HeuristicSolver.h revision 263508
1//===-- HeuristicSolver.h - Heuristic PBQP Solver --------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Heuristic PBQP solver. This solver is able to perform optimal reductions for
11// nodes of degree 0, 1 or 2. For nodes of degree >2 a plugable heuristic is
12// used to select a node for reduction.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
17#define LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
18
19#include "Graph.h"
20#include "Solution.h"
21#include <limits>
22#include <vector>
23
24namespace PBQP {
25
26  /// \brief Heuristic PBQP solver implementation.
27  ///
28  /// This class should usually be created (and destroyed) indirectly via a call
29  /// to HeuristicSolver<HImpl>::solve(Graph&).
30  /// See the comments for HeuristicSolver.
31  ///
32  /// HeuristicSolverImpl provides the R0, R1 and R2 reduction rules,
33  /// backpropagation phase, and maintains the internal copy of the graph on
34  /// which the reduction is carried out (the original being kept to facilitate
35  /// backpropagation).
36  template <typename HImpl>
37  class HeuristicSolverImpl {
38  private:
39
40    typedef typename HImpl::NodeData HeuristicNodeData;
41    typedef typename HImpl::EdgeData HeuristicEdgeData;
42
43    typedef std::list<Graph::EdgeId> SolverEdges;
44
45  public:
46
47    /// \brief Iterator type for edges in the solver graph.
48    typedef SolverEdges::iterator SolverEdgeItr;
49
50  private:
51
52    class NodeData {
53    public:
54      NodeData() : solverDegree(0) {}
55
56      HeuristicNodeData& getHeuristicData() { return hData; }
57
58      SolverEdgeItr addSolverEdge(Graph::EdgeId eId) {
59        ++solverDegree;
60        return solverEdges.insert(solverEdges.end(), eId);
61      }
62
63      void removeSolverEdge(SolverEdgeItr seItr) {
64        --solverDegree;
65        solverEdges.erase(seItr);
66      }
67
68      SolverEdgeItr solverEdgesBegin() { return solverEdges.begin(); }
69      SolverEdgeItr solverEdgesEnd() { return solverEdges.end(); }
70      unsigned getSolverDegree() const { return solverDegree; }
71      void clearSolverEdges() {
72        solverDegree = 0;
73        solverEdges.clear();
74      }
75
76    private:
77      HeuristicNodeData hData;
78      unsigned solverDegree;
79      SolverEdges solverEdges;
80    };
81
82    class EdgeData {
83    public:
84      HeuristicEdgeData& getHeuristicData() { return hData; }
85
86      void setN1SolverEdgeItr(SolverEdgeItr n1SolverEdgeItr) {
87        this->n1SolverEdgeItr = n1SolverEdgeItr;
88      }
89
90      SolverEdgeItr getN1SolverEdgeItr() { return n1SolverEdgeItr; }
91
92      void setN2SolverEdgeItr(SolverEdgeItr n2SolverEdgeItr){
93        this->n2SolverEdgeItr = n2SolverEdgeItr;
94      }
95
96      SolverEdgeItr getN2SolverEdgeItr() { return n2SolverEdgeItr; }
97
98    private:
99
100      HeuristicEdgeData hData;
101      SolverEdgeItr n1SolverEdgeItr, n2SolverEdgeItr;
102    };
103
104    Graph &g;
105    HImpl h;
106    Solution s;
107    std::vector<Graph::NodeId> stack;
108
109    typedef std::list<NodeData> NodeDataList;
110    NodeDataList nodeDataList;
111
112    typedef std::list<EdgeData> EdgeDataList;
113    EdgeDataList edgeDataList;
114
115  public:
116
117    /// \brief Construct a heuristic solver implementation to solve the given
118    ///        graph.
119    /// @param g The graph representing the problem instance to be solved.
120    HeuristicSolverImpl(Graph &g) : g(g), h(*this) {}
121
122    /// \brief Get the graph being solved by this solver.
123    /// @return The graph representing the problem instance being solved by this
124    ///         solver.
125    Graph& getGraph() { return g; }
126
127    /// \brief Get the heuristic data attached to the given node.
128    /// @param nId Node id.
129    /// @return The heuristic data attached to the given node.
130    HeuristicNodeData& getHeuristicNodeData(Graph::NodeId nId) {
131      return getSolverNodeData(nId).getHeuristicData();
132    }
133
134    /// \brief Get the heuristic data attached to the given edge.
135    /// @param eId Edge id.
136    /// @return The heuristic data attached to the given node.
