1198090Srdivacky//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2193323Sed//
3193323Sed//                     The LLVM Compiler Infrastructure
4193323Sed//
5193323Sed// This file is distributed under the University of Illinois Open Source
6193323Sed// License. See LICENSE.TXT for details.
7193323Sed//
8193323Sed//===----------------------------------------------------------------------===//
9193323Sed//
10198090Srdivacky// This file defines routines for folding instructions into constants.
11193323Sed//
12249423Sdim// Also, to supplement the basic IR ConstantExpr simplifications,
13198090Srdivacky// this file defines some additional folding routines that can make use of
14249423Sdim// DataLayout information. These functions cannot go in IR due to library
15198090Srdivacky// dependency issues.
16198090Srdivacky//
17193323Sed//===----------------------------------------------------------------------===//
18193323Sed
19193323Sed#include "llvm/Analysis/ConstantFolding.h"
20251662Sdim#include "llvm/ADT/SmallPtrSet.h"
21193323Sed#include "llvm/ADT/SmallVector.h"
22193323Sed#include "llvm/ADT/StringMap.h"
23249423Sdim#include "llvm/Analysis/ValueTracking.h"
24249423Sdim#include "llvm/IR/Constants.h"
25249423Sdim#include "llvm/IR/DataLayout.h"
26249423Sdim#include "llvm/IR/DerivedTypes.h"
27249423Sdim#include "llvm/IR/Function.h"
28249423Sdim#include "llvm/IR/GlobalVariable.h"
29249423Sdim#include "llvm/IR/Instructions.h"
30249423Sdim#include "llvm/IR/Intrinsics.h"
31249423Sdim#include "llvm/IR/Operator.h"
32198090Srdivacky#include "llvm/Support/ErrorHandling.h"
33249423Sdim#include "llvm/Support/FEnv.h"
34193323Sed#include "llvm/Support/GetElementPtrTypeIterator.h"
35193323Sed#include "llvm/Support/MathExtras.h"
36249423Sdim#include "llvm/Target/TargetLibraryInfo.h"
37193323Sed#include <cerrno>
38193323Sed#include <cmath>
39193323Sedusing namespace llvm;
40193323Sed
41193323Sed//===----------------------------------------------------------------------===//
42193323Sed// Constant Folding internal helper functions
43193323Sed//===----------------------------------------------------------------------===//
44193323Sed
45243830Sdim/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
46243830Sdim/// DataLayout.  This always returns a non-null constant, but it may be a
47198892Srdivacky/// ConstantExpr if unfoldable.
48226633Sdimstatic Constant *FoldBitCast(Constant *C, Type *DestTy,
49243830Sdim                             const DataLayout &TD) {
50226633Sdim  // Catch the obvious splat cases.
51226633Sdim  if (C->isNullValue() && !DestTy->isX86_MMXTy())
52226633Sdim    return Constant::getNullValue(DestTy);
53226633Sdim  if (C->isAllOnesValue() && !DestTy->isX86_MMXTy())
54226633Sdim    return Constant::getAllOnesValue(DestTy);
55226633Sdim
56234353Sdim  // Handle a vector->integer cast.
57234353Sdim  if (IntegerType *IT = dyn_cast<IntegerType>(DestTy)) {
58249423Sdim    VectorType *VTy = dyn_cast<VectorType>(C->getType());
59249423Sdim    if (VTy == 0)
60234353Sdim      return ConstantExpr::getBitCast(C, DestTy);
61234353Sdim
62249423Sdim    unsigned NumSrcElts = VTy->getNumElements();
63249423Sdim    Type *SrcEltTy = VTy->getElementType();
64243830Sdim
65234353Sdim    // If the vector is a vector of floating point, convert it to vector of int
66234353Sdim    // to simplify things.
67234353Sdim    if (SrcEltTy->isFloatingPointTy()) {
68234353Sdim      unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
69234353Sdim      Type *SrcIVTy =
70234353Sdim        VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
71249423Sdim      // Ask IR to do the conversion now that #elts line up.
72234353Sdim      C = ConstantExpr::getBitCast(C, SrcIVTy);
73234353Sdim    }
74243830Sdim
75249423Sdim    ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
76249423Sdim    if (CDV == 0)
77249423Sdim      return ConstantExpr::getBitCast(C, DestTy);
78249423Sdim
79234353Sdim    // Now that we know that the input value is a vector of integers, just shift
80234353Sdim    // and insert them into our result.
81234353Sdim    unsigned BitShift = TD.getTypeAllocSizeInBits(SrcEltTy);
82234353Sdim    APInt Result(IT->getBitWidth(), 0);
83234353Sdim    for (unsigned i = 0; i != NumSrcElts; ++i) {
84234353Sdim      Result <<= BitShift;
85234353Sdim      if (TD.isLittleEndian())
86234353Sdim        Result |= CDV->getElementAsInteger(NumSrcElts-i-1);
87234353Sdim      else
88234353Sdim        Result |= CDV->getElementAsInteger(i);
89234353Sdim    }
90243830Sdim
91234353Sdim    return ConstantInt::get(IT, Result);
92234353Sdim  }
93243830Sdim
94226633Sdim  // The code below only handles casts to vectors currently.
95226633Sdim  VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
96198892Srdivacky  if (DestVTy == 0)
97198892Srdivacky    return ConstantExpr::getBitCast(C, DestTy);
98243830Sdim
99198892Srdivacky  // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
100198892Srdivacky  // vector so the code below can handle it uniformly.
101198892Srdivacky  if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
102198892Srdivacky    Constant *Ops = C; // don't take the address of C!
103218893Sdim    return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
104198892Srdivacky  }
105243830Sdim
106198892Srdivacky  // If this is a bitcast from constant vector -> vector, fold it.
107234353Sdim  if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
108198892Srdivacky    return ConstantExpr::getBitCast(C, DestTy);
109243830Sdim
110249423Sdim  // If the element types match, IR can fold it.
111198892Srdivacky  unsigned NumDstElt = DestVTy->getNumElements();
112234353Sdim  unsigned NumSrcElt = C->getType()->getVectorNumElements();
113198892Srdivacky  if (NumDstElt == NumSrcElt)
114198892Srdivacky    return ConstantExpr::getBitCast(C, DestTy);
115243830Sdim
116234353Sdim  Type *SrcEltTy = C->getType()->getVectorElementType();
117226633Sdim  Type *DstEltTy = DestVTy->getElementType();
118243830Sdim
119243830Sdim  // Otherwise, we're changing the number of elements in a vector, which
120198892Srdivacky  // requires endianness information to do the right thing.  For example,
121198892Srdivacky  //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
122198892Srdivacky  // folds to (little endian):
123198892Srdivacky  //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
124198892Srdivacky  // and to (big endian):
125198892Srdivacky  //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
126243830Sdim
127198892Srdivacky  // First thing is first.  We only want to think about integer here, so if
128198892Srdivacky  // we have something in FP form, recast it as integer.
129203954Srdivacky  if (DstEltTy->isFloatingPointTy()) {
130198892Srdivacky    // Fold to an vector of integers with same size as our FP type.
131198892Srdivacky    unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
132226633Sdim    Type *DestIVTy =
133198892Srdivacky      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
134198892Srdivacky    // Recursively handle this integer conversion, if possible.
135198892Srdivacky    C = FoldBitCast(C, DestIVTy, TD);
136243830Sdim
137249423Sdim    // Finally, IR can handle this now that #elts line up.
138198892Srdivacky    return ConstantExpr::getBitCast(C, DestTy);
139198892Srdivacky  }
140243830Sdim
141198892Srdivacky  // Okay, we know the destination is integer, if the input is FP, convert
142198892Srdivacky  // it to integer first.
143203954Srdivacky  if (SrcEltTy->isFloatingPointTy()) {
144198892Srdivacky    unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
145226633Sdim    Type *SrcIVTy =
146198892Srdivacky      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
147249423Sdim    // Ask IR to do the conversion now that #elts line up.
148198892Srdivacky    C = ConstantExpr::getBitCast(C, SrcIVTy);
149249423Sdim    // If IR wasn't able to fold it, bail out.
150234353Sdim    if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
151234353Sdim        !isa<ConstantDataVector>(C))
152198892Srdivacky      return C;
153198892Srdivacky  }
154243830Sdim
155198892Srdivacky  // Now we know that the input and output vectors are both integer vectors
156198892Srdivacky  // of the same size, and that their #elements is not the same.  Do the
157198892Srdivacky  // conversion here, which depends on whether the input or output has
158198892Srdivacky  // more elements.
159198892Srdivacky  bool isLittleEndian = TD.isLittleEndian();
160243830Sdim
161198892Srdivacky  SmallVector<Constant*, 32> Result;
162198892Srdivacky  if (NumDstElt < NumSrcElt) {
163198892Srdivacky    // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
164198892Srdivacky    Constant *Zero = Constant::getNullValue(DstEltTy);
165198892Srdivacky    unsigned Ratio = NumSrcElt/NumDstElt;
166198892Srdivacky    unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
167198892Srdivacky    unsigned SrcElt = 0;
168198892Srdivacky    for (unsigned i = 0; i != NumDstElt; ++i) {
169198892Srdivacky      // Build each element of the result.
170198892Srdivacky      Constant *Elt = Zero;
171198892Srdivacky      unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
172198892Srdivacky      for (unsigned j = 0; j != Ratio; ++j) {
173234353Sdim        Constant *Src =dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++));
174198892Srdivacky        if (!Src)  // Reject constantexpr elements.
175198892Srdivacky          return ConstantExpr::getBitCast(C, DestTy);
176243830Sdim
177198892Srdivacky        // Zero extend the element to the right size.
178198892Srdivacky        Src = ConstantExpr::getZExt(Src, Elt->getType());
179243830Sdim
180198892Srdivacky        // Shift it to the right place, depending on endianness.
181243830Sdim        Src = ConstantExpr::getShl(Src,
182198892Srdivacky                                   ConstantInt::get(Src->getType(), ShiftAmt));
183198892Srdivacky        ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
184243830Sdim
185198892Srdivacky        // Mix it in.
186198892Srdivacky        Elt = ConstantExpr::getOr(Elt, Src);
187198892Srdivacky      }
188198892Srdivacky      Result.push_back(Elt);
189198892Srdivacky    }
190234353Sdim    return ConstantVector::get(Result);
191234353Sdim  }
192243830Sdim
193234353Sdim  // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
194234353Sdim  unsigned Ratio = NumDstElt/NumSrcElt;
195234353Sdim  unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
196243830Sdim
197234353Sdim  // Loop over each source value, expanding into multiple results.
