193323Sed// read or write memory (are "pure").  For this simple (but very common) case,
13193323Sed// we can provide pretty accurate and useful information.
14193323Sed//
15193323Sed//===----------------------------------------------------------------------===//
16193323Sed
17193323Sed#define DEBUG_TYPE "globalsmodref-aa"
18193323Sed#include "llvm/Analysis/Passes.h"
19249423Sdim#include "llvm/ADT/SCCIterator.h"
20249423Sdim#include "llvm/ADT/Statistic.h"
21193323Sed#include "llvm/Analysis/AliasAnalysis.h"
22193323Sed#include "llvm/Analysis/CallGraph.h"
23198892Srdivacky#include "llvm/Analysis/MemoryBuiltins.h"
24218893Sdim#include "llvm/Analysis/ValueTracking.h"
25249423Sdim#include "llvm/IR/Constants.h"
26249423Sdim#include "llvm/IR/DerivedTypes.h"
27249423Sdim#include "llvm/IR/Instructions.h"
28249423Sdim#include "llvm/IR/IntrinsicInst.h"
29249423Sdim#include "llvm/IR/Module.h"
30249423Sdim#include "llvm/Pass.h"
31193323Sed#include "llvm/Support/CommandLine.h"
32193323Sed#include "llvm/Support/InstIterator.h"
33193323Sed#include <set>
34193323Sedusing namespace llvm;
35193323Sed
36193323SedSTATISTIC(NumNonAddrTakenGlobalVars,
37193323Sed          "Number of global vars without address taken");
38193323SedSTATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
39193323SedSTATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
40193323SedSTATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
41193323SedSTATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
42193323Sed
43193323Sednamespace {
44193323Sed  /// FunctionRecord - One instance of this structure is stored for every
45193323Sed  /// function in the program.  Later, the entries for these functions are
46193323Sed  /// removed if the function is found to call an external function (in which
47193323Sed  /// case we know nothing about it.
48198892Srdivacky  struct FunctionRecord {
49193323Sed    /// GlobalInfo - Maintain mod/ref info for all of the globals without
50193323Sed    /// addresses taken that are read or written (transitively) by this
51193323Sed    /// function.
52212904Sdim    std::map<const GlobalValue*, unsigned> GlobalInfo;
53193323Sed
54193323Sed    /// MayReadAnyGlobal - May read global variables, but it is not known which.
55193323Sed    bool MayReadAnyGlobal;
56193323Sed
57212904Sdim    unsigned getInfoForGlobal(const GlobalValue *GV) const {
58193323Sed      unsigned Effect = MayReadAnyGlobal ? AliasAnalysis::Ref : 0;
59212904Sdim      std::map<const GlobalValue*, unsigned>::const_iterator I =
60212904Sdim        GlobalInfo.find(GV);
61193323Sed      if (I != GlobalInfo.end())
62193323Sed        Effect |= I->second;
63193323Sed      return Effect;
64193323Sed    }
65193323Sed
66193323Sed    /// FunctionEffect - Capture whether or not this function reads or writes to
67193323Sed    /// ANY memory.  If not, we can do a lot of aggressive analysis on it.
68193323Sed    unsigned FunctionEffect;
69193323Sed
70193323Sed    FunctionRecord() : MayReadAnyGlobal (false), FunctionEffect(0) {}
71193323Sed  };
72193323Sed
73193323Sed  /// GlobalsModRef - The actual analysis pass.
74198892Srdivacky  class GlobalsModRef : public ModulePass, public AliasAnalysis {
75193323Sed    /// NonAddressTakenGlobals - The globals that do not have their addresses
76193323Sed    /// taken.
77212904Sdim    std::set<const GlobalValue*> NonAddressTakenGlobals;
78193323Sed
79193323Sed    /// IndirectGlobals - The memory pointed to by this global is known to be
80193323Sed    /// 'owned' by the global.
81212904Sdim    std::set<const GlobalValue*> IndirectGlobals;
82193323Sed
83193323Sed    /// AllocsForIndirectGlobals - If an instruction allocates memory for an
84193323Sed    /// indirect global, this map indicates which one.
