1/*
2 * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
30 *	The Regents of the University of California.  All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 *    notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 *    notice, this list of conditions and the following disclaimer in the
39 *    documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 *    must display the following acknowledgement:
42 *	This product includes software developed by the University of
43 *	California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 *    may be used to endorse or promote products derived from this software
46 *    without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
61 * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.16 2001/08/22 00:59:12 silby Exp $
62 */
63/*
64 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
65 * support for mandatory and extensible security protections.  This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
67 * Version 2.0.
68 */
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/kernel.h>
73#include <sys/sysctl.h>
74#include <sys/malloc.h>
75#include <sys/mbuf.h>
76#include <sys/proc.h>		/* for proc0 declaration */
77#include <sys/protosw.h>
78#include <sys/socket.h>
79#include <sys/socketvar.h>
80#include <sys/syslog.h>
81#include <sys/mcache.h>
82
83#include <kern/cpu_number.h>	/* before tcp_seq.h, for tcp_random18() */
84
85#include <machine/endian.h>
86
87#include <net/if.h>
88#include <net/if_types.h>
89#include <net/route.h>
90#include <net/ntstat.h>
91
92#include <netinet/in.h>
93#include <netinet/in_systm.h>
94#include <netinet/ip.h>
95#include <netinet/ip_icmp.h>    /* for ICMP_BANDLIM		*/
96#include <netinet/in_var.h>
97#include <netinet/icmp_var.h>	/* for ICMP_BANDLIM	*/
98#include <netinet/in_pcb.h>
99#include <netinet/ip_var.h>
100#include <mach/sdt.h>
101#if INET6
102#include <netinet/ip6.h>
103#include <netinet/icmp6.h>
104#include <netinet6/nd6.h>
105#include <netinet6/ip6_var.h>
106#include <netinet6/in6_pcb.h>
107#endif
108#include <netinet/tcp.h>
109#include <netinet/tcp_fsm.h>
110#include <netinet/tcp_seq.h>
111#include <netinet/tcp_timer.h>
112#include <netinet/tcp_var.h>
113#include <netinet/tcp_cc.h>
114#include <kern/zalloc.h>
115#if INET6
116#include <netinet6/tcp6_var.h>
117#endif
118#include <netinet/tcpip.h>
119#if TCPDEBUG
120#include <netinet/tcp_debug.h>
121u_char tcp_saveipgen[40]; /* the size must be of max ip header, now IPv6 */
122struct tcphdr tcp_savetcp;
123#endif /* TCPDEBUG */
124
125#if IPSEC
126#include <netinet6/ipsec.h>
127#if INET6
128#include <netinet6/ipsec6.h>
129#endif
130#include <netkey/key.h>
131#endif /*IPSEC*/
132
133#if CONFIG_MACF_NET || CONFIG_MACF_SOCKET
134#include <security/mac_framework.h>
135#endif /* CONFIG_MACF_NET || CONFIG_MACF_SOCKET */
136
137#include <sys/kdebug.h>
138#include <netinet/lro_ext.h>
139
140#define DBG_LAYER_BEG		NETDBG_CODE(DBG_NETTCP, 0)
141#define DBG_LAYER_END		NETDBG_CODE(DBG_NETTCP, 2)
142#define DBG_FNC_TCP_INPUT       NETDBG_CODE(DBG_NETTCP, (3 << 8))
143#define DBG_FNC_TCP_NEWCONN     NETDBG_CODE(DBG_NETTCP, (7 << 8))
144
145static int	tcprexmtthresh = 2;
146tcp_cc	tcp_ccgen;
147
148#if IPSEC
149extern int ipsec_bypass;
150#endif
151
152extern int32_t total_sbmb_cnt;
153
154struct	tcpstat tcpstat;
155
156static int log_in_vain = 0;
157SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW | CTLFLAG_LOCKED,
158    &log_in_vain, 0, "Log all incoming TCP connections");
159
160static int blackhole = 0;
161SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW | CTLFLAG_LOCKED,
162	&blackhole, 0, "Do not send RST when dropping refused connections");
163
164int tcp_delack_enabled = 3;
165SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW | CTLFLAG_LOCKED,
166    &tcp_delack_enabled, 0,
167    "Delay ACK to try and piggyback it onto a data packet");
168
169int tcp_lq_overflow = 1;
170SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcp_lq_overflow, CTLFLAG_RW | CTLFLAG_LOCKED,
171    &tcp_lq_overflow, 0,
172    "Listen Queue Overflow");
173
174int tcp_recv_bg = 0;
175SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbg, CTLFLAG_RW | CTLFLAG_LOCKED,
176    &tcp_recv_bg, 0,
177    "Receive background");
178
179#if TCP_DROP_SYNFIN
180static int drop_synfin = 1;
181SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW | CTLFLAG_LOCKED,
182    &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
183#endif
184
185SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW|CTLFLAG_LOCKED, 0,
186    "TCP Segment Reassembly Queue");
187
188__private_extern__ int tcp_reass_maxseg = 0;
189SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RW | CTLFLAG_LOCKED,
190    &tcp_reass_maxseg, 0,
191    "Global maximum number of TCP Segments in Reassembly Queue");
192
193__private_extern__ int tcp_reass_qsize = 0;
194SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD | CTLFLAG_LOCKED,
195    &tcp_reass_qsize, 0,
196    "Global number of TCP Segments currently in Reassembly Queue");
197
198static int tcp_reass_overflows = 0;
199SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD | CTLFLAG_LOCKED,
200    &tcp_reass_overflows, 0,
201    "Global number of TCP Segment Reassembly Queue Overflows");
202
203
204__private_extern__ int slowlink_wsize = 8192;
205SYSCTL_INT(_net_inet_tcp, OID_AUTO, slowlink_wsize, CTLFLAG_RW | CTLFLAG_LOCKED,
206	&slowlink_wsize, 0, "Maximum advertised window size for slowlink");
207
208int maxseg_unacked = 8;
209SYSCTL_INT(_net_inet_tcp, OID_AUTO, maxseg_unacked, CTLFLAG_RW | CTLFLAG_LOCKED,
210	&maxseg_unacked, 0, "Maximum number of outstanding segments left unacked");
211
212int	tcp_do_rfc3465 = 1;
213SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_RW | CTLFLAG_LOCKED,
214	&tcp_do_rfc3465, 0, "");
215
216int	tcp_do_rfc3465_lim2 = 1;
217SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465_lim2, CTLFLAG_RW | CTLFLAG_LOCKED,
218	&tcp_do_rfc3465_lim2, 0, "Appropriate bytes counting w/ L=2*SMSS");
219
220int	rtt_samples_per_slot = 20;
221SYSCTL_INT(_net_inet_tcp, OID_AUTO, rtt_samples_per_slot, CTLFLAG_RW | CTLFLAG_LOCKED,
222	&rtt_samples_per_slot, 0, "Number of RTT samples stored for rtt history");
223
224int	tcp_allowed_iaj = ALLOWED_IAJ;
225SYSCTL_INT(_net_inet_tcp, OID_AUTO, recv_allowed_iaj, CTLFLAG_RW | CTLFLAG_LOCKED,
226        &tcp_allowed_iaj, 0, "Allowed inter-packet arrival jiter");
227
228int	tcp_acc_iaj_high_thresh = ACC_IAJ_HIGH_THRESH;
229SYSCTL_INT(_net_inet_tcp, OID_AUTO, acc_iaj_high_thresh, CTLFLAG_RW | CTLFLAG_LOCKED,
230        &tcp_acc_iaj_high_thresh, 0, "Used in calculating maximum accumulated IAJ");
231
232u_int32_t tcp_do_autorcvbuf = 1;
233SYSCTL_INT(_net_inet_tcp, OID_AUTO, doautorcvbuf, CTLFLAG_RW | CTLFLAG_LOCKED,
234        &tcp_do_autorcvbuf, 0, "Enable automatic socket buffer tuning");
235
236u_int32_t tcp_autorcvbuf_inc_shift = 3;
237SYSCTL_INT(_net_inet_tcp, OID_AUTO, autorcvbufincshift, CTLFLAG_RW | CTLFLAG_LOCKED,
238        &tcp_autorcvbuf_inc_shift, 0, "Shift for increment in receive socket buffer size");
239
240u_int32_t tcp_autorcvbuf_max = 512 * 1024;
241SYSCTL_INT(_net_inet_tcp, OID_AUTO, autorcvbufmax, CTLFLAG_RW | CTLFLAG_LOCKED,
242        &tcp_autorcvbuf_max, 0, "Maximum receive socket buffer size");
243
244int sw_lro = 1;
245SYSCTL_INT(_net_inet_tcp, OID_AUTO, lro, CTLFLAG_RW | CTLFLAG_LOCKED,
246        &sw_lro, 0, "Used to coalesce TCP packets");
247
248int lrodebug = 0;
249SYSCTL_INT(_net_inet_tcp, OID_AUTO, lrodbg, CTLFLAG_RW | CTLFLAG_LOCKED,
250        &lrodebug, 0, "Used to debug SW LRO");
251
252int lro_start = 3;
253SYSCTL_INT(_net_inet_tcp, OID_AUTO, lro_startcnt, CTLFLAG_RW | CTLFLAG_LOCKED,
254	&lro_start, 0, "Segments for starting LRO computed as power of 2");
255
256extern int tcp_do_autosendbuf;
257
258#if CONFIG_IFEF_NOWINDOWSCALE
259int tcp_obey_ifef_nowindowscale = 0;
260SYSCTL_INT(_net_inet_tcp, OID_AUTO, obey_ifef_nowindowscale, CTLFLAG_RW | CTLFLAG_LOCKED,
261	&tcp_obey_ifef_nowindowscale, 0, "");
262#endif
263/* This limit will determine when the receive socket buffer tuning will
264 * kick in. Currently it will start when the bw*delay measured in
265 * last RTT is more than half of the current hiwat on the buffer.
266 */
267uint32_t tcp_rbuf_hiwat_shift = 1;
268
269/* This limit will determine when the socket buffer will be increased
270 * to accommodate an application reading slowly. When the amount of
271 * space left in the buffer is less than one forth of the bw*delay
272 * measured in last RTT.
273 */
274uint32_t tcp_rbuf_win_shift = 2;
275
276extern int tcp_TCPTV_MIN;
277extern int tcp_acc_iaj_high;
278extern int tcp_acc_iaj_react_limit;
279extern struct zone *tcp_reass_zone;
280
281
282u_int32_t tcp_now;
283struct timeval tcp_uptime;	/* uptime when tcp_now was last updated */
284lck_spin_t *tcp_uptime_lock;	/* Used to sychronize updates to tcp_now */
285
286struct inpcbhead tcb;
287#define	tcb6	tcb  /* for KAME src sync over BSD*'s */
288struct inpcbinfo tcbinfo;
289
290static void tcp_dooptions(struct tcpcb *, u_char *, int, struct tcphdr *,
291    struct tcpopt *, unsigned int);
292static void	 tcp_pulloutofband(struct socket *,
293	    struct tcphdr *, struct mbuf *, int);
294static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
295				struct mbuf *);
296static void	tcp_xmit_timer(struct tcpcb *, int);
297static inline unsigned int tcp_maxmtu(struct rtentry *);
298static inline int tcp_stretch_ack_enable(struct tcpcb *tp);
299
300#if TRAFFIC_MGT
301static inline void update_iaj_state(struct tcpcb *tp, uint32_t tlen, int reset_size);
302void compute_iaj(struct tcpcb *tp);
303#endif /* TRAFFIC_MGT */
304
305#if INET6
306static inline unsigned int tcp_maxmtu6(struct rtentry *);
307#endif
308
309static void tcp_sbrcv_grow(struct tcpcb *tp, struct sockbuf *sb,
310	struct tcpopt *to, u_int32_t tlen);
311
312void tcp_sbrcv_trim(struct tcpcb *tp, struct sockbuf *sb);
313static void tcp_sbsnd_trim(struct sockbuf *sbsnd);
314static inline void tcp_sbrcv_tstmp_check(struct tcpcb *tp);
315static inline void tcp_sbrcv_reserve(struct tcpcb *tp, struct sockbuf *sb,
316	u_int32_t newsize, u_int32_t idealsize);
317
318#define TCPTV_RCVNOTS_QUANTUM 100
319#define TCP_RCVNOTS_BYTELEVEL 204800
320/* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
321#if INET6
322#define ND6_HINT(tp) \
323do { \
324	if ((tp) && (tp)->t_inpcb && \
325	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0 && \
326	    (tp)->t_inpcb->in6p_route.ro_rt) \
327		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
328} while (0)
329#else
330#define ND6_HINT(tp)
331#endif
332
333extern void	add_to_time_wait(struct tcpcb *, uint32_t delay);
334extern void postevent(struct socket *, struct sockbuf *, int);
335
336extern  void    ipfwsyslog( int level, const char *format,...);
337extern int ChkAddressOK( __uint32_t dstaddr, __uint32_t srcaddr );
338extern int fw_verbose;
339
340#if IPFIREWALL
341#define log_in_vain_log( a ) {            \
342        if ( (log_in_vain == 3 ) && (fw_verbose == 2)) {        /* Apple logging, log to ipfw.log */ \
343                ipfwsyslog a ;  \
344        }                       \
345        else log a ;            \
346}
347#else
348#define log_in_vain_log( a ) { log a; }
349#endif
350
351int tcp_rcvunackwin = TCPTV_UNACKWIN;
352int tcp_maxrcvidle = TCPTV_MAXRCVIDLE;
353int tcp_rcvsspktcnt = TCP_RCV_SS_PKTCOUNT;
354SYSCTL_INT(_net_inet_tcp, OID_AUTO, rcvsspktcnt, CTLFLAG_RW | CTLFLAG_LOCKED,
355	&tcp_rcvsspktcnt, 0, "packets to be seen before receiver stretches acks");
356
357#define DELAY_ACK(tp, th) (CC_ALGO(tp)->delay_ack != NULL && CC_ALGO(tp)->delay_ack(tp, th))
358
359static int tcp_dropdropablreq(struct socket *head);
360static void tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th);
361
362static void update_base_rtt(struct tcpcb *tp, uint32_t rtt);
363uint32_t get_base_rtt(struct tcpcb *tp);
364void tcp_set_background_cc(struct socket *so);
365void tcp_set_foreground_cc(struct socket *so);
366static void tcp_set_new_cc(struct socket *so, uint16_t cc_index);
367static void tcp_bwmeas_check(struct tcpcb *tp);
368
369#if TRAFFIC_MGT
370void
371reset_acc_iaj(struct tcpcb *tp)
372{
373	tp->acc_iaj = 0;
374	tp->iaj_rwintop = 0;
375	CLEAR_IAJ_STATE(tp);
376}
377
378static inline void
379update_iaj_state(struct tcpcb *tp, uint32_t size, int rst_size)
380{
381	if (rst_size > 0)
382		tp->iaj_size = 0;
383	if (tp->iaj_size == 0 || size >= tp->iaj_size) {
384		tp->iaj_size = size;
385		tp->iaj_rcv_ts = tcp_now;
386		tp->iaj_small_pkt = 0;
387	}
388}
389
390/* For every 32 bit unsigned integer(v), this function will find the
391 * largest integer n such that (n*n <= v). This takes at most 16 iterations
392 * irrespective of the value of v and does not involve multiplications.
393 */
394static inline int
395isqrt(unsigned int val) {
396	unsigned int sqrt_cache[11] = {0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100};
397	unsigned int temp, g=0, b=0x8000, bshft=15;
398	if ( val <= 100) {
399		for (g = 0; g <= 10; ++g) {
400			if (sqrt_cache[g] > val) {
401				g--;
402				break;
403			} else if (sqrt_cache[g] == val) {
404				break;
405			}
406		}
407	} else {
408		do {
409			temp = (((g << 1) + b) << (bshft--));
410			if (val >= temp) {
411				g += b;
412				val -= temp;
413			}
414			b >>= 1;
415		} while ( b > 0 && val > 0);
416	}
417	return(g);
418}
419
420void
421compute_iaj(struct tcpcb *tp)
422{
423	/* When accumulated IAJ reaches MAX_ACC_IAJ in milliseconds, throttle the
424	 * receive window to a minimum of MIN_IAJ_WIN packets
425	 */
426#define MAX_ACC_IAJ (tcp_acc_iaj_high_thresh + tcp_acc_iaj_react_limit)
427
428	uint32_t allowed_iaj, acc_iaj = 0;
429	uint32_t cur_iaj = tcp_now - tp->iaj_rcv_ts;
430
431	uint32_t mean, temp;
432	int32_t cur_iaj_dev;
433	cur_iaj_dev = (cur_iaj - tp->avg_iaj);
434
435	/* Allow a jitter of "allowed_iaj" milliseconds. Some connections may have a
436	 * constant jitter more than that. We detect this by using
437	 * standard deviation.
438	 */
439	allowed_iaj = tp->avg_iaj + tp->std_dev_iaj;
440	if (allowed_iaj < tcp_allowed_iaj)
441		allowed_iaj = tcp_allowed_iaj;
442
443	/* Initially when the connection starts, the senders congestion window
444	 * is small. During this period we avoid throttling a connection because
445	 * we do not have a good starting point for allowed_iaj. IAJ_IGNORE_PKTCNT
446	 * is used to quietly gloss over the first few packets.
447	 */
448	if (tp->iaj_pktcnt > IAJ_IGNORE_PKTCNT) {
449		if ( cur_iaj <= allowed_iaj ) {
450			if (tp->acc_iaj >= 2)
451				acc_iaj = tp->acc_iaj - 2;
452			else
453				acc_iaj = 0;
454		} else {
455			acc_iaj = tp->acc_iaj + (cur_iaj - allowed_iaj);
456		}
457
458		if (acc_iaj > MAX_ACC_IAJ)
459			acc_iaj = MAX_ACC_IAJ;
460		tp->acc_iaj = acc_iaj;
461	}
462
463	/* Compute weighted average where the history has a weight of
464	 * 15 out of 16 and the current value has a weight of 1 out of 16.
465	 * This will make the short-term measurements have more weight.
466	 */
467	tp->avg_iaj = (((tp->avg_iaj << 4) - tp->avg_iaj) + cur_iaj) >> 4;
468
469	/* Compute Root-mean-square of deviation where mean is a weighted
470	 * average as described above
471	 */
472	temp = tp->std_dev_iaj * tp->std_dev_iaj;
473	mean = (((temp << 4) - temp) + (cur_iaj_dev * cur_iaj_dev)) >> 4;
474
475	tp->std_dev_iaj = isqrt(mean);
476
477	DTRACE_TCP3(iaj, struct tcpcb *, tp, uint32_t, cur_iaj, uint32_t, allowed_iaj);
478
479	return;
480}
481#endif /* TRAFFIC_MGT */
482
483/* Check if enough amount of data has been acknowledged since
484 * bw measurement was started
485 */
486static void
487tcp_bwmeas_check(struct tcpcb *tp)
488{
489	int32_t bw_meas_bytes;
490	uint32_t bw, bytes, elapsed_time;
491	bw_meas_bytes = tp->snd_una - tp->t_bwmeas->bw_start;
492	if ((tp->t_flagsext & TF_BWMEAS_INPROGRESS) != 0 &&
493	    bw_meas_bytes >= (int32_t)(tp->t_bwmeas->bw_size)) {
494		bytes = bw_meas_bytes;
495		elapsed_time = tcp_now - tp->t_bwmeas->bw_ts;
496		if (elapsed_time > 0) {
497			bw = bytes / elapsed_time;
498			if ( bw > 0) {
499				if (tp->t_bwmeas->bw_sndbw > 0) {
500					tp->t_bwmeas->bw_sndbw =
501					    (((tp->t_bwmeas->bw_sndbw << 3) - tp->t_bwmeas->bw_sndbw) + bw) >> 3;
502				} else {
503					tp->t_bwmeas->bw_sndbw = bw;
504				}
505			}
506		}
507		tp->t_flagsext &= ~(TF_BWMEAS_INPROGRESS);
508	}
509}
510
511static int
512tcp_reass(tp, th, tlenp, m)
513	register struct tcpcb *tp;
514	register struct tcphdr *th;
515	int *tlenp;
516	struct mbuf *m;
517{
518	struct tseg_qent *q;
519	struct tseg_qent *p = NULL;
520	struct tseg_qent *nq;
521	struct tseg_qent *te = NULL;
522	struct socket *so = tp->t_inpcb->inp_socket;
523	int flags;
524	int dowakeup = 0;
525
526	/*
527	 * Call with th==0 after become established to
528	 * force pre-ESTABLISHED data up to user socket.