198234353Sdim  for (unsigned i = 0; i != NumSrcElt; ++i) {
199234353Sdim    Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i));
200234353Sdim    if (!Src)  // Reject constantexpr elements.
201234353Sdim      return ConstantExpr::getBitCast(C, DestTy);
202243830Sdim
203234353Sdim    unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
204234353Sdim    for (unsigned j = 0; j != Ratio; ++j) {
205234353Sdim      // Shift the piece of the value into the right place, depending on
206234353Sdim      // endianness.
207243830Sdim      Constant *Elt = ConstantExpr::getLShr(Src,
208234353Sdim                                  ConstantInt::get(Src->getType(), ShiftAmt));
209234353Sdim      ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
210243830Sdim
211234353Sdim      // Truncate and remember this piece.
212234353Sdim      Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
213198892Srdivacky    }
214198892Srdivacky  }
215243830Sdim
216218893Sdim  return ConstantVector::get(Result);
217198892Srdivacky}
218198892Srdivacky
219198892Srdivacky
220193323Sed/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
221193323Sed/// from a global, return the global and the constant.  Because of
222193323Sed/// constantexprs, this function is recursive.
223193323Sedstatic bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
224249423Sdim                                       APInt &Offset, const DataLayout &TD) {
225193323Sed  // Trivial case, constant is the global.
226193323Sed  if ((GV = dyn_cast<GlobalValue>(C))) {
227263508Sdim    unsigned BitWidth = TD.getPointerTypeSizeInBits(GV->getType());
228263508Sdim    Offset = APInt(BitWidth, 0);
229193323Sed    return true;
230193323Sed  }
231243830Sdim
232193323Sed  // Otherwise, if this isn't a constant expr, bail out.
233193323Sed  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
234193323Sed  if (!CE) return false;
235243830Sdim
236193323Sed  // Look through ptr->int and ptr->ptr casts.
237193323Sed  if (CE->getOpcode() == Instruction::PtrToInt ||
238193323Sed      CE->getOpcode() == Instruction::BitCast)
239193323Sed    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
240243830Sdim
241243830Sdim  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
242263508Sdim  GEPOperator *GEP = dyn_cast<GEPOperator>(CE);
243263508Sdim  if (!GEP)
244263508Sdim    return false;
245243830Sdim
246263508Sdim  unsigned BitWidth = TD.getPointerTypeSizeInBits(GEP->getType());
247263508Sdim  APInt TmpOffset(BitWidth, 0);
248243830Sdim
249263508Sdim  // If the base isn't a global+constant, we aren't either.
250263508Sdim  if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, TD))
251263508Sdim    return false;
252263508Sdim
253263508Sdim  // Otherwise, add any offset that our operands provide.
254263508Sdim  if (!GEP->accumulateConstantOffset(TD, TmpOffset))
255263508Sdim    return false;
256263508Sdim
257263508Sdim  Offset = TmpOffset;
258263508Sdim  return true;
259193323Sed}
260193323Sed
261198396Srdivacky/// ReadDataFromGlobal - Recursive helper to read bits out of global.  C is the
262198396Srdivacky/// constant being copied out of. ByteOffset is an offset into C.  CurPtr is the
263198396Srdivacky/// pointer to copy results into and BytesLeft is the number of bytes left in
264198396Srdivacky/// the CurPtr buffer.  TD is the target data.
265198396Srdivackystatic bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
266198396Srdivacky                               unsigned char *CurPtr, unsigned BytesLeft,
267243830Sdim                               const DataLayout &TD) {
268198396Srdivacky  assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
269198396Srdivacky         "Out of range access");
270243830Sdim
271198892Srdivacky  // If this element is zero or undefined, we can just return since *CurPtr is
272198892Srdivacky  // zero initialized.
273198396Srdivacky  if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
274198396Srdivacky    return true;
275243830Sdim
276198396Srdivacky  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
277198396Srdivacky    if (CI->getBitWidth() > 64 ||
278198396Srdivacky        (CI->getBitWidth() & 7) != 0)
279198396Srdivacky      return false;
280243830Sdim
281198396Srdivacky    uint64_t Val = CI->getZExtValue();
282198396Srdivacky    unsigned IntBytes = unsigned(CI->getBitWidth()/8);
283243830Sdim
284198396Srdivacky    for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
285243830Sdim      int n = ByteOffset;
286243830Sdim      if (!TD.isLittleEndian())
287243830Sdim        n = IntBytes - n - 1;
288243830Sdim      CurPtr[i] = (unsigned char)(Val >> (n * 8));
289198396Srdivacky      ++ByteOffset;
290198396Srdivacky    }
291198396Srdivacky    return true;
292198396Srdivacky  }
293243830Sdim
294198396Srdivacky  if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
295198396Srdivacky    if (CFP->getType()->isDoubleTy()) {
296198892Srdivacky      C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
297198396Srdivacky      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
298198396Srdivacky    }
299198396Srdivacky    if (CFP->getType()->isFloatTy()){
300198892Srdivacky      C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
301198396Srdivacky      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
302198396Srdivacky    }
303249423Sdim    if (CFP->getType()->isHalfTy()){
304249423Sdim      C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), TD);
305249423Sdim      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
306249423Sdim    }
307198892Srdivacky    return false;
308198396Srdivacky  }
309243830Sdim
310198396Srdivacky  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
311198396Srdivacky    const StructLayout *SL = TD.getStructLayout(CS->getType());
312198396Srdivacky    unsigned Index = SL->getElementContainingOffset(ByteOffset);
313198396Srdivacky    uint64_t CurEltOffset = SL->getElementOffset(Index);
314198396Srdivacky    ByteOffset -= CurEltOffset;
315243830Sdim
316198396Srdivacky    while (1) {
317198396Srdivacky      // If the element access is to the element itself and not to tail padding,
318198396Srdivacky      // read the bytes from the element.
319198396Srdivacky      uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
320198396Srdivacky
321198396Srdivacky      if (ByteOffset < EltSize &&
322198396Srdivacky          !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
323198396Srdivacky                              BytesLeft, TD))
324198396Srdivacky        return false;
325243830Sdim
326198396Srdivacky      ++Index;
327243830Sdim
328198396Srdivacky      // Check to see if we read from the last struct element, if so we're done.
329198396Srdivacky      if (Index == CS->getType()->getNumElements())
330198396Srdivacky        return true;
331198396Srdivacky
332198396Srdivacky      // If we read all of the bytes we needed from this element we're done.
333198396Srdivacky      uint64_t NextEltOffset = SL->getElementOffset(Index);
334198396Srdivacky
335263508Sdim      if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
336198396Srdivacky        return true;
337198396Srdivacky
338198396Srdivacky      // Move to the next element of the struct.
339263508Sdim      CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
340263508Sdim      BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
341198396Srdivacky      ByteOffset = 0;
342198396Srdivacky      CurEltOffset = NextEltOffset;
343198396Srdivacky    }
344198396Srdivacky    // not reached.
345198396Srdivacky  }
346198396Srdivacky
347234353Sdim  if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
348234353Sdim      isa<ConstantDataSequential>(C)) {
349263508Sdim    Type *EltTy = C->getType()->getSequentialElementType();
350234353Sdim    uint64_t EltSize = TD.getTypeAllocSize(EltTy);
351198396Srdivacky    uint64_t Index = ByteOffset / EltSize;
352198396Srdivacky    uint64_t Offset = ByteOffset - Index * EltSize;
353234353Sdim    uint64_t NumElts;
354234353Sdim    if (ArrayType *AT = dyn_cast<ArrayType>(C->getType()))
355234353Sdim      NumElts = AT->getNumElements();
356234353Sdim    else
357263508Sdim      NumElts = C->getType()->getVectorNumElements();
358239462Sdim
359234353Sdim    for (; Index != NumElts; ++Index) {
360234353Sdim      if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
361198396Srdivacky                              BytesLeft, TD))
362198396Srdivacky        return false;
363239462Sdim
364239462Sdim      uint64_t BytesWritten = EltSize - Offset;
365239462Sdim      assert(BytesWritten <= EltSize && "Not indexing into this element?");
366239462Sdim      if (BytesWritten >= BytesLeft)
367198396Srdivacky        return true;
368239462Sdim
369198396Srdivacky      Offset = 0;
370239462Sdim      BytesLeft -= BytesWritten;
371239462Sdim      CurPtr += BytesWritten;
372198396Srdivacky    }
373198396Srdivacky    return true;
374198396Srdivacky  }
375243830Sdim
376218893Sdim  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
377218893Sdim    if (CE->getOpcode() == Instruction::IntToPtr &&
378263508Sdim        CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getType())) {
379243830Sdim      return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
380234353Sdim                                BytesLeft, TD);
381263508Sdim    }
382218893Sdim  }
383218893Sdim
384198396Srdivacky  // Otherwise, unknown initializer type.
385198396Srdivacky  return false;
386198396Srdivacky}
387198396Srdivacky
388198396Srdivackystatic Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
389243830Sdim                                                 const DataLayout &TD) {
390263508Sdim  PointerType *PTy = cast<PointerType>(C->getType());
391263508Sdim  Type *LoadTy = PTy->getElementType();
392226633Sdim  IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
393243830Sdim
394198396Srdivacky  // If this isn't an integer load we can't fold it directly.
395198396Srdivacky  if (!IntType) {
396263508Sdim    unsigned AS = PTy->getAddressSpace();
397263508Sdim
398198396Srdivacky    // If this is a float/double load, we can try folding it as an int32/64 load
399198396Srdivacky    // and then bitcast the result.  This can be useful for union cases.  Note
400198396Srdivacky    // that address spaces don't matter here since we're not going to result in
401198396Srdivacky    // an actual new load.
