Dominators.h revision 263508
1//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DominatorTree class, which provides fast and efficient
11// dominance queries.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ANALYSIS_DOMINATORS_H
16#define LLVM_ANALYSIS_DOMINATORS_H
17
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/DepthFirstIterator.h"
20#include "llvm/ADT/GraphTraits.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/IR/Function.h"
24#include "llvm/Pass.h"
25#include "llvm/Support/CFG.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/Support/raw_ostream.h"
28#include <algorithm>
29
30namespace llvm {
31
32//===----------------------------------------------------------------------===//
33/// DominatorBase - Base class that other, more interesting dominator analyses
34/// inherit from.
35///
36template <class NodeT>
37class DominatorBase {
38protected:
39  std::vector<NodeT*> Roots;
40  const bool IsPostDominators;
41  inline explicit DominatorBase(bool isPostDom) :
42    Roots(), IsPostDominators(isPostDom) {}
43public:
44
45  /// getRoots - Return the root blocks of the current CFG.  This may include
46  /// multiple blocks if we are computing post dominators.  For forward
47  /// dominators, this will always be a single block (the entry node).
48  ///
49  inline const std::vector<NodeT*> &getRoots() const { return Roots; }
50
51  /// isPostDominator - Returns true if analysis based of postdoms
52  ///
53  bool isPostDominator() const { return IsPostDominators; }
54};
55
56
57//===----------------------------------------------------------------------===//
58// DomTreeNode - Dominator Tree Node
59template<class NodeT> class DominatorTreeBase;
60struct PostDominatorTree;
61class MachineBasicBlock;
62
63template <class NodeT>
64class DomTreeNodeBase {
65  NodeT *TheBB;
66  DomTreeNodeBase<NodeT> *IDom;
67  std::vector<DomTreeNodeBase<NodeT> *> Children;
68  int DFSNumIn, DFSNumOut;
69
70  template<class N> friend class DominatorTreeBase;
71  friend struct PostDominatorTree;
72public:
73  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
74  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
75                   const_iterator;
76
77  iterator begin()             { return Children.begin(); }
78  iterator end()               { return Children.end(); }
79  const_iterator begin() const { return Children.begin(); }
80  const_iterator end()   const { return Children.end(); }
81
82  NodeT *getBlock() const { return TheBB; }
83  DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
84  const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const {
85    return Children;
86  }
87
88  DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
89    : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
90
91  DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) {
92    Children.push_back(C);
93    return C;
94  }
95
96  size_t getNumChildren() const {
97    return Children.size();
98  }
99
100  void clearAllChildren() {
101    Children.clear();
102  }
103
104  bool compare(const DomTreeNodeBase<NodeT> *Other) const {
105    if (getNumChildren() != Other->getNumChildren())
106      return true;
107
108    SmallPtrSet<const NodeT *, 4> OtherChildren;
109    for (const_iterator I = Other->begin(), E = Other->end(); I != E; ++I) {
110      const NodeT *Nd = (*I)->getBlock();
111      OtherChildren.insert(Nd);
112    }
113
114    for (const_iterator I = begin(), E = end(); I != E; ++I) {
115      const NodeT *N = (*I)->getBlock();
116      if (OtherChildren.count(N) == 0)
117        return true;
118    }
119    return false;
120  }
121
122  void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
123    assert(IDom && "No immediate dominator?");
124    if (IDom != NewIDom) {
125      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
126                  std::find(IDom->Children.begin(), IDom->Children.end(), this);
127      assert(I != IDom->Children.end() &&
128             "Not in immediate dominator children set!");
129      // I am no longer your child...
130      IDom->Children.erase(I);
131
132      // Switch to new dominator
133      IDom = NewIDom;
134      IDom->Children.push_back(this);
135    }
136  }
137
138  /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
139  /// not call them.