529	 */
530	if (th == NULL)
531		goto present;
532
533	/* If the reassembly queue already has entries or if we are going to add
534	 * a new one, then the connection has reached a loss state.
535	 * Reset the stretch-ack algorithm at this point.
536	 */
537	if ((tp->t_flags & TF_STRETCHACK) != 0)
538		tcp_reset_stretch_ack(tp);
539
540	/* When the connection reaches a loss state, we need to send more acks
541	 * for a period of time so that the sender's congestion window will
542	 * open. Wait until we see some packets on the connection before
543	 * stretching acks again.
544	 */
545	tp->t_flagsext |= TF_RCVUNACK_WAITSS;
546	tp->rcv_waitforss = 0;
547
548
549#if TRAFFIC_MGT
550	if (tp->acc_iaj > 0)
551		reset_acc_iaj(tp);
552#endif /* TRAFFIC_MGT */
553
554	/*
555	 * Limit the number of segments in the reassembly queue to prevent
556	 * holding on to too many segments (and thus running out of mbufs).
557	 * Make sure to let the missing segment through which caused this
558	 * queue.  Always keep one global queue entry spare to be able to
559	 * process the missing segment.
560	 */
561	if (th->th_seq != tp->rcv_nxt &&
562	    tcp_reass_qsize + 1 >= tcp_reass_maxseg) {
563		tcp_reass_overflows++;
564		tcpstat.tcps_rcvmemdrop++;
565		m_freem(m);
566		*tlenp = 0;
567		return (0);
568	}
569
570	/* Allocate a new queue entry. If we can't, just drop the pkt. XXX */
571	te = (struct tseg_qent *) zalloc_noblock(tcp_reass_zone);
572	if (te == NULL) {
573		tcpstat.tcps_rcvmemdrop++;
574		m_freem(m);
575		return (0);
576	}
577	tcp_reass_qsize++;
578
579	/*
580	 * Find a segment which begins after this one does.
581	 */
582	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
583		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
584			break;
585		p = q;
586	}
587
588	/*
589	 * If there is a preceding segment, it may provide some of
590	 * our data already.  If so, drop the data from the incoming
591	 * segment.  If it provides all of our data, drop us.
592	 */
593	if (p != NULL) {
594		register int i;
595		/* conversion to int (in i) handles seq wraparound */
596		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
597		if (i > 0) {
598			if (i >= *tlenp) {
599				tcpstat.tcps_rcvduppack++;
600				tcpstat.tcps_rcvdupbyte += *tlenp;
601				if (nstat_collect) {
602					nstat_route_rx(tp->t_inpcb->inp_route.ro_rt, 1, *tlenp, NSTAT_RX_FLAG_DUPLICATE);
603					locked_add_64(&tp->t_inpcb->inp_stat->rxpackets, 1);
604					locked_add_64(&tp->t_inpcb->inp_stat->rxbytes, *tlenp);
605					tp->t_stat.rxduplicatebytes += *tlenp;
606				}
607				m_freem(m);
608				zfree(tcp_reass_zone, te);
609				tcp_reass_qsize--;
610				/*
611				 * Try to present any queued data
612				 * at the left window edge to the user.
613				 * This is needed after the 3-WHS
614				 * completes.
615				 */
616				goto present;	/* ??? */
617			}
618			m_adj(m, i);
619			*tlenp -= i;
620			th->th_seq += i;
621		}
622	}
623	tcpstat.tcps_rcvoopack++;
624	tcpstat.tcps_rcvoobyte += *tlenp;
625	if (nstat_collect) {
626		nstat_route_rx(tp->t_inpcb->inp_route.ro_rt, 1, *tlenp, NSTAT_RX_FLAG_OUT_OF_ORDER);
627		locked_add_64(&tp->t_inpcb->inp_stat->rxpackets, 1);
628		locked_add_64(&tp->t_inpcb->inp_stat->rxbytes, *tlenp);
629		tp->t_stat.rxoutoforderbytes += *tlenp;
630	}
631
632	/*
633	 * While we overlap succeeding segments trim them or,
634	 * if they are completely covered, dequeue them.
635	 */
636	while (q) {
637		register int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
638		if (i <= 0)
639			break;
640		if (i < q->tqe_len) {
641			q->tqe_th->th_seq += i;
642			q->tqe_len -= i;
643			m_adj(q->tqe_m, i);
644			break;
645		}
646
647		nq = LIST_NEXT(q, tqe_q);
648		LIST_REMOVE(q, tqe_q);
649		m_freem(q->tqe_m);
650		zfree(tcp_reass_zone, q);
651		tcp_reass_qsize--;
652		q = nq;
653	}
654
655	/* Insert the new segment queue entry into place. */
656	te->tqe_m = m;
657	te->tqe_th = th;
658	te->tqe_len = *tlenp;
659
660	if (p == NULL) {
661		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
662	} else {
663		LIST_INSERT_AFTER(p, te, tqe_q);
664	}
665
666present:
667	/*
668	 * Present data to user, advancing rcv_nxt through
669	 * completed sequence space.
670	 */
671	if (!TCPS_HAVEESTABLISHED(tp->t_state))
672		return (0);
673	q = LIST_FIRST(&tp->t_segq);
674	if (!q || q->tqe_th->th_seq != tp->rcv_nxt) {
675		/* Stop using LRO once out of order packets arrive */
676		if (tp->t_flagsext & TF_LRO_OFFLOADED) {
677			tcp_lro_remove_state(tp->t_inpcb->inp_laddr,
678				tp->t_inpcb->inp_faddr,
679				th->th_dport, th->th_sport);
680			tp->t_flagsext &= ~TF_LRO_OFFLOADED;
681		}
682		return (0);
683	}
684	do {
685		tp->rcv_nxt += q->tqe_len;
686		flags = q->tqe_th->th_flags & TH_FIN;
687		nq = LIST_NEXT(q, tqe_q);
688		LIST_REMOVE(q, tqe_q);
689		if (so->so_state & SS_CANTRCVMORE)
690			m_freem(q->tqe_m);
691		else {
692			so_recv_data_stat(so, q->tqe_m, 0); /* XXXX */
693			if (sbappendstream(&so->so_rcv, q->tqe_m))
694				dowakeup = 1;
695			if (tp->t_flagsext & TF_LRO_OFFLOADED) {
696				tcp_update_lro_seq(tp->rcv_nxt,
697				 tp->t_inpcb->inp_laddr,
698				 tp->t_inpcb->inp_faddr, th->th_dport, th->th_sport);
699			}
700		}
701		zfree(tcp_reass_zone, q);
702		tcp_reass_qsize--;
703		q = nq;
704	} while (q && q->tqe_th->th_seq == tp->rcv_nxt);
705	ND6_HINT(tp);
706
707#if INET6
708	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
709
710		KERNEL_DEBUG(DBG_LAYER_BEG,
711		     ((tp->t_inpcb->inp_fport << 16) | tp->t_inpcb->inp_lport),
712		     (((tp->t_inpcb->in6p_laddr.s6_addr16[0] & 0xffff) << 16) |
713		      (tp->t_inpcb->in6p_faddr.s6_addr16[0] & 0xffff)),
714		     0,0,0);
715	}
716	else
717#endif
718	{
719		KERNEL_DEBUG(DBG_LAYER_BEG,
720		     ((tp->t_inpcb->inp_fport << 16) | tp->t_inpcb->inp_lport),
721		     (((tp->t_inpcb->inp_laddr.s_addr & 0xffff) << 16) |
722		      (tp->t_inpcb->inp_faddr.s_addr & 0xffff)),
723		     0,0,0);
724	}
725	if (dowakeup)
726		sorwakeup(so); /* done with socket lock held */
727	return (flags);
728
729}
730
731/*
732 * Reduce congestion window.
733 */
734static void
735tcp_reduce_congestion_window(
736	struct tcpcb	*tp)
737{
738	/*
739	 * If the current tcp cc module has
740	 * defined a hook for tasks to run
741	 * before entering FR, call it
742	 */
743	if (CC_ALGO(tp)->pre_fr != NULL)
744		CC_ALGO(tp)->pre_fr(tp);
745	ENTER_FASTRECOVERY(tp);
746	tp->snd_recover = tp->snd_max;
747	tp->t_timer[TCPT_REXMT] = 0;
748	tp->t_rtttime = 0;
749	tp->ecn_flags |= TE_SENDCWR;
750	tp->snd_cwnd = tp->snd_ssthresh +
751		 tp->t_maxseg * tcprexmtthresh;
752}
753
754
755/*
756 * TCP input routine, follows pages 65-76 of the
757 * protocol specification dated September, 1981 very closely.
758 */
759#if INET6
760int
761tcp6_input(struct mbuf **mp, int *offp, int proto)
762{
763#pragma unused(proto)
764	register struct mbuf *m = *mp;
765	struct in6_ifaddr *ia6;
766	struct ifnet *ifp = ((m->m_flags & M_PKTHDR) && m->m_pkthdr.rcvif != NULL) ? m->m_pkthdr.rcvif: NULL;
767
768	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), return IPPROTO_DONE);
769
770	/* Expect 32-bit aligned data pointer on strict-align platforms */
771	MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
772
773	/*
774	 * draft-itojun-ipv6-tcp-to-anycast
775	 * better place to put this in?
776	 */
777	ia6 = ip6_getdstifaddr(m);
778	if (ia6 != NULL) {
779		IFA_LOCK_SPIN(&ia6->ia_ifa);
780		if (ia6->ia6_flags & IN6_IFF_ANYCAST) {
781			struct ip6_hdr *ip6;
782
783			IFA_UNLOCK(&ia6->ia_ifa);
784			IFA_REMREF(&ia6->ia_ifa);
785			ip6 = mtod(m, struct ip6_hdr *);
786			icmp6_error(m, ICMP6_DST_UNREACH,
787			    ICMP6_DST_UNREACH_ADDR,
788			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
789
790			if (ifp != NULL && ifp->if_tcp_stat != NULL)
791					atomic_add_64(&ifp->if_tcp_stat->icmp6unreach, 1);
792
793			return (IPPROTO_DONE);
794		}
795		IFA_UNLOCK(&ia6->ia_ifa);
796		IFA_REMREF(&ia6->ia_ifa);
797	}
798
799	tcp_input(m, *offp);
800	return (IPPROTO_DONE);
801}
802#endif
803
804/* Depending on the usage of mbuf space in the system, this function
805 * will return true or false. This is used to determine if a socket
806 * buffer can take more memory from the system for auto-tuning or not.
807 */
808u_int8_t
809tcp_cansbgrow(struct sockbuf *sb)
810{
811	/* Calculate the host level space limit in terms of MSIZE buffers.
812	 * We can use a maximum of half of the available mbuf space for
813	 * socket buffers.
814	 */
815	u_int32_t mblim = ((nmbclusters >> 1) << (MCLSHIFT - MSIZESHIFT));
816
817	/* Calculate per sb limit in terms of bytes. We optimize this limit
818	 * for upto 16 socket buffers.
819	 */
820
821	u_int32_t sbspacelim = ((nmbclusters >> 4) << MCLSHIFT);
822
823	if ((total_sbmb_cnt < mblim) &&
824		(sb->sb_hiwat < sbspacelim)) {
825		return(1);
826	}
827	return(0);
828}
829
830void
831tcp_sbrcv_reserve(struct tcpcb *tp,
832	struct sockbuf *sbrcv,
833	u_int32_t newsize,
834	u_int32_t idealsize) {
835
836	/* newsize should not exceed max */
837	newsize = min(newsize, tcp_autorcvbuf_max);
838
839	/* The receive window scale negotiated at the
840	 * beginning of the connection will also set a
841	 * limit on the socket buffer size
842	 */
843	newsize = min(newsize, TCP_MAXWIN << tp->rcv_scale);
844
845	/* Set new socket buffer size */
846	if (newsize > sbrcv->sb_hiwat &&
847		(sbreserve(sbrcv, newsize) == 1)) {
848		sbrcv->sb_idealsize = min(max(sbrcv->sb_idealsize,
849			(idealsize != 0) ? idealsize : newsize),
850			tcp_autorcvbuf_max);
851
852		/* Again check the limit set by the advertised
853		 * window scale
854		 */
855		sbrcv->sb_idealsize = min(sbrcv->sb_idealsize,
856			TCP_MAXWIN << tp->rcv_scale);
857	}
858}
859
860/*
861 * This function is used to grow  a receive socket buffer. It
862 * will take into account system-level memory usage and the
863 * bandwidth available on the link to make a decision.
864 */
865static void
866tcp_sbrcv_grow(struct tcpcb *tp, struct sockbuf *sbrcv,
867	struct tcpopt *to, u_int32_t pktlen) {
868
869	if (tcp_do_autorcvbuf == 0 ||
870		(sbrcv->sb_flags & SB_AUTOSIZE) == 0 ||
871		tcp_cansbgrow(sbrcv) == 0 ||
872		sbrcv->sb_hiwat >= tcp_autorcvbuf_max) {
873		/* Can not resize the socket buffer, just return */
874		goto out;
875	}
876
877	if (TSTMP_GT(tcp_now,
878		tp->rfbuf_ts + TCPTV_RCVBUFIDLE)) {
879		/* If there has been an idle period in the
880		 * connection, just restart the measurement
881		 */
882		goto out;
883	}
884
885	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP)) !=
886		(TF_REQ_TSTMP | TF_RCVD_TSTMP)) {
887		/*
888		 * Timestamp option is not supported on this connection.
889		 * If the connection reached a state to indicate that
890		 * the receive socket buffer needs to grow, increase
891		 * the high water mark.
892		 */
893		if (TSTMP_GEQ(tcp_now,
894			tp->rfbuf_ts + TCPTV_RCVNOTS_QUANTUM)) {
895			if (tp->rfbuf_cnt >= TCP_RCVNOTS_BYTELEVEL) {
896				tcp_sbrcv_reserve(tp, sbrcv,
897					tcp_autorcvbuf_max, 0);
898			}
899			goto out;
900		} else {
901			tp->rfbuf_cnt += pktlen;
902			return;
903		}
904	} else if (to->to_tsecr != 0) {
905		/* If the timestamp shows that one RTT has
906		 * completed, we can stop counting the
907		 * bytes. Here we consider increasing
908		 * the socket buffer if it fits the following
909		 * criteria:
910		 * 1. the bandwidth measured in last rtt, is more
911		 * than half of sb_hiwat, this will help to scale the
912		 * buffer according to the bandwidth on the link.
913		 * 2. the space left in sbrcv is less than
914		 * one forth of the bandwidth measured in last rtt, this
915		 * will help to accommodate an application reading slowly.
916		 */
917		if (TSTMP_GEQ(to->to_tsecr, tp->rfbuf_ts)) {
918			if ((tp->rfbuf_cnt > (sbrcv->sb_hiwat -
919				(sbrcv->sb_hiwat >> tcp_rbuf_hiwat_shift)) ||
920				(sbrcv->sb_hiwat - sbrcv->sb_cc) <
921				(tp->rfbuf_cnt >> tcp_rbuf_win_shift))) {
922				u_int32_t rcvbuf_inc;
923				/*
924				 * Increment the receive window by a multiple of
925				 * maximum sized segments. This will prevent a
926				 * connection from sending smaller segments on
927				 * wire if it is limited by the receive window.
928				 *
929				 * Set the ideal size based on current bandwidth
930				 * measurements. We set the ideal size on receive
931				 * socket buffer to be twice the bandwidth delay
932				 * product.
933				 */
934				rcvbuf_inc = tp->t_maxseg << tcp_autorcvbuf_inc_shift;
935				tcp_sbrcv_reserve(tp, sbrcv,
936					sbrcv->sb_hiwat + rcvbuf_inc,
937					(tp->rfbuf_cnt * 2));
938			}
939			goto out;
940		} else {
941			tp->rfbuf_cnt += pktlen;
942			return;
943		}
944	}
945out:
946	/* Restart the measurement */
947	tp->rfbuf_ts = 0;
948	tp->rfbuf_cnt = 0;
949	return;
950}
951
952/* This function will trim the excess space added to the socket buffer
953 * to help a slow-reading app. The ideal-size of a socket buffer depends
954 * on the link bandwidth or it is set by an application and we aim to
955 * reach that size.
956 */
957void
958tcp_sbrcv_trim(struct tcpcb *tp, struct sockbuf *sbrcv) {
959	if (tcp_do_autorcvbuf == 1 && sbrcv->sb_idealsize > 0 &&
960		sbrcv->sb_hiwat > sbrcv->sb_idealsize) {
961		int32_t trim;
962		/* compute the difference between ideal and current sizes */
963		u_int32_t diff = sbrcv->sb_hiwat - sbrcv->sb_idealsize;
964
965		/* Compute the maximum advertised window for
966		 * this connection.
967		 */
968		u_int32_t advwin = tp->rcv_adv - tp->rcv_nxt;
969
970		/* How much can we trim the receive socket buffer?
971		 * 1. it can not be trimmed beyond the max rcv win advertised
972		 * 2. if possible, leave 1/16 of bandwidth*delay to
973		 * avoid closing the win completely
974		 */
975		u_int32_t leave = max(advwin, (sbrcv->sb_idealsize >> 4));
976
977		/* Sometimes leave can be zero, in that case leave at least
978 		 * a few segments worth of space.
979		 */
980		if (leave == 0)
981			leave = tp->t_maxseg << tcp_autorcvbuf_inc_shift;
982
983		trim = sbrcv->sb_hiwat - (sbrcv->sb_cc + leave);
984		trim = imin(trim, (int32_t)diff);
985
986		if (trim > 0)
987			sbreserve(sbrcv, (sbrcv->sb_hiwat - trim));
988	}
989}
990
991/* We may need to trim the send socket buffer size for two reasons:
992 * 1. if the rtt seen on the connection is climbing up, we do not
993 * want to fill the buffers any more.
994 * 2. if the congestion win on the socket backed off, there is no need
995 * to hold more mbufs for that connection than what the cwnd will allow.
996 */
997void
998tcp_sbsnd_trim(struct sockbuf *sbsnd) {
999	if (tcp_do_autosendbuf == 1 &&
1000		((sbsnd->sb_flags & (SB_AUTOSIZE | SB_TRIM)) ==
1001			(SB_AUTOSIZE | SB_TRIM)) &&
1002		(sbsnd->sb_idealsize > 0) &&
1003		(sbsnd->sb_hiwat > sbsnd->sb_idealsize)) {
1004		u_int32_t trim = 0;
1005		if (sbsnd->sb_cc <= sbsnd->sb_idealsize) {
1006			trim = sbsnd->sb_hiwat - sbsnd->sb_idealsize;
1007		} else {
1008			trim = sbsnd->sb_hiwat - sbsnd->sb_cc;
1009		}
1010		sbreserve(sbsnd, (sbsnd->sb_hiwat - trim));
1011	}
1012	if (sbsnd->sb_hiwat <= sbsnd->sb_idealsize)
1013		sbsnd->sb_flags &= ~(SB_TRIM);
1014}
1015
1016/*
1017 * If timestamp option was not negotiated on this connection
1018 * and this connection is on the receiving side of a stream
1019 * then we can not measure the delay on the link accurately.
1020 * Instead of enabling automatic receive socket buffer
1021 * resizing, just give more space to the receive socket buffer.
