DataLayout.h revision 263508
1//===--------- llvm/DataLayout.h - Data size & alignment info ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines layout properties related to datatype size/offset/alignment
11// information.  It uses lazy annotations to cache information about how
12// structure types are laid out and used.
13//
14// This structure should be created once, filled in if the defaults are not
15// correct and then passed around by const&.  None of the members functions
16// require modification to the object.
17//
18//===----------------------------------------------------------------------===//
19
20#ifndef LLVM_IR_DATALAYOUT_H
21#define LLVM_IR_DATALAYOUT_H
22
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/IR/DerivedTypes.h"
26#include "llvm/IR/Type.h"
27#include "llvm/Pass.h"
28#include "llvm/Support/DataTypes.h"
29
30namespace llvm {
31
32class Value;
33class Type;
34class IntegerType;
35class StructType;
36class StructLayout;
37class GlobalVariable;
38class LLVMContext;
39template<typename T>
40class ArrayRef;
41
42/// Enum used to categorize the alignment types stored by LayoutAlignElem
43enum AlignTypeEnum {
44  INVALID_ALIGN = 0,                 ///< An invalid alignment
45  INTEGER_ALIGN = 'i',               ///< Integer type alignment
46  VECTOR_ALIGN = 'v',                ///< Vector type alignment
47  FLOAT_ALIGN = 'f',                 ///< Floating point type alignment
48  AGGREGATE_ALIGN = 'a',             ///< Aggregate alignment
49  STACK_ALIGN = 's'                  ///< Stack objects alignment
50};
51
52/// Layout alignment element.
53///
54/// Stores the alignment data associated with a given alignment type (integer,
55/// vector, float) and type bit width.
56///
57/// @note The unusual order of elements in the structure attempts to reduce
58/// padding and make the structure slightly more cache friendly.
59struct LayoutAlignElem {
60  unsigned AlignType    : 8;  ///< Alignment type (AlignTypeEnum)
61  unsigned TypeBitWidth : 24; ///< Type bit width
62  unsigned ABIAlign     : 16; ///< ABI alignment for this type/bitw
63  unsigned PrefAlign    : 16; ///< Pref. alignment for this type/bitw
64
65  /// Initializer
66  static LayoutAlignElem get(AlignTypeEnum align_type, unsigned abi_align,
67                             unsigned pref_align, uint32_t bit_width);
68  /// Equality predicate
69  bool operator==(const LayoutAlignElem &rhs) const;
70};
71
72/// Layout pointer alignment element.
73///
74/// Stores the alignment data associated with a given pointer and address space.
75///
76/// @note The unusual order of elements in the structure attempts to reduce
77/// padding and make the structure slightly more cache friendly.
78struct PointerAlignElem {
79  unsigned            ABIAlign;       ///< ABI alignment for this type/bitw
80  unsigned            PrefAlign;      ///< Pref. alignment for this type/bitw
81  uint32_t            TypeBitWidth;   ///< Type bit width
82  uint32_t            AddressSpace;   ///< Address space for the pointer type
83
84  /// Initializer
85  static PointerAlignElem get(uint32_t addr_space, unsigned abi_align,
86                             unsigned pref_align, uint32_t bit_width);
87  /// Equality predicate
88  bool operator==(const PointerAlignElem &rhs) const;
89};
90
91
92/// DataLayout - This class holds a parsed version of the target data layout
93/// string in a module and provides methods for querying it.  The target data
94/// layout string is specified *by the target* - a frontend generating LLVM IR
95/// is required to generate the right target data for the target being codegen'd
96/// to.  If some measure of portability is desired, an empty string may be
97/// specified in the module.
98class DataLayout : public ImmutablePass {
99private:
100  bool          LittleEndian;          ///< Defaults to false
101  unsigned      StackNaturalAlign;     ///< Stack natural alignment
102
103  SmallVector<unsigned char, 8> LegalIntWidths; ///< Legal Integers.
104
105  /// Alignments - Where the primitive type alignment data is stored.
106  ///
107  /// @sa init().
