1249259Sdim//===--- llvm/ADT/SparseMultiSet.h - Sparse multiset ------------*- C++ -*-===//
2249259Sdim//
3249259Sdim//                     The LLVM Compiler Infrastructure
4249259Sdim//
5249259Sdim// This file is distributed under the University of Illinois Open Source
6249259Sdim// License. See LICENSE.TXT for details.
7249259Sdim//
8249259Sdim//===----------------------------------------------------------------------===//
9249259Sdim//
10249259Sdim// This file defines the SparseMultiSet class, which adds multiset behavior to
11249259Sdim// the SparseSet.
12249259Sdim//
13249259Sdim// A sparse multiset holds a small number of objects identified by integer keys
14249259Sdim// from a moderately sized universe. The sparse multiset uses more memory than
15249259Sdim// other containers in order to provide faster operations. Any key can map to
16249259Sdim// multiple values. A SparseMultiSetNode class is provided, which serves as a
17249259Sdim// convenient base class for the contents of a SparseMultiSet.
18249259Sdim//
19249259Sdim//===----------------------------------------------------------------------===//
20249259Sdim
21249259Sdim#ifndef LLVM_ADT_SPARSEMULTISET_H
22249259Sdim#define LLVM_ADT_SPARSEMULTISET_H
23249259Sdim
24249259Sdim#include "llvm/ADT/SparseSet.h"
25249259Sdim
26249259Sdimnamespace llvm {
27249259Sdim
28249259Sdim/// Fast multiset implementation for objects that can be identified by small
29249259Sdim/// unsigned keys.
30249259Sdim///
31249259Sdim/// SparseMultiSet allocates memory proportional to the size of the key
32249259Sdim/// universe, so it is not recommended for building composite data structures.
33249259Sdim/// It is useful for algorithms that require a single set with fast operations.
34249259Sdim///
35249259Sdim/// Compared to DenseSet and DenseMap, SparseMultiSet provides constant-time
36249259Sdim/// fast clear() as fast as a vector.  The find(), insert(), and erase()
37249259Sdim/// operations are all constant time, and typically faster than a hash table.
38249259Sdim/// The iteration order doesn't depend on numerical key values, it only depends
39249259Sdim/// on the order of insert() and erase() operations.  Iteration order is the
40249259Sdim/// insertion order. Iteration is only provided over elements of equivalent
41249259Sdim/// keys, but iterators are bidirectional.
42249259Sdim///
43249259Sdim/// Compared to BitVector, SparseMultiSet<unsigned> uses 8x-40x more memory, but
44249259Sdim/// offers constant-time clear() and size() operations as well as fast iteration
45249259Sdim/// independent on the size of the universe.
46249259Sdim///
47249259Sdim/// SparseMultiSet contains a dense vector holding all the objects and a sparse
48249259Sdim/// array holding indexes into the dense vector.  Most of the memory is used by
49249259Sdim/// the sparse array which is the size of the key universe. The SparseT template
50249259Sdim/// parameter provides a space/speed tradeoff for sets holding many elements.
51249259Sdim///
52249259Sdim/// When SparseT is uint32_t, find() only touches up to 3 cache lines, but the
53249259Sdim/// sparse array uses 4 x Universe bytes.
54249259Sdim///
55249259Sdim/// When SparseT is uint8_t (the default), find() touches up to 3+[N/256] cache
56249259Sdim/// lines, but the sparse array is 4x smaller.  N is the number of elements in
57249259Sdim/// the set.
58249259Sdim///
59249259Sdim/// For sets that may grow to thousands of elements, SparseT should be set to
60249259Sdim/// uint16_t or uint32_t.
61249259Sdim///
62249259Sdim/// Multiset behavior is provided by providing doubly linked lists for values
63249259Sdim/// that are inlined in the dense vector. SparseMultiSet is a good choice when
64249259Sdim/// one desires a growable number of entries per key, as it will retain the
65249259Sdim/// SparseSet algorithmic properties despite being growable. Thus, it is often a
66249259Sdim/// better choice than a SparseSet of growable containers or a vector of
67249259Sdim/// vectors. SparseMultiSet also keeps iterators valid after erasure (provided
68249259Sdim/// the iterators don't point to the element erased), allowing for more
69249259Sdim/// intuitive and fast removal.