1022 */
1023static inline void
1024tcp_sbrcv_tstmp_check(struct tcpcb *tp) {
1025	struct socket *so = tp->t_inpcb->inp_socket;
1026	u_int32_t newsize = 2 * tcp_recvspace;
1027	struct sockbuf *sbrcv = &so->so_rcv;
1028
1029	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP)) !=
1030		(TF_REQ_TSTMP | TF_RCVD_TSTMP) &&
1031		(sbrcv->sb_flags & SB_AUTOSIZE) != 0) {
1032		tcp_sbrcv_reserve(tp, sbrcv, newsize, 0);
1033	}
1034}
1035
1036/* A receiver will evaluate the flow of packets on a connection
1037 * to see if it can reduce ack traffic. The receiver will start
1038 * stretching acks if all of the following conditions are met:
1039 * 1. tcp_delack_enabled is set to 3
1040 * 2. If the bytes received in the last 100ms is greater than a threshold
1041 *      defined by maxseg_unacked
1042 * 3. If the connection has not been idle for tcp_maxrcvidle period.
1043 * 4. If the connection has seen enough packets to let the slow-start
1044 *      finish after connection establishment or after some packet loss.
1045 *
1046 * The receiver will stop stretching acks if there is congestion/reordering
1047 * as indicated by packets on reassembly queue or an ECN. If the delayed-ack
1048 * timer fires while stretching acks, it means that the packet flow has gone
1049 * below the threshold defined by maxseg_unacked and the receiver will stop
1050 * stretching acks. The receiver gets no indication when slow-start is completed
1051 * or when the connection reaches an idle state. That is why we use
1052 * tcp_rcvsspktcnt to cover slow-start and tcp_maxrcvidle to identify idle
1053 * state.
1054 */
1055 static inline int
1056 tcp_stretch_ack_enable(struct tcpcb *tp) {
1057 	if (tp->rcv_by_unackwin >= (maxseg_unacked * tp->t_maxseg) &&
1058		TSTMP_GT(tp->rcv_unackwin + tcp_maxrcvidle, tcp_now) &&
1059		(((tp->t_flagsext & TF_RCVUNACK_WAITSS) == 0) ||
1060		(tp->rcv_waitforss >= tcp_rcvsspktcnt))) {
1061		return(1);
1062	}
1063
1064	return(0);
1065}
1066
1067/* Reset the state related to stretch-ack algorithm. This will make
1068 * the receiver generate an ack every other packet. The receiver
1069 * will start re-evaluating the rate at which packets come to decide
1070 * if it can benefit by lowering the ack traffic.
1071 */
1072void
1073tcp_reset_stretch_ack(struct tcpcb *tp)
1074{
1075	tp->t_flags &= ~(TF_STRETCHACK);
1076	tp->rcv_by_unackwin = 0;
1077	tp->rcv_unackwin = tcp_now + tcp_rcvunackwin;
1078}
1079
1080void
1081tcp_input(m, off0)
1082	struct mbuf *m;
1083	int off0;
1084{
1085	register struct tcphdr *th;
1086	register struct ip *ip = NULL;
1087	register struct ipovly *ipov;
1088	register struct inpcb *inp;
1089	u_char *optp = NULL;
1090	int optlen = 0;
1091	int len, tlen, off;
1092	int drop_hdrlen;
1093	register struct tcpcb *tp = 0;
1094	register int thflags;
1095	struct socket *so = 0;
1096	int todrop, acked, ourfinisacked, needoutput = 0;
1097	struct in_addr laddr;
1098#if INET6
1099	struct in6_addr laddr6;
1100#endif
1101	int dropsocket = 0;
1102	int iss = 0, nosock = 0;
1103	u_int32_t tiwin;
1104	struct tcpopt to;		/* options in this segment */
1105	struct sockaddr_in *next_hop = NULL;
1106#if TCPDEBUG
1107	short ostate = 0;
1108#endif
1109	struct m_tag *fwd_tag;
1110	u_char ip_ecn = IPTOS_ECN_NOTECT;
1111	unsigned int ifscope, nocell = 0;
1112	uint8_t isconnected, isdisconnected;
1113	struct ifnet *ifp = ((m->m_flags & M_PKTHDR) && m->m_pkthdr.rcvif != NULL) ? m->m_pkthdr.rcvif: NULL;
1114	int nlropkts = m->m_pkthdr.lro_npkts;
1115	int mauxf_sw_lro_pkt = (m->m_pkthdr.aux_flags & MAUXF_SW_LRO_PKT) ? 1 : 0;
1116	int turnoff_lro = 0;
1117#define TCP_INC_VAR(stat, npkts) do {			\
1118	if (mauxf_sw_lro_pkt) {	\
1119		stat += npkts;					\
1120	} else {						\
1121		stat++;						\
1122	}							\
1123} while (0)
1124
1125	TCP_INC_VAR(tcpstat.tcps_rcvtotal, nlropkts);
1126
1127	/* Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. */
1128	if (!SLIST_EMPTY(&m->m_pkthdr.tags)) {
1129		fwd_tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
1130		    KERNEL_TAG_TYPE_IPFORWARD, NULL);
1131	} else {
1132		fwd_tag = NULL;
1133	}
1134	if (fwd_tag != NULL) {
1135		struct ip_fwd_tag *ipfwd_tag = (struct ip_fwd_tag *)(fwd_tag+1);
1136
1137		next_hop = ipfwd_tag->next_hop;
1138		m_tag_delete(m, fwd_tag);
1139	}
1140
1141#if INET6
1142	struct ip6_hdr *ip6 = NULL;
1143	int isipv6;
1144#endif /* INET6 */
1145	int rstreason; /* For badport_bandlim accounting purposes */
1146	struct proc *proc0=current_proc();
1147
1148	KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_START,0,0,0,0,0);
1149
1150#if INET6
1151	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
1152#endif
1153	bzero((char *)&to, sizeof(to));
1154
1155#if INET6
1156	if (isipv6) {
1157		/* Expect 32-bit aligned data pointer on strict-align platforms */
1158		MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
1159
1160		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
1161		ip6 = mtod(m, struct ip6_hdr *);
1162		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
1163		th = (struct tcphdr *)(void *)((caddr_t)ip6 + off0);
1164
1165		if ((apple_hwcksum_rx != 0) && (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)) {
1166			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
1167				th->th_sum = m->m_pkthdr.csum_data;
1168			else {
1169				/*
1170				 * There is no established protocol for the case
1171				 * where IPv6 psuedoheader checksum is not computed
1172				 * with our current drivers. Current drivers set
1173				 * CSUM_PSEUDO_HDR. So if we do get here, we should
1174				 * recalculate checksum.
1175				 */
1176				if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
1177					th->th_sum = 0;
1178				} else {
1179					th->th_sum = 0xffff;
1180				}
1181			}
1182
1183			th->th_sum ^= 0xffff;
1184			if (th->th_sum) {
1185				tcpstat.tcps_rcvbadsum++;
1186
1187				if (ifp != NULL && ifp->if_tcp_stat != NULL)
1188					atomic_add_64(&ifp->if_tcp_stat->badformat, 1);
1189
1190				goto dropnosock;
1191			}
1192		}
1193		else {
1194			if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
1195				tcpstat.tcps_rcvbadsum++;
1196
1197				if (ifp != NULL && ifp->if_tcp_stat != NULL)
1198					atomic_add_64(&ifp->if_tcp_stat->badformat, 1);
1199
1200				goto dropnosock;
1201			}
1202		}
1203
1204		KERNEL_DEBUG(DBG_LAYER_BEG, ((th->th_dport << 16) | th->th_sport),
1205		     (((ip6->ip6_src.s6_addr16[0]) << 16) | (ip6->ip6_dst.s6_addr16[0])),
1206		     th->th_seq, th->th_ack, th->th_win);
1207		/*
1208		 * Be proactive about unspecified IPv6 address in source.
1209		 * As we use all-zero to indicate unbounded/unconnected pcb,
1210		 * unspecified IPv6 address can be used to confuse us.
1211		 *
1212		 * Note that packets with unspecified IPv6 destination is
1213		 * already dropped in ip6_input.
1214		 */
1215		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1216			/* XXX stat */
1217
1218			if (ifp != NULL && ifp->if_tcp_stat != NULL)
1219				atomic_add_64(&ifp->if_tcp_stat->unspecv6, 1);
1220
1221			goto dropnosock;
1222		}
1223		DTRACE_TCP5(receive, sruct mbuf *, m, struct inpcb *, NULL,
1224			struct ip6_hdr *, ip6, struct tcpcb *, NULL,
1225			struct tcphdr *, th);
1226
1227	ip_ecn = (ntohl(ip6->ip6_flow) >> 20) & IPTOS_ECN_MASK;
1228	} else
1229#endif /* INET6 */
1230	{
1231	/*
1232	 * Get IP and TCP header together in first mbuf.
1233	 * Note: IP leaves IP header in first mbuf.
1234	 */
1235	if (off0 > sizeof (struct ip)) {
1236		ip_stripoptions(m, (struct mbuf *)0);
1237		off0 = sizeof(struct ip);
1238		if (m->m_pkthdr.csum_flags & CSUM_TCP_SUM16)
1239			m->m_pkthdr.csum_flags = 0; /* invalidate hwcksuming */
1240
1241	}
1242	if (m->m_len < sizeof (struct tcpiphdr)) {
1243		if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
1244			tcpstat.tcps_rcvshort++;
1245			return;
1246		}
1247	}
1248
1249	/* Expect 32-bit aligned data pointer on strict-align platforms */
1250	MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
1251
1252	ip = mtod(m, struct ip *);
1253	ipov = (struct ipovly *)ip;
1254	th = (struct tcphdr *)(void *)((caddr_t)ip + off0);
1255	tlen = ip->ip_len;
1256
1257	if (m->m_pkthdr.aux_flags & MAUXF_SW_LRO_DID_CSUM) {
1258		goto skip_checksum;
1259	}
1260	if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
1261		if (m->m_pkthdr.csum_flags & CSUM_TCP_SUM16) {
1262			u_short pseudo;
1263			char b[9];
1264
1265			bcopy(ipov->ih_x1, b, sizeof (ipov->ih_x1));
1266			bzero(ipov->ih_x1, sizeof (ipov->ih_x1));
1267			ipov->ih_len = (u_short)tlen;
1268#if BYTE_ORDER != BIG_ENDIAN
1269			HTONS(ipov->ih_len);
1270#endif
1271			pseudo = in_cksum(m, sizeof (struct ip));
1272			bcopy(b, ipov->ih_x1, sizeof (ipov->ih_x1));
1273
1274			th->th_sum = in_addword(pseudo, (m->m_pkthdr.csum_data & 0xFFFF));
1275		} else {
1276			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
1277				th->th_sum = m->m_pkthdr.csum_data;
1278			else
1279				th->th_sum = in_pseudo(ip->ip_src.s_addr,
1280					ip->ip_dst.s_addr, htonl(m->m_pkthdr.csum_data +
1281					ip->ip_len + IPPROTO_TCP));
1282		}
1283		th->th_sum ^= 0xffff;
1284	} else {
1285		char b[9];
1286		/*
1287		 * Checksum extended TCP header and data.
1288		 */
1289		bcopy(ipov->ih_x1, b, sizeof (ipov->ih_x1));
1290		bzero(ipov->ih_x1, sizeof (ipov->ih_x1));
1291		ipov->ih_len = (u_short)tlen;
1292#if BYTE_ORDER != BIG_ENDIAN
1293		HTONS(ipov->ih_len);
1294#endif
1295		len = sizeof (struct ip) + tlen;
1296		th->th_sum = in_cksum(m, len);
1297		bcopy(b, ipov->ih_x1, sizeof (ipov->ih_x1));
1298
1299		tcp_in_cksum_stats(len);
1300	}
1301	if (th->th_sum) {
1302		tcpstat.tcps_rcvbadsum++;
1303
1304		if (ifp != NULL && ifp->if_tcp_stat != NULL)
1305			atomic_add_64(&ifp->if_tcp_stat->badformat, 1);
1306		if (lrodebug) printf("tcp_input: bad xsum len = %d, tlen = %d, flags = %x, csum_flags = %x.\n",len, tlen, m->m_flags, m->m_pkthdr.csum_flags);
1307		goto dropnosock;
1308	}
1309skip_checksum:
1310#if INET6
1311	/* Re-initialization for later version check */
1312	ip->ip_v = IPVERSION;
1313#endif
1314	ip_ecn = (ip->ip_tos & IPTOS_ECN_MASK);
1315
1316	DTRACE_TCP5(receive, struct mbuf *, m, struct inpcb *, NULL,
1317		struct ip *, ip, struct tcpcb *, NULL, struct tcphdr *, th);
1318
1319	KERNEL_DEBUG(DBG_LAYER_BEG, ((th->th_dport << 16) | th->th_sport),
1320		(((ip->ip_src.s_addr & 0xffff) << 16) | (ip->ip_dst.s_addr & 0xffff)),
1321		  th->th_seq, th->th_ack, th->th_win);
1322
1323	}
1324
1325	/*
1326	 * Check that TCP offset makes sense,
1327	 * pull out TCP options and adjust length.		XXX
1328	 */
1329	off = th->th_off << 2;
1330	if (off < sizeof (struct tcphdr) || off > tlen) {
1331		tcpstat.tcps_rcvbadoff++;
1332
1333		if (ifp != NULL && ifp->if_tcp_stat != NULL)
1334			atomic_add_64(&ifp->if_tcp_stat->badformat, 1);
1335
1336		goto dropnosock;
1337	}
1338	tlen -= off;	/* tlen is used instead of ti->ti_len */
1339	if (off > sizeof (struct tcphdr)) {
1340#if INET6
1341		if (isipv6) {
1342			IP6_EXTHDR_CHECK(m, off0, off, return);
1343			ip6 = mtod(m, struct ip6_hdr *);
1344			th = (struct tcphdr *)(void *)((caddr_t)ip6 + off0);
1345		} else
1346#endif /* INET6 */
1347		{
1348			if (m->m_len < sizeof(struct ip) + off) {
1349				if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
1350					tcpstat.tcps_rcvshort++;
1351					return;
1352				}
1353				ip = mtod(m, struct ip *);
1354				ipov = (struct ipovly *)ip;
1355				th = (struct tcphdr *)(void *)((caddr_t)ip + off0);
1356			}
1357		}
1358		optlen = off - sizeof (struct tcphdr);
1359		optp = (u_char *)(th + 1);
1360		/*
1361		 * Do quick retrieval of timestamp options ("options
1362		 * prediction?").  If timestamp is the only option and it's
1363		 * formatted as recommended in RFC 1323 appendix A, we
1364		 * quickly get the values now and not bother calling
1365		 * tcp_dooptions(), etc.
1366		 */
1367		if ((optlen == TCPOLEN_TSTAMP_APPA ||
1368			(optlen > TCPOLEN_TSTAMP_APPA &&
1369			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1370			*(u_int32_t *)(void *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1371			(th->th_flags & TH_SYN) == 0) {
1372			to.to_flags |= TOF_TS;
1373			to.to_tsval = ntohl(*(u_int32_t *)(void *)(optp + 4));
1374			to.to_tsecr = ntohl(*(u_int32_t *)(void *)(optp + 8));
1375			optp = NULL;	/* we've parsed the options */
1376		}
1377	}
1378	thflags = th->th_flags;
1379
1380#if TCP_DROP_SYNFIN
1381	/*
1382	 * If the drop_synfin option is enabled, drop all packets with
1383	 * both the SYN and FIN bits set. This prevents e.g. nmap from
1384	 * identifying the TCP/IP stack.
1385	 *
1386	 * This is a violation of the TCP specification.
1387	 */
1388	if (drop_synfin && (thflags & (TH_SYN|TH_FIN)) == (TH_SYN|TH_FIN)) {
1389
1390		if (ifp != NULL && ifp->if_tcp_stat != NULL)
1391			atomic_add_64(&ifp->if_tcp_stat->synfin, 1);
1392
1393		goto dropnosock;
1394	}
1395#endif
1396
1397	/*
1398	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
1399	 * until after ip6_savecontrol() is called and before other functions
1400	 * which don't want those proto headers.
1401	 * Because ip6_savecontrol() is going to parse the mbuf to
1402	 * search for data to be passed up to user-land, it wants mbuf
1403	 * parameters to be unchanged.
1404	 */
1405	drop_hdrlen = off0 + off;
1406
1407	/* Since this is an entry point for input processing of tcp packets, we
1408	 * can update the tcp clock here.
1409	 */
1410	calculate_tcp_clock();
1411
1412	/*
1413     	 * Record the interface where this segment arrived on; this does not
1414     	 * affect normal data output (for non-detached TCP) as it provides a
1415     	 * hint about which route and interface to use for sending in the
1416     	 * absence of a PCB, when scoped routing (and thus source interface
1417     	 * selection) are enabled.
1418     	 */
1419     	if ((m->m_flags & M_PKTHDR) && m->m_pkthdr.rcvif != NULL)
1420     		ifscope = m->m_pkthdr.rcvif->if_index;
1421     	else
1422     		ifscope = IFSCOPE_NONE;
1423
1424    	/*
1425    	 * Convert TCP protocol specific fields to host format.
1426    	 */
1427
1428#if BYTE_ORDER != BIG_ENDIAN
1429    	NTOHL(th->th_seq);
1430    	NTOHL(th->th_ack);
1431    	NTOHS(th->th_win);
1432    	NTOHS(th->th_urp);
1433#endif
1434
1435	/*
1436	 * Locate pcb for segment.
1437	 */
1438findpcb:
1439
1440	isconnected = FALSE;
1441	isdisconnected = FALSE;
1442
1443#if IPFIREWALL_FORWARD
1444	if (next_hop != NULL
1445#if INET6
1446	    && isipv6 == 0 /* IPv6 support is not yet */
1447#endif /* INET6 */
1448	    ) {
1449		/*
1450		 * Diverted. Pretend to be the destination.
1451		 * already got one like this?
1452		 */
1453		inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport,
1454			ip->ip_dst, th->th_dport, 0, m->m_pkthdr.rcvif);
1455		if (!inp) {
1456			/*
1457			 * No, then it's new. Try find the ambushing socket
1458			 */
1459			if (!next_hop->sin_port) {
1460				inp = in_pcblookup_hash(&tcbinfo, ip->ip_src,
1461				    th->th_sport, next_hop->sin_addr,
1462				    th->th_dport, 1, m->m_pkthdr.rcvif);
1463			} else {
1464				inp = in_pcblookup_hash(&tcbinfo,
1465				    ip->ip_src, th->th_sport,
1466	    			    next_hop->sin_addr,
1467				    ntohs(next_hop->sin_port), 1,
1468				    m->m_pkthdr.rcvif);
1469			}
1470		}
1471	} else
1472#endif	/* IPFIREWALL_FORWARD */
1473      {
1474#if INET6
1475	if (isipv6)
1476		inp = in6_pcblookup_hash(&tcbinfo, &ip6->ip6_src, th->th_sport,
1477					 &ip6->ip6_dst, th->th_dport, 1,
1478					 m->m_pkthdr.rcvif);
1479	else
1480#endif /* INET6 */
1481	inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport,
1482	    ip->ip_dst, th->th_dport, 1, m->m_pkthdr.rcvif);
1483      }
1484
1485	/*
1486	 * Use the interface scope information from the PCB for outbound
1487	 * segments.  If the PCB isn't present and if scoped routing is
1488	 * enabled, tcp_respond will use the scope of the interface where
1489	 * the segment arrived on.
1490	 */
1491	if (inp != NULL && (inp->inp_flags & INP_BOUND_IF))
1492		ifscope = inp->inp_boundifp->if_index;
1493
1494	/*
1495	 * If the PCB is present and the socket isn't allowed to use
1496	 * the cellular interface, indicate it as such for tcp_respond.