137    HeuristicEdgeData& getHeuristicEdgeData(Graph::EdgeId eId) {
138      return getSolverEdgeData(eId).getHeuristicData();
139    }
140
141    /// \brief Begin iterator for the set of edges adjacent to the given node in
142    ///        the solver graph.
143    /// @param nId Node id.
144    /// @return Begin iterator for the set of edges adjacent to the given node
145    ///         in the solver graph.
146    SolverEdgeItr solverEdgesBegin(Graph::NodeId nId) {
147      return getSolverNodeData(nId).solverEdgesBegin();
148    }
149
150    /// \brief End iterator for the set of edges adjacent to the given node in
151    ///        the solver graph.
152    /// @param nId Node id.
153    /// @return End iterator for the set of edges adjacent to the given node in
154    ///         the solver graph.
155    SolverEdgeItr solverEdgesEnd(Graph::NodeId nId) {
156      return getSolverNodeData(nId).solverEdgesEnd();
157    }
158
159    /// \brief Remove a node from the solver graph.
160    /// @param eId Edge id for edge to be removed.
161    ///
162    /// Does <i>not</i> notify the heuristic of the removal. That should be
163    /// done manually if necessary.
164    void removeSolverEdge(Graph::EdgeId eId) {
165      EdgeData &eData = getSolverEdgeData(eId);
166      NodeData &n1Data = getSolverNodeData(g.getEdgeNode1(eId)),
167               &n2Data = getSolverNodeData(g.getEdgeNode2(eId));
168
169      n1Data.removeSolverEdge(eData.getN1SolverEdgeItr());
170      n2Data.removeSolverEdge(eData.getN2SolverEdgeItr());
171    }
172
173    /// \brief Compute a solution to the PBQP problem instance with which this
174    ///        heuristic solver was constructed.
175    /// @return A solution to the PBQP problem.
176    ///
177    /// Performs the full PBQP heuristic solver algorithm, including setup,
178    /// calls to the heuristic (which will call back to the reduction rules in
179    /// this class), and cleanup.
180    Solution computeSolution() {
181      setup();
182      h.setup();
183      h.reduce();
184      backpropagate();
185      h.cleanup();
186      cleanup();
187      return s;
188    }
189
190    /// \brief Add to the end of the stack.
191    /// @param nId Node id to add to the reduction stack.
192    void pushToStack(Graph::NodeId nId) {
193      getSolverNodeData(nId).clearSolverEdges();
194      stack.push_back(nId);
195    }
196
197    /// \brief Returns the solver degree of the given node.
198    /// @param nId Node id for which degree is requested.
199    /// @return Node degree in the <i>solver</i> graph (not the original graph).
200    unsigned getSolverDegree(Graph::NodeId nId) {
201      return  getSolverNodeData(nId).getSolverDegree();
202    }
203
204    /// \brief Set the solution of the given node.
205    /// @param nId Node id to set solution for.
206    /// @param selection Selection for node.
207    void setSolution(const Graph::NodeId &nId, unsigned selection) {
208      s.setSelection(nId, selection);
209
210      for (Graph::AdjEdgeItr aeItr = g.adjEdgesBegin(nId),
211                             aeEnd = g.adjEdgesEnd(nId);
212           aeItr != aeEnd; ++aeItr) {
213        Graph::EdgeId eId(*aeItr);
214        Graph::NodeId anId(g.getEdgeOtherNode(eId, nId));
215        getSolverNodeData(anId).addSolverEdge(eId);
216      }
217    }
218
219    /// \brief Apply rule R0.
220    /// @param nId Node id for node to apply R0 to.
221    ///
222    /// Node will be automatically pushed to the solver stack.
223    void applyR0(Graph::NodeId nId) {
224      assert(getSolverNodeData(nId).getSolverDegree() == 0 &&
225             "R0 applied to node with degree != 0.");
226
227      // Nothing to do. Just push the node onto the reduction stack.
228      pushToStack(nId);
229
230      s.recordR0();
231    }
232
233    /// \brief Apply rule R1.
234    /// @param xnId Node id for node to apply R1 to.
235    ///
236    /// Node will be automatically pushed to the solver stack.
237    void applyR1(Graph::NodeId xnId) {
238      NodeData &nd = getSolverNodeData(xnId);
239      assert(nd.getSolverDegree() == 1 &&
240             "R1 applied to node with degree != 1.");
241
242      Graph::EdgeId eId = *nd.solverEdgesBegin();
243
244      const Matrix &eCosts = g.getEdgeCosts(eId);
245      const Vector &xCosts = g.getNodeCosts(xnId);
246
247      // Duplicate a little to avoid transposing matrices.