140  unsigned getDFSNumIn() const { return DFSNumIn; }
141  unsigned getDFSNumOut() const { return DFSNumOut; }
142private:
143  // Return true if this node is dominated by other. Use this only if DFS info
144  // is valid.
145  bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
146    return this->DFSNumIn >= other->DFSNumIn &&
147      this->DFSNumOut <= other->DFSNumOut;
148  }
149};
150
151EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<BasicBlock>);
152EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<MachineBasicBlock>);
153
154template<class NodeT>
155inline raw_ostream &operator<<(raw_ostream &o,
156                               const DomTreeNodeBase<NodeT> *Node) {
157  if (Node->getBlock())
158    WriteAsOperand(o, Node->getBlock(), false);
159  else
160    o << " <<exit node>>";
161
162  o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
163
164  return o << "\n";
165}
166
167template<class NodeT>
168inline void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
169                         unsigned Lev) {
170  o.indent(2*Lev) << "[" << Lev << "] " << N;
171  for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
172       E = N->end(); I != E; ++I)
173    PrintDomTree<NodeT>(*I, o, Lev+1);
174}
175
176typedef DomTreeNodeBase<BasicBlock> DomTreeNode;
177
178//===----------------------------------------------------------------------===//
179/// DominatorTree - Calculate the immediate dominator tree for a function.
180///
181
182template<class FuncT, class N>
183void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
184               FuncT& F);
185
186template<class NodeT>
187class DominatorTreeBase : public DominatorBase<NodeT> {
188  bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
189                               const DomTreeNodeBase<NodeT> *B) const {
190    assert(A != B);
191    assert(isReachableFromEntry(B));
192    assert(isReachableFromEntry(A));
193
194    const DomTreeNodeBase<NodeT> *IDom;
195    while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B)
196      B = IDom;   // Walk up the tree
197    return IDom != 0;
198  }
199
200protected:
201  typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType;
202  DomTreeNodeMapType DomTreeNodes;
203  DomTreeNodeBase<NodeT> *RootNode;
204
205  bool DFSInfoValid;
206  unsigned int SlowQueries;
207  // Information record used during immediate dominators computation.
208  struct InfoRec {
209    unsigned DFSNum;
210    unsigned Parent;
211    unsigned Semi;
212    NodeT *Label;
213
214    InfoRec() : DFSNum(0), Parent(0), Semi(0), Label(0) {}
215  };
216
217  DenseMap<NodeT*, NodeT*> IDoms;
218
219  // Vertex - Map the DFS number to the BasicBlock*
220  std::vector<NodeT*> Vertex;
221
222  // Info - Collection of information used during the computation of idoms.
223  DenseMap<NodeT*, InfoRec> Info;
224
225  void reset() {
226    for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(),
227           E = DomTreeNodes.end(); I != E; ++I)
228      delete I->second;
229    DomTreeNodes.clear();
230    IDoms.clear();
231    this->Roots.clear();
232    Vertex.clear();
233    RootNode = 0;
234  }
235
236  // NewBB is split and now it has one successor. Update dominator tree to
237  // reflect this change.
238  template<class N, class GraphT>
239  void Split(DominatorTreeBase<typename GraphT::NodeType>& DT,
240             typename GraphT::NodeType* NewBB) {
241    assert(std::distance(GraphT::child_begin(NewBB),
242                         GraphT::child_end(NewBB)) == 1 &&
243           "NewBB should have a single successor!");
244    typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB);
245
246    std::vector<typename GraphT::NodeType*> PredBlocks;
247    typedef GraphTraits<Inverse<N> > InvTraits;
248    for (typename InvTraits::ChildIteratorType PI =
249         InvTraits::child_begin(NewBB),
250         PE = InvTraits::child_end(NewBB); PI != PE; ++PI)
251      PredBlocks.push_back(*PI);
252
253    assert(!PredBlocks.empty() && "No predblocks?");
254
255    bool NewBBDominatesNewBBSucc = true;
256    for (typename InvTraits::ChildIteratorType PI =
257         InvTraits::child_begin(NewBBSucc),
258         E = InvTraits::child_end(NewBBSucc); PI != E; ++PI) {
259      typename InvTraits::NodeType *ND = *PI;
260      if (ND != NewBB && !DT.dominates(NewBBSucc, ND) &&
261          DT.isReachableFromEntry(ND)) {
262        NewBBDominatesNewBBSucc = false;
263        break;
264      }
265    }
266
267    // Find NewBB's immediate dominator and create new dominator tree node for
268    // NewBB.