1497	 */
1498	if (inp != NULL && (inp->inp_flags & INP_NO_IFT_CELLULAR))
1499		nocell = 1;
1500
1501#if IPSEC
1502	if (ipsec_bypass == 0)  {
1503#if INET6
1504		if (isipv6) {
1505		       	if (inp != NULL && ipsec6_in_reject_so(m, inp->inp_socket)) {
1506				IPSEC_STAT_INCREMENT(ipsec6stat.in_polvio);
1507				if (in_pcb_checkstate(inp, WNT_RELEASE, 0) == WNT_STOPUSING)
1508					inp = NULL;	// pretend we didn't find it
1509
1510				if (ifp != NULL && ifp->if_tcp_stat != NULL)
1511					atomic_add_64(&ifp->if_tcp_stat->badformatipsec, 1);
1512
1513				goto dropnosock;
1514			}
1515		} else
1516#endif /* INET6 */
1517			if (inp != NULL && ipsec4_in_reject_so(m, inp->inp_socket)) {
1518			  	IPSEC_STAT_INCREMENT(ipsecstat.in_polvio);
1519				if (in_pcb_checkstate(inp, WNT_RELEASE, 0) == WNT_STOPUSING)
1520					inp = NULL;	// pretend we didn't find it
1521
1522				if (ifp != NULL && ifp->if_tcp_stat != NULL)
1523					atomic_add_64(&ifp->if_tcp_stat->badformatipsec, 1);
1524
1525				goto dropnosock;
1526			}
1527	}
1528#endif /*IPSEC*/
1529
1530	/*
1531	 * If the state is CLOSED (i.e., TCB does not exist) then
1532	 * all data in the incoming segment is discarded.
1533	 * If the TCB exists but is in CLOSED state, it is embryonic,
1534	 * but should either do a listen or a connect soon.
1535	 */
1536	if (inp == NULL) {
1537		if (log_in_vain) {
1538#if INET6
1539			char dbuf[MAX_IPv6_STR_LEN], sbuf[MAX_IPv6_STR_LEN];
1540#else /* INET6 */
1541			char dbuf[MAX_IPv4_STR_LEN], sbuf[MAX_IPv4_STR_LEN];
1542#endif /* INET6 */
1543
1544#if INET6
1545			if (isipv6) {
1546				inet_ntop(AF_INET6, &ip6->ip6_dst, dbuf, sizeof(dbuf));
1547				inet_ntop(AF_INET6, &ip6->ip6_src, sbuf, sizeof(sbuf));
1548			} else
1549#endif
1550			{
1551				inet_ntop(AF_INET, &ip->ip_dst, dbuf, sizeof(dbuf));
1552				inet_ntop(AF_INET, &ip->ip_src, sbuf, sizeof(sbuf));
1553			}
1554			switch (log_in_vain) {
1555			case 1:
1556				if(thflags & TH_SYN)
1557					log(LOG_INFO,
1558						"Connection attempt to TCP %s:%d from %s:%d\n",
1559						dbuf, ntohs(th->th_dport),
1560						sbuf,
1561						ntohs(th->th_sport));
1562				break;
1563			case 2:
1564				log(LOG_INFO,
1565					"Connection attempt to TCP %s:%d from %s:%d flags:0x%x\n",
1566					dbuf, ntohs(th->th_dport), sbuf,
1567					ntohs(th->th_sport), thflags);
1568				break;
1569			case 3:
1570				if ((thflags & TH_SYN) && !(thflags & TH_ACK) &&
1571					!(m->m_flags & (M_BCAST | M_MCAST)) &&
1572#if INET6
1573					((isipv6 && !IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) ||
1574					 (!isipv6 && ip->ip_dst.s_addr != ip->ip_src.s_addr))
1575#else
1576					ip->ip_dst.s_addr != ip->ip_src.s_addr
1577#endif
1578					 )
1579					log_in_vain_log((LOG_INFO,
1580						"Stealth Mode connection attempt to TCP %s:%d from %s:%d\n",
1581						dbuf, ntohs(th->th_dport),
1582						sbuf,
1583						ntohs(th->th_sport)));
1584				break;
1585			default:
1586				break;
1587			}
1588		}
1589		if (blackhole) {
1590			if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type != IFT_LOOP)
1591
1592				switch (blackhole) {
1593				case 1:
1594					if (thflags & TH_SYN)
1595						goto dropnosock;
1596					break;
1597				case 2:
1598					goto dropnosock;
1599				default:
1600					goto dropnosock;
1601				}
1602		}
1603		rstreason = BANDLIM_RST_CLOSEDPORT;
1604
1605		if (ifp != NULL && ifp->if_tcp_stat != NULL)
1606			atomic_add_64(&ifp->if_tcp_stat->noconnnolist, 1);
1607
1608		goto dropwithresetnosock;
1609	}
1610	so = inp->inp_socket;
1611	if (so == NULL) {
1612		/* This case shouldn't happen  as the socket shouldn't be null
1613		 * if inp_state isn't set to INPCB_STATE_DEAD
1614		 * But just in case, we pretend we didn't find the socket if we hit this case
1615		 * as this isn't cause for a panic (the socket might be leaked however)...
1616		 */
1617		inp = NULL;
1618#if TEMPDEBUG
1619		printf("tcp_input: no more socket for inp=%x. This shouldn't happen\n", inp);
1620#endif
1621		goto dropnosock;
1622	}
1623
1624	tcp_lock(so, 1, 0);
1625	if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
1626		tcp_unlock(so, 1, (void *)2);
1627		inp = NULL;	// pretend we didn't find it
1628		goto dropnosock;
1629	}
1630
1631	tp = intotcpcb(inp);
1632	if (tp == 0) {
1633		rstreason = BANDLIM_RST_CLOSEDPORT;
1634
1635		if (ifp != NULL && ifp->if_tcp_stat != NULL)
1636			atomic_add_64(&ifp->if_tcp_stat->noconnlist, 1);
1637
1638		goto dropwithreset;
1639	}
1640	if (tp->t_state == TCPS_CLOSED)
1641		goto drop;
1642
1643	/* Unscale the window into a 32-bit value. */
1644	if ((thflags & TH_SYN) == 0)
1645		tiwin = th->th_win << tp->snd_scale;
1646	else
1647		tiwin = th->th_win;
1648
1649#if CONFIG_MACF_NET
1650	if (mac_inpcb_check_deliver(inp, m, AF_INET, SOCK_STREAM))
1651		goto drop;
1652#endif
1653
1654	/* Radar 7377561: Avoid processing packets while closing a listen socket */
1655	if (tp->t_state == TCPS_LISTEN && (so->so_options & SO_ACCEPTCONN) == 0)
1656		goto drop;
1657
1658	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1659#if TCPDEBUG
1660		if (so->so_options & SO_DEBUG) {
1661			ostate = tp->t_state;
1662#if INET6
1663			if (isipv6)
1664				bcopy((char *)ip6, (char *)tcp_saveipgen,
1665				      sizeof(*ip6));
1666			else
1667#endif /* INET6 */
1668			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1669			tcp_savetcp = *th;
1670		}
1671#endif
1672		if (so->so_options & SO_ACCEPTCONN) {
1673		    register struct tcpcb *tp0 = tp;
1674			struct socket *so2;
1675			struct socket *oso;
1676			struct sockaddr_storage from;
1677#if INET6
1678			struct inpcb *oinp = sotoinpcb(so);
1679#endif /* INET6 */
1680			struct ifnet *head_ifscope;
1681			unsigned int head_nocell, head_recvanyif;
1682
1683			/* Get listener's bound-to-interface, if any */
1684			head_ifscope = (inp->inp_flags & INP_BOUND_IF) ?
1685			    inp->inp_boundifp : NULL;
1686			/* Get listener's no-cellular information, if any */
1687			head_nocell = (inp->inp_flags & INP_NO_IFT_CELLULAR) ? 1 : 0;
1688			/* Get listener's recv-any-interface, if any */
1689			head_recvanyif = (inp->inp_flags & INP_RECV_ANYIF);
1690
1691			/*
1692			 * If the state is LISTEN then ignore segment if it contains an RST.
1693			 * If the segment contains an ACK then it is bad and send a RST.
1694			 * If it does not contain a SYN then it is not interesting; drop it.
1695			 * If it is from this socket, drop it, it must be forged.
1696			 */
1697			if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1698
1699				if (ifp != NULL && ifp->if_tcp_stat != NULL)
1700					atomic_add_64(&ifp->if_tcp_stat->listbadsyn, 1);
1701
1702				if (thflags & TH_RST) {
1703					goto drop;
1704				}
1705				if (thflags & TH_ACK) {
1706					tp = NULL;
1707					tcpstat.tcps_badsyn++;
1708					rstreason = BANDLIM_RST_OPENPORT;
1709					goto dropwithreset;
1710				}
1711
1712				/* We come here if there is no SYN set */
1713				tcpstat.tcps_badsyn++;
1714				goto drop;
1715			}
1716			KERNEL_DEBUG(DBG_FNC_TCP_NEWCONN | DBG_FUNC_START,0,0,0,0,0);
1717	                if (th->th_dport == th->th_sport) {
1718#if INET6
1719				if (isipv6) {
1720					if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
1721                                                       &ip6->ip6_src))
1722						goto drop;
1723				} else
1724#endif /* INET6 */
1725					if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
1726						goto drop;
1727			}
1728			/*
1729			 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1730			 * in_broadcast() should never return true on a received
1731			 * packet with M_BCAST not set.
1732			 *
1733			 * Packets with a multicast source address should also
1734			 * be discarded.
1735			 */
1736			if (m->m_flags & (M_BCAST|M_MCAST))
1737				goto drop;
1738#if INET6
1739			if (isipv6) {
1740				if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1741					IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
1742					goto drop;
1743			} else
1744#endif
1745			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1746				IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1747				ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1748				in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1749				goto drop;
1750
1751
1752#if INET6
1753			/*
1754			 * If deprecated address is forbidden,
1755			 * we do not accept SYN to deprecated interface
1756			 * address to prevent any new inbound connection from
1757			 * getting established.
1758			 * When we do not accept SYN, we send a TCP RST,
1759			 * with deprecated source address (instead of dropping
1760			 * it).  We compromise it as it is much better for peer
1761			 * to send a RST, and RST will be the final packet
1762			 * for the exchange.
1763			 *
1764			 * If we do not forbid deprecated addresses, we accept
1765			 * the SYN packet.  RFC2462 does not suggest dropping
1766			 * SYN in this case.
1767			 * If we decipher RFC2462 5.5.4, it says like this:
1768			 * 1. use of deprecated addr with existing
1769			 *    communication is okay - "SHOULD continue to be
1770			 *    used"
1771			 * 2. use of it with new communication:
1772			 *   (2a) "SHOULD NOT be used if alternate address
1773			 *        with sufficient scope is available"
1774			 *   (2b) nothing mentioned otherwise.
1775			 * Here we fall into (2b) case as we have no choice in
1776			 * our source address selection - we must obey the peer.
1777			 *
1778			 * The wording in RFC2462 is confusing, and there are
1779			 * multiple description text for deprecated address
1780			 * handling - worse, they are not exactly the same.
1781			 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1782			 */
1783			if (isipv6 && !ip6_use_deprecated) {
1784				struct in6_ifaddr *ia6;
1785
1786				ia6 = ip6_getdstifaddr(m);
1787				if (ia6 != NULL) {
1788					IFA_LOCK_SPIN(&ia6->ia_ifa);
1789					if (ia6->ia6_flags & IN6_IFF_DEPRECATED) {
1790						IFA_UNLOCK(&ia6->ia_ifa);
1791						IFA_REMREF(&ia6->ia_ifa);
1792						tp = NULL;
1793						rstreason = BANDLIM_RST_OPENPORT;
1794
1795						if (ifp != NULL && ifp->if_tcp_stat != NULL)
1796							atomic_add_64(&ifp->if_tcp_stat->deprecate6, 1);
1797
1798						goto dropwithreset;
1799					}
1800					IFA_UNLOCK(&ia6->ia_ifa);
1801					IFA_REMREF(&ia6->ia_ifa);
1802				}
1803			}
1804#endif
1805			if (so->so_filt) {
1806#if INET6
1807				if (isipv6) {
1808					struct sockaddr_in6	*sin6 = (struct sockaddr_in6*)&from;
1809
1810					sin6->sin6_len = sizeof(*sin6);
1811					sin6->sin6_family = AF_INET6;
1812					sin6->sin6_port = th->th_sport;
1813					sin6->sin6_flowinfo = 0;
1814					sin6->sin6_addr = ip6->ip6_src;
1815					sin6->sin6_scope_id = 0;
1816 				}
1817				else
1818#endif
1819				{
1820					struct sockaddr_in *sin = (struct sockaddr_in*)&from;
1821
1822					sin->sin_len = sizeof(*sin);
1823					sin->sin_family = AF_INET;
1824					sin->sin_port = th->th_sport;
1825					sin->sin_addr = ip->ip_src;
1826				}
1827				so2 = sonewconn(so, 0, (struct sockaddr*)&from);
1828			} else {
1829				so2 = sonewconn(so, 0, NULL);
1830			}
1831			if (so2 == 0) {
1832				tcpstat.tcps_listendrop++;
1833				if (tcp_dropdropablreq(so)) {
1834					if (so->so_filt)
1835						so2 = sonewconn(so, 0, (struct sockaddr*)&from);
1836					else
1837						so2 = sonewconn(so, 0, NULL);
1838				}
1839				if (!so2)
1840					goto drop;
1841			}
1842
1843			/* Point "inp" and "tp" in tandem to new socket */
1844			inp = (struct inpcb *)so2->so_pcb;
1845			tp = intotcpcb(inp);
1846
1847			oso = so;
1848			tcp_unlock(so, 0, 0); /* Unlock but keep a reference on listener for now */
1849
1850			so = so2;
1851			tcp_lock(so, 1, 0);
1852			/*
1853			 * Mark socket as temporary until we're
1854			 * committed to keeping it.  The code at
1855			 * ``drop'' and ``dropwithreset'' check the
1856			 * flag dropsocket to see if the temporary
1857			 * socket created here should be discarded.
1858			 * We mark the socket as discardable until
1859			 * we're committed to it below in TCPS_LISTEN.
1860			 * There are some error conditions in which we
1861			 * have to drop the temporary socket.
1862			 */
1863			dropsocket++;
1864			/*
1865			 * Inherit INP_BOUND_IF from listener; testing if
1866			 * head_ifscope is non-NULL is sufficient, since it
1867			 * can only be set to a non-zero value earlier if
1868			 * the listener has such a flag set.
1869			 */
1870			if (head_ifscope != NULL) {
1871				inp->inp_flags |= INP_BOUND_IF;
1872				inp->inp_boundifp = head_ifscope;
1873			} else {
1874				inp->inp_flags &= ~INP_BOUND_IF;
1875			}
1876			/*
1877			 * Inherit INP_NO_IFT_CELLULAR from listener.
1878			 */
1879			if (head_nocell) {
1880				inp->inp_flags |= INP_NO_IFT_CELLULAR;
1881			}
1882			/*
1883			 * Inherit {IN,IN6}_RECV_ANYIF from listener.
1884			 */
1885			if (head_recvanyif)
1886				inp->inp_flags |= INP_RECV_ANYIF;
1887			else
1888				inp->inp_flags &= ~INP_RECV_ANYIF;
1889#if INET6
1890			if (isipv6)
1891				inp->in6p_laddr = ip6->ip6_dst;
1892			else {
1893				inp->inp_vflag &= ~INP_IPV6;
1894				inp->inp_vflag |= INP_IPV4;
1895#endif /* INET6 */
1896				inp->inp_laddr = ip->ip_dst;
1897#if INET6
1898			}
1899#endif /* INET6 */
1900			inp->inp_lport = th->th_dport;
1901			if (in_pcbinshash(inp, 0) != 0) {
1902				/*
1903				 * Undo the assignments above if we failed to
1904				 * put the PCB on the hash lists.
1905				 */
1906#if INET6
1907				if (isipv6)
1908					inp->in6p_laddr = in6addr_any;
1909				else
1910#endif /* INET6 */
1911					inp->inp_laddr.s_addr = INADDR_ANY;
1912				inp->inp_lport = 0;
1913				tcp_lock(oso, 0, 0);	/* release ref on parent */
1914				tcp_unlock(oso, 1, 0);
1915				goto drop;
1916			}
1917#if INET6
1918			if (isipv6) {
1919  				/*
1920 				 * Inherit socket options from the listening
1921  				 * socket.
1922 				 * Note that in6p_inputopts are not (even
1923 				 * should not be) copied, since it stores
1924				 * previously received options and is used to
1925 				 * detect if each new option is different than
1926 				 * the previous one and hence should be passed
1927 				 * to a user.
1928 				 * If we copied in6p_inputopts, a user would
1929 				 * not be able to receive options just after
1930 				 * calling the accept system call.
1931 				 */
1932				inp->inp_flags |=
1933					oinp->inp_flags & INP_CONTROLOPTS;
1934 				if (oinp->in6p_outputopts)
1935 					inp->in6p_outputopts =
1936 						ip6_copypktopts(oinp->in6p_outputopts,
1937 								M_NOWAIT);
1938			} else
1939#endif /* INET6 */
1940				inp->inp_options = ip_srcroute();
1941			tcp_lock(oso, 0, 0);
1942#if IPSEC
1943			/* copy old policy into new socket's */
1944			if (sotoinpcb(oso)->inp_sp)
1945			{
1946				int error = 0;
1947				/* Is it a security hole here to silently fail to copy the policy? */
1948				if (inp->inp_sp != NULL)
1949					error = ipsec_init_policy(so, &inp->inp_sp);
1950				if (error != 0 || ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
1951					printf("tcp_input: could not copy policy\n");
1952			}
1953#endif
1954			/* inherit states from the listener */
1955			DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
1956				struct tcpcb *, tp, int32_t, TCPS_LISTEN);
1957			tp->t_state = TCPS_LISTEN;
1958			tp->t_flags |= tp0->t_flags & (TF_NOPUSH|TF_NOOPT|TF_NODELAY);
1959			tp->t_flagsext |= (tp0->t_flagsext & TF_RXTFINDROP);
1960			tp->t_keepinit = tp0->t_keepinit;
1961			tp->t_inpcb->inp_ip_ttl = tp0->t_inpcb->inp_ip_ttl;
1962			if ((so->so_flags & SOF_NOTSENT_LOWAT) != 0)
1963				tp->t_notsent_lowat = tp0->t_notsent_lowat;
1964
1965			/* now drop the reference on the listener */
1966			tcp_unlock(oso, 1, 0);
1967
1968			tcp_set_max_rwinscale(tp, so);
1969
1970			KERNEL_DEBUG(DBG_FNC_TCP_NEWCONN | DBG_FUNC_END,0,0,0,0,0);
1971		}
1972	}
1973	lck_mtx_assert(&((struct inpcb *)so->so_pcb)->inpcb_mtx, LCK_MTX_ASSERT_OWNED);
1974
1975 	/*
1976 	 * Radar 3529618
1977	 * This is the second part of the MSS DoS prevention code (after
1978	 * minmss on the sending side) and it deals with too many too small
1979	 * tcp packets in a too short timeframe (1 second).
1980	 *
1981	 * For every full second we count the number of received packets
1982	 * and bytes. If we get a lot of packets per second for this connection
1983	 * (tcp_minmssoverload) we take a closer look at it and compute the
1984	 * average packet size for the past second. If that is less than
1985	 * tcp_minmss we get too many packets with very small payload which
1986	 * is not good and burdens our system (and every packet generates
1987	 * a wakeup to the process connected to our socket). We can reasonable
1988	 * expect this to be small packet DoS attack to exhaust our CPU
1989	 * cycles.
1990	 *
1991	 * Care has to be taken for the minimum packet overload value. This
1992	 * value defines the minimum number of packets per second before we
1993	 * start to worry. This must not be too low to avoid killing for
1994	 * example interactive connections with many small packets like
1995	 * telnet or SSH.
1996	 *
1997	 * Setting either tcp_minmssoverload or tcp_minmss to "0" disables
1998	 * this check.