402226633Sdim    Type *MapTy;
403249423Sdim    if (LoadTy->isHalfTy())
404263508Sdim      MapTy = Type::getInt16PtrTy(C->getContext(), AS);
405249423Sdim    else if (LoadTy->isFloatTy())
406263508Sdim      MapTy = Type::getInt32PtrTy(C->getContext(), AS);
407198396Srdivacky    else if (LoadTy->isDoubleTy())
408263508Sdim      MapTy = Type::getInt64PtrTy(C->getContext(), AS);
409204642Srdivacky    else if (LoadTy->isVectorTy()) {
410263508Sdim      MapTy = PointerType::getIntNPtrTy(C->getContext(),
411263508Sdim                                        TD.getTypeAllocSizeInBits(LoadTy),
412263508Sdim                                        AS);
413198396Srdivacky    } else
414198396Srdivacky      return 0;
415198396Srdivacky
416198892Srdivacky    C = FoldBitCast(C, MapTy, TD);
417198396Srdivacky    if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
418198892Srdivacky      return FoldBitCast(Res, LoadTy, TD);
419198396Srdivacky    return 0;
420198396Srdivacky  }
421243830Sdim
422198396Srdivacky  unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
423263508Sdim  if (BytesLoaded > 32 || BytesLoaded == 0)
424263508Sdim    return 0;
425243830Sdim
426198396Srdivacky  GlobalValue *GVal;
427263508Sdim  APInt Offset;
428198396Srdivacky  if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
429198396Srdivacky    return 0;
430243830Sdim
431198396Srdivacky  GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
432198892Srdivacky  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
433198396Srdivacky      !GV->getInitializer()->getType()->isSized())
434198396Srdivacky    return 0;
435198396Srdivacky
436198396Srdivacky  // If we're loading off the beginning of the global, some bytes may be valid,
437198396Srdivacky  // but we don't try to handle this.
438263508Sdim  if (Offset.isNegative())
439263508Sdim    return 0;
440243830Sdim
441198396Srdivacky  // If we're not accessing anything in this constant, the result is undefined.
442249423Sdim  if (Offset.getZExtValue() >=
443249423Sdim      TD.getTypeAllocSize(GV->getInitializer()->getType()))
444198396Srdivacky    return UndefValue::get(IntType);
445243830Sdim
446198396Srdivacky  unsigned char RawBytes[32] = {0};
447249423Sdim  if (!ReadDataFromGlobal(GV->getInitializer(), Offset.getZExtValue(), RawBytes,
448198396Srdivacky                          BytesLoaded, TD))
449198396Srdivacky    return 0;
450198396Srdivacky
451243830Sdim  APInt ResultVal = APInt(IntType->getBitWidth(), 0);
452243830Sdim  if (TD.isLittleEndian()) {
453243830Sdim    ResultVal = RawBytes[BytesLoaded - 1];
454243830Sdim    for (unsigned i = 1; i != BytesLoaded; ++i) {
455243830Sdim      ResultVal <<= 8;
456263508Sdim      ResultVal |= RawBytes[BytesLoaded - 1 - i];
457243830Sdim    }
458243830Sdim  } else {
459243830Sdim    ResultVal = RawBytes[0];
460243830Sdim    for (unsigned i = 1; i != BytesLoaded; ++i) {
461243830Sdim      ResultVal <<= 8;
462243830Sdim      ResultVal |= RawBytes[i];
463243830Sdim    }
464198396Srdivacky  }
465198396Srdivacky
466198396Srdivacky  return ConstantInt::get(IntType->getContext(), ResultVal);
467198396Srdivacky}
468198396Srdivacky
469198396Srdivacky/// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
470198396Srdivacky/// produce if it is constant and determinable.  If this is not determinable,
471198396Srdivacky/// return null.
472198396SrdivackyConstant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
473243830Sdim                                             const DataLayout *TD) {
474198396Srdivacky  // First, try the easy cases:
475198396Srdivacky  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
476198396Srdivacky    if (GV->isConstant() && GV->hasDefinitiveInitializer())
477198396Srdivacky      return GV->getInitializer();
478198396Srdivacky
479198396Srdivacky  // If the loaded value isn't a constant expr, we can't handle it.
480198396Srdivacky  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
481263508Sdim  if (!CE)
482263508Sdim    return 0;
483243830Sdim
484198396Srdivacky  if (CE->getOpcode() == Instruction::GetElementPtr) {
485263508Sdim    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
486263508Sdim      if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
487243830Sdim        if (Constant *V =
488198396Srdivacky             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
489198396Srdivacky          return V;
490263508Sdim      }
491263508Sdim    }
492198396Srdivacky  }
493243830Sdim
494198396Srdivacky  // Instead of loading constant c string, use corresponding integer value
495198396Srdivacky  // directly if string length is small enough.
496234353Sdim  StringRef Str;
497234353Sdim  if (TD && getConstantStringInfo(CE, Str) && !Str.empty()) {
498234353Sdim    unsigned StrLen = Str.size();
499226633Sdim    Type *Ty = cast<PointerType>(CE->getType())->getElementType();
500198396Srdivacky    unsigned NumBits = Ty->getPrimitiveSizeInBits();
501210299Sed    // Replace load with immediate integer if the result is an integer or fp
502210299Sed    // value.
503210299Sed    if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
504210299Sed        (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
505198396Srdivacky      APInt StrVal(NumBits, 0);
506198396Srdivacky      APInt SingleChar(NumBits, 0);
507198396Srdivacky      if (TD->isLittleEndian()) {
508198396Srdivacky        for (signed i = StrLen-1; i >= 0; i--) {
509198396Srdivacky          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
510198396Srdivacky          StrVal = (StrVal << 8) | SingleChar;
511198396Srdivacky        }
512198396Srdivacky      } else {
513198396Srdivacky        for (unsigned i = 0; i < StrLen; i++) {
514198396Srdivacky          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
515198396Srdivacky          StrVal = (StrVal << 8) | SingleChar;
516198396Srdivacky        }
517198396Srdivacky        // Append NULL at the end.
518198396Srdivacky        SingleChar = 0;
519198396Srdivacky        StrVal = (StrVal << 8) | SingleChar;
520198396Srdivacky      }
521243830Sdim
522210299Sed      Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
523210299Sed      if (Ty->isFloatingPointTy())
524210299Sed        Res = ConstantExpr::getBitCast(Res, Ty);
525210299Sed      return Res;
526198396Srdivacky    }
527198396Srdivacky  }
528243830Sdim
529198396Srdivacky  // If this load comes from anywhere in a constant global, and if the global
530198396Srdivacky  // is all undef or zero, we know what it loads.
531218893Sdim  if (GlobalVariable *GV =
532218893Sdim        dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, TD))) {
533198396Srdivacky    if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
534226633Sdim      Type *ResTy = cast<PointerType>(C->getType())->getElementType();
535198396Srdivacky      if (GV->getInitializer()->isNullValue())
536198396Srdivacky        return Constant::getNullValue(ResTy);
537198396Srdivacky      if (isa<UndefValue>(GV->getInitializer()))
538198396Srdivacky        return UndefValue::get(ResTy);
539198396Srdivacky    }
540198396Srdivacky  }
541243830Sdim
542243830Sdim  // Try hard to fold loads from bitcasted strange and non-type-safe things.
543243830Sdim  if (TD)
544198396Srdivacky    return FoldReinterpretLoadFromConstPtr(CE, *TD);
545198396Srdivacky  return 0;
546198396Srdivacky}
547198396Srdivacky
548243830Sdimstatic Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout *TD){
549198396Srdivacky  if (LI->isVolatile()) return 0;
550243830Sdim
551198396Srdivacky  if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
552198396Srdivacky    return ConstantFoldLoadFromConstPtr(C, TD);
553198396Srdivacky
554198396Srdivacky  return 0;
555198396Srdivacky}
556198396Srdivacky
557193323Sed/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
558193323Sed/// Attempt to symbolically evaluate the result of a binary operator merging
559249423Sdim/// these together.  If target data info is available, it is provided as DL,
560249423Sdim/// otherwise DL is null.
561193323Sedstatic Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
562249423Sdim                                           Constant *Op1, const DataLayout *DL){
563193323Sed  // SROA
564243830Sdim
565193323Sed  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
566193323Sed  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
567193323Sed  // bits.
568243830Sdim
569243830Sdim
570249423Sdim  if (Opc == Instruction::And && DL) {
571251662Sdim    unsigned BitWidth = DL->getTypeSizeInBits(Op0->getType()->getScalarType());
572249423Sdim    APInt KnownZero0(BitWidth, 0), KnownOne0(BitWidth, 0);
573249423Sdim    APInt KnownZero1(BitWidth, 0), KnownOne1(BitWidth, 0);
574249423Sdim    ComputeMaskedBits(Op0, KnownZero0, KnownOne0, DL);
575249423Sdim    ComputeMaskedBits(Op1, KnownZero1, KnownOne1, DL);
576249423Sdim    if ((KnownOne1 | KnownZero0).isAllOnesValue()) {
577249423Sdim      // All the bits of Op0 that the 'and' could be masking are already zero.
578249423Sdim      return Op0;
579249423Sdim    }
580249423Sdim    if ((KnownOne0 | KnownZero1).isAllOnesValue()) {
581249423Sdim      // All the bits of Op1 that the 'and' could be masking are already zero.
582249423Sdim      return Op1;
583249423Sdim    }
584249423Sdim
585249423Sdim    APInt KnownZero = KnownZero0 | KnownZero1;
586249423Sdim    APInt KnownOne = KnownOne0 & KnownOne1;
587249423Sdim    if ((KnownZero | KnownOne).isAllOnesValue()) {
588249423Sdim      return ConstantInt::get(Op0->getType(), KnownOne);
589249423Sdim    }
590249423Sdim  }
591249423Sdim
592193323Sed  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
593193323Sed  // constant.  This happens frequently when iterating over a global array.
594249423Sdim  if (Opc == Instruction::Sub && DL) {
595193323Sed    GlobalValue *GV1, *GV2;
596263508Sdim    APInt Offs1, Offs2;
597243830Sdim
598249423Sdim    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *DL))
599249423Sdim      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *DL) &&
600193323Sed          GV1 == GV2) {
601263508Sdim        unsigned OpSize = DL->getTypeSizeInBits(Op0->getType());
602263508Sdim
603193323Sed        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
604249423Sdim        // PtrToInt may change the bitwidth so we have convert to the right size
605249423Sdim        // first.
606249423Sdim        return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
607249423Sdim                                                Offs2.zextOrTrunc(OpSize));
608193323Sed      }
609193323Sed  }
610243830Sdim
611193323Sed  return 0;
612193323Sed}
613193323Sed
614203954Srdivacky/// CastGEPIndices - If array indices are not pointer-sized integers,
615203954Srdivacky/// explicitly cast them so that they aren't implicitly casted by the
616203954Srdivacky/// getelementptr.