269    NodeT *NewBBIDom = 0;
270    unsigned i = 0;
271    for (i = 0; i < PredBlocks.size(); ++i)
272      if (DT.isReachableFromEntry(PredBlocks[i])) {
273        NewBBIDom = PredBlocks[i];
274        break;
275      }
276
277    // It's possible that none of the predecessors of NewBB are reachable;
278    // in that case, NewBB itself is unreachable, so nothing needs to be
279    // changed.
280    if (!NewBBIDom)
281      return;
282
283    for (i = i + 1; i < PredBlocks.size(); ++i) {
284      if (DT.isReachableFromEntry(PredBlocks[i]))
285        NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
286    }
287
288    // Create the new dominator tree node... and set the idom of NewBB.
289    DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
290
291    // If NewBB strictly dominates other blocks, then it is now the immediate
292    // dominator of NewBBSucc.  Update the dominator tree as appropriate.
293    if (NewBBDominatesNewBBSucc) {
294      DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
295      DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
296    }
297  }
298
299public:
300  explicit DominatorTreeBase(bool isPostDom)
301    : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
302  virtual ~DominatorTreeBase() { reset(); }
303
304  /// compare - Return false if the other dominator tree base matches this
305  /// dominator tree base. Otherwise return true.
306  bool compare(DominatorTreeBase &Other) const {
307
308    const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
309    if (DomTreeNodes.size() != OtherDomTreeNodes.size())
310      return true;
311
312    for (typename DomTreeNodeMapType::const_iterator
313           I = this->DomTreeNodes.begin(),
314           E = this->DomTreeNodes.end(); I != E; ++I) {
315      NodeT *BB = I->first;
316      typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB);
317      if (OI == OtherDomTreeNodes.end())
318        return true;
319
320      DomTreeNodeBase<NodeT>* MyNd = I->second;
321      DomTreeNodeBase<NodeT>* OtherNd = OI->second;
322
323      if (MyNd->compare(OtherNd))
324        return true;
325    }
326
327    return false;
328  }
329
330  virtual void releaseMemory() { reset(); }
331
332  /// getNode - return the (Post)DominatorTree node for the specified basic
333  /// block.  This is the same as using operator[] on this class.
334  ///
335  inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
336    return DomTreeNodes.lookup(BB);
337  }
338
339  /// getRootNode - This returns the entry node for the CFG of the function.  If
340  /// this tree represents the post-dominance relations for a function, however,
341  /// this root may be a node with the block == NULL.  This is the case when
342  /// there are multiple exit nodes from a particular function.  Consumers of
343  /// post-dominance information must be capable of dealing with this
344  /// possibility.
345  ///
346  DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
347  const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
348
349  /// Get all nodes dominated by R, including R itself. Return true on success.
350  void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const {
351    const DomTreeNodeBase<NodeT> *RN = getNode(R);
352    SmallVector<const DomTreeNodeBase<NodeT> *, 8> WL;
353    WL.push_back(RN);
354    Result.clear();
355
356    while (!WL.empty()) {
357      const DomTreeNodeBase<NodeT> *N = WL.pop_back_val();
358      Result.push_back(N->getBlock());
359      WL.append(N->begin(), N->end());
360    }
361  }
362
363  /// properlyDominates - Returns true iff A dominates B and A != B.
364  /// Note that this is not a constant time operation!