1999	 *
2000	 * Account for packet if payload packet, skip over ACK, etc.
2001	 */
2002	if (tp->t_state == TCPS_ESTABLISHED && tlen > 0) {
2003		if (TSTMP_GT(tp->rcv_reset, tcp_now)) {
2004			tp->rcv_pps++;
2005			tp->rcv_byps += tlen + off;
2006			if (tp->rcv_byps > tp->rcv_maxbyps)
2007				tp->rcv_maxbyps = tp->rcv_byps;
2008		/*
2009		 * Setting either tcp_minmssoverload or tcp_minmss to "0" disables
2010		 * the check.
2011		 */
2012			if (tcp_minmss && tcp_minmssoverload && tp->rcv_pps > tcp_minmssoverload) {
2013				if ((tp->rcv_byps / tp->rcv_pps) < tcp_minmss) {
2014					char	ipstrbuf[MAX_IPv6_STR_LEN];
2015					printf("too many small tcp packets from "
2016					       "%s:%u, av. %ubyte/packet, "
2017					       "dropping connection\n",
2018#if INET6
2019						isipv6 ?
2020						inet_ntop(AF_INET6, &inp->in6p_faddr, ipstrbuf,
2021								  sizeof(ipstrbuf)) :
2022#endif
2023						inet_ntop(AF_INET, &inp->inp_faddr, ipstrbuf,
2024								  sizeof(ipstrbuf)),
2025						inp->inp_fport,
2026						tp->rcv_byps / tp->rcv_pps);
2027					tp = tcp_drop(tp, ECONNRESET);
2028/*					tcpstat.tcps_minmssdrops++; */
2029					goto drop;
2030				}
2031			}
2032		} else {
2033			tp->rcv_reset = tcp_now + TCP_RETRANSHZ;
2034			tp->rcv_pps = 1;
2035			tp->rcv_byps = tlen + off;
2036		}
2037
2038		/* Evaluate the rate of arrival of packets to see if the
2039		 * receiver can reduce the ack traffic. The algorithm to
2040		 * stretch acks will be enabled if the connection meets
2041		 * certain criteria defined in tcp_stretch_ack_enable function.
2042		 */
2043		if ((tp->t_flagsext & TF_RCVUNACK_WAITSS) != 0) {
2044			TCP_INC_VAR(tp->rcv_waitforss, nlropkts);
2045		}
2046		if (tcp_stretch_ack_enable(tp)) {
2047			tp->t_flags |= TF_STRETCHACK;
2048			tp->t_flagsext &= ~(TF_RCVUNACK_WAITSS);
2049			tp->rcv_waitforss = 0;
2050		} else {
2051			tp->t_flags &= ~(TF_STRETCHACK);
2052		}
2053		if (TSTMP_GT(tp->rcv_unackwin, tcp_now)) {
2054			tp->rcv_by_unackwin += (tlen + off);
2055		} else {
2056			tp->rcv_unackwin = tcp_now + tcp_rcvunackwin;
2057			tp->rcv_by_unackwin = tlen + off;
2058		}
2059	}
2060
2061	/*
2062	 * Keep track of how many bytes were received in the LRO packet
2063	 */
2064	if ((mauxf_sw_lro_pkt) && (nlropkts > 2))  {
2065		tp->t_lropktlen += tlen;
2066	}
2067	/*
2068	   Explicit Congestion Notification - Flag that we need to send ECT if
2069		+ The IP Congestion experienced flag was set.
2070		+ Socket is in established state
2071		+ We negotiated ECN in the TCP setup
2072		+ This isn't a pure ack (tlen > 0)
2073		+ The data is in the valid window
2074
2075		TE_SENDECE will be cleared when we receive a packet with TH_CWR set.
2076	 */
2077	if (ip_ecn == IPTOS_ECN_CE && tp->t_state == TCPS_ESTABLISHED &&
2078		((tp->ecn_flags & (TE_ECN_ON)) == (TE_ECN_ON)) && tlen > 0 &&
2079		SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2080		SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2081		tp->ecn_flags |= TE_SENDECE;
2082	}
2083
2084	/*
2085	   Clear TE_SENDECE if TH_CWR is set. This is harmless, so we don't
2086	   bother doing extensive checks for state and whatnot.
2087	 */
2088	if ((thflags & TH_CWR) == TH_CWR) {
2089		tp->ecn_flags &= ~TE_SENDECE;
2090	}
2091
2092	/* If we received an  explicit notification of congestion in
2093	 * ip tos ecn bits or by the CWR bit in TCP header flags, reset
2094	 * the ack-strteching state.
2095	 */
2096	if (tp->t_state == TCPS_ESTABLISHED && (tp->t_flags & TF_STRETCHACK) != 0 &&
2097		((ip_ecn == IPTOS_ECN_CE) || ((thflags & TH_CWR) == TH_CWR)))
2098		tcp_reset_stretch_ack(tp);
2099
2100	/*
2101	 * Try to determine if we are receiving a packet after a long time.
2102	 * Use our own approximation of idletime to roughly measure remote
2103	 * end's idle time. Since slowstart is used after an idle period
2104	 * we want to avoid doing LRO if the remote end is not up to date
2105	 * on initial window support and starts with 1 or 2 packets as its IW.
2106	 */
2107	 if (sw_lro && (tp->t_flagsext & TF_LRO_OFFLOADED) &&
2108	 	((tcp_now - tp->t_rcvtime) >= (TCP_IDLETIMEOUT(tp)))) {
2109		turnoff_lro = 1;
2110	 }
2111
2112	/*
2113	 * Segment received on connection.
2114	 * Reset idle time and keep-alive timer.
2115	 */
2116	tp->t_rcvtime = tcp_now;
2117	if (TCPS_HAVEESTABLISHED(tp->t_state))
2118		tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp, TCP_KEEPIDLE(tp));
2119
2120	/*
2121	 * Process options if not in LISTEN state,
2122	 * else do it below (after getting remote address).
2123	 */
2124	if (tp->t_state != TCPS_LISTEN && optp)
2125		tcp_dooptions(tp, optp, optlen, th, &to, ifscope);
2126
2127	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
2128		if (to.to_flags & TOF_SCALE) {
2129			tp->t_flags |= TF_RCVD_SCALE;
2130			tp->requested_s_scale = to.to_requested_s_scale;
2131			tp->snd_wnd = th->th_win << tp->snd_scale;
2132			tiwin = tp->snd_wnd;
2133		}
2134		if (to.to_flags & TOF_TS) {
2135			tp->t_flags |= TF_RCVD_TSTMP;
2136			tp->ts_recent = to.to_tsval;
2137			tp->ts_recent_age = tcp_now;
2138		}
2139		if (to.to_flags & TOF_MSS)
2140			tcp_mss(tp, to.to_mss, ifscope);
2141		if (tp->sack_enable) {
2142			if (!(to.to_flags & TOF_SACK))
2143				tp->sack_enable = 0;
2144			else
2145				tp->t_flags |= TF_SACK_PERMIT;
2146		}
2147	}
2148
2149#if TRAFFIC_MGT
2150	/* Compute inter-packet arrival jitter. According to RFC 3550, inter-packet
2151	 * arrival jitter is defined as the difference in packet spacing at the
2152	 * receiver compared to the sender for a pair of packets. When two packets
2153	 * of maximum segment size come one after the other with consecutive
2154	 * sequence numbers, we consider them as packets sent together at the
2155	 * sender and use them as a pair to compute inter-packet arrival jitter.
2156	 * This metric indicates the delay induced by the network components due
2157	 * to queuing in edge/access routers.
2158	 */
2159	if (tp->t_state == TCPS_ESTABLISHED &&
2160	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK|TH_ECE|TH_PUSH)) == TH_ACK &&
2161	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
2162	    ((to.to_flags & TOF_TS) == 0 ||
2163            TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
2164	    th->th_seq == tp->rcv_nxt &&
2165	    LIST_EMPTY(&tp->t_segq)) {
2166		int seg_size = tlen;
2167		if (tp->iaj_pktcnt <= IAJ_IGNORE_PKTCNT) {
2168			TCP_INC_VAR(tp->iaj_pktcnt, nlropkts);
2169		}
2170
2171		if (m->m_pkthdr.aux_flags & MAUXF_SW_LRO_PKT) {
2172			seg_size = m->m_pkthdr.lro_pktlen;
2173		}
2174		if ( tp->iaj_size == 0 || seg_size > tp->iaj_size ||
2175			(seg_size == tp->iaj_size && tp->iaj_rcv_ts == 0)) {
2176			/* State related to inter-arrival jitter is uninitialized
2177			 * or we are trying to find a good first packet to start
2178			 * computing the metric
2179			 */
2180			update_iaj_state(tp, seg_size, 0);
2181		} else {
2182			if (seg_size == tp->iaj_size) {
2183				/* Compute inter-arrival jitter taking this packet
2184				 * as the second packet
2185				 */
2186				compute_iaj(tp);
2187			}
2188			if (seg_size  < tp->iaj_size) {
2189				/* There is a smaller packet in the stream.
2190				 * Some times the maximum size supported on a path can
2191				 * change if there is a new link with smaller MTU.
2192				 * The receiver will not know about this change.
2193				 * If there are too many packets smaller than iaj_size,
2194				 * we try to learn the iaj_size again.
2195				 */
2196				tp->iaj_small_pkt++;
2197				if (tp->iaj_small_pkt > RESET_IAJ_SIZE_THRESH) {
2198					update_iaj_state(tp, seg_size, 1);
2199				} else {
2200					CLEAR_IAJ_STATE(tp);
2201				}
2202			} else {
2203				update_iaj_state(tp, seg_size, 0);
2204			}
2205		}
2206	} else {
2207		CLEAR_IAJ_STATE(tp);
2208	}
2209#endif /* TRAFFIC_MGT */
2210
2211	/*
2212	 * Header prediction: check for the two common cases
2213	 * of a uni-directional data xfer.  If the packet has
2214	 * no control flags, is in-sequence, the window didn't
2215	 * change and we're not retransmitting, it's a
2216	 * candidate.  If the length is zero and the ack moved
2217	 * forward, we're the sender side of the xfer.  Just
2218	 * free the data acked & wake any higher level process
2219	 * that was blocked waiting for space.  If the length
2220	 * is non-zero and the ack didn't move, we're the
2221	 * receiver side.  If we're getting packets in-order
2222	 * (the reassembly queue is empty), add the data to
2223	 * the socket buffer and note that we need a delayed ack.
2224	 * Make sure that the hidden state-flags are also off.
2225	 * Since we check for TCPS_ESTABLISHED above, it can only
2226	 * be TH_NEEDSYN.
2227	 */
2228	if (tp->t_state == TCPS_ESTABLISHED &&
2229	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK|TH_ECE)) == TH_ACK &&
2230	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
2231	    ((to.to_flags & TOF_TS) == 0 ||
2232	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
2233	    th->th_seq == tp->rcv_nxt &&
2234	    tiwin && tiwin == tp->snd_wnd &&
2235	    tp->snd_nxt == tp->snd_max) {
2236
2237		/*
2238		 * If last ACK falls within this segment's sequence numbers,
2239		 * record the timestamp.
2240		 * NOTE that the test is modified according to the latest
2241		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
2242		 */
2243		if ((to.to_flags & TOF_TS) != 0 &&
2244		   SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
2245			tp->ts_recent_age = tcp_now;
2246			tp->ts_recent = to.to_tsval;
2247		}
2248
2249		/* Force acknowledgment if we received a FIN */
2250
2251		if (thflags & TH_FIN)
2252			tp->t_flags |= TF_ACKNOW;
2253
2254		if (tlen == 0) {
2255			if (SEQ_GT(th->th_ack, tp->snd_una) &&
2256			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
2257			    tp->snd_cwnd >= tp->snd_ssthresh &&
2258			    (!IN_FASTRECOVERY(tp) &&
2259			    ((!tp->sack_enable && tp->t_dupacks < tcprexmtthresh) ||
2260			     (tp->sack_enable && to.to_nsacks == 0 &&
2261			      TAILQ_EMPTY(&tp->snd_holes))))) {
2262				/*
2263				 * this is a pure ack for outstanding data.
2264				 */
2265				++tcpstat.tcps_predack;
2266				/*
2267				 * "bad retransmit" recovery
2268				 */
2269				if (tp->t_rxtshift == 1 &&
2270				    TSTMP_LT(tcp_now, tp->t_badrxtwin)) {
2271					++tcpstat.tcps_sndrexmitbad;
2272					tp->snd_cwnd = tp->snd_cwnd_prev;
2273					tp->snd_ssthresh =
2274					    tp->snd_ssthresh_prev;
2275					tp->snd_recover = tp->snd_recover_prev;
2276					if (tp->t_flags & TF_WASFRECOVERY)
2277					    ENTER_FASTRECOVERY(tp);
2278					tp->snd_nxt = tp->snd_max;
2279					tp->t_badrxtwin = 0;
2280					tp->t_rxtshift = 0;
2281					tp->rxt_start = 0;
2282					tcp_bad_rexmt_fix_sndbuf(tp);
2283					DTRACE_TCP5(cc, void, NULL, struct inpcb *, tp->t_inpcb,
2284						struct tcpcb *, tp, struct tcphdr *, th,
2285						int32_t, TCP_CC_BAD_REXMT_RECOVERY);
2286				}
2287				/*
2288				 * Recalculate the transmit timer / rtt.
2289				 *
2290				 * Some boxes send broken timestamp replies
2291				 * during the SYN+ACK phase, ignore
2292				 * timestamps of 0 or we could calculate a
2293				 * huge RTT and blow up the retransmit timer.
2294				 */
2295				if (((to.to_flags & TOF_TS) != 0) && (to.to_tsecr != 0) &&
2296					TSTMP_GEQ(tcp_now, to.to_tsecr)) {
2297					tcp_xmit_timer(tp,
2298						tcp_now - to.to_tsecr);
2299				} else if (tp->t_rtttime &&
2300					SEQ_GT(th->th_ack, tp->t_rtseq)) {
2301					tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2302				}
2303				acked = th->th_ack - tp->snd_una;
2304				tcpstat.tcps_rcvackpack++;
2305				tcpstat.tcps_rcvackbyte += acked;
2306
2307				/* Handle an ack that is in sequence during congestion
2308				 * avoidance phase. The calculations in this function
2309				 * assume that snd_una is not updated yet.
2310				 */
2311				if (CC_ALGO(tp)->inseq_ack_rcvd != NULL)
2312					CC_ALGO(tp)->inseq_ack_rcvd(tp, th);
2313
2314				DTRACE_TCP5(cc, void, NULL, struct inpcb *, inp,
2315					struct tcpcb *, tp, struct tcphdr *, th,
2316					int32_t, TCP_CC_INSEQ_ACK_RCVD);
2317
2318				sbdrop(&so->so_snd, acked);
2319				tcp_sbsnd_trim(&so->so_snd);
2320
2321				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
2322				    SEQ_LEQ(th->th_ack, tp->snd_recover))
2323					tp->snd_recover = th->th_ack - 1;
2324				tp->snd_una = th->th_ack;
2325
2326				/*
2327				 * pull snd_wl2 up to prevent seq wrap relative
2328				 * to th_ack.
2329				 */
2330				tp->snd_wl2 = th->th_ack;
2331				tp->t_dupacks = 0;
2332				m_freem(m);
2333				ND6_HINT(tp); /* some progress has been done */
2334
2335				/*
2336				 * If all outstanding data are acked, stop
2337				 * retransmit timer, otherwise restart timer
2338				 * using current (possibly backed-off) value.
2339				 * If process is waiting for space,
2340				 * wakeup/selwakeup/signal.  If data
2341				 * are ready to send, let tcp_output
2342				 * decide between more output or persist.
2343				 */
2344				if (tp->snd_una == tp->snd_max)
2345					tp->t_timer[TCPT_REXMT] = 0;
2346				else if (tp->t_timer[TCPT_PERSIST] == 0)
2347					tp->t_timer[TCPT_REXMT] = OFFSET_FROM_START(tp, tp->t_rxtcur);
2348
2349				if ((tp->t_flagsext & TF_MEASURESNDBW) != 0 &&
2350					tp->t_bwmeas != NULL)
2351					tcp_bwmeas_check(tp);
2352				sowwakeup(so); /* has to be done with socket lock held */
2353				if ((so->so_snd.sb_cc) || (tp->t_flags & TF_ACKNOW)) {
2354					(void) tcp_output(tp);
2355				}
2356
2357				tcp_check_timer_state(tp);
2358				tcp_unlock(so, 1, 0);
2359				KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0);
2360				return;
2361			}
2362		} else if (th->th_ack == tp->snd_una &&
2363		    LIST_EMPTY(&tp->t_segq) &&
2364		    tlen <= tcp_sbspace(tp)) {
2365			/*
2366			 * this is a pure, in-sequence data packet
2367			 * with nothing on the reassembly queue and
2368			 * we have enough buffer space to take it.
2369			 */
2370
2371			/*
2372                 	 * If this is a connection in steady state, start
2373			 * coalescing packets belonging to this flow.
2374			 */
2375			if (turnoff_lro) {
2376				tcp_lro_remove_state(tp->t_inpcb->inp_laddr,
2377				 tp->t_inpcb->inp_faddr,
2378				 tp->t_inpcb->inp_lport,
2379				 tp->t_inpcb->inp_fport);
2380				tp->t_flagsext &= ~TF_LRO_OFFLOADED;
2381				tp->t_idleat = tp->rcv_nxt;
2382			} else if (sw_lro && !mauxf_sw_lro_pkt && !isipv6 &&
2383			    (so->so_flags & SOF_USELRO) &&
2384			    (m->m_pkthdr.rcvif->if_type != IFT_CELLULAR) &&
2385  			    (m->m_pkthdr.rcvif->if_type != IFT_LOOP) &&
2386			    ((th->th_seq - tp->irs) >
2387			    	(tp->t_maxseg << lro_start)) &&
2388			    ((tp->t_idleat == 0) || ((th->th_seq -
2389			     tp->t_idleat) > (tp->t_maxseg << lro_start)))) {
2390				tp->t_flagsext |= TF_LRO_OFFLOADED;
2391				tcp_start_coalescing(ip, th, tlen);
2392				tp->t_idleat = 0;
2393			}
2394
2395			/* Clean receiver SACK report if present */
2396			if (tp->sack_enable && tp->rcv_numsacks)
2397				tcp_clean_sackreport(tp);
2398			++tcpstat.tcps_preddat;
2399			tp->rcv_nxt += tlen;
2400			/*
2401			 * Pull snd_wl1 up to prevent seq wrap relative to
2402			 * th_seq.
2403			 */
2404			tp->snd_wl1 = th->th_seq;
2405			/*
2406			 * Pull rcv_up up to prevent seq wrap relative to
2407			 * rcv_nxt.
2408			 */
2409			tp->rcv_up = tp->rcv_nxt;
2410			TCP_INC_VAR(tcpstat.tcps_rcvpack, nlropkts);
2411			tcpstat.tcps_rcvbyte += tlen;
2412			if (nstat_collect) {
2413				if (m->m_pkthdr.aux_flags & MAUXF_SW_LRO_PKT) {
2414					locked_add_64(&inp->inp_stat->rxpackets, m->m_pkthdr.lro_npkts);
2415				}
2416				else {
2417					locked_add_64(&inp->inp_stat->rxpackets, 1);
2418				}
2419				locked_add_64(&inp->inp_stat->rxbytes, tlen);
2420			}
2421			ND6_HINT(tp);	/* some progress has been done */
2422
2423			tcp_sbrcv_grow(tp, &so->so_rcv, &to, tlen);
2424
2425			/*
2426			 * Add data to socket buffer.