617226633Sdimstatic Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
618243830Sdim                                Type *ResultTy, const DataLayout *TD,
619234353Sdim                                const TargetLibraryInfo *TLI) {
620263508Sdim  if (!TD)
621263508Sdim    return 0;
622203954Srdivacky
623263508Sdim  Type *IntPtrTy = TD->getIntPtrType(ResultTy);
624263508Sdim
625203954Srdivacky  bool Any = false;
626203954Srdivacky  SmallVector<Constant*, 32> NewIdxs;
627226633Sdim  for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
628203954Srdivacky    if ((i == 1 ||
629263508Sdim         !isa<StructType>(GetElementPtrInst::getIndexedType(
630263508Sdim                            Ops[0]->getType(),
631263508Sdim                            Ops.slice(1, i - 1)))) &&
632203954Srdivacky        Ops[i]->getType() != IntPtrTy) {
633203954Srdivacky      Any = true;
634203954Srdivacky      NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
635203954Srdivacky                                                                      true,
636203954Srdivacky                                                                      IntPtrTy,
637203954Srdivacky                                                                      true),
638203954Srdivacky                                              Ops[i], IntPtrTy));
639203954Srdivacky    } else
640203954Srdivacky      NewIdxs.push_back(Ops[i]);
641203954Srdivacky  }
642203954Srdivacky
643263508Sdim  if (!Any)
644263508Sdim    return 0;
645263508Sdim
646263508Sdim  Constant *C = ConstantExpr::getGetElementPtr(Ops[0], NewIdxs);
647263508Sdim  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
648234353Sdim    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
649203954Srdivacky      C = Folded;
650263508Sdim  }
651263508Sdim
652203954Srdivacky  return C;
653203954Srdivacky}
654203954Srdivacky
655239462Sdim/// Strip the pointer casts, but preserve the address space information.
656239462Sdimstatic Constant* StripPtrCastKeepAS(Constant* Ptr) {
657239462Sdim  assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
658239462Sdim  PointerType *OldPtrTy = cast<PointerType>(Ptr->getType());
659239462Sdim  Ptr = cast<Constant>(Ptr->stripPointerCasts());
660239462Sdim  PointerType *NewPtrTy = cast<PointerType>(Ptr->getType());
661239462Sdim
662239462Sdim  // Preserve the address space number of the pointer.
663239462Sdim  if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
664239462Sdim    NewPtrTy = NewPtrTy->getElementType()->getPointerTo(
665239462Sdim      OldPtrTy->getAddressSpace());
666263508Sdim    Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy);
667239462Sdim  }
668239462Sdim  return Ptr;
669239462Sdim}
670239462Sdim
671193323Sed/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
672193323Sed/// constant expression, do so.
673226633Sdimstatic Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
674243830Sdim                                         Type *ResultTy, const DataLayout *TD,
675234353Sdim                                         const TargetLibraryInfo *TLI) {
676193323Sed  Constant *Ptr = Ops[0];
677263508Sdim  if (!TD || !Ptr->getType()->getPointerElementType()->isSized() ||
678234353Sdim      !Ptr->getType()->isPointerTy())
679193323Sed    return 0;
680243830Sdim
681263508Sdim  Type *IntPtrTy = TD->getIntPtrType(Ptr->getType());
682263508Sdim  Type *ResultElementTy = ResultTy->getPointerElementType();
683198090Srdivacky
684193323Sed  // If this is a constant expr gep that is effectively computing an
685193323Sed  // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
686226633Sdim  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
687218893Sdim    if (!isa<ConstantInt>(Ops[i])) {
688243830Sdim
689218893Sdim      // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
690218893Sdim      // "inttoptr (sub (ptrtoint Ptr), V)"
691263508Sdim      if (Ops.size() == 2 && ResultElementTy->isIntegerTy(8)) {
692218893Sdim        ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
693218893Sdim        assert((CE == 0 || CE->getType() == IntPtrTy) &&
694218893Sdim               "CastGEPIndices didn't canonicalize index types!");
695218893Sdim        if (CE && CE->getOpcode() == Instruction::Sub &&
696218893Sdim            CE->getOperand(0)->isNullValue()) {
697218893Sdim          Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
698218893Sdim          Res = ConstantExpr::getSub(Res, CE->getOperand(1));
699218893Sdim          Res = ConstantExpr::getIntToPtr(Res, ResultTy);
700218893Sdim          if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
701234353Sdim            Res = ConstantFoldConstantExpression(ResCE, TD, TLI);
702218893Sdim          return Res;
703218893Sdim        }
704218893Sdim      }
705198090Srdivacky      return 0;
706218893Sdim    }
707239462Sdim
708218893Sdim  unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy);
709226633Sdim  APInt Offset =
710226633Sdim    APInt(BitWidth, TD->getIndexedOffset(Ptr->getType(),
711243830Sdim                                         makeArrayRef((Value *const*)
712243830Sdim                                                        Ops.data() + 1,
713226633Sdim                                                      Ops.size() - 1)));
714239462Sdim  Ptr = StripPtrCastKeepAS(Ptr);
715205218Srdivacky
716205218Srdivacky  // If this is a GEP of a GEP, fold it all into a single GEP.
717205218Srdivacky  while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
718263508Sdim    SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
719205218Srdivacky
720205218Srdivacky    // Do not try the incorporate the sub-GEP if some index is not a number.
721205218Srdivacky    bool AllConstantInt = true;
722205218Srdivacky    for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
723205218Srdivacky      if (!isa<ConstantInt>(NestedOps[i])) {
724205218Srdivacky        AllConstantInt = false;
725205218Srdivacky        break;
726205218Srdivacky      }
727205218Srdivacky    if (!AllConstantInt)
728205218Srdivacky      break;
729205218Srdivacky
730205218Srdivacky    Ptr = cast<Constant>(GEP->getOperand(0));
731205218Srdivacky    Offset += APInt(BitWidth,
732226633Sdim                    TD->getIndexedOffset(Ptr->getType(), NestedOps));
733239462Sdim    Ptr = StripPtrCastKeepAS(Ptr);
734205218Srdivacky  }
735205218Srdivacky
736198090Srdivacky  // If the base value for this address is a literal integer value, fold the
737198090Srdivacky  // getelementptr to the resulting integer value casted to the pointer type.
738205407Srdivacky  APInt BasePtr(BitWidth, 0);
739263508Sdim  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
740263508Sdim    if (CE->getOpcode() == Instruction::IntToPtr) {
741218893Sdim      if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
742218893Sdim        BasePtr = Base->getValue().zextOrTrunc(BitWidth);
743263508Sdim    }
744263508Sdim  }
745263508Sdim
746205407Srdivacky  if (Ptr->isNullValue() || BasePtr != 0) {
747263508Sdim    Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
748198090Srdivacky    return ConstantExpr::getIntToPtr(C, ResultTy);
749198090Srdivacky  }
750198090Srdivacky
751198090Srdivacky  // Otherwise form a regular getelementptr. Recompute the indices so that
752198090Srdivacky  // we eliminate over-indexing of the notional static type array bounds.
753198090Srdivacky  // This makes it easy to determine if the getelementptr is "inbounds".
754198090Srdivacky  // Also, this helps GlobalOpt do SROA on GlobalVariables.
755226633Sdim  Type *Ty = Ptr->getType();
756234982Sdim  assert(Ty->isPointerTy() && "Forming regular GEP of non-pointer type");
757263508Sdim  SmallVector<Constant *, 32> NewIdxs;
758263508Sdim
759198090Srdivacky  do {
760226633Sdim    if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
761204642Srdivacky      if (ATy->isPointerTy()) {
762200581Srdivacky        // The only pointer indexing we'll do is on the first index of the GEP.
763200581Srdivacky        if (!NewIdxs.empty())
764200581Srdivacky          break;
765243830Sdim
766200581Srdivacky        // Only handle pointers to sized types, not pointers to functions.
767200581Srdivacky        if (!ATy->getElementType()->isSized())
768200581Srdivacky          return 0;
769200581Srdivacky      }
770243830Sdim
771198090Srdivacky      // Determine which element of the array the offset points into.
772198090Srdivacky      APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
773198090Srdivacky      if (ElemSize == 0)
774218893Sdim        // The element size is 0. This may be [0 x Ty]*, so just use a zero
775218893Sdim        // index for this level and proceed to the next level to see if it can
776218893Sdim        // accommodate the offset.
777218893Sdim        NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
778218893Sdim      else {
779218893Sdim        // The element size is non-zero divide the offset by the element
780218893Sdim        // size (rounding down), to compute the index at this level.
781218893Sdim        APInt NewIdx = Offset.udiv(ElemSize);
782218893Sdim        Offset -= NewIdx * ElemSize;
783218893Sdim        NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
784218893Sdim      }
785198090Srdivacky      Ty = ATy->getElementType();
786226633Sdim    } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
787234982Sdim      // If we end up with an offset that isn't valid for this struct type, we
788234982Sdim      // can't re-form this GEP in a regular form, so bail out. The pointer
789234982Sdim      // operand likely went through casts that are necessary to make the GEP
790234982Sdim      // sensible.
791234982Sdim      const StructLayout &SL = *TD->getStructLayout(STy);
792234982Sdim      if (Offset.uge(SL.getSizeInBytes()))
793234982Sdim        break;
794234982Sdim
795198090Srdivacky      // Determine which field of the struct the offset points into. The
796234982Sdim      // getZExtValue is fine as we've already ensured that the offset is
797234982Sdim      // within the range representable by the StructLayout API.
798198090Srdivacky      unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
799199481Srdivacky      NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
800199481Srdivacky                                         ElIdx));
801198090Srdivacky      Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
802198090Srdivacky      Ty = STy->getTypeAtIndex(ElIdx);
803198090Srdivacky    } else {
804198090Srdivacky      // We've reached some non-indexable type.
805198090Srdivacky      break;
806198090Srdivacky    }
807263508Sdim  } while (Ty != ResultElementTy);
808198090Srdivacky
809198090Srdivacky  // If we haven't used up the entire offset by descending the static
810198090Srdivacky  // type, then the offset is pointing into the middle of an indivisible
811198090Srdivacky  // member, so we can't simplify it.
812198090Srdivacky  if (Offset != 0)
813198090Srdivacky    return 0;
814198090Srdivacky
815198090Srdivacky  // Create a GEP.
816263508Sdim  Constant *C = ConstantExpr::getGetElementPtr(Ptr, NewIdxs);
817263508Sdim  assert(C->getType()->getPointerElementType() == Ty &&
818198090Srdivacky         "Computed GetElementPtr has unexpected type!");
819198090Srdivacky
820198090Srdivacky  // If we ended up indexing a member with a type that doesn't match
821198090Srdivacky  // the type of what the original indices indexed, add a cast.
822263508Sdim  if (Ty != ResultElementTy)
823198892Srdivacky    C = FoldBitCast(C, ResultTy, *TD);
824198090Srdivacky
825198090Srdivacky  return C;
826193323Sed}
827193323Sed
828193323Sed
829193323Sed
830193323Sed//===----------------------------------------------------------------------===//
831193323Sed// Constant Folding public APIs
832193323Sed//===----------------------------------------------------------------------===//
833193323Sed
834218893Sdim/// ConstantFoldInstruction - Try to constant fold the specified instruction.