365  ///
366  bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
367                         const DomTreeNodeBase<NodeT> *B) {
368    if (A == 0 || B == 0)
369      return false;
370    if (A == B)
371      return false;
372    return dominates(A, B);
373  }
374
375  bool properlyDominates(const NodeT *A, const NodeT *B);
376
377  /// isReachableFromEntry - Return true if A is dominated by the entry
378  /// block of the function containing it.
379  bool isReachableFromEntry(const NodeT* A) const {
380    assert(!this->isPostDominator() &&
381           "This is not implemented for post dominators");
382    return isReachableFromEntry(getNode(const_cast<NodeT *>(A)));
383  }
384
385  inline bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const {
386    return A;
387  }
388
389  /// dominates - Returns true iff A dominates B.  Note that this is not a
390  /// constant time operation!
391  ///
392  inline bool dominates(const DomTreeNodeBase<NodeT> *A,
393                        const DomTreeNodeBase<NodeT> *B) {
394    // A node trivially dominates itself.
395    if (B == A)
396      return true;
397
398    // An unreachable node is dominated by anything.
399    if (!isReachableFromEntry(B))
400      return true;
401
402    // And dominates nothing.
403    if (!isReachableFromEntry(A))
404      return false;
405
406    // Compare the result of the tree walk and the dfs numbers, if expensive
407    // checks are enabled.
408#ifdef XDEBUG
409    assert((!DFSInfoValid ||
410            (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
411           "Tree walk disagrees with dfs numbers!");
412#endif
413
414    if (DFSInfoValid)
415      return B->DominatedBy(A);
416
417    // If we end up with too many slow queries, just update the
418    // DFS numbers on the theory that we are going to keep querying.
419    SlowQueries++;
420    if (SlowQueries > 32) {
421      updateDFSNumbers();
422      return B->DominatedBy(A);
423    }
424
425    return dominatedBySlowTreeWalk(A, B);
426  }
427
428  bool dominates(const NodeT *A, const NodeT *B);
429
430  NodeT *getRoot() const {
431    assert(this->Roots.size() == 1 && "Should always have entry node!");
432    return this->Roots[0];
433  }
434
435  /// findNearestCommonDominator - Find nearest common dominator basic block
436  /// for basic block A and B. If there is no such block then return NULL.
437  NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
438    assert(A->getParent() == B->getParent() &&
439           "Two blocks are not in same function");
440
441    // If either A or B is a entry block then it is nearest common dominator
442    // (for forward-dominators).
443    if (!this->isPostDominator()) {
444      NodeT &Entry = A->getParent()->front();
445      if (A == &Entry || B == &Entry)
446        return &Entry;
447    }
448
449    // If B dominates A then B is nearest common dominator.
450    if (dominates(B, A))
451      return B;
452
453    // If A dominates B then A is nearest common dominator.
454    if (dominates(A, B))
455      return A;
456
457    DomTreeNodeBase<NodeT> *NodeA = getNode(A);
458    DomTreeNodeBase<NodeT> *NodeB = getNode(B);
459
460    // Collect NodeA dominators set.
461    SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms;
462    NodeADoms.insert(NodeA);
463    DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
464    while (IDomA) {
465      NodeADoms.insert(IDomA);
466      IDomA = IDomA->getIDom();
467    }
468
469    // Walk NodeB immediate dominators chain and find common dominator node.
470    DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
471    while (IDomB) {
472      if (NodeADoms.count(IDomB) != 0)
473        return IDomB->getBlock();
474
475      IDomB = IDomB->getIDom();
476    }
477
478    return NULL;
479  }
480
481  const NodeT *findNearestCommonDominator(const NodeT *A, const NodeT *B) {
482    // Cast away the const qualifiers here. This is ok since
483    // const is re-introduced on the return type.
484    return findNearestCommonDominator(const_cast<NodeT *>(A),
485                                      const_cast<NodeT *>(B));
486  }
487
488  //===--------------------------------------------------------------------===//
489  // API to update (Post)DominatorTree information based on modifications to
490  // the CFG...