85212904Sdim    std::map<const Value*, const GlobalValue*> AllocsForIndirectGlobals;
86193323Sed
87193323Sed    /// FunctionInfo - For each function, keep track of what globals are
88193323Sed    /// modified or read.
89212904Sdim    std::map<const Function*, FunctionRecord> FunctionInfo;
90193323Sed
91193323Sed  public:
92193323Sed    static char ID;
93218893Sdim    GlobalsModRef() : ModulePass(ID) {
94218893Sdim      initializeGlobalsModRefPass(*PassRegistry::getPassRegistry());
95218893Sdim    }
96193323Sed
97193323Sed    bool runOnModule(Module &M) {
98193323Sed      InitializeAliasAnalysis(this);                 // set up super class
99193323Sed      AnalyzeGlobals(M);                          // find non-addr taken globals
100193323Sed      AnalyzeCallGraph(getAnalysis<CallGraph>(), M); // Propagate on CG
101193323Sed      return false;
102193323Sed    }
103193323Sed
104193323Sed    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
105193323Sed      AliasAnalysis::getAnalysisUsage(AU);
106193323Sed      AU.addRequired<CallGraph>();
107193323Sed      AU.setPreservesAll();                         // Does not transform code
108193323Sed    }
109193323Sed
110193323Sed    //------------------------------------------------
111193323Sed    // Implement the AliasAnalysis API
112193323Sed    //
113218893Sdim    AliasResult alias(const Location &LocA, const Location &LocB);
114212904Sdim    ModRefResult getModRefInfo(ImmutableCallSite CS,
115218893Sdim                               const Location &Loc);
116212904Sdim    ModRefResult getModRefInfo(ImmutableCallSite CS1,
117212904Sdim                               ImmutableCallSite CS2) {
118212904Sdim      return AliasAnalysis::getModRefInfo(CS1, CS2);
119193323Sed    }
120193323Sed
121193323Sed    /// getModRefBehavior - Return the behavior of the specified function if
122193323Sed    /// called from the specified call site.  The call site may be null in which
123193323Sed    /// case the most generic behavior of this function should be returned.
124212904Sdim    ModRefBehavior getModRefBehavior(const Function *F) {
125218893Sdim      ModRefBehavior Min = UnknownModRefBehavior;
126218893Sdim
127193323Sed      if (FunctionRecord *FR = getFunctionInfo(F)) {
128193323Sed        if (FR->FunctionEffect == 0)
129218893Sdim          Min = DoesNotAccessMemory;
130193323Sed        else if ((FR->FunctionEffect & Mod) == 0)
131218893Sdim          Min = OnlyReadsMemory;
132193323Sed      }
133218893Sdim
134218893Sdim      return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
135193323Sed    }
136193323Sed
137193323Sed    /// getModRefBehavior - Return the behavior of the specified function if
138193323Sed    /// called from the specified call site.  The call site may be null in which
139193323Sed    /// case the most generic behavior of this function should be returned.
140212904Sdim    ModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
141218893Sdim      ModRefBehavior Min = UnknownModRefBehavior;
142218893Sdim
143218893Sdim      if (const Function* F = CS.getCalledFunction())
144218893Sdim        if (FunctionRecord *FR = getFunctionInfo(F)) {
145218893Sdim          if (FR->FunctionEffect == 0)
146218893Sdim            Min = DoesNotAccessMemory;
147218893Sdim          else if ((FR->FunctionEffect & Mod) == 0)
148218893Sdim            Min = OnlyReadsMemory;
149218893Sdim        }
150218893Sdim
151218893Sdim      return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
152193323Sed    }
153193323Sed
154193323Sed    virtual void deleteValue(Value *V);
155193323Sed    virtual void copyValue(Value *From, Value *To);
156218893Sdim    virtual void addEscapingUse(Use &U);
157193323Sed
158202878Srdivacky    /// getAdjustedAnalysisPointer - This method is used when a pass implements
159202878Srdivacky    /// an analysis interface through multiple inheritance.  If needed, it
160202878Srdivacky    /// should override this to adjust the this pointer as needed for the
161202878Srdivacky    /// specified pass info.