70249259Sdim///
71249259Sdim/// @tparam ValueT      The type of objects in the set.
72249259Sdim/// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
73249259Sdim/// @tparam SparseT     An unsigned integer type. See above.
74249259Sdim///
75249259Sdimtemplate<typename ValueT,
76249259Sdim         typename KeyFunctorT = llvm::identity<unsigned>,
77249259Sdim         typename SparseT = uint8_t>
78249259Sdimclass SparseMultiSet {
79249259Sdim  /// The actual data that's stored, as a doubly-linked list implemented via
80249259Sdim  /// indices into the DenseVector.  The doubly linked list is implemented
81249259Sdim  /// circular in Prev indices, and INVALID-terminated in Next indices. This
82249259Sdim  /// provides efficient access to list tails. These nodes can also be
83249259Sdim  /// tombstones, in which case they are actually nodes in a single-linked
84249259Sdim  /// freelist of recyclable slots.
85249259Sdim  struct SMSNode {
86249259Sdim    static const unsigned INVALID = ~0U;
87249259Sdim
88249259Sdim    ValueT Data;
89249259Sdim    unsigned Prev;
90249259Sdim    unsigned Next;
91249259Sdim
92249259Sdim    SMSNode(ValueT D, unsigned P, unsigned N) : Data(D), Prev(P), Next(N) { }
93249259Sdim
94249259Sdim    /// List tails have invalid Nexts.
95249259Sdim    bool isTail() const {
96249259Sdim      return Next == INVALID;
97249259Sdim    }
98249259Sdim
99249259Sdim    /// Whether this node is a tombstone node, and thus is in our freelist.
100249259Sdim    bool isTombstone() const {
101249259Sdim      return Prev == INVALID;
102249259Sdim    }
103249259Sdim
104249259Sdim    /// Since the list is circular in Prev, all non-tombstone nodes have a valid
105249259Sdim    /// Prev.
106249259Sdim    bool isValid() const { return Prev != INVALID; }
107249259Sdim  };
108249259Sdim
109249259Sdim  typedef typename KeyFunctorT::argument_type KeyT;
110249259Sdim  typedef SmallVector<SMSNode, 8> DenseT;
111249259Sdim  DenseT Dense;
112249259Sdim  SparseT *Sparse;
113249259Sdim  unsigned Universe;
114249259Sdim  KeyFunctorT KeyIndexOf;
115249259Sdim  SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf;
116249259Sdim
117249259Sdim  /// We have a built-in recycler for reusing tombstone slots. This recycler
118249259Sdim  /// puts a singly-linked free list into tombstone slots, allowing us quick
119249259Sdim  /// erasure, iterator preservation, and dense size.
120249259Sdim  unsigned FreelistIdx;
121249259Sdim  unsigned NumFree;
122249259Sdim
123249259Sdim  unsigned sparseIndex(const ValueT &Val) const {
124249259Sdim    assert(ValIndexOf(Val) < Universe &&
125249259Sdim           "Invalid key in set. Did object mutate?");
126249259Sdim    return ValIndexOf(Val);
127249259Sdim  }
128249259Sdim  unsigned sparseIndex(const SMSNode &N) const { return sparseIndex(N.Data); }
129249259Sdim
130249259Sdim  // Disable copy construction and assignment.
131249259Sdim  // This data structure is not meant to be used that way.
132249259Sdim  SparseMultiSet(const SparseMultiSet&) LLVM_DELETED_FUNCTION;
133249259Sdim  SparseMultiSet &operator=(const SparseMultiSet&) LLVM_DELETED_FUNCTION;
134249259Sdim
135249259Sdim  /// Whether the given entry is the head of the list. List heads's previous
136249259Sdim  /// pointers are to the tail of the list, allowing for efficient access to the
137249259Sdim  /// list tail. D must be a valid entry node.