491
492  /// addNewBlock - Add a new node to the dominator tree information.  This
493  /// creates a new node as a child of DomBB dominator node,linking it into
494  /// the children list of the immediate dominator.
495  DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
496    assert(getNode(BB) == 0 && "Block already in dominator tree!");
497    DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
498    assert(IDomNode && "Not immediate dominator specified for block!");
499    DFSInfoValid = false;
500    return DomTreeNodes[BB] =
501      IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode));
502  }
503
504  /// changeImmediateDominator - This method is used to update the dominator
505  /// tree information when a node's immediate dominator changes.
506  ///
507  void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
508                                DomTreeNodeBase<NodeT> *NewIDom) {
509    assert(N && NewIDom && "Cannot change null node pointers!");
510    DFSInfoValid = false;
511    N->setIDom(NewIDom);
512  }
513
514  void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
515    changeImmediateDominator(getNode(BB), getNode(NewBB));
516  }
517
518  /// eraseNode - Removes a node from the dominator tree. Block must not
519  /// dominate any other blocks. Removes node from its immediate dominator's
520  /// children list. Deletes dominator node associated with basic block BB.
521  void eraseNode(NodeT *BB) {
522    DomTreeNodeBase<NodeT> *Node = getNode(BB);
523    assert(Node && "Removing node that isn't in dominator tree.");
524    assert(Node->getChildren().empty() && "Node is not a leaf node.");
525
526      // Remove node from immediate dominator's children list.
527    DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
528    if (IDom) {
529      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
530        std::find(IDom->Children.begin(), IDom->Children.end(), Node);
531      assert(I != IDom->Children.end() &&
532             "Not in immediate dominator children set!");
533      // I am no longer your child...
534      IDom->Children.erase(I);
535    }
536
537    DomTreeNodes.erase(BB);
538    delete Node;
539  }
540
541  /// removeNode - Removes a node from the dominator tree.  Block must not
542  /// dominate any other blocks.  Invalidates any node pointing to removed
543  /// block.
544  void removeNode(NodeT *BB) {
545    assert(getNode(BB) && "Removing node that isn't in dominator tree.");
546    DomTreeNodes.erase(BB);
547  }
548
549  /// splitBlock - BB is split and now it has one successor. Update dominator
550  /// tree to reflect this change.
551  void splitBlock(NodeT* NewBB) {
552    if (this->IsPostDominators)
553      this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB);
554    else
555      this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB);
556  }
557
558  /// print - Convert to human readable form
559  ///
560  void print(raw_ostream &o) const {
561    o << "=============================--------------------------------\n";
562    if (this->isPostDominator())
563      o << "Inorder PostDominator Tree: ";
564    else
565      o << "Inorder Dominator Tree: ";
566    if (!this->DFSInfoValid)
567      o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
568    o << "\n";
569
570    // The postdom tree can have a null root if there are no returns.
571    if (getRootNode())
572      PrintDomTree<NodeT>(getRootNode(), o, 1);
573  }
574
575protected:
576  template<class GraphT>
577  friend typename GraphT::NodeType* Eval(
578                               DominatorTreeBase<typename GraphT::NodeType>& DT,
579                                         typename GraphT::NodeType* V,
580                                         unsigned LastLinked);
581
582  template<class GraphT>
583  friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
584                          typename GraphT::NodeType* V,
585                          unsigned N);
586
587  template<class FuncT, class N>
588  friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
589                        FuncT& F);
590
591  /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
592  /// dominator tree in dfs order.
593  void updateDFSNumbers() {
594    unsigned DFSNum = 0;
595
596    SmallVector<std::pair<DomTreeNodeBase<NodeT>*,
597                typename DomTreeNodeBase<NodeT>::iterator>, 32> WorkStack;
598
599    DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
600
601    if (!ThisRoot)
602      return;
603
604    // Even in the case of multiple exits that form the post dominator root
605    // nodes, do not iterate over all exits, but start from the virtual root
606    // node. Otherwise bbs, that are not post dominated by any exit but by the
607    // virtual root node, will never be assigned a DFS number.