2427			 */
2428			so_recv_data_stat(so, m, 0);
2429			m_adj(m, drop_hdrlen);	/* delayed header drop */
2430			if (sbappendstream(&so->so_rcv, m))
2431				sorwakeup(so);
2432#if INET6
2433			if (isipv6) {
2434				KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport),
2435		     			(((ip6->ip6_src.s6_addr16[0]) << 16) | (ip6->ip6_dst.s6_addr16[0])),
2436			     		th->th_seq, th->th_ack, th->th_win);
2437			}
2438			else
2439#endif
2440			{
2441				KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport),
2442		     			(((ip->ip_src.s_addr & 0xffff) << 16) | (ip->ip_dst.s_addr & 0xffff)),
2443			     		th->th_seq, th->th_ack, th->th_win);
2444			}
2445			TCP_INC_VAR(tp->t_unacksegs, nlropkts);
2446			if (DELAY_ACK(tp, th))  {
2447				if ((tp->t_flags & TF_DELACK) == 0) {
2448			    		tp->t_flags |= TF_DELACK;
2449					tp->t_timer[TCPT_DELACK] = OFFSET_FROM_START(tp, tcp_delack);
2450				}
2451			} else {
2452				tp->t_flags |= TF_ACKNOW;
2453				tcp_output(tp);
2454			}
2455			tcp_check_timer_state(tp);
2456			tcp_unlock(so, 1, 0);
2457			KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0);
2458			return;
2459		}
2460	}
2461
2462	/*
2463	 * Calculate amount of space in receive window,
2464	 * and then do TCP input processing.
2465	 * Receive window is amount of space in rcv queue,
2466	 * but not less than advertised window.
2467	 */
2468	lck_mtx_assert(&((struct inpcb *)so->so_pcb)->inpcb_mtx, LCK_MTX_ASSERT_OWNED);
2469
2470	{ int win;
2471
2472	win = tcp_sbspace(tp);
2473
2474	if (win < 0)
2475		win = 0;
2476	else {	/* clip rcv window to 4K for modems */
2477		if (tp->t_flags & TF_SLOWLINK && slowlink_wsize > 0)
2478			win = min(win, slowlink_wsize);
2479	}
2480	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
2481	}
2482
2483	switch (tp->t_state) {
2484
2485	/*
2486	 * Initialize tp->rcv_nxt, and tp->irs, select an initial
2487	 * tp->iss, and send a segment:
2488	 *     <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
2489	 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
2490	 * Fill in remote peer address fields if not previously specified.
2491	 * Enter SYN_RECEIVED state, and process any other fields of this
2492	 * segment in this state.
2493	 */
2494	case TCPS_LISTEN: {
2495		register struct sockaddr_in *sin;
2496#if INET6
2497		register struct sockaddr_in6 *sin6;
2498#endif
2499
2500		lck_mtx_assert(&((struct inpcb *)so->so_pcb)->inpcb_mtx, LCK_MTX_ASSERT_OWNED);
2501#if INET6
2502		if (isipv6) {
2503			MALLOC(sin6, struct sockaddr_in6 *, sizeof *sin6,
2504			       M_SONAME, M_NOWAIT);
2505			if (sin6 == NULL)
2506				goto drop;
2507			bzero(sin6, sizeof(*sin6));
2508			sin6->sin6_family = AF_INET6;
2509			sin6->sin6_len = sizeof(*sin6);
2510			sin6->sin6_addr = ip6->ip6_src;
2511			sin6->sin6_port = th->th_sport;
2512			laddr6 = inp->in6p_laddr;
2513			if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
2514				inp->in6p_laddr = ip6->ip6_dst;
2515			if (in6_pcbconnect(inp, (struct sockaddr *)sin6,
2516					   proc0)) {
2517				inp->in6p_laddr = laddr6;
2518				FREE(sin6, M_SONAME);
2519				goto drop;
2520			}
2521			FREE(sin6, M_SONAME);
2522		} else
2523#endif
2524	    {
2525			lck_mtx_assert(&((struct inpcb *)so->so_pcb)->inpcb_mtx, LCK_MTX_ASSERT_OWNED);
2526			MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME,
2527		       M_NOWAIT);
2528			if (sin == NULL)
2529				goto drop;
2530			sin->sin_family = AF_INET;
2531			sin->sin_len = sizeof(*sin);
2532			sin->sin_addr = ip->ip_src;
2533			sin->sin_port = th->th_sport;
2534			bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
2535			laddr = inp->inp_laddr;
2536			if (inp->inp_laddr.s_addr == INADDR_ANY)
2537				inp->inp_laddr = ip->ip_dst;
2538			if (in_pcbconnect(inp, (struct sockaddr *)sin, proc0, NULL)) {
2539				inp->inp_laddr = laddr;
2540				FREE(sin, M_SONAME);
2541				goto drop;
2542			}
2543			FREE(sin, M_SONAME);
2544		}
2545
2546		tcp_dooptions(tp, optp, optlen, th, &to, ifscope);
2547
2548		if (tp->sack_enable) {
2549			if (!(to.to_flags & TOF_SACK))
2550				tp->sack_enable = 0;
2551			else
2552				tp->t_flags |= TF_SACK_PERMIT;
2553		}
2554
2555		if (iss)
2556			tp->iss = iss;
2557		else {
2558			tp->iss = tcp_new_isn(tp);
2559 		}
2560		tp->irs = th->th_seq;
2561		tcp_sendseqinit(tp);
2562		tcp_rcvseqinit(tp);
2563		tp->snd_recover = tp->snd_una;
2564		/*
2565		 * Initialization of the tcpcb for transaction;
2566		 *   set SND.WND = SEG.WND,
2567		 *   initialize CCsend and CCrecv.
2568		 */
2569		tp->snd_wnd = tiwin;	/* initial send-window */
2570		tp->t_flags |= TF_ACKNOW;
2571		tp->t_unacksegs = 0;
2572		DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
2573			struct tcpcb *, tp, int32_t, TCPS_SYN_RECEIVED);
2574		tp->t_state = TCPS_SYN_RECEIVED;
2575		tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp,
2576			tp->t_keepinit ? tp->t_keepinit : tcp_keepinit);
2577		dropsocket = 0;		/* committed to socket */
2578
2579		if (inp->inp_flowhash == 0)
2580			inp->inp_flowhash = inp_calc_flowhash(inp);
2581
2582		/* reset the incomp processing flag */
2583		so->so_flags &= ~(SOF_INCOMP_INPROGRESS);
2584		tcpstat.tcps_accepts++;
2585		if ((thflags & (TH_ECE | TH_CWR)) == (TH_ECE | TH_CWR)) {
2586			/* ECN-setup SYN */
2587			tp->ecn_flags |= (TE_SETUPRECEIVED | TE_SENDIPECT);
2588		}
2589
2590#if CONFIG_IFEF_NOWINDOWSCALE
2591		if (tcp_obey_ifef_nowindowscale && m->m_pkthdr.rcvif != NULL &&
2592		    (m->m_pkthdr.rcvif->if_eflags & IFEF_NOWINDOWSCALE)) {
2593			/* Window scaling is not enabled on this interface */
2594			tp->t_flags &= ~TF_REQ_SCALE;
2595		}
2596#endif
2597		goto trimthenstep6;
2598		}
2599
2600	/*
2601	 * If the state is SYN_RECEIVED:
2602	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
2603	 */
2604	case TCPS_SYN_RECEIVED:
2605		if ((thflags & TH_ACK) &&
2606		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
2607		     SEQ_GT(th->th_ack, tp->snd_max))) {
2608				rstreason = BANDLIM_RST_OPENPORT;
2609
2610				if (ifp != NULL && ifp->if_tcp_stat != NULL)
2611					atomic_add_64(&ifp->if_tcp_stat->ooopacket, 1);
2612
2613				goto dropwithreset;
2614		}
2615		break;
2616
2617	/*
2618	 * If the state is SYN_SENT:
2619	 *	if seg contains an ACK, but not for our SYN, drop the input.
2620	 *	if seg contains a RST, then drop the connection.
2621	 *	if seg does not contain SYN, then drop it.
2622	 * Otherwise this is an acceptable SYN segment
2623	 *	initialize tp->rcv_nxt and tp->irs
2624	 *	if seg contains ack then advance tp->snd_una
2625	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2626	 *	arrange for segment to be acked (eventually)
2627	 *	continue processing rest of data/controls, beginning with URG
2628	 */
2629	case TCPS_SYN_SENT:
2630		if ((thflags & TH_ACK) &&
2631		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2632		     SEQ_GT(th->th_ack, tp->snd_max))) {
2633			rstreason = BANDLIM_UNLIMITED;
2634
2635			if (ifp != NULL && ifp->if_tcp_stat != NULL)
2636				atomic_add_64(&ifp->if_tcp_stat->ooopacket, 1);
2637
2638			goto dropwithreset;
2639		}
2640		if (thflags & TH_RST) {
2641			if ((thflags & TH_ACK) != 0) {
2642				soevent(so,
2643				    (SO_FILT_HINT_LOCKED |
2644				    SO_FILT_HINT_CONNRESET));
2645				tp = tcp_drop(tp, ECONNREFUSED);
2646				postevent(so, 0, EV_RESET);
2647			}
2648			goto drop;
2649		}
2650		if ((thflags & TH_SYN) == 0)
2651			goto drop;
2652		tp->snd_wnd = th->th_win;	/* initial send window */
2653
2654		tp->irs = th->th_seq;
2655		tcp_rcvseqinit(tp);
2656		if (thflags & TH_ACK) {
2657			tcpstat.tcps_connects++;
2658
2659			if ((thflags & (TH_ECE | TH_CWR)) == (TH_ECE)) {
2660				/* ECN-setup SYN-ACK */
2661				tp->ecn_flags |= TE_SETUPRECEIVED;
2662			}
2663			else {
2664				/* non-ECN-setup SYN-ACK */
2665				tp->ecn_flags &= ~TE_SENDIPECT;
2666			}
2667
2668#if CONFIG_MACF_NET && CONFIG_MACF_SOCKET
2669			/* XXXMAC: recursive lock: SOCK_LOCK(so); */
2670			mac_socketpeer_label_associate_mbuf(m, so);
2671			/* XXXMAC: SOCK_UNLOCK(so); */
2672#endif
2673			/* Do window scaling on this connection? */
2674			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2675				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2676				tp->snd_scale = tp->requested_s_scale;
2677				tp->rcv_scale = tp->request_r_scale;
2678			}
2679			tp->rcv_adv += min(tp->rcv_wnd, TCP_MAXWIN << tp->rcv_scale);
2680			tp->snd_una++;		/* SYN is acked */
2681			/*
2682			 * If there's data, delay ACK; if there's also a FIN
2683			 * ACKNOW will be turned on later.
2684			 */
2685			TCP_INC_VAR(tp->t_unacksegs, nlropkts);
2686			if (DELAY_ACK(tp, th) && tlen != 0 ) {
2687				if ((tp->t_flags & TF_DELACK) == 0) {
2688					tp->t_flags |= TF_DELACK;
2689					tp->t_timer[TCPT_DELACK] = OFFSET_FROM_START(tp, tcp_delack);
2690				}
2691			}
2692			else {
2693				tp->t_flags |= TF_ACKNOW;
2694			}
2695			/*
2696			 * Received <SYN,ACK> in SYN_SENT[*] state.
2697			 * Transitions:
2698			 *	SYN_SENT  --> ESTABLISHED
2699			 *	SYN_SENT* --> FIN_WAIT_1
2700			 */
2701			tp->t_starttime = tcp_now;
2702			tcp_sbrcv_tstmp_check(tp);
2703			if (tp->t_flags & TF_NEEDFIN) {
2704				DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
2705					struct tcpcb *, tp, int32_t, TCPS_FIN_WAIT_1);
2706				tp->t_state = TCPS_FIN_WAIT_1;
2707				tp->t_flags &= ~TF_NEEDFIN;
2708				thflags &= ~TH_SYN;
2709			} else {
2710				DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
2711					struct tcpcb *, tp, int32_t, TCPS_ESTABLISHED);
2712				tp->t_state = TCPS_ESTABLISHED;
2713				tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp, TCP_KEEPIDLE(tp));
2714				if (nstat_collect)
2715					nstat_route_connect_success(tp->t_inpcb->inp_route.ro_rt);
2716			}
2717			isconnected = TRUE;
2718		} else {
2719			/*
2720			 *  Received initial SYN in SYN-SENT[*] state => simul-
2721		  	 *  taneous open.  If segment contains CC option and there is
2722			 *  a cached CC, apply TAO test; if it succeeds, connection is
2723			 *  half-synchronized.  Otherwise, do 3-way handshake:
2724			 *        SYN-SENT -> SYN-RECEIVED
2725			 *        SYN-SENT* -> SYN-RECEIVED*
2726			 */
2727			tp->t_flags |= TF_ACKNOW;
2728			tp->t_timer[TCPT_REXMT] = 0;
2729			DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
2730				struct tcpcb *, tp, int32_t, TCPS_SYN_RECEIVED);
2731			tp->t_state = TCPS_SYN_RECEIVED;
2732
2733		}
2734
2735trimthenstep6:
2736		/*
2737		 * Advance th->th_seq to correspond to first data byte.
2738		 * If data, trim to stay within window,
2739		 * dropping FIN if necessary.
2740		 */
2741		th->th_seq++;
2742		if (tlen > tp->rcv_wnd) {
2743			todrop = tlen - tp->rcv_wnd;
2744			m_adj(m, -todrop);
2745			tlen = tp->rcv_wnd;
2746			thflags &= ~TH_FIN;
2747			tcpstat.tcps_rcvpackafterwin++;
2748			tcpstat.tcps_rcvbyteafterwin += todrop;
2749		}
2750		tp->snd_wl1 = th->th_seq - 1;
2751		tp->rcv_up = th->th_seq;
2752		/*
2753		 *  Client side of transaction: already sent SYN and data.
2754		 *  If the remote host used T/TCP to validate the SYN,
2755		 *  our data will be ACK'd; if so, enter normal data segment
2756		 *  processing in the middle of step 5, ack processing.
2757		 *  Otherwise, goto step 6.
2758		 */
2759 		if (thflags & TH_ACK)
2760			goto process_ACK;
2761		goto step6;
2762	/*
2763	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
2764	 *      do normal processing.
2765	 *
2766	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
2767	 */
2768	case TCPS_LAST_ACK:
2769	case TCPS_CLOSING:
2770	case TCPS_TIME_WAIT:
2771 		break;  /* continue normal processing */
2772
2773	/* Received a SYN while connection is already established.
2774	 * This is a "half open connection and other anomalies" described
2775	 * in RFC793 page 34, send an ACK so the remote reset the connection
2776	 * or recovers by adjusting its sequence numberering
2777	 */
2778	case TCPS_ESTABLISHED:
2779		if (thflags & TH_SYN)
2780			goto dropafterack;
2781		break;
2782	}
2783
2784	/*
2785	 * States other than LISTEN or SYN_SENT.
2786	 * First check the RST flag and sequence number since reset segments
2787	 * are exempt from the timestamp and connection count tests.  This
2788	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2789	 * below which allowed reset segments in half the sequence space
2790	 * to fall though and be processed (which gives forged reset
2791	 * segments with a random sequence number a 50 percent chance of
2792	 * killing a connection).
2793	 * Then check timestamp, if present.
2794	 * Then check the connection count, if present.
2795	 * Then check that at least some bytes of segment are within
2796	 * receive window.  If segment begins before rcv_nxt,
2797	 * drop leading data (and SYN); if nothing left, just ack.
2798	 *
2799	 *
2800	 * If the RST bit is set, check the sequence number to see
2801	 * if this is a valid reset segment.
2802	 * RFC 793 page 37:
2803	 *   In all states except SYN-SENT, all reset (RST) segments
2804	 *   are validated by checking their SEQ-fields.  A reset is
2805	 *   valid if its sequence number is in the window.
2806	 * Note: this does not take into account delayed ACKs, so
2807	 *   we should test against last_ack_sent instead of rcv_nxt.
2808	 *   The sequence number in the reset segment is normally an
2809	 *   echo of our outgoing acknowlegement numbers, but some hosts
2810	 *   send a reset with the sequence number at the rightmost edge
2811	 *   of our receive window, and we have to handle this case.
2812	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
2813	 *   that brute force RST attacks are possible.  To combat this,
2814	 *   we use a much stricter check while in the ESTABLISHED state,
2815	 *   only accepting RSTs where the sequence number is equal to
2816	 *   last_ack_sent.  In all other states (the states in which a
2817	 *   RST is more likely), the more permissive check is used.
2818	 * If we have multiple segments in flight, the intial reset
2819	 * segment sequence numbers will be to the left of last_ack_sent,
2820	 * but they will eventually catch up.
2821	 * In any case, it never made sense to trim reset segments to
2822	 * fit the receive window since RFC 1122 says:
2823	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
2824	 *
2825	 *    A TCP SHOULD allow a received RST segment to include data.
2826	 *
2827	 *    DISCUSSION
2828	 *         It has been suggested that a RST segment could contain
2829	 *         ASCII text that encoded and explained the cause of the
2830	 *         RST.  No standard has yet been established for such
2831	 *         data.
2832	 *
2833	 * If the reset segment passes the sequence number test examine
2834	 * the state:
2835	 *    SYN_RECEIVED STATE:
2836	 *	If passive open, return to LISTEN state.
2837	 *	If active open, inform user that connection was refused.
2838	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
2839	 *	Inform user that connection was reset, and close tcb.
2840	 *    CLOSING, LAST_ACK STATES:
2841	 *	Close the tcb.
2842	 *    TIME_WAIT STATE:
2843	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
2844	 *      RFC 1337.
2845	 *
2846	 *      Radar 4803931: Allows for the case where we ACKed the FIN but
2847	 *                     there is already a RST in flight from the peer.
2848	 *                     In that case, accept the RST for non-established
2849	 *                     state if it's one off from last_ack_sent.
2850
2851	 */
2852	if (thflags & TH_RST) {
2853		if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2854		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
2855		    (tp->rcv_wnd == 0 &&
2856		     	((tp->last_ack_sent == th->th_seq) || ((tp->last_ack_sent -1) == th->th_seq)))) {
2857			switch (tp->t_state) {
2858
2859			case TCPS_SYN_RECEIVED:
2860				if (ifp != NULL && ifp->if_tcp_stat != NULL)
2861					atomic_add_64(&ifp->if_tcp_stat->rstinsynrcv, 1);
2862				so->so_error = ECONNREFUSED;
2863				goto close;
2864
2865			case TCPS_ESTABLISHED:
2866				if (tp->last_ack_sent != th->th_seq) {
2867					tcpstat.tcps_badrst++;
2868					goto drop;
2869				}
2870			case TCPS_FIN_WAIT_1:
2871			case TCPS_CLOSE_WAIT:
2872				/*
2873				  Drop through ...
2874				*/
2875			case TCPS_FIN_WAIT_2:
2876				so->so_error = ECONNRESET;
2877			close:
2878				postevent(so, 0, EV_RESET);
2879				DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
2880					struct tcpcb *, tp, int32_t, TCPS_CLOSED);
2881
2882				soevent(so,
2883				    (SO_FILT_HINT_LOCKED |
2884				    SO_FILT_HINT_CONNRESET));
2885
2886				tp->t_state = TCPS_CLOSED;
2887				tcpstat.tcps_drops++;
2888				tp = tcp_close(tp);
2889				break;
2890
2891			case TCPS_CLOSING:
2892			case TCPS_LAST_ACK:
2893				tp = tcp_close(tp);
2894				break;
2895
2896			case TCPS_TIME_WAIT:
2897				break;
2898			}
2899		}
2900		goto drop;
2901	}
2902
2903	/*
2904	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2905	 * and it's less than ts_recent, drop it.
2906	 */
2907	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2908	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2909
2910		/* Check to see if ts_recent is over 24 days old.  */
2911		if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
2912			/*
2913			 * Invalidate ts_recent.  If this segment updates
2914			 * ts_recent, the age will be reset later and ts_recent
2915			 * will get a valid value.  If it does not, setting
2916			 * ts_recent to zero will at least satisfy the
2917			 * requirement that zero be placed in the timestamp
2918			 * echo reply when ts_recent isn't valid.  The
2919			 * age isn't reset until we get a valid ts_recent
2920			 * because we don't want out-of-order segments to be
2921			 * dropped when ts_recent is old.