138249259Sdim  bool isHead(const SMSNode &D) const {
139249259Sdim    assert(D.isValid() && "Invalid node for head");
140249259Sdim    return Dense[D.Prev].isTail();
141249259Sdim  }
142249259Sdim
143249259Sdim  /// Whether the given entry is a singleton entry, i.e. the only entry with
144249259Sdim  /// that key.
145249259Sdim  bool isSingleton(const SMSNode &N) const {
146249259Sdim    assert(N.isValid() && "Invalid node for singleton");
147249259Sdim    // Is N its own predecessor?
148249259Sdim    return &Dense[N.Prev] == &N;
149249259Sdim  }
150249259Sdim
151249259Sdim  /// Add in the given SMSNode. Uses a free entry in our freelist if
152249259Sdim  /// available. Returns the index of the added node.
153249259Sdim  unsigned addValue(const ValueT& V, unsigned Prev, unsigned Next) {
154249259Sdim    if (NumFree == 0) {
155249259Sdim      Dense.push_back(SMSNode(V, Prev, Next));
156249259Sdim      return Dense.size() - 1;
157249259Sdim    }
158249259Sdim
159249259Sdim    // Peel off a free slot
160249259Sdim    unsigned Idx = FreelistIdx;
161249259Sdim    unsigned NextFree = Dense[Idx].Next;
162249259Sdim    assert(Dense[Idx].isTombstone() && "Non-tombstone free?");
163249259Sdim
164249259Sdim    Dense[Idx] = SMSNode(V, Prev, Next);
165249259Sdim    FreelistIdx = NextFree;
166249259Sdim    --NumFree;
167249259Sdim    return Idx;
168249259Sdim  }
169249259Sdim
170249259Sdim  /// Make the current index a new tombstone. Pushes it onto the freelist.
171249259Sdim  void makeTombstone(unsigned Idx) {
172249259Sdim    Dense[Idx].Prev = SMSNode::INVALID;
173249259Sdim    Dense[Idx].Next = FreelistIdx;
174249259Sdim    FreelistIdx = Idx;
175249259Sdim    ++NumFree;
176249259Sdim  }
177249259Sdim
178249259Sdimpublic:
179249259Sdim  typedef ValueT value_type;
180249259Sdim  typedef ValueT &reference;
181249259Sdim  typedef const ValueT &const_reference;
182249259Sdim  typedef ValueT *pointer;
183249259Sdim  typedef const ValueT *const_pointer;
184249259Sdim
185249259Sdim  SparseMultiSet()
186249259Sdim    : Sparse(0), Universe(0), FreelistIdx(SMSNode::INVALID), NumFree(0) { }
187249259Sdim
188249259Sdim  ~SparseMultiSet() { free(Sparse); }
189249259Sdim
190249259Sdim  /// Set the universe size which determines the largest key the set can hold.
191249259Sdim  /// The universe must be sized before any elements can be added.
192249259Sdim  ///
193249259Sdim  /// @param U Universe size. All object keys must be less than U.
194249259Sdim  ///
195249259Sdim  void setUniverse(unsigned U) {
196249259Sdim    // It's not hard to resize the universe on a non-empty set, but it doesn't
197249259Sdim    // seem like a likely use case, so we can add that code when we need it.
198249259Sdim    assert(empty() && "Can only resize universe on an empty map");
199249259Sdim    // Hysteresis prevents needless reallocations.
200249259Sdim    if (U >= Universe/4 && U <= Universe)
201249259Sdim      return;
202249259Sdim    free(Sparse);
203249259Sdim    // The Sparse array doesn't actually need to be initialized, so malloc
204249259Sdim    // would be enough here, but that will cause tools like valgrind to
205249259Sdim    // complain about branching on uninitialized data.
206249259Sdim    Sparse = reinterpret_cast<SparseT*>(calloc(U, sizeof(SparseT)));
207249259Sdim    Universe = U;
208249259Sdim  }
209249259Sdim
210249259Sdim  /// Our iterators are iterators over the collection of objects that share a
211249259Sdim  /// key.