248      if (xnId == g.getEdgeNode1(eId)) {
249        Graph::NodeId ynId = g.getEdgeNode2(eId);
250        Vector &yCosts = g.getNodeCosts(ynId);
251        for (unsigned j = 0; j < yCosts.getLength(); ++j) {
252          PBQPNum min = eCosts[0][j] + xCosts[0];
253          for (unsigned i = 1; i < xCosts.getLength(); ++i) {
254            PBQPNum c = eCosts[i][j] + xCosts[i];
255            if (c < min)
256              min = c;
257          }
258          yCosts[j] += min;
259        }
260        h.handleRemoveEdge(eId, ynId);
261     } else {
262        Graph::NodeId ynId = g.getEdgeNode1(eId);
263        Vector &yCosts = g.getNodeCosts(ynId);
264        for (unsigned i = 0; i < yCosts.getLength(); ++i) {
265          PBQPNum min = eCosts[i][0] + xCosts[0];
266          for (unsigned j = 1; j < xCosts.getLength(); ++j) {
267            PBQPNum c = eCosts[i][j] + xCosts[j];
268            if (c < min)
269              min = c;
270          }
271          yCosts[i] += min;
272        }
273        h.handleRemoveEdge(eId, ynId);
274      }
275      removeSolverEdge(eId);
276      assert(nd.getSolverDegree() == 0 &&
277             "Degree 1 with edge removed should be 0.");
278      pushToStack(xnId);
279      s.recordR1();
280    }
281
282    /// \brief Apply rule R2.
283    /// @param xnId Node id for node to apply R2 to.
284    ///
285    /// Node will be automatically pushed to the solver stack.
286    void applyR2(Graph::NodeId xnId) {
287      assert(getSolverNodeData(xnId).getSolverDegree() == 2 &&
288             "R2 applied to node with degree != 2.");
289
290      NodeData &nd = getSolverNodeData(xnId);
291      const Vector &xCosts = g.getNodeCosts(xnId);
292
293      SolverEdgeItr aeItr = nd.solverEdgesBegin();
294      Graph::EdgeId yxeId = *aeItr,
295                    zxeId = *(++aeItr);
296
297      Graph::NodeId ynId = g.getEdgeOtherNode(yxeId, xnId),
298                    znId = g.getEdgeOtherNode(zxeId, xnId);
299
300      bool flipEdge1 = (g.getEdgeNode1(yxeId) == xnId),
301           flipEdge2 = (g.getEdgeNode1(zxeId) == xnId);
302
303      const Matrix *yxeCosts = flipEdge1 ?
304        new Matrix(g.getEdgeCosts(yxeId).transpose()) :
305        &g.getEdgeCosts(yxeId);
306
307      const Matrix *zxeCosts = flipEdge2 ?
308        new Matrix(g.getEdgeCosts(zxeId).transpose()) :
309        &g.getEdgeCosts(zxeId);
310
311      unsigned xLen = xCosts.getLength(),
312               yLen = yxeCosts->getRows(),
313               zLen = zxeCosts->getRows();
314
315      Matrix delta(yLen, zLen);
316
317      for (unsigned i = 0; i < yLen; ++i) {
318        for (unsigned j = 0; j < zLen; ++j) {
319          PBQPNum min = (*yxeCosts)[i][0] + (*zxeCosts)[j][0] + xCosts[0];
320          for (unsigned k = 1; k < xLen; ++k) {
321            PBQPNum c = (*yxeCosts)[i][k] + (*zxeCosts)[j][k] + xCosts[k];
322            if (c < min) {
323              min = c;
324            }
325          }
326          delta[i][j] = min;
327        }
328      }
329
330      if (flipEdge1)
331        delete yxeCosts;
332
333      if (flipEdge2)
334        delete zxeCosts;
335
336      Graph::EdgeId yzeId = g.findEdge(ynId, znId);
337      bool addedEdge = false;
338
339      if (yzeId == g.invalidEdgeId()) {
340        yzeId = g.addEdge(ynId, znId, delta);
341        addedEdge = true;
342      } else {
343        Matrix &yzeCosts = g.getEdgeCosts(yzeId);
344        h.preUpdateEdgeCosts(yzeId);
345        if (ynId == g.getEdgeNode1(yzeId)) {
346          yzeCosts += delta;
347        } else {
348          yzeCosts += delta.transpose();
349        }
350      }
351
352      bool nullCostEdge = tryNormaliseEdgeMatrix(yzeId);
353
354      if (!addedEdge) {
355        // If we modified the edge costs let the heuristic know.