162212904Sdim    virtual void *getAdjustedAnalysisPointer(AnalysisID PI) {
163212904Sdim      if (PI == &AliasAnalysis::ID)
164202878Srdivacky        return (AliasAnalysis*)this;
165202878Srdivacky      return this;
166202878Srdivacky    }
167202878Srdivacky
168193323Sed  private:
169193323Sed    /// getFunctionInfo - Return the function info for the function, or null if
170193323Sed    /// we don't have anything useful to say about it.
171212904Sdim    FunctionRecord *getFunctionInfo(const Function *F) {
172212904Sdim      std::map<const Function*, FunctionRecord>::iterator I =
173212904Sdim        FunctionInfo.find(F);
174193323Sed      if (I != FunctionInfo.end())
175193323Sed        return &I->second;
176193323Sed      return 0;
177193323Sed    }
178193323Sed
179193323Sed    void AnalyzeGlobals(Module &M);
180193323Sed    void AnalyzeCallGraph(CallGraph &CG, Module &M);
181193323Sed    bool AnalyzeUsesOfPointer(Value *V, std::vector<Function*> &Readers,
182193323Sed                              std::vector<Function*> &Writers,
183193323Sed                              GlobalValue *OkayStoreDest = 0);
184193323Sed    bool AnalyzeIndirectGlobalMemory(GlobalValue *GV);
185193323Sed  };
186193323Sed}
187193323Sed
188193323Sedchar GlobalsModRef::ID = 0;
189218893SdimINITIALIZE_AG_PASS_BEGIN(GlobalsModRef, AliasAnalysis,
190212904Sdim                "globalsmodref-aa", "Simple mod/ref analysis for globals",
191218893Sdim                false, true, false)
192263508SdimINITIALIZE_PASS_DEPENDENCY(CallGraph)
193218893SdimINITIALIZE_AG_PASS_END(GlobalsModRef, AliasAnalysis,
194218893Sdim                "globalsmodref-aa", "Simple mod/ref analysis for globals",
195218893Sdim                false, true, false)
196193323Sed
197193323SedPass *llvm::createGlobalsModRefPass() { return new GlobalsModRef(); }
198193323Sed
199193323Sed/// AnalyzeGlobals - Scan through the users of all of the internal
200193323Sed/// GlobalValue's in the program.  If none of them have their "address taken"
201193323Sed/// (really, their address passed to something nontrivial), record this fact,
202193323Sed/// and record the functions that they are used directly in.
203193323Sedvoid GlobalsModRef::AnalyzeGlobals(Module &M) {
204193323Sed  std::vector<Function*> Readers, Writers;
205193323Sed  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
206193323Sed    if (I->hasLocalLinkage()) {
207193323Sed      if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
208193323Sed        // Remember that we are tracking this global.
209193323Sed        NonAddressTakenGlobals.insert(I);
210193323Sed        ++NumNonAddrTakenFunctions;
211193323Sed      }
212193323Sed      Readers.clear(); Writers.clear();
213193323Sed    }
214193323Sed
215193323Sed  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
216193323Sed       I != E; ++I)
217193323Sed    if (I->hasLocalLinkage()) {
218193323Sed      if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
219193323Sed        // Remember that we are tracking this global, and the mod/ref fns
220193323Sed        NonAddressTakenGlobals.insert(I);
221193323Sed
222193323Sed        for (unsigned i = 0, e = Readers.size(); i != e; ++i)
223193323Sed          FunctionInfo[Readers[i]].GlobalInfo[I] |= Ref;
224193323Sed
225193323Sed        if (!I->isConstant())  // No need to keep track of writers to constants
226193323Sed          for (unsigned i = 0, e = Writers.size(); i != e; ++i)
227193323Sed            FunctionInfo[Writers[i]].GlobalInfo[I] |= Mod;
228193323Sed        ++NumNonAddrTakenGlobalVars;
229193323Sed
230193323Sed        // If this global holds a pointer type, see if it is an indirect global.