212249259Sdim  template<typename SMSPtrTy>
213249259Sdim  class iterator_base : public std::iterator<std::bidirectional_iterator_tag,
214249259Sdim                                             ValueT> {
215249259Sdim    friend class SparseMultiSet;
216249259Sdim    SMSPtrTy SMS;
217249259Sdim    unsigned Idx;
218249259Sdim    unsigned SparseIdx;
219249259Sdim
220249259Sdim    iterator_base(SMSPtrTy P, unsigned I, unsigned SI)
221249259Sdim      : SMS(P), Idx(I), SparseIdx(SI) { }
222249259Sdim
223249259Sdim    /// Whether our iterator has fallen outside our dense vector.
224249259Sdim    bool isEnd() const {
225249259Sdim      if (Idx == SMSNode::INVALID)
226249259Sdim        return true;
227249259Sdim
228249259Sdim      assert(Idx < SMS->Dense.size() && "Out of range, non-INVALID Idx?");
229249259Sdim      return false;
230249259Sdim    }
231249259Sdim
232249259Sdim    /// Whether our iterator is properly keyed, i.e. the SparseIdx is valid
233249259Sdim    bool isKeyed() const { return SparseIdx < SMS->Universe; }
234249259Sdim
235249259Sdim    unsigned Prev() const { return SMS->Dense[Idx].Prev; }
236249259Sdim    unsigned Next() const { return SMS->Dense[Idx].Next; }
237249259Sdim
238249259Sdim    void setPrev(unsigned P) { SMS->Dense[Idx].Prev = P; }
239249259Sdim    void setNext(unsigned N) { SMS->Dense[Idx].Next = N; }
240249259Sdim
241249259Sdim  public:
242249259Sdim    typedef std::iterator<std::bidirectional_iterator_tag, ValueT> super;
243249259Sdim    typedef typename super::value_type value_type;
244249259Sdim    typedef typename super::difference_type difference_type;
245249259Sdim    typedef typename super::pointer pointer;
246249259Sdim    typedef typename super::reference reference;
247249259Sdim
248249259Sdim    iterator_base(const iterator_base &RHS)
249249259Sdim      : SMS(RHS.SMS), Idx(RHS.Idx), SparseIdx(RHS.SparseIdx) { }
250249259Sdim
251249259Sdim    const iterator_base &operator=(const iterator_base &RHS) {
252249259Sdim      SMS = RHS.SMS;
253249259Sdim      Idx = RHS.Idx;
254249259Sdim      SparseIdx = RHS.SparseIdx;
255249259Sdim      return *this;
256249259Sdim    }
257249259Sdim
258249259Sdim    reference operator*() const {
259249259Sdim      assert(isKeyed() && SMS->sparseIndex(SMS->Dense[Idx].Data) == SparseIdx &&
260249259Sdim             "Dereferencing iterator of invalid key or index");
261249259Sdim
262249259Sdim      return SMS->Dense[Idx].Data;
263249259Sdim    }
264249259Sdim    pointer operator->() const { return &operator*(); }
265249259Sdim
266249259Sdim    /// Comparison operators
267249259Sdim    bool operator==(const iterator_base &RHS) const {
268249259Sdim      // end compares equal
269249259Sdim      if (SMS == RHS.SMS && Idx == RHS.Idx) {
270249259Sdim        assert((isEnd() || SparseIdx == RHS.SparseIdx) &&
271249259Sdim               "Same dense entry, but different keys?");
272249259Sdim        return true;
273249259Sdim      }
274249259Sdim
275249259Sdim      return false;
276249259Sdim    }
277249259Sdim
278249259Sdim    bool operator!=(const iterator_base &RHS) const {
279249259Sdim      return !operator==(RHS);
280249259Sdim    }
281249259Sdim
282249259Sdim    /// Increment and decrement operators
283249259Sdim    iterator_base &operator--() { // predecrement - Back up
284249259Sdim      assert(isKeyed() && "Decrementing an invalid iterator");
285249259Sdim      assert((isEnd() || !SMS->isHead(SMS->Dense[Idx])) &&
286249259Sdim             "Decrementing head of list");
287249259Sdim
288249259Sdim      // If we're at the end, then issue a new find()
289249259Sdim      if (isEnd())