608    WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
609    ThisRoot->DFSNumIn = DFSNum++;
610
611    while (!WorkStack.empty()) {
612      DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
613      typename DomTreeNodeBase<NodeT>::iterator ChildIt =
614        WorkStack.back().second;
615
616      // If we visited all of the children of this node, "recurse" back up the
617      // stack setting the DFOutNum.
618      if (ChildIt == Node->end()) {
619        Node->DFSNumOut = DFSNum++;
620        WorkStack.pop_back();
621      } else {
622        // Otherwise, recursively visit this child.
623        DomTreeNodeBase<NodeT> *Child = *ChildIt;
624        ++WorkStack.back().second;
625
626        WorkStack.push_back(std::make_pair(Child, Child->begin()));
627        Child->DFSNumIn = DFSNum++;
628      }
629    }
630
631    SlowQueries = 0;
632    DFSInfoValid = true;
633  }
634
635  DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
636    if (DomTreeNodeBase<NodeT> *Node = getNode(BB))
637      return Node;
638
639    // Haven't calculated this node yet?  Get or calculate the node for the
640    // immediate dominator.
641    NodeT *IDom = getIDom(BB);
642
643    assert(IDom || this->DomTreeNodes[NULL]);
644    DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
645
646    // Add a new tree node for this BasicBlock, and link it as a child of
647    // IDomNode
648    DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode);
649    return this->DomTreeNodes[BB] = IDomNode->addChild(C);
650  }
651
652  inline NodeT *getIDom(NodeT *BB) const {
653    return IDoms.lookup(BB);
654  }
655
656  inline void addRoot(NodeT* BB) {
657    this->Roots.push_back(BB);
658  }
659
660public:
661  /// recalculate - compute a dominator tree for the given function
662  template<class FT>
663  void recalculate(FT& F) {
664    typedef GraphTraits<FT*> TraitsTy;
665    reset();
666    this->Vertex.push_back(0);
667
668    if (!this->IsPostDominators) {
669      // Initialize root
670      NodeT *entry = TraitsTy::getEntryNode(&F);
671      this->Roots.push_back(entry);
672      this->IDoms[entry] = 0;
673      this->DomTreeNodes[entry] = 0;
674
675      Calculate<FT, NodeT*>(*this, F);
676    } else {
677      // Initialize the roots list
678      for (typename TraitsTy::nodes_iterator I = TraitsTy::nodes_begin(&F),
679                                        E = TraitsTy::nodes_end(&F); I != E; ++I) {
680        if (TraitsTy::child_begin(I) == TraitsTy::child_end(I))
681          addRoot(I);
682
683        // Prepopulate maps so that we don't get iterator invalidation issues later.
684        this->IDoms[I] = 0;
685        this->DomTreeNodes[I] = 0;
686      }
687
688      Calculate<FT, Inverse<NodeT*> >(*this, F);
689    }
690  }
691};
692
693// These two functions are declared out of line as a workaround for building
694// with old (< r147295) versions of clang because of pr11642.
695template<class NodeT>
696bool DominatorTreeBase<NodeT>::dominates(const NodeT *A, const NodeT *B) {
697  if (A == B)
698    return true;
699
700  // Cast away the const qualifiers here. This is ok since
701  // this function doesn't actually return the values returned
702  // from getNode.
703  return dominates(getNode(const_cast<NodeT *>(A)),
704                   getNode(const_cast<NodeT *>(B)));
705}
706template<class NodeT>
707bool
708DominatorTreeBase<NodeT>::properlyDominates(const NodeT *A, const NodeT *B) {
709  if (A == B)
710    return false;
711
712  // Cast away the const qualifiers here. This is ok since
713  // this function doesn't actually return the values returned
714  // from getNode.