231204642Srdivacky        if (I->getType()->getElementType()->isPointerTy() &&
232193323Sed            AnalyzeIndirectGlobalMemory(I))
233193323Sed          ++NumIndirectGlobalVars;
234193323Sed      }
235193323Sed      Readers.clear(); Writers.clear();
236193323Sed    }
237193323Sed}
238193323Sed
239193323Sed/// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
240193323Sed/// If this is used by anything complex (i.e., the address escapes), return
241193323Sed/// true.  Also, while we are at it, keep track of those functions that read and
242193323Sed/// write to the value.
243193323Sed///
244193323Sed/// If OkayStoreDest is non-null, stores into this global are allowed.
245193323Sedbool GlobalsModRef::AnalyzeUsesOfPointer(Value *V,
246193323Sed                                         std::vector<Function*> &Readers,
247193323Sed                                         std::vector<Function*> &Writers,
248193323Sed                                         GlobalValue *OkayStoreDest) {
249204642Srdivacky  if (!V->getType()->isPointerTy()) return true;
250193323Sed
251210299Sed  for (Value::use_iterator UI = V->use_begin(), E=V->use_end(); UI != E; ++UI) {
252210299Sed    User *U = *UI;
253210299Sed    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
254193323Sed      Readers.push_back(LI->getParent()->getParent());
255210299Sed    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
256193323Sed      if (V == SI->getOperand(1)) {
257193323Sed        Writers.push_back(SI->getParent()->getParent());
258193323Sed      } else if (SI->getOperand(1) != OkayStoreDest) {
259193323Sed        return true;  // Storing the pointer
260193323Sed      }
261210299Sed    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
262193323Sed      if (AnalyzeUsesOfPointer(GEP, Readers, Writers)) return true;
263210299Sed    } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
264198090Srdivacky      if (AnalyzeUsesOfPointer(BCI, Readers, Writers, OkayStoreDest))
265198090Srdivacky        return true;
266243830Sdim    } else if (isFreeCall(U, TLI)) {
267210299Sed      Writers.push_back(cast<Instruction>(U)->getParent()->getParent());
268210299Sed    } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
269193323Sed      // Make sure that this is just the function being called, not that it is
270193323Sed      // passing into the function.
271210299Sed      for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
272210299Sed        if (CI->getArgOperand(i) == V) return true;
273210299Sed    } else if (InvokeInst *II = dyn_cast<InvokeInst>(U)) {
274193323Sed      // Make sure that this is just the function being called, not that it is
275193323Sed      // passing into the function.
276210299Sed      for (unsigned i = 0, e = II->getNumArgOperands(); i != e; ++i)
277210299Sed        if (II->getArgOperand(i) == V) return true;
278210299Sed    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
279193323Sed      if (CE->getOpcode() == Instruction::GetElementPtr ||
280193323Sed          CE->getOpcode() == Instruction::BitCast) {
281193323Sed        if (AnalyzeUsesOfPointer(CE, Readers, Writers))
282193323Sed          return true;
283193323Sed      } else {
284193323Sed        return true;
285193323Sed      }
286210299Sed    } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) {
287193323Sed      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
288193323Sed        return true;  // Allow comparison against null.
289193323Sed    } else {
290193323Sed      return true;
291193323Sed    }
292210299Sed  }
293210299Sed
294193323Sed  return false;
295193323Sed}
296193323Sed
297193323Sed/// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
298193323Sed/// which holds a pointer type.  See if the global always points to non-aliased
299193323Sed/// heap memory: that is, all initializers of the globals are allocations, and
300193323Sed/// those allocations have no use other than initialization of the global.
301193323Sed/// Further, all loads out of GV must directly use the memory, not store the
302193323Sed/// pointer somewhere.  If this is true, we consider the memory pointed to by
303193323Sed/// GV to be owned by GV and can disambiguate other pointers from it.