2922			 */
2923			tp->ts_recent = 0;
2924		} else {
2925			tcpstat.tcps_rcvduppack++;
2926			tcpstat.tcps_rcvdupbyte += tlen;
2927			tcpstat.tcps_pawsdrop++;
2928			if (nstat_collect) {
2929				nstat_route_rx(tp->t_inpcb->inp_route.ro_rt, 1, tlen, NSTAT_RX_FLAG_DUPLICATE);
2930				locked_add_64(&inp->inp_stat->rxpackets, 1);
2931				locked_add_64(&inp->inp_stat->rxbytes, tlen);
2932				tp->t_stat.rxduplicatebytes += tlen;
2933			}
2934			if (tlen)
2935				goto dropafterack;
2936			goto drop;
2937		}
2938	}
2939
2940	/*
2941	 * In the SYN-RECEIVED state, validate that the packet belongs to
2942	 * this connection before trimming the data to fit the receive
2943	 * window.  Check the sequence number versus IRS since we know
2944	 * the sequence numbers haven't wrapped.  This is a partial fix
2945	 * for the "LAND" DoS attack.
2946	 */
2947	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2948		rstreason = BANDLIM_RST_OPENPORT;
2949
2950		if (ifp != NULL && ifp->if_tcp_stat != NULL)
2951			atomic_add_64(&ifp->if_tcp_stat->dospacket, 1);
2952
2953		goto dropwithreset;
2954	}
2955
2956	todrop = tp->rcv_nxt - th->th_seq;
2957	if (todrop > 0) {
2958		if (thflags & TH_SYN) {
2959			thflags &= ~TH_SYN;
2960			th->th_seq++;
2961			if (th->th_urp > 1)
2962				th->th_urp--;
2963			else
2964				thflags &= ~TH_URG;
2965			todrop--;
2966		}
2967		/*
2968		 * Following if statement from Stevens, vol. 2, p. 960.
2969		 */
2970		if (todrop > tlen
2971		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2972			/*
2973			 * Any valid FIN must be to the left of the window.
2974			 * At this point the FIN must be a duplicate or out
2975			 * of sequence; drop it.
2976			 */
2977			thflags &= ~TH_FIN;
2978
2979			/*
2980			 * Send an ACK to resynchronize and drop any data.
2981			 * But keep on processing for RST or ACK.
2982			 */
2983			tp->t_flags |= TF_ACKNOW;
2984			if (todrop == 1) {
2985				/* This could be a keepalive */
2986				soevent(so, SO_FILT_HINT_LOCKED |
2987					SO_FILT_HINT_KEEPALIVE);
2988			}
2989			todrop = tlen;
2990			tcpstat.tcps_rcvduppack++;
2991			tcpstat.tcps_rcvdupbyte += todrop;
2992		} else {
2993			tcpstat.tcps_rcvpartduppack++;
2994			tcpstat.tcps_rcvpartdupbyte += todrop;
2995		}
2996		if (nstat_collect) {
2997			nstat_route_rx(tp->t_inpcb->inp_route.ro_rt, 1, todrop, NSTAT_RX_FLAG_DUPLICATE);
2998			locked_add_64(&inp->inp_stat->rxpackets, 1);
2999			locked_add_64(&inp->inp_stat->rxbytes, todrop);
3000			tp->t_stat.rxduplicatebytes += todrop;
3001		}
3002		drop_hdrlen += todrop;	/* drop from the top afterwards */
3003		th->th_seq += todrop;
3004		tlen -= todrop;
3005		if (th->th_urp > todrop)
3006			th->th_urp -= todrop;
3007		else {
3008			thflags &= ~TH_URG;
3009			th->th_urp = 0;
3010		}
3011	}
3012
3013	/*
3014	 * If new data are received on a connection after the
3015	 * user processes are gone, then RST the other end.
3016	 */
3017	if ((so->so_state & SS_NOFDREF) &&
3018	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
3019		tp = tcp_close(tp);
3020		tcpstat.tcps_rcvafterclose++;
3021		rstreason = BANDLIM_UNLIMITED;
3022
3023		if (ifp != NULL && ifp->if_tcp_stat != NULL)
3024			atomic_add_64(&ifp->if_tcp_stat->cleanup, 1);
3025
3026		goto dropwithreset;
3027	}
3028
3029	/*
3030	 * If segment ends after window, drop trailing data
3031	 * (and PUSH and FIN); if nothing left, just ACK.
3032	 */
3033	todrop = (th->th_seq+tlen) - (tp->rcv_nxt+tp->rcv_wnd);
3034	if (todrop > 0) {
3035		tcpstat.tcps_rcvpackafterwin++;
3036		if (todrop >= tlen) {
3037			tcpstat.tcps_rcvbyteafterwin += tlen;
3038			/*
3039			 * If a new connection request is received
3040			 * while in TIME_WAIT, drop the old connection
3041			 * and start over if the sequence numbers
3042			 * are above the previous ones.
3043			 */
3044			if (thflags & TH_SYN &&
3045			    tp->t_state == TCPS_TIME_WAIT &&
3046			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
3047				iss = tcp_new_isn(tp);
3048				tp = tcp_close(tp);
3049				tcp_unlock(so, 1, 0);
3050				goto findpcb;
3051			}
3052			/*
3053			 * If window is closed can only take segments at
3054			 * window edge, and have to drop data and PUSH from
3055			 * incoming segments.  Continue processing, but
3056			 * remember to ack.  Otherwise, drop segment
3057			 * and ack.
3058			 */
3059			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
3060				tp->t_flags |= TF_ACKNOW;
3061				tcpstat.tcps_rcvwinprobe++;
3062			} else
3063				goto dropafterack;
3064		} else
3065			tcpstat.tcps_rcvbyteafterwin += todrop;
3066		m_adj(m, -todrop);
3067		tlen -= todrop;
3068		thflags &= ~(TH_PUSH|TH_FIN);
3069	}
3070
3071	/*
3072	 * If last ACK falls within this segment's sequence numbers,
3073	 * record its timestamp.
3074	 * NOTE:
3075	 * 1) That the test incorporates suggestions from the latest
3076	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
3077	 * 2) That updating only on newer timestamps interferes with
3078	 *    our earlier PAWS tests, so this check should be solely
3079	 *    predicated on the sequence space of this segment.
3080	 * 3) That we modify the segment boundary check to be
3081	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
3082	 *    instead of RFC1323's
3083	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
3084	 *    This modified check allows us to overcome RFC1323's
3085	 *    limitations as described in Stevens TCP/IP Illustrated
3086	 *    Vol. 2 p.869. In such cases, we can still calculate the
3087	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
3088	 */
3089	if ((to.to_flags & TOF_TS) != 0 &&
3090	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
3091	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
3092		((thflags & (TH_SYN|TH_FIN)) != 0))) {
3093		tp->ts_recent_age = tcp_now;
3094		tp->ts_recent = to.to_tsval;
3095	}
3096
3097	/*
3098	 * If a SYN is in the window, then this is an
3099	 * error and we send an RST and drop the connection.
3100	 */
3101	if (thflags & TH_SYN) {
3102		tp = tcp_drop(tp, ECONNRESET);
3103		rstreason = BANDLIM_UNLIMITED;
3104		postevent(so, 0, EV_RESET);
3105
3106		if (ifp != NULL && ifp->if_tcp_stat != NULL)
3107			atomic_add_64(&ifp->if_tcp_stat->synwindow, 1);
3108
3109		goto dropwithreset;
3110	}
3111
3112	/*
3113	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
3114	 * flag is on (half-synchronized state), then queue data for
3115	 * later processing; else drop segment and return.
3116	 */
3117	if ((thflags & TH_ACK) == 0) {
3118		if (tp->t_state == TCPS_SYN_RECEIVED ||
3119		    (tp->t_flags & TF_NEEDSYN))
3120			goto step6;
3121		else if (tp->t_flags & TF_ACKNOW)
3122			goto dropafterack;
3123		else
3124			goto drop;
3125	}
3126
3127	/*
3128	 * Ack processing.
3129	 */
3130	switch (tp->t_state) {
3131
3132	/*
3133	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
3134	 * ESTABLISHED state and continue processing.
3135	 * The ACK was checked above.
3136	 */
3137	case TCPS_SYN_RECEIVED:
3138
3139		tcpstat.tcps_connects++;
3140
3141		/* Do window scaling? */
3142		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3143			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
3144			tp->snd_scale = tp->requested_s_scale;
3145			tp->rcv_scale = tp->request_r_scale;
3146			tp->snd_wnd = th->th_win << tp->snd_scale;
3147			tiwin = tp->snd_wnd;
3148		}
3149		/*
3150		 * Make transitions:
3151		 *      SYN-RECEIVED  -> ESTABLISHED
3152		 *      SYN-RECEIVED* -> FIN-WAIT-1
3153		 */
3154		tp->t_starttime = tcp_now;
3155		tcp_sbrcv_tstmp_check(tp);
3156		if (tp->t_flags & TF_NEEDFIN) {
3157			DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
3158				struct tcpcb *, tp, int32_t, TCPS_FIN_WAIT_1);
3159			tp->t_state = TCPS_FIN_WAIT_1;
3160			tp->t_flags &= ~TF_NEEDFIN;
3161		} else {
3162			DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
3163				struct tcpcb *, tp, int32_t, TCPS_ESTABLISHED);
3164			tp->t_state = TCPS_ESTABLISHED;
3165			tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp, TCP_KEEPIDLE(tp));
3166			if (nstat_collect)
3167				nstat_route_connect_success(tp->t_inpcb->inp_route.ro_rt);
3168		}
3169		/*
3170		 * If segment contains data or ACK, will call tcp_reass()
3171		 * later; if not, do so now to pass queued data to user.
3172		 */
3173		if (tlen == 0 && (thflags & TH_FIN) == 0)
3174			(void) tcp_reass(tp, (struct tcphdr *)0, &tlen,
3175			    (struct mbuf *)0);
3176		tp->snd_wl1 = th->th_seq - 1;
3177
3178		/* FALLTHROUGH */
3179
3180		isconnected = TRUE;
3181
3182	/*
3183	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
3184	 * ACKs.  If the ack is in the range
3185	 *	tp->snd_una < th->th_ack <= tp->snd_max
3186	 * then advance tp->snd_una to th->th_ack and drop
3187	 * data from the retransmission queue.  If this ACK reflects
3188	 * more up to date window information we update our window information.
3189	 */
3190	case TCPS_ESTABLISHED:
3191	case TCPS_FIN_WAIT_1:
3192	case TCPS_FIN_WAIT_2:
3193	case TCPS_CLOSE_WAIT:
3194	case TCPS_CLOSING:
3195	case TCPS_LAST_ACK:
3196	case TCPS_TIME_WAIT:
3197		if (SEQ_GT(th->th_ack, tp->snd_max)) {
3198			tcpstat.tcps_rcvacktoomuch++;
3199			goto dropafterack;
3200		}
3201		if (tp->sack_enable &&
3202		    (to.to_nsacks > 0 || !TAILQ_EMPTY(&tp->snd_holes)))
3203			tcp_sack_doack(tp, &to, th->th_ack);
3204		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
3205			if (tlen == 0 && tiwin == tp->snd_wnd) {
3206				tcpstat.tcps_rcvdupack++;
3207				/*
3208				 * If we have outstanding data (other than
3209				 * a window probe), this is a completely
3210				 * duplicate ack (ie, window info didn't
3211				 * change), the ack is the biggest we've
3212				 * seen and we've seen exactly our rexmt
3213				 * threshhold of them, assume a packet
3214				 * has been dropped and retransmit it.
3215				 * Kludge snd_nxt & the congestion
3216				 * window so we send only this one
3217				 * packet.
3218				 *
3219				 * We know we're losing at the current
3220				 * window size so do congestion avoidance
3221				 * (set ssthresh to half the current window
3222				 * and pull our congestion window back to
3223				 * the new ssthresh).
3224				 *
3225				 * Dup acks mean that packets have left the
3226				 * network (they're now cached at the receiver)
3227				 * so bump cwnd by the amount in the receiver
3228				 * to keep a constant cwnd packets in the
3229				 * network.
3230				 */
3231				if (tp->t_timer[TCPT_REXMT] == 0 ||
3232				    th->th_ack != tp->snd_una)
3233					tp->t_dupacks = 0;
3234				else if (++tp->t_dupacks > tcprexmtthresh ||
3235					  IN_FASTRECOVERY(tp)) {
3236					if (tp->sack_enable && IN_FASTRECOVERY(tp)) {
3237						int awnd;
3238
3239						/*
3240						 * Compute the amount of data in flight first.
3241						 * We can inject new data into the pipe iff
3242						 * we have less than 1/2 the original window's
3243						 * worth of data in flight.
3244						 */
3245						awnd = (tp->snd_nxt - tp->snd_fack) +
3246							tp->sackhint.sack_bytes_rexmit;
3247						if (awnd < tp->snd_ssthresh) {
3248							tp->snd_cwnd += tp->t_maxseg;
3249							if (tp->snd_cwnd > tp->snd_ssthresh)
3250								tp->snd_cwnd = tp->snd_ssthresh;
3251						}
3252					} else
3253						tp->snd_cwnd += tp->t_maxseg;
3254
3255					DTRACE_TCP5(cc, void, NULL, struct inpcb *, inp,
3256						struct tcpcb *, tp, struct tcphdr *, th,
3257						int32_t, TCP_CC_IN_FASTRECOVERY);
3258
3259					(void) tcp_output(tp);
3260					goto drop;
3261				} else if (tp->t_dupacks == tcprexmtthresh) {
3262					tcp_seq onxt = tp->snd_nxt;
3263
3264					/*
3265					 * If we're doing sack, check to
3266					 * see if we're already in sack
3267					 * recovery. If we're not doing sack,
3268					 * check to see if we're in newreno
3269					 * recovery.
3270					 */
3271					if (tp->sack_enable) {
3272						if (IN_FASTRECOVERY(tp)) {
3273							tp->t_dupacks = 0;
3274							break;
3275						}
3276					} else {
3277						if (SEQ_LEQ(th->th_ack,
3278						    tp->snd_recover)) {
3279							tp->t_dupacks = 0;
3280							break;
3281						}
3282					}
3283
3284					/*
3285					 * If the current tcp cc module has
3286					 * defined a hook for tasks to run
3287					 * before entering FR, call it
3288					 */
3289					if (CC_ALGO(tp)->pre_fr != NULL)
3290						CC_ALGO(tp)->pre_fr(tp);
3291					ENTER_FASTRECOVERY(tp);
3292					tp->snd_recover = tp->snd_max;
3293					tp->t_timer[TCPT_REXMT] = 0;
3294					tp->t_rtttime = 0;
3295					if ((tp->ecn_flags & TE_ECN_ON) == TE_ECN_ON) {
3296						tp->ecn_flags |= TE_SENDCWR;
3297					}
3298					if (tp->sack_enable) {
3299						tcpstat.tcps_sack_recovery_episode++;
3300						tp->sack_newdata = tp->snd_nxt;
3301						tp->snd_cwnd = tp->t_maxseg;
3302
3303						DTRACE_TCP5(cc, void, NULL, struct inpcb *, inp,
3304							struct tcpcb *, tp, struct tcphdr *, th,
3305							int32_t, TCP_CC_ENTER_FASTRECOVERY);
3306
3307						(void) tcp_output(tp);
3308						goto drop;
3309					}
3310					tp->snd_nxt = th->th_ack;
3311					tp->snd_cwnd = tp->t_maxseg;
3312					(void) tcp_output(tp);
3313					tp->snd_cwnd = tp->snd_ssthresh +
3314					     tp->t_maxseg * tp->t_dupacks;
3315					if (SEQ_GT(onxt, tp->snd_nxt))
3316						tp->snd_nxt = onxt;
3317					DTRACE_TCP5(cc, void, NULL, struct inpcb *, inp,
3318						struct tcpcb *, tp, struct tcphdr *, th,
3319						int32_t, TCP_CC_ENTER_FASTRECOVERY);
3320					goto drop;
3321				}
3322			} else
3323				tp->t_dupacks = 0;
3324			break;
3325		}
3326		/*
3327		 * If the congestion window was inflated to account
3328		 * for the other side's cached packets, retract it.
3329		 */
3330		if (IN_FASTRECOVERY(tp)) {
3331			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
3332				if (tp->sack_enable)
3333					tcp_sack_partialack(tp, th);
3334				else
3335					tcp_newreno_partial_ack(tp, th);
3336
3337				DTRACE_TCP5(cc, void, NULL, struct inpcb *, inp,
3338					struct tcpcb *, tp, struct tcphdr *, th,
3339					int32_t, TCP_CC_PARTIAL_ACK);
3340			} else {
3341				EXIT_FASTRECOVERY(tp);
3342				if (CC_ALGO(tp)->post_fr != NULL)
3343					CC_ALGO(tp)->post_fr(tp, th);
3344				tp->t_dupacks = 0;
3345
3346				DTRACE_TCP5(cc, void, NULL, struct inpcb *, inp,
3347					struct tcpcb *, tp, struct tcphdr *, th,
3348					int32_t, TCP_CC_EXIT_FASTRECOVERY);
3349			}
3350		} else {
3351			/*
3352			 * We were not in fast recovery. Reset the duplicate ack
3353			 * counter.
3354			 */
3355			tp->t_dupacks = 0;
3356		}
3357
3358
3359		/*
3360		 * If we reach this point, ACK is not a duplicate,
3361		 *     i.e., it ACKs something we sent.
3362		 */
3363		if (tp->t_flags & TF_NEEDSYN) {
3364			/*
3365			 * T/TCP: Connection was half-synchronized, and our
3366			 * SYN has been ACK'd (so connection is now fully
3367			 * synchronized).  Go to non-starred state,
3368			 * increment snd_una for ACK of SYN, and check if
3369			 * we can do window scaling.
3370			 */
3371			tp->t_flags &= ~TF_NEEDSYN;
3372			tp->snd_una++;
3373			/* Do window scaling? */
3374			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3375				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
3376				tp->snd_scale = tp->requested_s_scale;
3377				tp->rcv_scale = tp->request_r_scale;
3378			}
3379		}
3380
3381process_ACK:
3382		acked = th->th_ack - tp->snd_una;
3383		tcpstat.tcps_rcvackpack++;
3384		tcpstat.tcps_rcvackbyte += acked;
3385
3386		/*
3387		 * If we just performed our first retransmit, and the ACK
3388		 * arrives within our recovery window, then it was a mistake
3389		 * to do the retransmit in the first place.  Recover our
3390		 * original cwnd and ssthresh, and proceed to transmit where
3391		 * we left off.
3392		 */
3393		if (tp->t_rxtshift == 1 &&
3394			TSTMP_LT(tcp_now, tp->t_badrxtwin)) {
3395			++tcpstat.tcps_sndrexmitbad;
3396			tp->snd_cwnd = tp->snd_cwnd_prev;
3397			tp->snd_ssthresh = tp->snd_ssthresh_prev;
3398			tp->snd_recover = tp->snd_recover_prev;
3399			if (tp->t_flags & TF_WASFRECOVERY)
3400				ENTER_FASTRECOVERY(tp);
3401			tp->snd_nxt = tp->snd_max;
3402			tp->t_badrxtwin = 0;	/* XXX probably not required */
3403			tp->t_rxtshift = 0;
3404			tp->rxt_start = 0;
3405			tcp_bad_rexmt_fix_sndbuf(tp);
3406
3407			DTRACE_TCP5(cc, void, NULL, struct inpcb *, inp,
3408				struct tcpcb *, tp, struct tcphdr *, th,
3409				int32_t, TCP_CC_BAD_REXMT_RECOVERY);
3410		}
3411
3412		/*
3413		 * If we have a timestamp reply, update smoothed
3414		 * round trip time.  If no timestamp is present but
3415		 * transmit timer is running and timed sequence
3416		 * number was acked, update smoothed round trip time.