108  /// @note Could support multiple size pointer alignments, e.g., 32-bit
109  /// pointers vs. 64-bit pointers by extending LayoutAlignment, but for now,
110  /// we don't.
111  SmallVector<LayoutAlignElem, 16> Alignments;
112  DenseMap<unsigned, PointerAlignElem> Pointers;
113
114  /// InvalidAlignmentElem - This member is a signal that a requested alignment
115  /// type and bit width were not found in the SmallVector.
116  static const LayoutAlignElem InvalidAlignmentElem;
117
118  /// InvalidPointerElem - This member is a signal that a requested pointer
119  /// type and bit width were not found in the DenseSet.
120  static const PointerAlignElem InvalidPointerElem;
121
122  // The StructType -> StructLayout map.
123  mutable void *LayoutMap;
124
125  //! Set/initialize target alignments
126  void setAlignment(AlignTypeEnum align_type, unsigned abi_align,
127                    unsigned pref_align, uint32_t bit_width);
128  unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
129                            bool ABIAlign, Type *Ty) const;
130
131  //! Set/initialize pointer alignments
132  void setPointerAlignment(uint32_t addr_space, unsigned abi_align,
133      unsigned pref_align, uint32_t bit_width);
134
135  //! Internal helper method that returns requested alignment for type.
136  unsigned getAlignment(Type *Ty, bool abi_or_pref) const;
137
138  /// Valid alignment predicate.
139  ///
140  /// Predicate that tests a LayoutAlignElem reference returned by get() against
141  /// InvalidAlignmentElem.
142  bool validAlignment(const LayoutAlignElem &align) const {
143    return &align != &InvalidAlignmentElem;
144  }
145
146  /// Valid pointer predicate.
147  ///
148  /// Predicate that tests a PointerAlignElem reference returned by get() against
149  /// InvalidPointerElem.
150  bool validPointer(const PointerAlignElem &align) const {
151    return &align != &InvalidPointerElem;
152  }
153
154  /// Parses a target data specification string. Assert if the string is
155  /// malformed.
156  void parseSpecifier(StringRef LayoutDescription);
157
158public:
159  /// Default ctor.
160  ///
161  /// @note This has to exist, because this is a pass, but it should never be
162  /// used.
163  DataLayout();
164
165  /// Constructs a DataLayout from a specification string. See init().
166  explicit DataLayout(StringRef LayoutDescription)
167    : ImmutablePass(ID) {
168    init(LayoutDescription);
169  }
170
171  /// Initialize target data from properties stored in the module.
172  explicit DataLayout(const Module *M);
173
174  DataLayout(const DataLayout &DL) :
175    ImmutablePass(ID),
176    LittleEndian(DL.isLittleEndian()),
177    StackNaturalAlign(DL.StackNaturalAlign),
178    LegalIntWidths(DL.LegalIntWidths),
179    Alignments(DL.Alignments),
180    Pointers(DL.Pointers),
181    LayoutMap(0)
182  { }
183
184  ~DataLayout();  // Not virtual, do not subclass this class
185
186  /// DataLayout is an immutable pass, but holds state.  This allows the pass
187  /// manager to clear its mutable state.
188  bool doFinalization(Module &M);
189
190  /// Parse a data layout string (with fallback to default values). Ensure that
191  /// the data layout pass is registered.
192  void init(StringRef LayoutDescription);
193
194  /// Layout endianness...
195  bool isLittleEndian() const { return LittleEndian; }
196  bool isBigEndian() const { return !LittleEndian; }
197
198  /// getStringRepresentation - Return the string representation of the
199  /// DataLayout.  This representation is in the same format accepted by the
200  /// string constructor above.
201  std::string getStringRepresentation() const;
202
203  /// isLegalInteger - This function returns true if the specified type is
204  /// known to be a native integer type supported by the CPU.  For example,
205  /// i64 is not native on most 32-bit CPUs and i37 is not native on any known
206  /// one.  This returns false if the integer width is not legal.
207  ///
208  /// The width is specified in bits.