715  return dominates(getNode(const_cast<NodeT *>(A)),
716                   getNode(const_cast<NodeT *>(B)));
717}
718
719EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>);
720
721class BasicBlockEdge {
722  const BasicBlock *Start;
723  const BasicBlock *End;
724public:
725  BasicBlockEdge(const BasicBlock *Start_, const BasicBlock *End_) :
726    Start(Start_), End(End_) { }
727  const BasicBlock *getStart() const {
728    return Start;
729  }
730  const BasicBlock *getEnd() const {
731    return End;
732  }
733  bool isSingleEdge() const;
734};
735
736//===-------------------------------------
737/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
738/// compute a normal dominator tree.
739///
740class DominatorTree : public FunctionPass {
741public:
742  static char ID; // Pass ID, replacement for typeid
743  DominatorTreeBase<BasicBlock>* DT;
744
745  DominatorTree() : FunctionPass(ID) {
746    initializeDominatorTreePass(*PassRegistry::getPassRegistry());
747    DT = new DominatorTreeBase<BasicBlock>(false);
748  }
749
750  ~DominatorTree() {
751    delete DT;
752  }
753
754  DominatorTreeBase<BasicBlock>& getBase() { return *DT; }
755
756  /// getRoots - Return the root blocks of the current CFG.  This may include
757  /// multiple blocks if we are computing post dominators.  For forward
758  /// dominators, this will always be a single block (the entry node).
759  ///
760  inline const std::vector<BasicBlock*> &getRoots() const {
761    return DT->getRoots();
762  }
763
764  inline BasicBlock *getRoot() const {
765    return DT->getRoot();
766  }
767
768  inline DomTreeNode *getRootNode() const {
769    return DT->getRootNode();
770  }
771
772  /// Get all nodes dominated by R, including R itself. Return true on success.
773  void getDescendants(BasicBlock *R,
774                     SmallVectorImpl<BasicBlock *> &Result) const {
775    DT->getDescendants(R, Result);
776  }
777
778  /// compare - Return false if the other dominator tree matches this
779  /// dominator tree. Otherwise return true.
780  inline bool compare(DominatorTree &Other) const {
781    DomTreeNode *R = getRootNode();
782    DomTreeNode *OtherR = Other.getRootNode();
783
784    if (!R || !OtherR || R->getBlock() != OtherR->getBlock())
785      return true;
786
787    if (DT->compare(Other.getBase()))
788      return true;
789
790    return false;
791  }
792
793  virtual bool runOnFunction(Function &F);
794
795  virtual void verifyAnalysis() const;
796
797  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
798    AU.setPreservesAll();
799  }
800
801  inline bool dominates(const DomTreeNode* A, const DomTreeNode* B) const {
802    return DT->dominates(A, B);
803  }
804
805  inline bool dominates(const BasicBlock* A, const BasicBlock* B) const {
806    return DT->dominates(A, B);
807  }
808
809  // dominates - Return true if Def dominates a use in User. This performs
810  // the special checks necessary if Def and User are in the same basic block.
811  // Note that Def doesn't dominate a use in Def itself!
812  bool dominates(const Instruction *Def, const Use &U) const;
813  bool dominates(const Instruction *Def, const Instruction *User) const;
814  bool dominates(const Instruction *Def, const BasicBlock *BB) const;
815  bool dominates(const BasicBlockEdge &BBE, const Use &U) const;
816  bool dominates(const BasicBlockEdge &BBE, const BasicBlock *BB) const;
817
818  bool properlyDominates(const DomTreeNode *A, const DomTreeNode *B) const {
819    return DT->properlyDominates(A, B);
820  }
821
822  bool properlyDominates(const BasicBlock *A, const BasicBlock *B) const {
823    return DT->properlyDominates(A, B);
824  }
825
826  /// findNearestCommonDominator - Find nearest common dominator basic block
827  /// for basic block A and B. If there is no such block then return NULL.