304193323Sedbool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) {
305193323Sed  // Keep track of values related to the allocation of the memory, f.e. the
306193323Sed  // value produced by the malloc call and any casts.
307193323Sed  std::vector<Value*> AllocRelatedValues;
308193323Sed
309193323Sed  // Walk the user list of the global.  If we find anything other than a direct
310193323Sed  // load or store, bail out.
311193323Sed  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
312210299Sed    User *U = *I;
313210299Sed    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
314193323Sed      // The pointer loaded from the global can only be used in simple ways:
315193323Sed      // we allow addressing of it and loading storing to it.  We do *not* allow
316193323Sed      // storing the loaded pointer somewhere else or passing to a function.
317193323Sed      std::vector<Function*> ReadersWriters;
318193323Sed      if (AnalyzeUsesOfPointer(LI, ReadersWriters, ReadersWriters))
319193323Sed        return false;  // Loaded pointer escapes.
320193323Sed      // TODO: Could try some IP mod/ref of the loaded pointer.
321210299Sed    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
322193323Sed      // Storing the global itself.
323193323Sed      if (SI->getOperand(0) == GV) return false;
324193323Sed
325193323Sed      // If storing the null pointer, ignore it.
326193323Sed      if (isa<ConstantPointerNull>(SI->getOperand(0)))
327193323Sed        continue;
328193323Sed
329193323Sed      // Check the value being stored.
330218893Sdim      Value *Ptr = GetUnderlyingObject(SI->getOperand(0));
331193323Sed
332243830Sdim      if (!isAllocLikeFn(Ptr, TLI))
333193323Sed        return false;  // Too hard to analyze.
334193323Sed
335193323Sed      // Analyze all uses of the allocation.  If any of them are used in a
336193323Sed      // non-simple way (e.g. stored to another global) bail out.
337193323Sed      std::vector<Function*> ReadersWriters;
338193323Sed      if (AnalyzeUsesOfPointer(Ptr, ReadersWriters, ReadersWriters, GV))
339193323Sed        return false;  // Loaded pointer escapes.
340193323Sed
341193323Sed      // Remember that this allocation is related to the indirect global.
342193323Sed      AllocRelatedValues.push_back(Ptr);
343193323Sed    } else {
344193323Sed      // Something complex, bail out.
345193323Sed      return false;
346193323Sed    }
347193323Sed  }
348193323Sed
349193323Sed  // Okay, this is an indirect global.  Remember all of the allocations for
350193323Sed  // this global in AllocsForIndirectGlobals.
351193323Sed  while (!AllocRelatedValues.empty()) {
352193323Sed    AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
353193323Sed    AllocRelatedValues.pop_back();
354193323Sed  }
355193323Sed  IndirectGlobals.insert(GV);
356193323Sed  return true;
357193323Sed}
358193323Sed
359193323Sed/// AnalyzeCallGraph - At this point, we know the functions where globals are
360193323Sed/// immediately stored to and read from.  Propagate this information up the call
361193323Sed/// graph to all callers and compute the mod/ref info for all memory for each
362193323Sed/// function.
363193323Sedvoid GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
364193323Sed  // We do a bottom-up SCC traversal of the call graph.  In other words, we
365193323Sed  // visit all callees before callers (leaf-first).
366193323Sed  for (scc_iterator<CallGraph*> I = scc_begin(&CG), E = scc_end(&CG); I != E;
367193323Sed       ++I) {
368193323Sed    std::vector<CallGraphNode *> &SCC = *I;
369193323Sed    assert(!SCC.empty() && "SCC with no functions?");
370193323Sed
371193323Sed    if (!SCC[0]->getFunction()) {
372193323Sed      // Calls externally - can't say anything useful.  Remove any existing
373193323Sed      // function records (may have been created when scanning globals).
374193323Sed      for (unsigned i = 0, e = SCC.size(); i != e; ++i)
375193323Sed        FunctionInfo.erase(SCC[i]->getFunction());
376193323Sed      continue;
377193323Sed    }
378193323Sed
379193323Sed    FunctionRecord &FR = FunctionInfo[SCC[0]->getFunction()];
380193323Sed
381193323Sed    bool KnowNothing = false;
382193323Sed    unsigned FunctionEffect = 0;
383193323Sed
384193323Sed    // Collect the mod/ref properties due to called functions.  We only compute
385193323Sed    // one mod-ref set.