209  ///
210  bool isLegalInteger(unsigned Width) const {
211    for (unsigned i = 0, e = (unsigned)LegalIntWidths.size(); i != e; ++i)
212      if (LegalIntWidths[i] == Width)
213        return true;
214    return false;
215  }
216
217  bool isIllegalInteger(unsigned Width) const {
218    return !isLegalInteger(Width);
219  }
220
221  /// Returns true if the given alignment exceeds the natural stack alignment.
222  bool exceedsNaturalStackAlignment(unsigned Align) const {
223    return (StackNaturalAlign != 0) && (Align > StackNaturalAlign);
224  }
225
226  /// fitsInLegalInteger - This function returns true if the specified type fits
227  /// in a native integer type supported by the CPU.  For example, if the CPU
228  /// only supports i32 as a native integer type, then i27 fits in a legal
229  // integer type but i45 does not.
230  bool fitsInLegalInteger(unsigned Width) const {
231    for (unsigned i = 0, e = (unsigned)LegalIntWidths.size(); i != e; ++i)
232      if (Width <= LegalIntWidths[i])
233        return true;
234    return false;
235  }
236
237  /// Layout pointer alignment
238  /// FIXME: The defaults need to be removed once all of
239  /// the backends/clients are updated.
240  unsigned getPointerABIAlignment(unsigned AS = 0) const {
241    DenseMap<unsigned, PointerAlignElem>::const_iterator val = Pointers.find(AS);
242    if (val == Pointers.end()) {
243      val = Pointers.find(0);
244    }
245    return val->second.ABIAlign;
246  }
247
248  /// Return target's alignment for stack-based pointers
249  /// FIXME: The defaults need to be removed once all of
250  /// the backends/clients are updated.
251  unsigned getPointerPrefAlignment(unsigned AS = 0) const {
252    DenseMap<unsigned, PointerAlignElem>::const_iterator val = Pointers.find(AS);
253    if (val == Pointers.end()) {
254      val = Pointers.find(0);
255    }
256    return val->second.PrefAlign;
257  }
258  /// Layout pointer size
259  /// FIXME: The defaults need to be removed once all of
260  /// the backends/clients are updated.
261  unsigned getPointerSize(unsigned AS = 0) const {
262    DenseMap<unsigned, PointerAlignElem>::const_iterator val = Pointers.find(AS);
263    if (val == Pointers.end()) {
264      val = Pointers.find(0);
265    }
266    return val->second.TypeBitWidth;
267  }
268  /// Layout pointer size, in bits
269  /// FIXME: The defaults need to be removed once all of
270  /// the backends/clients are updated.
271  unsigned getPointerSizeInBits(unsigned AS = 0) const {
272    return getPointerSize(AS) * 8;
273  }
274
275  /// Layout pointer size, in bits, based on the type.  If this function is
276  /// called with a pointer type, then the type size of the pointer is returned.
277  /// If this function is called with a vector of pointers, then the type size
278  /// of the pointer is returned.  This should only be called with a pointer or
279  /// vector of pointers.
280  unsigned getPointerTypeSizeInBits(Type *) const;
281
282  unsigned getPointerTypeSize(Type *Ty) const {
283    return getPointerTypeSizeInBits(Ty) / 8;
284  }
285
286  /// Size examples:
287  ///
288  /// Type        SizeInBits  StoreSizeInBits  AllocSizeInBits[*]
289  /// ----        ----------  ---------------  ---------------
290  ///  i1            1           8                8
291  ///  i8            8           8                8
292  ///  i19          19          24               32
293  ///  i32          32          32               32
294  ///  i100        100         104              128
295  ///  i128        128         128              128
296  ///  Float        32          32               32
297  ///  Double       64          64               64
298  ///  X86_FP80     80          80               96
299  ///
300  /// [*] The alloc size depends on the alignment, and thus on the target.
301  ///     These values are for x86-32 linux.
302
303  /// getTypeSizeInBits - Return the number of bits necessary to hold the
304  /// specified type.  For example, returns 36 for i36 and 80 for x86_fp80.