290249259Sdim        Idx = SMS->findIndex(SparseIdx).Prev();
291249259Sdim      else
292249259Sdim        Idx = Prev();
293249259Sdim
294249259Sdim      return *this;
295249259Sdim    }
296249259Sdim    iterator_base &operator++() { // preincrement - Advance
297249259Sdim      assert(!isEnd() && isKeyed() && "Incrementing an invalid/end iterator");
298249259Sdim      Idx = Next();
299249259Sdim      return *this;
300249259Sdim    }
301249259Sdim    iterator_base operator--(int) { // postdecrement
302249259Sdim      iterator_base I(*this);
303249259Sdim      --*this;
304249259Sdim      return I;
305249259Sdim    }
306249259Sdim    iterator_base operator++(int) { // postincrement
307249259Sdim      iterator_base I(*this);
308249259Sdim      ++*this;
309249259Sdim      return I;
310249259Sdim    }
311249259Sdim  };
312249259Sdim  typedef iterator_base<SparseMultiSet *> iterator;
313249259Sdim  typedef iterator_base<const SparseMultiSet *> const_iterator;
314249259Sdim
315249259Sdim  // Convenience types
316249259Sdim  typedef std::pair<iterator, iterator> RangePair;
317249259Sdim
318249259Sdim  /// Returns an iterator past this container. Note that such an iterator cannot
319249259Sdim  /// be decremented, but will compare equal to other end iterators.
320249259Sdim  iterator end() { return iterator(this, SMSNode::INVALID, SMSNode::INVALID); }
321249259Sdim  const_iterator end() const {
322249259Sdim    return const_iterator(this, SMSNode::INVALID, SMSNode::INVALID);
323249259Sdim  }
324249259Sdim
325249259Sdim  /// Returns true if the set is empty.
326249259Sdim  ///
327249259Sdim  /// This is not the same as BitVector::empty().
328249259Sdim  ///
329249259Sdim  bool empty() const { return size() == 0; }
330249259Sdim
331249259Sdim  /// Returns the number of elements in the set.
332249259Sdim  ///
333249259Sdim  /// This is not the same as BitVector::size() which returns the size of the
334249259Sdim  /// universe.
335249259Sdim  ///
336249259Sdim  unsigned size() const {
337249259Sdim    assert(NumFree <= Dense.size() && "Out-of-bounds free entries");
338249259Sdim    return Dense.size() - NumFree;
339249259Sdim  }
340249259Sdim
341249259Sdim  /// Clears the set.  This is a very fast constant time operation.
342249259Sdim  ///
343249259Sdim  void clear() {
344249259Sdim    // Sparse does not need to be cleared, see find().
345249259Sdim    Dense.clear();
346249259Sdim    NumFree = 0;
347249259Sdim    FreelistIdx = SMSNode::INVALID;
348249259Sdim  }
349249259Sdim
350249259Sdim  /// Find an element by its index.
351249259Sdim  ///
352249259Sdim  /// @param   Idx A valid index to find.
353249259Sdim  /// @returns An iterator to the element identified by key, or end().
354249259Sdim  ///
355249259Sdim  iterator findIndex(unsigned Idx) {
356249259Sdim    assert(Idx < Universe && "Key out of range");
357249259Sdim    assert(std::numeric_limits<SparseT>::is_integer &&
358249259Sdim           !std::numeric_limits<SparseT>::is_signed &&
359249259Sdim           "SparseT must be an unsigned integer type");
360249259Sdim    const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
361249259Sdim    for (unsigned i = Sparse[Idx], e = Dense.size(); i < e; i += Stride) {
362249259Sdim      const unsigned FoundIdx = sparseIndex(Dense[i]);
363249259Sdim      // Check that we're pointing at the correct entry and that it is the head
364249259Sdim      // of a valid list.
365249259Sdim      if (Idx == FoundIdx && Dense[i].isValid() && isHead(Dense[i]))
366249259Sdim        return iterator(this, i, Idx);
367249259Sdim      // Stride is 0 when SparseT >= unsigned.  We don't need to loop.