835218893Sdim/// If successful, the constant result is returned, if not, null is returned.
836218893Sdim/// Note that this fails if not all of the operands are constant.  Otherwise,
837218893Sdim/// this function can only fail when attempting to fold instructions like loads
838218893Sdim/// and stores, which have no constant expression form.
839234353SdimConstant *llvm::ConstantFoldInstruction(Instruction *I,
840243830Sdim                                        const DataLayout *TD,
841234353Sdim                                        const TargetLibraryInfo *TLI) {
842218893Sdim  // Handle PHI nodes quickly here...
843193323Sed  if (PHINode *PN = dyn_cast<PHINode>(I)) {
844218893Sdim    Constant *CommonValue = 0;
845193323Sed
846218893Sdim    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
847218893Sdim      Value *Incoming = PN->getIncomingValue(i);
848218893Sdim      // If the incoming value is undef then skip it.  Note that while we could
849218893Sdim      // skip the value if it is equal to the phi node itself we choose not to
850218893Sdim      // because that would break the rule that constant folding only applies if
851218893Sdim      // all operands are constants.
852218893Sdim      if (isa<UndefValue>(Incoming))
853218893Sdim        continue;
854239462Sdim      // If the incoming value is not a constant, then give up.
855218893Sdim      Constant *C = dyn_cast<Constant>(Incoming);
856239462Sdim      if (!C)
857218893Sdim        return 0;
858239462Sdim      // Fold the PHI's operands.
859239462Sdim      if (ConstantExpr *NewC = dyn_cast<ConstantExpr>(C))
860239462Sdim        C = ConstantFoldConstantExpression(NewC, TD, TLI);
861239462Sdim      // If the incoming value is a different constant to
862239462Sdim      // the one we saw previously, then give up.
863239462Sdim      if (CommonValue && C != CommonValue)
864239462Sdim        return 0;
865218893Sdim      CommonValue = C;
866218893Sdim    }
867193323Sed
868239462Sdim
869218893Sdim    // If we reach here, all incoming values are the same constant or undef.
870218893Sdim    return CommonValue ? CommonValue : UndefValue::get(PN->getType());
871193323Sed  }
872193323Sed
873193323Sed  // Scan the operand list, checking to see if they are all constants, if so,
874193323Sed  // hand off to ConstantFoldInstOperands.
875193323Sed  SmallVector<Constant*, 8> Ops;
876239462Sdim  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
877239462Sdim    Constant *Op = dyn_cast<Constant>(*i);
878239462Sdim    if (!Op)
879193323Sed      return 0;  // All operands not constant!
880193323Sed
881239462Sdim    // Fold the Instruction's operands.
882239462Sdim    if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(Op))
883239462Sdim      Op = ConstantFoldConstantExpression(NewCE, TD, TLI);
884239462Sdim
885239462Sdim    Ops.push_back(Op);
886239462Sdim  }
887239462Sdim
888193323Sed  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
889199481Srdivacky    return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
890234353Sdim                                           TD, TLI);
891243830Sdim
892198396Srdivacky  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
893198396Srdivacky    return ConstantFoldLoadInst(LI, TD);
894218893Sdim
895263508Sdim  if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I)) {
896218893Sdim    return ConstantExpr::getInsertValue(
897218893Sdim                                cast<Constant>(IVI->getAggregateOperand()),
898218893Sdim                                cast<Constant>(IVI->getInsertedValueOperand()),
899224145Sdim                                IVI->getIndices());
900263508Sdim  }
901218893Sdim
902263508Sdim  if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I)) {
903218893Sdim    return ConstantExpr::getExtractValue(
904218893Sdim                                    cast<Constant>(EVI->getAggregateOperand()),
905224145Sdim                                    EVI->getIndices());
906263508Sdim  }
907218893Sdim
908234353Sdim  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, TD, TLI);
909193323Sed}
910193323Sed
911251662Sdimstatic Constant *
912251662SdimConstantFoldConstantExpressionImpl(const ConstantExpr *CE, const DataLayout *TD,
913251662Sdim                                   const TargetLibraryInfo *TLI,
914251662Sdim                                   SmallPtrSet<ConstantExpr *, 4> &FoldedOps) {
915251662Sdim  SmallVector<Constant *, 8> Ops;
916251662Sdim  for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end(); i != e;
917251662Sdim       ++i) {
918199989Srdivacky    Constant *NewC = cast<Constant>(*i);
919251662Sdim    // Recursively fold the ConstantExpr's operands. If we have already folded
920251662Sdim    // a ConstantExpr, we don't have to process it again.
921251662Sdim    if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC)) {
922251662Sdim      if (FoldedOps.insert(NewCE))
923251662Sdim        NewC = ConstantFoldConstantExpressionImpl(NewCE, TD, TLI, FoldedOps);
924251662Sdim    }
925199989Srdivacky    Ops.push_back(NewC);
926199989Srdivacky  }
927193323Sed
928193323Sed  if (CE->isCompare())
929199481Srdivacky    return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
930234353Sdim                                           TD, TLI);
931234353Sdim  return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, TD, TLI);
932193323Sed}
933193323Sed
934251662Sdim/// ConstantFoldConstantExpression - Attempt to fold the constant expression
935251662Sdim/// using the specified DataLayout.  If successful, the constant result is
936251662Sdim/// result is returned, if not, null is returned.
937251662SdimConstant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
938251662Sdim                                               const DataLayout *TD,
939251662Sdim                                               const TargetLibraryInfo *TLI) {
940251662Sdim  SmallPtrSet<ConstantExpr *, 4> FoldedOps;
941251662Sdim  return ConstantFoldConstantExpressionImpl(CE, TD, TLI, FoldedOps);
942251662Sdim}
943251662Sdim
944193323Sed/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
945193323Sed/// specified opcode and operands.  If successful, the constant result is
946193323Sed/// returned, if not, null is returned.  Note that this function can fail when
947193323Sed/// attempting to fold instructions like loads and stores, which have no
948193323Sed/// constant expression form.
949193323Sed///
950199989Srdivacky/// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
951199989Srdivacky/// information, due to only being passed an opcode and operands. Constant
952199989Srdivacky/// folding using this function strips this information.
953199989Srdivacky///
954243830SdimConstant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
955226633Sdim                                         ArrayRef<Constant *> Ops,
956243830Sdim                                         const DataLayout *TD,
957243830Sdim                                         const TargetLibraryInfo *TLI) {
958193323Sed  // Handle easy binops first.
959193323Sed  if (Instruction::isBinaryOp(Opcode)) {
960263508Sdim    if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1])) {
961199481Srdivacky      if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
962193323Sed        return C;
963263508Sdim    }
964243830Sdim
965193323Sed    return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
966193323Sed  }
967243830Sdim
968193323Sed  switch (Opcode) {
969193323Sed  default: return 0;
970202375Srdivacky  case Instruction::ICmp:
971234353Sdim  case Instruction::FCmp: llvm_unreachable("Invalid for compares");
972193323Sed  case Instruction::Call:
973226633Sdim    if (Function *F = dyn_cast<Function>(Ops.back()))
974193323Sed      if (canConstantFoldCallTo(F))
975234353Sdim        return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI);
976193323Sed    return 0;
977193323Sed  case Instruction::PtrToInt:
978193323Sed    // If the input is a inttoptr, eliminate the pair.  This requires knowing
979193323Sed    // the width of a pointer, so it can't be done in ConstantExpr::getCast.
980193323Sed    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
981193323Sed      if (TD && CE->getOpcode() == Instruction::IntToPtr) {
982193323Sed        Constant *Input = CE->getOperand(0);
983194612Sed        unsigned InWidth = Input->getType()->getScalarSizeInBits();
984263508Sdim        unsigned PtrWidth = TD->getPointerTypeSizeInBits(CE->getType());
985263508Sdim        if (PtrWidth < InWidth) {
986243830Sdim          Constant *Mask =
987263508Sdim            ConstantInt::get(CE->getContext(),
988263508Sdim                             APInt::getLowBitsSet(InWidth, PtrWidth));
989193323Sed          Input = ConstantExpr::getAnd(Input, Mask);
990193323Sed        }
991193323Sed        // Do a zext or trunc to get to the dest size.
992193323Sed        return ConstantExpr::getIntegerCast(Input, DestTy, false);
993193323Sed      }
994193323Sed    }
995193323Sed    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
996193323Sed  case Instruction::IntToPtr:
997193323Sed    // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
998263508Sdim    // the int size is >= the ptr size and the address spaces are the same.
999263508Sdim    // This requires knowing the width of a pointer, so it can't be done in
1000263508Sdim    // ConstantExpr::getCast.
1001263508Sdim    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
1002263508Sdim      if (TD && CE->getOpcode() == Instruction::PtrToInt) {
1003263508Sdim        Constant *SrcPtr = CE->getOperand(0);
1004263508Sdim        unsigned SrcPtrSize = TD->getPointerTypeSizeInBits(SrcPtr->getType());
1005263508Sdim        unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1006204642Srdivacky
1007263508Sdim        if (MidIntSize >= SrcPtrSize) {
1008263508Sdim          unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1009263508Sdim          if (SrcAS == DestTy->getPointerAddressSpace())
1010263508Sdim            return FoldBitCast(CE->getOperand(0), DestTy, *TD);
1011263508Sdim        }
1012263508Sdim      }
1013263508Sdim    }
1014263508Sdim
1015193323Sed    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
1016193323Sed  case Instruction::Trunc:
1017193323Sed  case Instruction::ZExt:
1018193323Sed  case Instruction::SExt:
1019193323Sed  case Instruction::FPTrunc:
1020193323Sed  case Instruction::FPExt:
1021193323Sed  case Instruction::UIToFP:
1022193323Sed  case Instruction::SIToFP:
1023193323Sed  case Instruction::FPToUI:
1024193323Sed  case Instruction::FPToSI:
1025263508Sdim  case Instruction::AddrSpaceCast:
1026193323Sed      return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
1027193323Sed  case Instruction::BitCast:
1028193323Sed    if (TD)
1029198892Srdivacky      return FoldBitCast(Ops[0], DestTy, *TD);
1030193323Sed    return ConstantExpr::getBitCast(Ops[0], DestTy);
1031193323Sed  case Instruction::Select:
1032193323Sed    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1033193323Sed  case Instruction::ExtractElement:
1034193323Sed    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1035193323Sed  case Instruction::InsertElement:
1036193323Sed    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1037193323Sed  case Instruction::ShuffleVector:
1038193323Sed    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1039193323Sed  case Instruction::GetElementPtr:
1040234353Sdim    if (Constant *C = CastGEPIndices(Ops, DestTy, TD, TLI))
1041203954Srdivacky      return C;
1042234353Sdim    if (Constant *C = SymbolicallyEvaluateGEP(Ops, DestTy, TD, TLI))
1043193323Sed      return C;
1044243830Sdim
1045226633Sdim    return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1));
1046193323Sed  }
1047193323Sed}
1048193323Sed
1049193323Sed/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
1050193323Sed/// instruction (icmp/fcmp) with the specified operands.  If it fails, it
1051193323Sed/// returns a constant expression of the specified operands.