356        h.postUpdateEdgeCosts(yzeId);
357      }
358
359      if (nullCostEdge) {
360        // If this edge ended up null remove it.
361        if (!addedEdge) {
362          // We didn't just add it, so we need to notify the heuristic
363          // and remove it from the solver.
364          h.handleRemoveEdge(yzeId, ynId);
365          h.handleRemoveEdge(yzeId, znId);
366          removeSolverEdge(yzeId);
367        }
368        g.removeEdge(yzeId);
369      } else if (addedEdge) {
370        // If the edge was added, and non-null, finish setting it up, add it to
371        // the solver & notify heuristic.
372        edgeDataList.push_back(EdgeData());
373        g.setEdgeData(yzeId, &edgeDataList.back());
374        addSolverEdge(yzeId);
375        h.handleAddEdge(yzeId);
376      }
377
378      h.handleRemoveEdge(yxeId, ynId);
379      removeSolverEdge(yxeId);
380      h.handleRemoveEdge(zxeId, znId);
381      removeSolverEdge(zxeId);
382
383      pushToStack(xnId);
384      s.recordR2();
385    }
386
387    /// \brief Record an application of the RN rule.
388    ///
389    /// For use by the HeuristicBase.
390    void recordRN() { s.recordRN(); }
391
392  private:
393
394    NodeData& getSolverNodeData(Graph::NodeId nId) {
395      return *static_cast<NodeData*>(g.getNodeData(nId));
396    }
397
398    EdgeData& getSolverEdgeData(Graph::EdgeId eId) {
399      return *static_cast<EdgeData*>(g.getEdgeData(eId));
400    }
401
402    void addSolverEdge(Graph::EdgeId eId) {
403      EdgeData &eData = getSolverEdgeData(eId);
404      NodeData &n1Data = getSolverNodeData(g.getEdgeNode1(eId)),
405               &n2Data = getSolverNodeData(g.getEdgeNode2(eId));
406
407      eData.setN1SolverEdgeItr(n1Data.addSolverEdge(eId));
408      eData.setN2SolverEdgeItr(n2Data.addSolverEdge(eId));
409    }
410
411    void setup() {
412      if (h.solverRunSimplify()) {
413        simplify();
414      }
415
416      // Create node data objects.
417      for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd();
418           nItr != nEnd; ++nItr) {
419        nodeDataList.push_back(NodeData());
420        g.setNodeData(*nItr, &nodeDataList.back());
421      }
422
423      // Create edge data objects.
424      for (Graph::EdgeItr eItr = g.edgesBegin(), eEnd = g.edgesEnd();
425           eItr != eEnd; ++eItr) {
426        edgeDataList.push_back(EdgeData());
427        g.setEdgeData(*eItr, &edgeDataList.back());
428        addSolverEdge(*eItr);
429      }
430    }
431
432    void simplify() {
433      disconnectTrivialNodes();
434      eliminateIndependentEdges();
435    }
436
437    // Eliminate trivial nodes.
438    void disconnectTrivialNodes() {
439      unsigned numDisconnected = 0;
440
441      for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd();
442           nItr != nEnd; ++nItr) {
443
444        Graph::NodeId nId = *nItr;
445
446        if (g.getNodeCosts(nId).getLength() == 1) {
447
448          std::vector<Graph::EdgeId> edgesToRemove;
449
450          for (Graph::AdjEdgeItr aeItr = g.adjEdgesBegin(nId),
451                                 aeEnd = g.adjEdgesEnd(nId);
452               aeItr != aeEnd; ++aeItr) {
453
454            Graph::EdgeId eId = *aeItr;
455
456            if (g.getEdgeNode1(eId) == nId) {
457              Graph::NodeId otherNodeId = g.getEdgeNode2(eId);
458              g.getNodeCosts(otherNodeId) +=
459                g.getEdgeCosts(eId).getRowAsVector(0);
460            }
461            else {
462              Graph::NodeId otherNodeId = g.getEdgeNode1(eId);
463              g.getNodeCosts(otherNodeId) +=
464                g.getEdgeCosts(eId).getColAsVector(0);
465            }
466
467            edgesToRemove.push_back(eId);
468          }
469
470          if (!edgesToRemove.empty())
471            ++numDisconnected;
472
473          while (!edgesToRemove.empty()) {
474            g.removeEdge(edgesToRemove.back());
475            edgesToRemove.pop_back();
476          }
477        }
478      }
479    }
480
481    void eliminateIndependentEdges() {
482      std::vector<Graph::EdgeId> edgesToProcess;
483      unsigned numEliminated = 0;