305  /// The type passed must have a size (Type::isSized() must return true).
306  uint64_t getTypeSizeInBits(Type *Ty) const;
307
308  /// getTypeStoreSize - Return the maximum number of bytes that may be
309  /// overwritten by storing the specified type.  For example, returns 5
310  /// for i36 and 10 for x86_fp80.
311  uint64_t getTypeStoreSize(Type *Ty) const {
312    return (getTypeSizeInBits(Ty)+7)/8;
313  }
314
315  /// getTypeStoreSizeInBits - Return the maximum number of bits that may be
316  /// overwritten by storing the specified type; always a multiple of 8.  For
317  /// example, returns 40 for i36 and 80 for x86_fp80.
318  uint64_t getTypeStoreSizeInBits(Type *Ty) const {
319    return 8*getTypeStoreSize(Ty);
320  }
321
322  /// getTypeAllocSize - Return the offset in bytes between successive objects
323  /// of the specified type, including alignment padding.  This is the amount
324  /// that alloca reserves for this type.  For example, returns 12 or 16 for
325  /// x86_fp80, depending on alignment.
326  uint64_t getTypeAllocSize(Type *Ty) const {
327    // Round up to the next alignment boundary.
328    return RoundUpAlignment(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
329  }
330
331  /// getTypeAllocSizeInBits - Return the offset in bits between successive
332  /// objects of the specified type, including alignment padding; always a
333  /// multiple of 8.  This is the amount that alloca reserves for this type.
334  /// For example, returns 96 or 128 for x86_fp80, depending on alignment.
335  uint64_t getTypeAllocSizeInBits(Type *Ty) const {
336    return 8*getTypeAllocSize(Ty);
337  }
338
339  /// getABITypeAlignment - Return the minimum ABI-required alignment for the
340  /// specified type.
341  unsigned getABITypeAlignment(Type *Ty) const;
342
343  /// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for
344  /// an integer type of the specified bitwidth.
345  unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const;
346
347  /// getCallFrameTypeAlignment - Return the minimum ABI-required alignment
348  /// for the specified type when it is part of a call frame.
349  unsigned getCallFrameTypeAlignment(Type *Ty) const;
350
351  /// getPrefTypeAlignment - Return the preferred stack/global alignment for
352  /// the specified type.  This is always at least as good as the ABI alignment.
353  unsigned getPrefTypeAlignment(Type *Ty) const;
354
355  /// getPreferredTypeAlignmentShift - Return the preferred alignment for the
356  /// specified type, returned as log2 of the value (a shift amount).
357  unsigned getPreferredTypeAlignmentShift(Type *Ty) const;
358
359  /// getIntPtrType - Return an integer type with size at least as big as that
360  /// of a pointer in the given address space.
361  IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
362
363  /// getIntPtrType - Return an integer (vector of integer) type with size at
364  /// least as big as that of a pointer of the given pointer (vector of pointer)
365  /// type.
366  Type *getIntPtrType(Type *) const;
367
368  /// getSmallestLegalIntType - Return the smallest integer type with size at
369  /// least as big as Width bits.
370  Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
371
372  /// getLargestLegalIntType - Return the largest legal integer type, or null if
373  /// none are set.
374  Type *getLargestLegalIntType(LLVMContext &C) const {
375    unsigned LargestSize = getLargestLegalIntTypeSize();
376    return (LargestSize == 0) ? 0 : Type::getIntNTy(C, LargestSize);
377  }
378
379  /// getLargestLegalIntType - Return the size of largest legal integer type
380  /// size, or 0 if none are set.
381  unsigned getLargestLegalIntTypeSize() const;
382
383  /// getIndexedOffset - return the offset from the beginning of the type for
384  /// the specified indices.  This is used to implement getelementptr.
385  uint64_t getIndexedOffset(Type *Ty, ArrayRef<Value *> Indices) const;
386
387  /// getStructLayout - Return a StructLayout object, indicating the alignment
388  /// of the struct, its size, and the offsets of its fields.  Note that this
389  /// information is lazily cached.