386193323Sed    for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
387193323Sed      Function *F = SCC[i]->getFunction();
388193323Sed      if (!F) {
389193323Sed        KnowNothing = true;
390193323Sed        break;
391193323Sed      }
392193323Sed
393193323Sed      if (F->isDeclaration()) {
394193323Sed        // Try to get mod/ref behaviour from function attributes.
395193323Sed        if (F->doesNotAccessMemory()) {
396193323Sed          // Can't do better than that!
397193323Sed        } else if (F->onlyReadsMemory()) {
398193323Sed          FunctionEffect |= Ref;
399193323Sed          if (!F->isIntrinsic())
400193323Sed            // This function might call back into the module and read a global -
401193323Sed            // consider every global as possibly being read by this function.
402193323Sed            FR.MayReadAnyGlobal = true;
403193323Sed        } else {
404193323Sed          FunctionEffect |= ModRef;
405193323Sed          // Can't say anything useful unless it's an intrinsic - they don't
406193323Sed          // read or write global variables of the kind considered here.
407193323Sed          KnowNothing = !F->isIntrinsic();
408193323Sed        }
409193323Sed        continue;
410193323Sed      }
411193323Sed
412193323Sed      for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
413193323Sed           CI != E && !KnowNothing; ++CI)
414193323Sed        if (Function *Callee = CI->second->getFunction()) {
415193323Sed          if (FunctionRecord *CalleeFR = getFunctionInfo(Callee)) {
416193323Sed            // Propagate function effect up.
417193323Sed            FunctionEffect |= CalleeFR->FunctionEffect;
418193323Sed
419193323Sed            // Incorporate callee's effects on globals into our info.
420212904Sdim            for (std::map<const GlobalValue*, unsigned>::iterator GI =
421193323Sed                   CalleeFR->GlobalInfo.begin(), E = CalleeFR->GlobalInfo.end();
422193323Sed                 GI != E; ++GI)
423193323Sed              FR.GlobalInfo[GI->first] |= GI->second;
424193323Sed            FR.MayReadAnyGlobal |= CalleeFR->MayReadAnyGlobal;
425193323Sed          } else {
426193323Sed            // Can't say anything about it.  However, if it is inside our SCC,
427193323Sed            // then nothing needs to be done.
428193323Sed            CallGraphNode *CalleeNode = CG[Callee];
429193323Sed            if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end())
430193323Sed              KnowNothing = true;
431193323Sed          }
432193323Sed        } else {
433193323Sed          KnowNothing = true;
434193323Sed        }
435193323Sed    }
436193323Sed
437193323Sed    // If we can't say anything useful about this SCC, remove all SCC functions
438193323Sed    // from the FunctionInfo map.
439193323Sed    if (KnowNothing) {
440193323Sed      for (unsigned i = 0, e = SCC.size(); i != e; ++i)
441193323Sed        FunctionInfo.erase(SCC[i]->getFunction());
442193323Sed      continue;
443193323Sed    }
444193323Sed
445193323Sed    // Scan the function bodies for explicit loads or stores.
446193323Sed    for (unsigned i = 0, e = SCC.size(); i != e && FunctionEffect != ModRef;++i)
447193323Sed      for (inst_iterator II = inst_begin(SCC[i]->getFunction()),
448193323Sed             E = inst_end(SCC[i]->getFunction());
449193323Sed           II != E && FunctionEffect != ModRef; ++II)
450239462Sdim        if (LoadInst *LI = dyn_cast<LoadInst>(&*II)) {
451193323Sed          FunctionEffect |= Ref;
452239462Sdim          if (LI->isVolatile())
453193323Sed            // Volatile loads may have side-effects, so mark them as writing
454193323Sed            // memory (for example, a flag inside the processor).