368249259Sdim      if (!Stride)
369249259Sdim        break;
370249259Sdim    }
371249259Sdim    return end();
372249259Sdim  }
373249259Sdim
374249259Sdim  /// Find an element by its key.
375249259Sdim  ///
376249259Sdim  /// @param   Key A valid key to find.
377249259Sdim  /// @returns An iterator to the element identified by key, or end().
378249259Sdim  ///
379249259Sdim  iterator find(const KeyT &Key) {
380249259Sdim    return findIndex(KeyIndexOf(Key));
381249259Sdim  }
382249259Sdim
383249259Sdim  const_iterator find(const KeyT &Key) const {
384249259Sdim    iterator I = const_cast<SparseMultiSet*>(this)->findIndex(KeyIndexOf(Key));
385249259Sdim    return const_iterator(I.SMS, I.Idx, KeyIndexOf(Key));
386249259Sdim  }
387249259Sdim
388249259Sdim  /// Returns the number of elements identified by Key. This will be linear in
389249259Sdim  /// the number of elements of that key.
390249259Sdim  unsigned count(const KeyT &Key) const {
391249259Sdim    unsigned Ret = 0;
392249259Sdim    for (const_iterator It = find(Key); It != end(); ++It)
393249259Sdim      ++Ret;
394249259Sdim
395249259Sdim    return Ret;
396249259Sdim  }
397249259Sdim
398249259Sdim  /// Returns true if this set contains an element identified by Key.
399249259Sdim  bool contains(const KeyT &Key) const {
400249259Sdim    return find(Key) != end();
401249259Sdim  }
402249259Sdim
403249259Sdim  /// Return the head and tail of the subset's list, otherwise returns end().
404249259Sdim  iterator getHead(const KeyT &Key) { return find(Key); }
405249259Sdim  iterator getTail(const KeyT &Key) {
406249259Sdim    iterator I = find(Key);
407249259Sdim    if (I != end())
408249259Sdim      I = iterator(this, I.Prev(), KeyIndexOf(Key));
409249259Sdim    return I;
410249259Sdim  }
411249259Sdim
412249259Sdim  /// The bounds of the range of items sharing Key K. First member is the head
413249259Sdim  /// of the list, and the second member is a decrementable end iterator for
414249259Sdim  /// that key.
415249259Sdim  RangePair equal_range(const KeyT &K) {
416249259Sdim    iterator B = find(K);
417249259Sdim    iterator E = iterator(this, SMSNode::INVALID, B.SparseIdx);
418249259Sdim    return make_pair(B, E);
419249259Sdim  }
420249259Sdim
421249259Sdim  /// Insert a new element at the tail of the subset list. Returns an iterator
422249259Sdim  /// to the newly added entry.
423249259Sdim  iterator insert(const ValueT &Val) {
424249259Sdim    unsigned Idx = sparseIndex(Val);
425249259Sdim    iterator I = findIndex(Idx);
426249259Sdim
427249259Sdim    unsigned NodeIdx = addValue(Val, SMSNode::INVALID, SMSNode::INVALID);
428249259Sdim
429249259Sdim    if (I == end()) {
430249259Sdim      // Make a singleton list
431249259Sdim      Sparse[Idx] = NodeIdx;
432249259Sdim      Dense[NodeIdx].Prev = NodeIdx;
433249259Sdim      return iterator(this, NodeIdx, Idx);
434249259Sdim    }
435249259Sdim
436249259Sdim    // Stick it at the end.
437249259Sdim    unsigned HeadIdx = I.Idx;
438249259Sdim    unsigned TailIdx = I.Prev();
439249259Sdim    Dense[TailIdx].Next = NodeIdx;
440249259Sdim    Dense[HeadIdx].Prev = NodeIdx;
441249259Sdim    Dense[NodeIdx].Prev = TailIdx;
442249259Sdim
443249259Sdim    return iterator(this, NodeIdx, Idx);
444249259Sdim  }
445249259Sdim
446249259Sdim  /// Erases an existing element identified by a valid iterator.