1052193323Sed///
1053193323SedConstant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
1054243830Sdim                                                Constant *Ops0, Constant *Ops1,
1055243830Sdim                                                const DataLayout *TD,
1056234353Sdim                                                const TargetLibraryInfo *TLI) {
1057193323Sed  // fold: icmp (inttoptr x), null         -> icmp x, 0
1058193323Sed  // fold: icmp (ptrtoint x), 0            -> icmp x, null
1059193323Sed  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1060193323Sed  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1061193323Sed  //
1062193323Sed  // ConstantExpr::getCompare cannot do this, because it doesn't have TD
1063193323Sed  // around to know if bit truncation is happening.
1064199481Srdivacky  if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1065199481Srdivacky    if (TD && Ops1->isNullValue()) {
1066193323Sed      if (CE0->getOpcode() == Instruction::IntToPtr) {
1067263508Sdim        Type *IntPtrTy = TD->getIntPtrType(CE0->getType());
1068193323Sed        // Convert the integer value to the right size to ensure we get the
1069193323Sed        // proper extension or truncation.
1070193323Sed        Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1071193323Sed                                                   IntPtrTy, false);
1072199481Srdivacky        Constant *Null = Constant::getNullValue(C->getType());
1073234353Sdim        return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
1074193323Sed      }
1075243830Sdim
1076193323Sed      // Only do this transformation if the int is intptrty in size, otherwise
1077193323Sed      // there is a truncation or extension that we aren't modeling.
1078263508Sdim      if (CE0->getOpcode() == Instruction::PtrToInt) {
1079263508Sdim        Type *IntPtrTy = TD->getIntPtrType(CE0->getOperand(0)->getType());
1080263508Sdim        if (CE0->getType() == IntPtrTy) {
1081263508Sdim          Constant *C = CE0->getOperand(0);
1082263508Sdim          Constant *Null = Constant::getNullValue(C->getType());
1083263508Sdim          return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
1084263508Sdim        }
1085193323Sed      }
1086193323Sed    }
1087243830Sdim
1088199481Srdivacky    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1089193323Sed      if (TD && CE0->getOpcode() == CE1->getOpcode()) {
1090263508Sdim        if (CE0->getOpcode() == Instruction::IntToPtr) {
1091263508Sdim          Type *IntPtrTy = TD->getIntPtrType(CE0->getType());
1092193323Sed
1093193323Sed          // Convert the integer value to the right size to ensure we get the
1094193323Sed          // proper extension or truncation.
1095193323Sed          Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1096193323Sed                                                      IntPtrTy, false);
1097193323Sed          Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1098193323Sed                                                      IntPtrTy, false);
1099234353Sdim          return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD, TLI);
1100193323Sed        }
1101193323Sed
1102193323Sed        // Only do this transformation if the int is intptrty in size, otherwise
1103193323Sed        // there is a truncation or extension that we aren't modeling.
1104263508Sdim        if (CE0->getOpcode() == Instruction::PtrToInt) {
1105263508Sdim          Type *IntPtrTy = TD->getIntPtrType(CE0->getOperand(0)->getType());
1106263508Sdim          if (CE0->getType() == IntPtrTy &&
1107263508Sdim              CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1108263508Sdim            return ConstantFoldCompareInstOperands(Predicate,
1109263508Sdim                                                   CE0->getOperand(0),
1110263508Sdim                                                   CE1->getOperand(0),
1111263508Sdim                                                   TD,
1112263508Sdim                                                   TLI);
1113263508Sdim          }
1114263508Sdim        }
1115193323Sed      }
1116193323Sed    }
1117243830Sdim
1118202375Srdivacky    // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1119202375Srdivacky    // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1120202375Srdivacky    if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1121202375Srdivacky        CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1122243830Sdim      Constant *LHS =
1123234353Sdim        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,
1124234353Sdim                                        TD, TLI);
1125243830Sdim      Constant *RHS =
1126234353Sdim        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,
1127234353Sdim                                        TD, TLI);
1128243830Sdim      unsigned OpC =
1129202375Srdivacky        Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1130202375Srdivacky      Constant *Ops[] = { LHS, RHS };
1131234353Sdim      return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, TD, TLI);
1132202375Srdivacky    }
1133193323Sed  }
1134243830Sdim
1135199481Srdivacky  return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1136193323Sed}
1137193323Sed
1138193323Sed
1139193323Sed/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
1140193323Sed/// getelementptr constantexpr, return the constant value being addressed by the
1141193323Sed/// constant expression, or null if something is funny and we can't decide.
1142243830SdimConstant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
1143193323Sed                                                       ConstantExpr *CE) {
1144234353Sdim  if (!CE->getOperand(1)->isNullValue())
1145193323Sed    return 0;  // Do not allow stepping over the value!
1146234353Sdim
1147193323Sed  // Loop over all of the operands, tracking down which value we are
1148234353Sdim  // addressing.
1149234353Sdim  for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
1150234353Sdim    C = C->getAggregateElement(CE->getOperand(i));
1151263508Sdim    if (C == 0)
1152263508Sdim      return 0;
1153234353Sdim  }
1154193323Sed  return C;
1155193323Sed}
1156193323Sed
1157234353Sdim/// ConstantFoldLoadThroughGEPIndices - Given a constant and getelementptr
1158234353Sdim/// indices (with an *implied* zero pointer index that is not in the list),
1159234353Sdim/// return the constant value being addressed by a virtual load, or null if
1160234353Sdim/// something is funny and we can't decide.
1161234353SdimConstant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
1162234353Sdim                                                  ArrayRef<Constant*> Indices) {
1163234353Sdim  // Loop over all of the operands, tracking down which value we are
1164234353Sdim  // addressing.
1165234353Sdim  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1166234353Sdim    C = C->getAggregateElement(Indices[i]);
1167263508Sdim    if (C == 0)
1168263508Sdim      return 0;
1169234353Sdim  }
1170234353Sdim  return C;
1171234353Sdim}
1172193323Sed
1173234353Sdim
1174193323Sed//===----------------------------------------------------------------------===//
1175193323Sed//  Constant Folding for Calls
1176193323Sed//
1177193323Sed
1178193323Sed/// canConstantFoldCallTo - Return true if its even possible to fold a call to
1179193323Sed/// the specified function.
1180263508Sdimbool llvm::canConstantFoldCallTo(const Function *F) {
1181193323Sed  switch (F->getIntrinsicID()) {
1182249423Sdim  case Intrinsic::fabs:
1183249423Sdim  case Intrinsic::log:
1184249423Sdim  case Intrinsic::log2:
1185249423Sdim  case Intrinsic::log10:
1186249423Sdim  case Intrinsic::exp:
1187249423Sdim  case Intrinsic::exp2:
1188249423Sdim  case Intrinsic::floor:
1189193323Sed  case Intrinsic::sqrt:
1190234353Sdim  case Intrinsic::pow:
1191193323Sed  case Intrinsic::powi:
1192193323Sed  case Intrinsic::bswap:
1193193323Sed  case Intrinsic::ctpop:
1194193323Sed  case Intrinsic::ctlz:
1195193323Sed  case Intrinsic::cttz:
1196221345Sdim  case Intrinsic::sadd_with_overflow:
1197198090Srdivacky  case Intrinsic::uadd_with_overflow:
1198221345Sdim  case Intrinsic::ssub_with_overflow:
1199198090Srdivacky  case Intrinsic::usub_with_overflow:
1200218893Sdim  case Intrinsic::smul_with_overflow:
1201221345Sdim  case Intrinsic::umul_with_overflow:
1202205407Srdivacky  case Intrinsic::convert_from_fp16:
1203205407Srdivacky  case Intrinsic::convert_to_fp16:
1204218893Sdim  case Intrinsic::x86_sse_cvtss2si:
1205218893Sdim  case Intrinsic::x86_sse_cvtss2si64:
1206218893Sdim  case Intrinsic::x86_sse_cvttss2si:
1207218893Sdim  case Intrinsic::x86_sse_cvttss2si64:
1208218893Sdim  case Intrinsic::x86_sse2_cvtsd2si:
1209218893Sdim  case Intrinsic::x86_sse2_cvtsd2si64:
1210218893Sdim  case Intrinsic::x86_sse2_cvttsd2si:
1211218893Sdim  case Intrinsic::x86_sse2_cvttsd2si64:
1212193323Sed    return true;
1213198090Srdivacky  default:
1214198090Srdivacky    return false;
1215198090Srdivacky  case 0: break;
1216193323Sed  }
1217193323Sed
1218263508Sdim  if (!F->hasName())
1219263508Sdim    return false;
1220198090Srdivacky  StringRef Name = F->getName();
1221243830Sdim
1222193323Sed  // In these cases, the check of the length is required.  We don't want to
1223193323Sed  // return true for a name like "cos\0blah" which strcmp would return equal to
1224193323Sed  // "cos", but has length 8.