484
485      for (Graph::EdgeItr eItr = g.edgesBegin(), eEnd = g.edgesEnd();
486           eItr != eEnd; ++eItr) {
487        edgesToProcess.push_back(*eItr);
488      }
489
490      while (!edgesToProcess.empty()) {
491        if (tryToEliminateEdge(edgesToProcess.back()))
492          ++numEliminated;
493        edgesToProcess.pop_back();
494      }
495    }
496
497    bool tryToEliminateEdge(Graph::EdgeId eId) {
498      if (tryNormaliseEdgeMatrix(eId)) {
499        g.removeEdge(eId);
500        return true;
501      }
502      return false;
503    }
504
505    bool tryNormaliseEdgeMatrix(Graph::EdgeId &eId) {
506
507      const PBQPNum infinity = std::numeric_limits<PBQPNum>::infinity();
508
509      Matrix &edgeCosts = g.getEdgeCosts(eId);
510      Vector &uCosts = g.getNodeCosts(g.getEdgeNode1(eId)),
511             &vCosts = g.getNodeCosts(g.getEdgeNode2(eId));
512
513      for (unsigned r = 0; r < edgeCosts.getRows(); ++r) {
514        PBQPNum rowMin = infinity;
515
516        for (unsigned c = 0; c < edgeCosts.getCols(); ++c) {
517          if (vCosts[c] != infinity && edgeCosts[r][c] < rowMin)
518            rowMin = edgeCosts[r][c];
519        }
520
521        uCosts[r] += rowMin;
522
523        if (rowMin != infinity) {
524          edgeCosts.subFromRow(r, rowMin);
525        }
526        else {
527          edgeCosts.setRow(r, 0);
528        }
529      }
530
531      for (unsigned c = 0; c < edgeCosts.getCols(); ++c) {
532        PBQPNum colMin = infinity;
533
534        for (unsigned r = 0; r < edgeCosts.getRows(); ++r) {
535          if (uCosts[r] != infinity && edgeCosts[r][c] < colMin)
536            colMin = edgeCosts[r][c];
537        }
538
539        vCosts[c] += colMin;
540
541        if (colMin != infinity) {
542          edgeCosts.subFromCol(c, colMin);
543        }
544        else {
545          edgeCosts.setCol(c, 0);
546        }
547      }
548
549      return edgeCosts.isZero();
550    }
551
552    void backpropagate() {
553      while (!stack.empty()) {
554        computeSolution(stack.back());
555        stack.pop_back();
556      }
557    }
558
559    void computeSolution(Graph::NodeId nId) {
560
561      NodeData &nodeData = getSolverNodeData(nId);
562
563      Vector v(g.getNodeCosts(nId));
564
565      // Solve based on existing solved edges.
566      for (SolverEdgeItr solvedEdgeItr = nodeData.solverEdgesBegin(),
567                         solvedEdgeEnd = nodeData.solverEdgesEnd();
568           solvedEdgeItr != solvedEdgeEnd; ++solvedEdgeItr) {
569
570        Graph::EdgeId eId(*solvedEdgeItr);
571        Matrix &edgeCosts = g.getEdgeCosts(eId);
572
573        if (nId == g.getEdgeNode1(eId)) {
574          Graph::NodeId adjNode(g.getEdgeNode2(eId));
575          unsigned adjSolution = s.getSelection(adjNode);
576          v += edgeCosts.getColAsVector(adjSolution);
577        }
578        else {
579          Graph::NodeId adjNode(g.getEdgeNode1(eId));
580          unsigned adjSolution = s.getSelection(adjNode);
581          v += edgeCosts.getRowAsVector(adjSolution);
582        }
583
584      }
585
586      setSolution(nId, v.minIndex());
587    }
588
589    void cleanup() {
590      h.cleanup();
591      nodeDataList.clear();
592      edgeDataList.clear();
593    }
594  };
595
596  /// \brief PBQP heuristic solver class.
597  ///
598  /// Given a PBQP Graph g representing a PBQP problem, you can find a solution
599  /// by calling
600  /// <tt>Solution s = HeuristicSolver<H>::solve(g);</tt>
601  ///
602  /// The choice of heuristic for the H parameter will affect both the solver
603  /// speed and solution quality. The heuristic should be chosen based on the
604  /// nature of the problem being solved.
605  /// Currently the only solver included with LLVM is the Briggs heuristic for
606  /// register allocation.
607  template <typename HImpl>
608  class HeuristicSolver {
609  public:
610    static Solution solve(Graph &g) {
611      HeuristicSolverImpl<HImpl> hs(g);
612      return hs.computeSolution();
613    }
614  };
615
616}
617
618#endif // LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
619