447249259Sdim  ///
448249259Sdim  /// This invalidates iterators pointing at the same entry, but erase() returns
449249259Sdim  /// an iterator pointing to the next element in the subset's list. This makes
450249259Sdim  /// it possible to erase selected elements while iterating over the subset:
451249259Sdim  ///
452249259Sdim  ///   tie(I, E) = Set.equal_range(Key);
453249259Sdim  ///   while (I != E)
454249259Sdim  ///     if (test(*I))
455249259Sdim  ///       I = Set.erase(I);
456249259Sdim  ///     else
457249259Sdim  ///       ++I;
458249259Sdim  ///
459249259Sdim  /// Note that if the last element in the subset list is erased, this will
460249259Sdim  /// return an end iterator which can be decremented to get the new tail (if it
461249259Sdim  /// exists):
462249259Sdim  ///
463249259Sdim  ///  tie(B, I) = Set.equal_range(Key);
464249259Sdim  ///  for (bool isBegin = B == I; !isBegin; /* empty */) {
465249259Sdim  ///    isBegin = (--I) == B;
466249259Sdim  ///    if (test(I))
467249259Sdim  ///      break;
468249259Sdim  ///    I = erase(I);
469249259Sdim  ///  }
470249259Sdim  iterator erase(iterator I) {
471249259Sdim    assert(I.isKeyed() && !I.isEnd() && !Dense[I.Idx].isTombstone() &&
472249259Sdim           "erasing invalid/end/tombstone iterator");
473249259Sdim
474249259Sdim    // First, unlink the node from its list. Then swap the node out with the
475249259Sdim    // dense vector's last entry
476249259Sdim    iterator NextI = unlink(Dense[I.Idx]);
477249259Sdim
478249259Sdim    // Put in a tombstone.
479249259Sdim    makeTombstone(I.Idx);
480249259Sdim
481249259Sdim    return NextI;
482249259Sdim  }
483249259Sdim
484249259Sdim  /// Erase all elements with the given key. This invalidates all
485249259Sdim  /// iterators of that key.
486249259Sdim  void eraseAll(const KeyT &K) {
487249259Sdim    for (iterator I = find(K); I != end(); /* empty */)
488249259Sdim      I = erase(I);
489249259Sdim  }
490249259Sdim
491249259Sdimprivate:
492249259Sdim  /// Unlink the node from its list. Returns the next node in the list.
493249259Sdim  iterator unlink(const SMSNode &N) {
494249259Sdim    if (isSingleton(N)) {
495249259Sdim      // Singleton is already unlinked
496249259Sdim      assert(N.Next == SMSNode::INVALID && "Singleton has next?");
497249259Sdim      return iterator(this, SMSNode::INVALID, ValIndexOf(N.Data));
498249259Sdim    }
499249259Sdim
500249259Sdim    if (isHead(N)) {
501249259Sdim      // If we're the head, then update the sparse array and our next.
502249259Sdim      Sparse[sparseIndex(N)] = N.Next;
503249259Sdim      Dense[N.Next].Prev = N.Prev;
504249259Sdim      return iterator(this, N.Next, ValIndexOf(N.Data));
505249259Sdim    }
506249259Sdim
507249259Sdim    if (N.isTail()) {
508249259Sdim      // If we're the tail, then update our head and our previous.
509249259Sdim      findIndex(sparseIndex(N)).setPrev(N.Prev);
510249259Sdim      Dense[N.Prev].Next = N.Next;
511249259Sdim
512249259Sdim      // Give back an end iterator that can be decremented
513249259Sdim      iterator I(this, N.Prev, ValIndexOf(N.Data));
514249259Sdim      return ++I;
515249259Sdim    }
516249259Sdim
517249259Sdim    // Otherwise, just drop us
518249259Sdim    Dense[N.Next].Prev = N.Prev;
519249259Sdim    Dense[N.Prev].Next = N.Next;
520249259Sdim    return iterator(this, N.Next, ValIndexOf(N.Data));
521249259Sdim  }
522249259Sdim};
523249259Sdim
524249259Sdim} // end namespace llvm
525249259Sdim
526249259Sdim#endif
527