1225198090Srdivacky  switch (Name[0]) {
1226193323Sed  default: return false;
1227193323Sed  case 'a':
1228249423Sdim    return Name == "acos" || Name == "asin" || Name == "atan" || Name =="atan2";
1229193323Sed  case 'c':
1230198090Srdivacky    return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
1231193323Sed  case 'e':
1232223017Sdim    return Name == "exp" || Name == "exp2";
1233193323Sed  case 'f':
1234198090Srdivacky    return Name == "fabs" || Name == "fmod" || Name == "floor";
1235193323Sed  case 'l':
1236198090Srdivacky    return Name == "log" || Name == "log10";
1237193323Sed  case 'p':
1238198090Srdivacky    return Name == "pow";
1239193323Sed  case 's':
1240198090Srdivacky    return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
1241198090Srdivacky      Name == "sinf" || Name == "sqrtf";
1242193323Sed  case 't':
1243198090Srdivacky    return Name == "tan" || Name == "tanh";
1244193323Sed  }
1245193323Sed}
1246193323Sed
1247243830Sdimstatic Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
1248226633Sdim                                Type *Ty) {
1249218893Sdim  sys::llvm_fenv_clearexcept();
1250193323Sed  V = NativeFP(V);
1251218893Sdim  if (sys::llvm_fenv_testexcept()) {
1252218893Sdim    sys::llvm_fenv_clearexcept();
1253193323Sed    return 0;
1254193323Sed  }
1255243830Sdim
1256249423Sdim  if (Ty->isHalfTy()) {
1257249423Sdim    APFloat APF(V);
1258249423Sdim    bool unused;
1259249423Sdim    APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused);
1260249423Sdim    return ConstantFP::get(Ty->getContext(), APF);
1261249423Sdim  }
1262198090Srdivacky  if (Ty->isFloatTy())
1263199481Srdivacky    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1264198090Srdivacky  if (Ty->isDoubleTy())
1265199481Srdivacky    return ConstantFP::get(Ty->getContext(), APFloat(V));
1266249423Sdim  llvm_unreachable("Can only constant fold half/float/double");
1267193323Sed}
1268193323Sed
1269193323Sedstatic Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1270226633Sdim                                      double V, double W, Type *Ty) {
1271218893Sdim  sys::llvm_fenv_clearexcept();
1272193323Sed  V = NativeFP(V, W);
1273218893Sdim  if (sys::llvm_fenv_testexcept()) {
1274218893Sdim    sys::llvm_fenv_clearexcept();
1275193323Sed    return 0;
1276193323Sed  }
1277243830Sdim
1278249423Sdim  if (Ty->isHalfTy()) {
1279249423Sdim    APFloat APF(V);
1280249423Sdim    bool unused;
1281249423Sdim    APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused);
1282249423Sdim    return ConstantFP::get(Ty->getContext(), APF);
1283249423Sdim  }
1284198090Srdivacky  if (Ty->isFloatTy())
1285199481Srdivacky    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1286198090Srdivacky  if (Ty->isDoubleTy())
1287199481Srdivacky    return ConstantFP::get(Ty->getContext(), APFloat(V));
1288249423Sdim  llvm_unreachable("Can only constant fold half/float/double");
1289193323Sed}
1290193323Sed
1291218893Sdim/// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
1292218893Sdim/// conversion of a constant floating point. If roundTowardZero is false, the
1293218893Sdim/// default IEEE rounding is used (toward nearest, ties to even). This matches
1294218893Sdim/// the behavior of the non-truncating SSE instructions in the default rounding
1295218893Sdim/// mode. The desired integer type Ty is used to select how many bits are
1296218893Sdim/// available for the result. Returns null if the conversion cannot be
1297218893Sdim/// performed, otherwise returns the Constant value resulting from the
1298218893Sdim/// conversion.
1299234353Sdimstatic Constant *ConstantFoldConvertToInt(const APFloat &Val,
1300234353Sdim                                          bool roundTowardZero, Type *Ty) {
1301218893Sdim  // All of these conversion intrinsics form an integer of at most 64bits.
1302263508Sdim  unsigned ResultWidth = Ty->getIntegerBitWidth();
1303218893Sdim  assert(ResultWidth <= 64 &&
1304218893Sdim         "Can only constant fold conversions to 64 and 32 bit ints");
1305218893Sdim
1306218893Sdim  uint64_t UIntVal;
1307218893Sdim  bool isExact = false;
1308218893Sdim  APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1309218893Sdim                                              : APFloat::rmNearestTiesToEven;
1310218893Sdim  APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
1311218893Sdim                                                  /*isSigned=*/true, mode,
1312218893Sdim                                                  &isExact);
1313218893Sdim  if (status != APFloat::opOK && status != APFloat::opInexact)
1314218893Sdim    return 0;
1315218893Sdim  return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
1316218893Sdim}
1317218893Sdim
1318193323Sed/// ConstantFoldCall - Attempt to constant fold a call to the specified function
1319193323Sed/// with the specified arguments, returning null if unsuccessful.
1320193323SedConstant *
1321234353Sdimllvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
1322234353Sdim                       const TargetLibraryInfo *TLI) {
1323263508Sdim  if (!F->hasName())
1324263508Sdim    return 0;
1325198090Srdivacky  StringRef Name = F->getName();
1326198090Srdivacky
1327226633Sdim  Type *Ty = F->getReturnType();
1328226633Sdim  if (Operands.size() == 1) {
1329193323Sed    if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
1330218893Sdim      if (F->getIntrinsicID() == Intrinsic::convert_to_fp16) {
1331205407Srdivacky        APFloat Val(Op->getValueAPF());
1332205407Srdivacky
1333205407Srdivacky        bool lost = false;
1334205407Srdivacky        Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
1335205407Srdivacky
1336205407Srdivacky        return ConstantInt::get(F->getContext(), Val.bitcastToAPInt());
1337205407Srdivacky      }
1338234353Sdim      if (!TLI)
1339234353Sdim        return 0;
1340205407Srdivacky
1341249423Sdim      if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1342193323Sed        return 0;
1343218893Sdim
1344218893Sdim      /// We only fold functions with finite arguments. Folding NaN and inf is
1345218893Sdim      /// likely to be aborted with an exception anyway, and some host libms
1346218893Sdim      /// have known errors raising exceptions.
1347218893Sdim      if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
1348218893Sdim        return 0;
1349218893Sdim
1350193323Sed      /// Currently APFloat versions of these functions do not exist, so we use
1351193323Sed      /// the host native double versions.  Float versions are not called
1352193323Sed      /// directly but for all these it is true (float)(f((double)arg)) ==
1353193323Sed      /// f(arg).  Long double not supported yet.
1354249423Sdim      double V;
1355249423Sdim      if (Ty->isFloatTy())
1356249423Sdim        V = Op->getValueAPF().convertToFloat();
1357249423Sdim      else if (Ty->isDoubleTy())
1358249423Sdim        V = Op->getValueAPF().convertToDouble();
1359249423Sdim      else {
1360249423Sdim        bool unused;
1361249423Sdim        APFloat APF = Op->getValueAPF();
1362249423Sdim        APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
1363249423Sdim        V = APF.convertToDouble();
1364249423Sdim      }
1365249423Sdim
1366249423Sdim      switch (F->getIntrinsicID()) {
1367249423Sdim        default: break;
1368249423Sdim        case Intrinsic::fabs:
1369249423Sdim          return ConstantFoldFP(fabs, V, Ty);
1370249423Sdim#if HAVE_LOG2
1371249423Sdim        case Intrinsic::log2:
1372249423Sdim          return ConstantFoldFP(log2, V, Ty);
1373249423Sdim#endif
1374249423Sdim#if HAVE_LOG
1375249423Sdim        case Intrinsic::log:
1376249423Sdim          return ConstantFoldFP(log, V, Ty);
1377249423Sdim#endif
1378249423Sdim#if HAVE_LOG10
1379249423Sdim        case Intrinsic::log10:
1380249423Sdim          return ConstantFoldFP(log10, V, Ty);
1381249423Sdim#endif
1382249423Sdim#if HAVE_EXP
1383249423Sdim        case Intrinsic::exp:
1384249423Sdim          return ConstantFoldFP(exp, V, Ty);
1385249423Sdim#endif
1386249423Sdim#if HAVE_EXP2
1387249423Sdim        case Intrinsic::exp2:
1388249423Sdim          return ConstantFoldFP(exp2, V, Ty);
1389249423Sdim#endif
1390249423Sdim        case Intrinsic::floor:
1391249423Sdim          return ConstantFoldFP(floor, V, Ty);
1392249423Sdim      }
1393249423Sdim
1394198090Srdivacky      switch (Name[0]) {
1395193323Sed      case 'a':
1396234353Sdim        if (Name == "acos" && TLI->has(LibFunc::acos))
1397199481Srdivacky          return ConstantFoldFP(acos, V, Ty);
1398234353Sdim        else if (Name == "asin" && TLI->has(LibFunc::asin))
1399199481Srdivacky          return ConstantFoldFP(asin, V, Ty);
1400234353Sdim        else if (Name == "atan" && TLI->has(LibFunc::atan))
1401199481Srdivacky          return ConstantFoldFP(atan, V, Ty);
1402193323Sed        break;
1403193323Sed      case 'c':
1404234353Sdim        if (Name == "ceil" && TLI->has(LibFunc::ceil))
1405199481Srdivacky          return ConstantFoldFP(ceil, V, Ty);
1406234353Sdim        else if (Name == "cos" && TLI->has(LibFunc::cos))
1407199481Srdivacky          return ConstantFoldFP(cos, V, Ty);
1408234353Sdim        else if (Name == "cosh" && TLI->has(LibFunc::cosh))
1409199481Srdivacky          return ConstantFoldFP(cosh, V, Ty);
1410234353Sdim        else if (Name == "cosf" && TLI->has(LibFunc::cosf))
1411199481Srdivacky          return ConstantFoldFP(cos, V, Ty);
1412193323Sed        break;
1413193323Sed      case 'e':
1414234353Sdim        if (Name == "exp" && TLI->has(LibFunc::exp))
1415199481Srdivacky          return ConstantFoldFP(exp, V, Ty);
1416243830Sdim
1417234353Sdim        if (Name == "exp2" && TLI->has(LibFunc::exp2)) {
1418223017Sdim          // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
1419223017Sdim          // C99 library.