390  const StructLayout *getStructLayout(StructType *Ty) const;
391
392  /// getPreferredAlignment - Return the preferred alignment of the specified
393  /// global.  This includes an explicitly requested alignment (if the global
394  /// has one).
395  unsigned getPreferredAlignment(const GlobalVariable *GV) const;
396
397  /// getPreferredAlignmentLog - Return the preferred alignment of the
398  /// specified global, returned in log form.  This includes an explicitly
399  /// requested alignment (if the global has one).
400  unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
401
402  /// RoundUpAlignment - Round the specified value up to the next alignment
403  /// boundary specified by Alignment.  For example, 7 rounded up to an
404  /// alignment boundary of 4 is 8.  8 rounded up to the alignment boundary of 4
405  /// is 8 because it is already aligned.
406  template <typename UIntTy>
407  static UIntTy RoundUpAlignment(UIntTy Val, unsigned Alignment) {
408    assert((Alignment & (Alignment-1)) == 0 && "Alignment must be power of 2!");
409    return (Val + (Alignment-1)) & ~UIntTy(Alignment-1);
410  }
411
412  static char ID; // Pass identification, replacement for typeid
413};
414
415/// StructLayout - used to lazily calculate structure layout information for a
416/// target machine, based on the DataLayout structure.
417///
418class StructLayout {
419  uint64_t StructSize;
420  unsigned StructAlignment;
421  unsigned NumElements;
422  uint64_t MemberOffsets[1];  // variable sized array!
423public:
424
425  uint64_t getSizeInBytes() const {
426    return StructSize;
427  }
428
429  uint64_t getSizeInBits() const {
430    return 8*StructSize;
431  }
432
433  unsigned getAlignment() const {
434    return StructAlignment;
435  }
436
437  /// getElementContainingOffset - Given a valid byte offset into the structure,
438  /// return the structure index that contains it.
439  ///
440  unsigned getElementContainingOffset(uint64_t Offset) const;
441
442  uint64_t getElementOffset(unsigned Idx) const {
443    assert(Idx < NumElements && "Invalid element idx!");
444    return MemberOffsets[Idx];
445  }
446
447  uint64_t getElementOffsetInBits(unsigned Idx) const {
448    return getElementOffset(Idx)*8;
449  }
450
451private:
452  friend class DataLayout;   // Only DataLayout can create this class
453  StructLayout(StructType *ST, const DataLayout &DL);
454};
455
456
457// The implementation of this method is provided inline as it is particularly
458// well suited to constant folding when called on a specific Type subclass.
459inline uint64_t DataLayout::getTypeSizeInBits(Type *Ty) const {
460  assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
461  switch (Ty->getTypeID()) {
462  case Type::LabelTyID:
463    return getPointerSizeInBits(0);
464  case Type::PointerTyID:
465    return getPointerSizeInBits(Ty->getPointerAddressSpace());
466  case Type::ArrayTyID: {
467    ArrayType *ATy = cast<ArrayType>(Ty);
468    return ATy->getNumElements() *
469           getTypeAllocSizeInBits(ATy->getElementType());
470  }
471  case Type::StructTyID:
472    // Get the layout annotation... which is lazily created on demand.
473    return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
474  case Type::IntegerTyID:
475    return Ty->getIntegerBitWidth();
476  case Type::HalfTyID:
477    return 16;
478  case Type::FloatTyID:
479    return 32;
480  case Type::DoubleTyID:
481  case Type::X86_MMXTyID:
482    return 64;
483  case Type::PPC_FP128TyID:
484  case Type::FP128TyID:
485    return 128;
486    // In memory objects this is always aligned to a higher boundary, but
487  // only 80 bits contain information.
488  case Type::X86_FP80TyID:
489    return 80;
490  case Type::VectorTyID: {
491    VectorType *VTy = cast<VectorType>(Ty);
492    return VTy->getNumElements() * getTypeSizeInBits(VTy->getElementType());
493  }
494  default:
495    llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
496  }
497}
498
499} // End llvm namespace
500
501#endif
502