828  inline BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B) {
829    return DT->findNearestCommonDominator(A, B);
830  }
831
832  inline const BasicBlock *findNearestCommonDominator(const BasicBlock *A,
833                                                      const BasicBlock *B) {
834    return DT->findNearestCommonDominator(A, B);
835  }
836
837  inline DomTreeNode *operator[](BasicBlock *BB) const {
838    return DT->getNode(BB);
839  }
840
841  /// getNode - return the (Post)DominatorTree node for the specified basic
842  /// block.  This is the same as using operator[] on this class.
843  ///
844  inline DomTreeNode *getNode(BasicBlock *BB) const {
845    return DT->getNode(BB);
846  }
847
848  /// addNewBlock - Add a new node to the dominator tree information.  This
849  /// creates a new node as a child of DomBB dominator node,linking it into
850  /// the children list of the immediate dominator.
851  inline DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) {
852    return DT->addNewBlock(BB, DomBB);
853  }
854
855  /// changeImmediateDominator - This method is used to update the dominator
856  /// tree information when a node's immediate dominator changes.
857  ///
858  inline void changeImmediateDominator(BasicBlock *N, BasicBlock* NewIDom) {
859    DT->changeImmediateDominator(N, NewIDom);
860  }
861
862  inline void changeImmediateDominator(DomTreeNode *N, DomTreeNode* NewIDom) {
863    DT->changeImmediateDominator(N, NewIDom);
864  }
865
866  /// eraseNode - Removes a node from the dominator tree. Block must not
867  /// dominate any other blocks. Removes node from its immediate dominator's
868  /// children list. Deletes dominator node associated with basic block BB.
869  inline void eraseNode(BasicBlock *BB) {
870    DT->eraseNode(BB);
871  }
872
873  /// splitBlock - BB is split and now it has one successor. Update dominator
874  /// tree to reflect this change.
875  inline void splitBlock(BasicBlock* NewBB) {
876    DT->splitBlock(NewBB);
877  }
878
879  bool isReachableFromEntry(const BasicBlock* A) const {
880    return DT->isReachableFromEntry(A);
881  }
882
883  bool isReachableFromEntry(const Use &U) const;
884
885
886  virtual void releaseMemory() {
887    DT->releaseMemory();
888  }
889
890  virtual void print(raw_ostream &OS, const Module* M= 0) const;
891};
892
893//===-------------------------------------
894/// DominatorTree GraphTraits specialization so the DominatorTree can be
895/// iterable by generic graph iterators.
896///
897template <> struct GraphTraits<DomTreeNode*> {
898  typedef DomTreeNode NodeType;
899  typedef NodeType::iterator  ChildIteratorType;
900
901  static NodeType *getEntryNode(NodeType *N) {
902    return N;
903  }
904  static inline ChildIteratorType child_begin(NodeType *N) {
905    return N->begin();
906  }
907  static inline ChildIteratorType child_end(NodeType *N) {
908    return N->end();
909  }
910
911  typedef df_iterator<DomTreeNode*> nodes_iterator;
912
913  static nodes_iterator nodes_begin(DomTreeNode *N) {
914    return df_begin(getEntryNode(N));
915  }
916
917  static nodes_iterator nodes_end(DomTreeNode *N) {
918    return df_end(getEntryNode(N));
919  }
920};
921
922template <> struct GraphTraits<DominatorTree*>
923  : public GraphTraits<DomTreeNode*> {
924  static NodeType *getEntryNode(DominatorTree *DT) {
925    return DT->getRootNode();
926  }
927
928  static nodes_iterator nodes_begin(DominatorTree *N) {
929    return df_begin(getEntryNode(N));
930  }
931
932  static nodes_iterator nodes_end(DominatorTree *N) {
933    return df_end(getEntryNode(N));
934  }
935};
936
937
938} // End llvm namespace
939
940#endif
941