1420223017Sdim          return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1421223017Sdim        }
1422193323Sed        break;
1423193323Sed      case 'f':
1424234353Sdim        if (Name == "fabs" && TLI->has(LibFunc::fabs))
1425199481Srdivacky          return ConstantFoldFP(fabs, V, Ty);
1426234353Sdim        else if (Name == "floor" && TLI->has(LibFunc::floor))
1427199481Srdivacky          return ConstantFoldFP(floor, V, Ty);
1428193323Sed        break;
1429193323Sed      case 'l':
1430234353Sdim        if (Name == "log" && V > 0 && TLI->has(LibFunc::log))
1431199481Srdivacky          return ConstantFoldFP(log, V, Ty);
1432234353Sdim        else if (Name == "log10" && V > 0 && TLI->has(LibFunc::log10))
1433199481Srdivacky          return ConstantFoldFP(log10, V, Ty);
1434218893Sdim        else if (F->getIntrinsicID() == Intrinsic::sqrt &&
1435249423Sdim                 (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())) {
1436193323Sed          if (V >= -0.0)
1437199481Srdivacky            return ConstantFoldFP(sqrt, V, Ty);
1438193323Sed          else // Undefined
1439193323Sed            return Constant::getNullValue(Ty);
1440193323Sed        }
1441193323Sed        break;
1442193323Sed      case 's':
1443234353Sdim        if (Name == "sin" && TLI->has(LibFunc::sin))
1444199481Srdivacky          return ConstantFoldFP(sin, V, Ty);
1445234353Sdim        else if (Name == "sinh" && TLI->has(LibFunc::sinh))
1446199481Srdivacky          return ConstantFoldFP(sinh, V, Ty);
1447234353Sdim        else if (Name == "sqrt" && V >= 0 && TLI->has(LibFunc::sqrt))
1448199481Srdivacky          return ConstantFoldFP(sqrt, V, Ty);
1449234353Sdim        else if (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc::sqrtf))
1450199481Srdivacky          return ConstantFoldFP(sqrt, V, Ty);
1451234353Sdim        else if (Name == "sinf" && TLI->has(LibFunc::sinf))
1452199481Srdivacky          return ConstantFoldFP(sin, V, Ty);
1453193323Sed        break;
1454193323Sed      case 't':
1455234353Sdim        if (Name == "tan" && TLI->has(LibFunc::tan))
1456199481Srdivacky          return ConstantFoldFP(tan, V, Ty);
1457234353Sdim        else if (Name == "tanh" && TLI->has(LibFunc::tanh))
1458199481Srdivacky          return ConstantFoldFP(tanh, V, Ty);
1459193323Sed        break;
1460193323Sed      default:
1461193323Sed        break;
1462193323Sed      }
1463198090Srdivacky      return 0;
1464198090Srdivacky    }
1465218893Sdim
1466198090Srdivacky    if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
1467218893Sdim      switch (F->getIntrinsicID()) {
1468218893Sdim      case Intrinsic::bswap:
1469199481Srdivacky        return ConstantInt::get(F->getContext(), Op->getValue().byteSwap());
1470218893Sdim      case Intrinsic::ctpop:
1471193323Sed        return ConstantInt::get(Ty, Op->getValue().countPopulation());
1472218893Sdim      case Intrinsic::convert_from_fp16: {
1473249423Sdim        APFloat Val(APFloat::IEEEhalf, Op->getValue());
1474205407Srdivacky
1475205407Srdivacky        bool lost = false;
1476205407Srdivacky        APFloat::opStatus status =
1477205407Srdivacky          Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
1478205407Srdivacky
1479205407Srdivacky        // Conversion is always precise.
1480218893Sdim        (void)status;
1481205407Srdivacky        assert(status == APFloat::opOK && !lost &&
1482205407Srdivacky               "Precision lost during fp16 constfolding");
1483205407Srdivacky
1484205407Srdivacky        return ConstantFP::get(F->getContext(), Val);
1485205407Srdivacky      }
1486218893Sdim      default:
1487218893Sdim        return 0;
1488218893Sdim      }
1489193323Sed    }
1490218893Sdim
1491234353Sdim    // Support ConstantVector in case we have an Undef in the top.
1492243830Sdim    if (isa<ConstantVector>(Operands[0]) ||
1493234353Sdim        isa<ConstantDataVector>(Operands[0])) {
1494234353Sdim      Constant *Op = cast<Constant>(Operands[0]);
1495218893Sdim      switch (F->getIntrinsicID()) {
1496218893Sdim      default: break;
1497218893Sdim      case Intrinsic::x86_sse_cvtss2si:
1498218893Sdim      case Intrinsic::x86_sse_cvtss2si64:
1499218893Sdim      case Intrinsic::x86_sse2_cvtsd2si:
1500218893Sdim      case Intrinsic::x86_sse2_cvtsd2si64:
1501234353Sdim        if (ConstantFP *FPOp =
1502234353Sdim              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1503234353Sdim          return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1504234353Sdim                                          /*roundTowardZero=*/false, Ty);
1505218893Sdim      case Intrinsic::x86_sse_cvttss2si:
1506218893Sdim      case Intrinsic::x86_sse_cvttss2si64:
1507218893Sdim      case Intrinsic::x86_sse2_cvttsd2si:
1508218893Sdim      case Intrinsic::x86_sse2_cvttsd2si64:
1509234353Sdim        if (ConstantFP *FPOp =
1510234353Sdim              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1511243830Sdim          return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1512234353Sdim                                          /*roundTowardZero=*/true, Ty);
1513218893Sdim      }
1514218893Sdim    }
1515243830Sdim
1516204642Srdivacky    if (isa<UndefValue>(Operands[0])) {
1517218893Sdim      if (F->getIntrinsicID() == Intrinsic::bswap)
1518204642Srdivacky        return Operands[0];
1519204642Srdivacky      return 0;
1520204642Srdivacky    }
1521204642Srdivacky
1522198090Srdivacky    return 0;
1523198090Srdivacky  }
1524218893Sdim
1525226633Sdim  if (Operands.size() == 2) {
1526193323Sed    if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1527249423Sdim      if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1528193323Sed        return 0;
1529249423Sdim      double Op1V;
1530249423Sdim      if (Ty->isFloatTy())
1531249423Sdim        Op1V = Op1->getValueAPF().convertToFloat();
1532249423Sdim      else if (Ty->isDoubleTy())
1533249423Sdim        Op1V = Op1->getValueAPF().convertToDouble();
1534249423Sdim      else {
1535249423Sdim        bool unused;
1536249423Sdim        APFloat APF = Op1->getValueAPF();
1537249423Sdim        APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
1538249423Sdim        Op1V = APF.convertToDouble();
1539249423Sdim      }
1540249423Sdim
1541193323Sed      if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1542198090Srdivacky        if (Op2->getType() != Op1->getType())
1543198090Srdivacky          return 0;
1544234353Sdim
1545249423Sdim        double Op2V;
1546249423Sdim        if (Ty->isFloatTy())
1547249423Sdim          Op2V = Op2->getValueAPF().convertToFloat();
1548249423Sdim        else if (Ty->isDoubleTy())
1549249423Sdim          Op2V = Op2->getValueAPF().convertToDouble();
1550249423Sdim        else {
1551249423Sdim          bool unused;
1552249423Sdim          APFloat APF = Op2->getValueAPF();
1553249423Sdim          APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
1554249423Sdim          Op2V = APF.convertToDouble();
1555249423Sdim        }
1556193323Sed
1557234353Sdim        if (F->getIntrinsicID() == Intrinsic::pow) {
1558199481Srdivacky          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1559234353Sdim        }
1560234353Sdim        if (!TLI)
1561234353Sdim          return 0;
1562234353Sdim        if (Name == "pow" && TLI->has(LibFunc::pow))
1563234353Sdim          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1564234353Sdim        if (Name == "fmod" && TLI->has(LibFunc::fmod))
1565199481Srdivacky          return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
1566234353Sdim        if (Name == "atan2" && TLI->has(LibFunc::atan2))
1567199481Srdivacky          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
1568193323Sed      } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
1569249423Sdim        if (F->getIntrinsicID() == Intrinsic::powi && Ty->isHalfTy())
1570249423Sdim          return ConstantFP::get(F->getContext(),
1571249423Sdim                                 APFloat((float)std::pow((float)Op1V,
1572249423Sdim                                                 (int)Op2C->getZExtValue())));
1573218893Sdim        if (F->getIntrinsicID() == Intrinsic::powi && Ty->isFloatTy())
1574199481Srdivacky          return ConstantFP::get(F->getContext(),
1575199481Srdivacky                                 APFloat((float)std::pow((float)Op1V,
1576193323Sed                                                 (int)Op2C->getZExtValue())));
1577218893Sdim        if (F->getIntrinsicID() == Intrinsic::powi && Ty->isDoubleTy())
1578199481Srdivacky          return ConstantFP::get(F->getContext(),
1579199481Srdivacky                                 APFloat((double)std::pow((double)Op1V,
1580199481Srdivacky                                                   (int)Op2C->getZExtValue())));
1581198090Srdivacky      }
1582198090Srdivacky      return 0;
1583198090Srdivacky    }
1584243830Sdim
1585198090Srdivacky    if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
1586198090Srdivacky      if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
1587198090Srdivacky        switch (F->getIntrinsicID()) {
1588198090Srdivacky        default: break;
1589218893Sdim        case Intrinsic::sadd_with_overflow:
1590218893Sdim        case Intrinsic::uadd_with_overflow:
1591218893Sdim        case Intrinsic::ssub_with_overflow:
1592218893Sdim        case Intrinsic::usub_with_overflow:
1593221345Sdim        case Intrinsic::smul_with_overflow:
1594221345Sdim        case Intrinsic::umul_with_overflow: {
1595218893Sdim          APInt Res;
1596218893Sdim          bool Overflow;
1597218893Sdim          switch (F->getIntrinsicID()) {
1598234353Sdim          default: llvm_unreachable("Invalid case");
1599218893Sdim          case Intrinsic::sadd_with_overflow:
1600218893Sdim            Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
1601218893Sdim            break;
1602218893Sdim          case Intrinsic::uadd_with_overflow:
1603218893Sdim            Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
1604218893Sdim            break;
1605218893Sdim          case Intrinsic::ssub_with_overflow:
1606218893Sdim            Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
1607218893Sdim            break;
1608218893Sdim          case Intrinsic::usub_with_overflow:
1609218893Sdim            Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
1610218893Sdim            break;
1611218893Sdim          case Intrinsic::smul_with_overflow:
1612218893Sdim            Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
1613218893Sdim            break;
1614221345Sdim          case Intrinsic::umul_with_overflow:
1615221345Sdim            Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
1616221345Sdim            break;
1617218893Sdim          }
1618198090Srdivacky          Constant *Ops[] = {
1619218893Sdim            ConstantInt::get(F->getContext(), Res),
1620218893Sdim            ConstantInt::get(Type::getInt1Ty(F->getContext()), Overflow)
1621198090Srdivacky          };
1622224145Sdim          return ConstantStruct::get(cast<StructType>(F->getReturnType()), Ops);
1623193323Sed        }
1624234353Sdim        case Intrinsic::cttz:
1625249423Sdim          if (Op2->isOne() && Op1->isZero()) // cttz(0, 1) is undef.
1626249423Sdim            return UndefValue::get(Ty);
1627234353Sdim          return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
1628234353Sdim        case Intrinsic::ctlz:
1629249423Sdim          if (Op2->isOne() && Op1->isZero()) // ctlz(0, 1) is undef.
1630249423Sdim            return UndefValue::get(Ty);
1631234353Sdim          return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
1632198090Srdivacky        }
1633193323Sed      }
1634243830Sdim
1635198090Srdivacky      return 0;
1636193323Sed    }
1637198090Srdivacky    return 0;
1638193323Sed  }
1639193323Sed  return 0;
1640193323Sed}
1641