455193323Sed            FunctionEffect |= Mod;
456239462Sdim        } else if (StoreInst *SI = dyn_cast<StoreInst>(&*II)) {
457193323Sed          FunctionEffect |= Mod;
458239462Sdim          if (SI->isVolatile())
459193323Sed            // Treat volatile stores as reading memory somewhere.
460193323Sed            FunctionEffect |= Ref;
461243830Sdim        } else if (isAllocationFn(&*II, TLI) || isFreeCall(&*II, TLI)) {
462193323Sed          FunctionEffect |= ModRef;
463234353Sdim        } else if (IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(&*II)) {
464234353Sdim          // The callgraph doesn't include intrinsic calls.
465234353Sdim          Function *Callee = Intrinsic->getCalledFunction();
466234353Sdim          ModRefBehavior Behaviour = AliasAnalysis::getModRefBehavior(Callee);
467234353Sdim          FunctionEffect |= (Behaviour & ModRef);
468193323Sed        }
469193323Sed
470193323Sed    if ((FunctionEffect & Mod) == 0)
471193323Sed      ++NumReadMemFunctions;
472193323Sed    if (FunctionEffect == 0)
473193323Sed      ++NumNoMemFunctions;
474193323Sed    FR.FunctionEffect = FunctionEffect;
475193323Sed
476193323Sed    // Finally, now that we know the full effect on this SCC, clone the
477193323Sed    // information to each function in the SCC.
478193323Sed    for (unsigned i = 1, e = SCC.size(); i != e; ++i)
479193323Sed      FunctionInfo[SCC[i]->getFunction()] = FR;
480193323Sed  }
481193323Sed}
482193323Sed
483193323Sed
484193323Sed
485193323Sed/// alias - If one of the pointers is to a global that we are tracking, and the
486193323Sed/// other is some random pointer, we know there cannot be an alias, because the
487193323Sed/// address of the global isn't taken.
488193323SedAliasAnalysis::AliasResult
489218893SdimGlobalsModRef::alias(const Location &LocA,
490218893Sdim                     const Location &LocB) {
491193323Sed  // Get the base object these pointers point to.
492218893Sdim  const Value *UV1 = GetUnderlyingObject(LocA.Ptr);
493218893Sdim  const Value *UV2 = GetUnderlyingObject(LocB.Ptr);
494193323Sed
495193323Sed  // If either of the underlying values is a global, they may be non-addr-taken
496193323Sed  // globals, which we can answer queries about.
497212904Sdim  const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
498212904Sdim  const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
499193323Sed  if (GV1 || GV2) {
500193323Sed    // If the global's address is taken, pretend we don't know it's a pointer to
501193323Sed    // the global.
502193323Sed    if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = 0;
503193323Sed    if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = 0;
504193323Sed
505203954Srdivacky    // If the two pointers are derived from two different non-addr-taken
506193323Sed    // globals, or if one is and the other isn't, we know these can't alias.
507193323Sed    if ((GV1 || GV2) && GV1 != GV2)
508193323Sed      return NoAlias;
509193323Sed
510193323Sed    // Otherwise if they are both derived from the same addr-taken global, we
511193323Sed    // can't know the two accesses don't overlap.
512193323Sed  }
513193323Sed
514193323Sed  // These pointers may be based on the memory owned by an indirect global.  If
515193323Sed  // so, we may be able to handle this.  First check to see if the base pointer
516193323Sed  // is a direct load from an indirect global.
517193323Sed  GV1 = GV2 = 0;
518212904Sdim  if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
519193323Sed    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
520193323Sed      if (IndirectGlobals.count(GV))
521193323Sed        GV1 = GV;
522212904Sdim  if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
523212904Sdim    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
524193323Sed      if (IndirectGlobals.count(GV))
525193323Sed        GV2 = GV;
526193323Sed
527193323Sed  // These pointers may also be from an allocation for the indirect global.  If
528193323Sed  // so, also handle them.
529193323Sed  if (AllocsForIndirectGlobals.count(UV1))
530193323Sed    GV1 = AllocsForIndirectGlobals[UV1];
531193323Sed  if (AllocsForIndirectGlobals.count(UV2))
532193323Sed    GV2 = AllocsForIndirectGlobals[UV2];
533193323Sed
534193323Sed  // Now that we know whether the two pointers are related to indirect globals,
535193323Sed  // use this to disambiguate the pointers.  If either pointer is based on an
536193323Sed  // indirect global and if they are not both based on the same indirect global,
537193323Sed  // they cannot alias.
538193323Sed  if ((GV1 || GV2) && GV1 != GV2)
539193323Sed    return NoAlias;
540193323Sed
541218893Sdim  return AliasAnalysis::alias(LocA, LocB);
542193323Sed}
543193323Sed
544193323SedAliasAnalysis::ModRefResult
545212904SdimGlobalsModRef::getModRefInfo(ImmutableCallSite CS,
546218893Sdim                             const Location &Loc) {
547193323Sed  unsigned Known = ModRef;
548193323Sed
549193323Sed  // If we are asking for mod/ref info of a direct call with a pointer to a
550193323Sed  // global we are tracking, return information if we have it.
551218893Sdim  if (const GlobalValue *GV =
552218893Sdim        dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr)))
553193323Sed    if (GV->hasLocalLinkage())
554212904Sdim      if (const Function *F = CS.getCalledFunction())
555193323Sed        if (NonAddressTakenGlobals.count(GV))
556212904Sdim          if (const FunctionRecord *FR = getFunctionInfo(F))
557193323Sed            Known = FR->getInfoForGlobal(GV);
558193323Sed
559193323Sed  if (Known == NoModRef)
560193323Sed    return NoModRef; // No need to query other mod/ref analyses
561218893Sdim  return ModRefResult(Known & AliasAnalysis::getModRefInfo(CS, Loc));
562193323Sed}
563193323Sed
564193323Sed
565193323Sed//===----------------------------------------------------------------------===//
566193323Sed// Methods to update the analysis as a result of the client transformation.
567193323Sed//
568193323Sedvoid GlobalsModRef::deleteValue(Value *V) {
569193323Sed  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
570193323Sed    if (NonAddressTakenGlobals.erase(GV)) {
571193323Sed      // This global might be an indirect global.  If so, remove it and remove
572193323Sed      // any AllocRelatedValues for it.
573193323Sed      if (IndirectGlobals.erase(GV)) {
574193323Sed        // Remove any entries in AllocsForIndirectGlobals for this global.
575212904Sdim        for (std::map<const Value*, const GlobalValue*>::iterator
576193323Sed             I = AllocsForIndirectGlobals.begin(),
577193323Sed             E = AllocsForIndirectGlobals.end(); I != E; ) {
578193323Sed          if (I->second == GV) {
579193323Sed            AllocsForIndirectGlobals.erase(I++);
580193323Sed          } else {
581193323Sed            ++I;
582193323Sed          }
583193323Sed        }
584193323Sed      }
585193323Sed    }
586193323Sed  }
587193323Sed
588193323Sed  // Otherwise, if this is an allocation related to an indirect global, remove
589193323Sed  // it.
590193323Sed  AllocsForIndirectGlobals.erase(V);
591193323Sed
592193323Sed  AliasAnalysis::deleteValue(V);
593193323Sed}
594193323Sed
595193323Sedvoid GlobalsModRef::copyValue(Value *From, Value *To) {
596193323Sed  AliasAnalysis::copyValue(From, To);
597193323Sed}
598218893Sdim
599218893Sdimvoid GlobalsModRef::addEscapingUse(Use &U) {
600218893Sdim  // For the purposes of this analysis, it is conservatively correct to treat
601218893Sdim  // a newly escaping value equivalently to a deleted one.  We could perhaps
602218893Sdim  // be more precise by processing the new use and attempting to update our
603221345Sdim  // saved analysis results to accommodate it.
604218893Sdim  deleteValue(U);
605218893Sdim
606218893Sdim  AliasAnalysis::addEscapingUse(U);
607218893Sdim}
608