3417		 * Since we now have an rtt measurement, cancel the
3418		 * timer backoff (cf., Phil Karn's retransmit alg.).
3419		 * Recompute the initial retransmit timer.
3420		 * Also makes sure we have a valid time stamp in hand
3421		 *
3422		 * Some boxes send broken timestamp replies
3423		 * during the SYN+ACK phase, ignore
3424		 * timestamps of 0 or we could calculate a
3425		 * huge RTT and blow up the retransmit timer.
3426		 */
3427		if (((to.to_flags & TOF_TS) != 0) && (to.to_tsecr != 0) &&
3428			TSTMP_GEQ(tcp_now, to.to_tsecr)) {
3429			tcp_xmit_timer(tp, tcp_now - to.to_tsecr);
3430		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
3431			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
3432		}
3433
3434		/*
3435		 * If all outstanding data is acked, stop retransmit
3436		 * timer and remember to restart (more output or persist).
3437		 * If there is more data to be acked, restart retransmit
3438		 * timer, using current (possibly backed-off) value.
3439		 */
3440		if (th->th_ack == tp->snd_max) {
3441			tp->t_timer[TCPT_REXMT] = 0;
3442			needoutput = 1;
3443		} else if (tp->t_timer[TCPT_PERSIST] == 0)
3444			tp->t_timer[TCPT_REXMT] = OFFSET_FROM_START(tp, tp->t_rxtcur);
3445
3446		/*
3447		 * If no data (only SYN) was ACK'd,
3448		 *    skip rest of ACK processing.
3449		 */
3450		if (acked == 0)
3451			goto step6;
3452
3453		if ((thflags & TH_ECE) != 0 &&
3454			((tp->ecn_flags & TE_ECN_ON) == TE_ECN_ON)) {
3455			/*
3456			 * Reduce the congestion window if we haven't done so.
3457			 */
3458			if (!tp->sack_enable && !IN_FASTRECOVERY(tp) &&
3459				SEQ_GEQ(th->th_ack, tp->snd_recover)) {
3460				tcp_reduce_congestion_window(tp);
3461				DTRACE_TCP5(cc, void, NULL, struct inpcb *, inp,
3462					struct tcpcb *, tp, struct tcphdr *, th,
3463					int32_t, TCP_CC_ECN_RCVD);
3464			}
3465		}
3466
3467		/*
3468		 * When new data is acked, open the congestion window.
3469		 * The specifics of how this is achieved are up to the
3470		 * congestion control algorithm in use for this connection.
3471		 *
3472		 * The calculations in this function assume that snd_una is
3473		 * not updated yet.
3474		 */
3475		if (!IN_FASTRECOVERY(tp)) {
3476			if (CC_ALGO(tp)->ack_rcvd != NULL)
3477				CC_ALGO(tp)->ack_rcvd(tp, th);
3478
3479			DTRACE_TCP5(cc, void, NULL, struct inpcb *, inp,
3480				struct tcpcb *, tp, struct tcphdr *, th,
3481				int32_t, TCP_CC_ACK_RCVD);
3482		}
3483		if (acked > so->so_snd.sb_cc) {
3484			tp->snd_wnd -= so->so_snd.sb_cc;
3485			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
3486			ourfinisacked = 1;
3487		} else {
3488			sbdrop(&so->so_snd, acked);
3489			tcp_sbsnd_trim(&so->so_snd);
3490			tp->snd_wnd -= acked;
3491			ourfinisacked = 0;
3492		}
3493		/* detect una wraparound */
3494		if ( !IN_FASTRECOVERY(tp) &&
3495		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
3496		    SEQ_LEQ(th->th_ack, tp->snd_recover))
3497			tp->snd_recover = th->th_ack - 1;
3498
3499		if (IN_FASTRECOVERY(tp) &&
3500		    SEQ_GEQ(th->th_ack, tp->snd_recover))
3501			EXIT_FASTRECOVERY(tp);
3502
3503		tp->snd_una = th->th_ack;
3504		if (tp->sack_enable) {
3505			if (SEQ_GT(tp->snd_una, tp->snd_recover))
3506				tp->snd_recover = tp->snd_una;
3507		}
3508		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
3509			tp->snd_nxt = tp->snd_una;
3510		if ((tp->t_flagsext & TF_MEASURESNDBW) != 0 &&
3511			tp->t_bwmeas != NULL)
3512			tcp_bwmeas_check(tp);
3513
3514		/*
3515		 * sowwakeup must happen after snd_una, et al. are updated so that
3516		 * the sequence numbers are in sync with so_snd
3517		 */
3518		sowwakeup(so);
3519
3520		switch (tp->t_state) {
3521
3522		/*
3523		 * In FIN_WAIT_1 STATE in addition to the processing
3524		 * for the ESTABLISHED state if our FIN is now acknowledged
3525		 * then enter FIN_WAIT_2.
3526		 */
3527		case TCPS_FIN_WAIT_1:
3528			if (ourfinisacked) {
3529				/*
3530				 * If we can't receive any more
3531				 * data, then closing user can proceed.
3532				 * Starting the timer is contrary to the
3533				 * specification, but if we don't get a FIN
3534				 * we'll hang forever.
3535				 */
3536				if (so->so_state & SS_CANTRCVMORE) {
3537					add_to_time_wait(tp, tcp_maxidle);
3538					isconnected = FALSE;
3539					isdisconnected = TRUE;
3540				}
3541				DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
3542					struct tcpcb *, tp, int32_t, TCPS_FIN_WAIT_2);
3543				tp->t_state = TCPS_FIN_WAIT_2;
3544				/* fall through and make sure we also recognize data ACKed with the FIN */
3545			}
3546			tp->t_flags |= TF_ACKNOW;
3547			break;
3548
3549	 	/*
3550		 * In CLOSING STATE in addition to the processing for
3551		 * the ESTABLISHED state if the ACK acknowledges our FIN
3552		 * then enter the TIME-WAIT state, otherwise ignore
3553		 * the segment.
3554		 */
3555		case TCPS_CLOSING:
3556			if (ourfinisacked) {
3557				DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
3558					struct tcpcb *, tp, int32_t, TCPS_TIME_WAIT);
3559				tp->t_state = TCPS_TIME_WAIT;
3560				tcp_canceltimers(tp);
3561				/* Shorten TIME_WAIT [RFC-1644, p.28] */
3562				if (tp->cc_recv != 0 &&
3563				    ((int)(tcp_now - tp->t_starttime)) < tcp_msl)
3564					add_to_time_wait(tp, tp->t_rxtcur * TCPTV_TWTRUNC);
3565				else
3566					add_to_time_wait(tp, 2 * tcp_msl);
3567				isconnected = FALSE;
3568				isdisconnected = TRUE;
3569			}
3570			tp->t_flags |= TF_ACKNOW;
3571			break;
3572
3573		/*
3574		 * In LAST_ACK, we may still be waiting for data to drain
3575		 * and/or to be acked, as well as for the ack of our FIN.
3576		 * If our FIN is now acknowledged, delete the TCB,
3577		 * enter the closed state and return.
3578		 */
3579		case TCPS_LAST_ACK:
3580			if (ourfinisacked) {
3581				tp = tcp_close(tp);
3582				goto drop;
3583			}
3584			break;
3585
3586		/*
3587		 * In TIME_WAIT state the only thing that should arrive
3588		 * is a retransmission of the remote FIN.  Acknowledge
3589		 * it and restart the finack timer.
3590		 */
3591		case TCPS_TIME_WAIT:
3592			add_to_time_wait(tp, 2 * tcp_msl);
3593			goto dropafterack;
3594		}
3595	}
3596
3597step6:
3598	/*
3599	 * Update window information.
3600	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
3601	 */
3602	if ((thflags & TH_ACK) &&
3603	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
3604	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
3605	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
3606		/* keep track of pure window updates */
3607		if (tlen == 0 &&
3608		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
3609			tcpstat.tcps_rcvwinupd++;
3610		tp->snd_wnd = tiwin;
3611		tp->snd_wl1 = th->th_seq;
3612		tp->snd_wl2 = th->th_ack;
3613		if (tp->snd_wnd > tp->max_sndwnd)
3614			tp->max_sndwnd = tp->snd_wnd;
3615		needoutput = 1;
3616	}
3617
3618	/*
3619	 * Process segments with URG.
3620	 */
3621	if ((thflags & TH_URG) && th->th_urp &&
3622	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3623		/*
3624		 * This is a kludge, but if we receive and accept
3625		 * random urgent pointers, we'll crash in
3626		 * soreceive.  It's hard to imagine someone
3627		 * actually wanting to send this much urgent data.
3628		 */
3629		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
3630			th->th_urp = 0;			/* XXX */
3631			thflags &= ~TH_URG;		/* XXX */
3632			goto dodata;			/* XXX */
3633		}
3634		/*
3635		 * If this segment advances the known urgent pointer,
3636		 * then mark the data stream.  This should not happen
3637		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
3638		 * a FIN has been received from the remote side.
3639		 * In these states we ignore the URG.
3640		 *
3641		 * According to RFC961 (Assigned Protocols),
3642		 * the urgent pointer points to the last octet
3643		 * of urgent data.  We continue, however,
3644		 * to consider it to indicate the first octet
3645		 * of data past the urgent section as the original
3646		 * spec states (in one of two places).
3647		 */
3648		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
3649			tp->rcv_up = th->th_seq + th->th_urp;
3650			so->so_oobmark = so->so_rcv.sb_cc +
3651			    (tp->rcv_up - tp->rcv_nxt) - 1;
3652			if (so->so_oobmark == 0) {
3653				so->so_state |= SS_RCVATMARK;
3654				postevent(so, 0, EV_OOB);
3655			}
3656			sohasoutofband(so);
3657			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
3658		}
3659		/*
3660		 * Remove out of band data so doesn't get presented to user.
3661		 * This can happen independent of advancing the URG pointer,
3662		 * but if two URG's are pending at once, some out-of-band
3663		 * data may creep in... ick.
3664		 */
3665		if (th->th_urp <= (u_int32_t)tlen
3666#if SO_OOBINLINE
3667		     && (so->so_options & SO_OOBINLINE) == 0
3668#endif
3669		     )
3670			tcp_pulloutofband(so, th, m,
3671				drop_hdrlen);	/* hdr drop is delayed */
3672	} else {
3673		/*
3674		 * If no out of band data is expected,
3675		 * pull receive urgent pointer along
3676		 * with the receive window.
3677		 */
3678		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
3679			tp->rcv_up = tp->rcv_nxt;
3680	}
3681dodata:
3682
3683	/* Set socket's connect or disconnect state correcly before doing data.
3684	 * The following might unlock the socket if there is an upcall or a socket
3685	 * filter.
3686	 */
3687	if (isconnected) {
3688		soisconnected(so);
3689	} else if (isdisconnected) {
3690		soisdisconnected(so);
3691	}
3692
3693	/* Let's check the state of pcb just to make sure that it did not get closed
3694	 * when we unlocked above
3695	 */
3696	if (inp->inp_state == INPCB_STATE_DEAD) {
3697		/* Just drop the packet that we are processing and return */
3698		goto drop;
3699	}
3700
3701	/*
3702	 * Process the segment text, merging it into the TCP sequencing queue,
3703	 * and arranging for acknowledgment of receipt if necessary.
3704	 * This process logically involves adjusting tp->rcv_wnd as data
3705	 * is presented to the user (this happens in tcp_usrreq.c,
3706	 * case PRU_RCVD).  If a FIN has already been received on this
3707	 * connection then we just ignore the text.
3708	 */
3709	if ((tlen || (thflags & TH_FIN)) &&
3710	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3711		tcp_seq save_start = th->th_seq;
3712		tcp_seq save_end = th->th_seq + tlen;
3713		m_adj(m, drop_hdrlen);	/* delayed header drop */
3714		/*
3715		 * Insert segment which includes th into TCP reassembly queue
3716		 * with control block tp.  Set thflags to whether reassembly now
3717		 * includes a segment with FIN.  This handles the common case
3718		 * inline (segment is the next to be received on an established
3719		 * connection, and the queue is empty), avoiding linkage into
3720		 * and removal from the queue and repetition of various
3721		 * conversions.
3722		 * Set DELACK for segments received in order, but ack
3723		 * immediately when segments are out of order (so
3724		 * fast retransmit can work).
3725		 */
3726		if (th->th_seq == tp->rcv_nxt &&
3727		    LIST_EMPTY(&tp->t_segq) &&
3728		    TCPS_HAVEESTABLISHED(tp->t_state)) {
3729			TCP_INC_VAR(tp->t_unacksegs, nlropkts);
3730			if (DELAY_ACK(tp, th) &&
3731				((tp->t_flags & TF_ACKNOW) == 0) ) {
3732				if ((tp->t_flags & TF_DELACK) == 0) {
3733					tp->t_flags |= TF_DELACK;
3734					tp->t_timer[TCPT_DELACK] = OFFSET_FROM_START(tp, tcp_delack);
3735				}
3736			}
3737			else {
3738				tp->t_flags |= TF_ACKNOW;
3739			}
3740			tp->rcv_nxt += tlen;
3741			thflags = th->th_flags & TH_FIN;
3742			TCP_INC_VAR(tcpstat.tcps_rcvpack, nlropkts);
3743			tcpstat.tcps_rcvbyte += tlen;
3744			if (nstat_collect) {
3745				if (m->m_pkthdr.aux_flags & MAUXF_SW_LRO_PKT) {
3746					locked_add_64(&inp->inp_stat->rxpackets, m->m_pkthdr.lro_npkts);
3747				} else {
3748					locked_add_64(&inp->inp_stat->rxpackets, 1);
3749				}
3750				locked_add_64(&inp->inp_stat->rxbytes, tlen);
3751			}
3752			ND6_HINT(tp);
3753
3754			tcp_sbrcv_grow(tp, &so->so_rcv, &to, tlen);
3755			so_recv_data_stat(so, m, drop_hdrlen);
3756			if (sbappendstream(&so->so_rcv, m))
3757				sorwakeup(so);
3758		} else {
3759			thflags = tcp_reass(tp, th, &tlen, m);
3760			tp->t_flags |= TF_ACKNOW;
3761		}
3762
3763		if (tlen > 0 && tp->sack_enable)
3764			tcp_update_sack_list(tp, save_start, save_end);
3765
3766		if (tp->t_flags & TF_DELACK)
3767		{
3768#if INET6
3769			if (isipv6) {
3770				KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport),
3771		     			(((ip6->ip6_src.s6_addr16[0]) << 16) | (ip6->ip6_dst.s6_addr16[0])),
3772			     		th->th_seq, th->th_ack, th->th_win);
3773			}
3774			else
3775#endif
3776			{
3777				KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport),
3778		     			(((ip->ip_src.s_addr & 0xffff) << 16) | (ip->ip_dst.s_addr & 0xffff)),
3779			     		th->th_seq, th->th_ack, th->th_win);
3780			}
3781
3782		}
3783	} else {
3784		m_freem(m);
3785		thflags &= ~TH_FIN;
3786	}
3787
3788	/*
3789	 * If FIN is received ACK the FIN and let the user know
3790	 * that the connection is closing.
3791	 */
3792	if (thflags & TH_FIN) {
3793		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3794			socantrcvmore(so);
3795			postevent(so, 0, EV_FIN);
3796			/*
3797			 * If connection is half-synchronized
3798			 * (ie NEEDSYN flag on) then delay ACK,
3799			 * so it may be piggybacked when SYN is sent.
3800			 * Otherwise, since we received a FIN then no
3801			 * more input can be expected, send ACK now.
3802			 */
3803			TCP_INC_VAR(tp->t_unacksegs, nlropkts);
3804			if (DELAY_ACK(tp, th) && (tp->t_flags & TF_NEEDSYN)) {
3805				if ((tp->t_flags & TF_DELACK) == 0) {
3806					tp->t_flags |= TF_DELACK;
3807					tp->t_timer[TCPT_DELACK] = OFFSET_FROM_START(tp, tcp_delack);
3808				}
3809			}
3810			else {
3811				tp->t_flags |= TF_ACKNOW;
3812			}
3813			tp->rcv_nxt++;
3814		}
3815		switch (tp->t_state) {
3816
3817	 	/*
3818		 * In SYN_RECEIVED and ESTABLISHED STATES
3819		 * enter the CLOSE_WAIT state.
3820		 */
3821		case TCPS_SYN_RECEIVED:
3822			tp->t_starttime = tcp_now;
3823		case TCPS_ESTABLISHED:
3824			DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
3825				struct tcpcb *, tp, int32_t, TCPS_CLOSE_WAIT);
3826			tp->t_state = TCPS_CLOSE_WAIT;
3827			break;
3828
3829	 	/*
3830		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
3831		 * enter the CLOSING state.
3832		 */
3833		case TCPS_FIN_WAIT_1:
3834			DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
3835				struct tcpcb *, tp, int32_t, TCPS_CLOSING);
3836			tp->t_state = TCPS_CLOSING;
3837			break;
3838
3839	 	/*
3840		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
3841		 * starting the time-wait timer, turning off the other
3842		 * standard timers.
3843		 */
3844		case TCPS_FIN_WAIT_2:
3845			DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
3846				struct tcpcb *, tp, int32_t, TCPS_TIME_WAIT);
3847			tp->t_state = TCPS_TIME_WAIT;
3848			tcp_canceltimers(tp);
3849			/* Shorten TIME_WAIT [RFC-1644, p.28] */
3850			if (tp->cc_recv != 0 &&
3851				((int)(tcp_now - tp->t_starttime)) < tcp_msl) {
3852				add_to_time_wait(tp, tp->t_rxtcur * TCPTV_TWTRUNC);
3853				/* For transaction client, force ACK now. */
3854				tp->t_flags |= TF_ACKNOW;
3855			    	tp->t_unacksegs = 0;
3856			}
3857			else
3858				add_to_time_wait(tp, 2 * tcp_msl);
3859			soisdisconnected(so);
3860			break;
3861
3862		/*
3863		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
3864		 */
3865		case TCPS_TIME_WAIT:
3866			add_to_time_wait(tp, 2 * tcp_msl);
3867			break;
3868		}
3869	}
3870#if TCPDEBUG
3871	if (so->so_options & SO_DEBUG)
3872		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
3873			  &tcp_savetcp, 0);
3874#endif
3875
3876	/*
3877	 * Return any desired output.
3878	 */
3879	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
3880		(void) tcp_output(tp);
3881	}
3882
3883	tcp_check_timer_state(tp);
3884
3885
3886	tcp_unlock(so, 1, 0);
3887	KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0);
3888	return;
3889
3890dropafterack:
3891	/*
3892	 * Generate an ACK dropping incoming segment if it occupies
3893	 * sequence space, where the ACK reflects our state.
3894	 *
3895	 * We can now skip the test for the RST flag since all
3896	 * paths to this code happen after packets containing
3897	 * RST have been dropped.
3898	 *
3899	 * In the SYN-RECEIVED state, don't send an ACK unless the
3900	 * segment we received passes the SYN-RECEIVED ACK test.
3901	 * If it fails send a RST.  This breaks the loop in the
3902	 * "LAND" DoS attack, and also prevents an ACK storm
3903	 * between two listening ports that have been sent forged
3904	 * SYN segments, each with the source address of the other.
3905	 */
3906	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3907	    (SEQ_GT(tp->snd_una, th->th_ack) ||
3908	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
3909		rstreason = BANDLIM_RST_OPENPORT;
3910
3911		if (ifp != NULL && ifp->if_tcp_stat != NULL)
3912			atomic_add_64(&ifp->if_tcp_stat->dospacket, 1);
3913
3914		goto dropwithreset;
3915	}
3916#if TCPDEBUG
3917	if (so->so_options & SO_DEBUG)
3918		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3919			  &tcp_savetcp, 0);
3920#endif
3921	m_freem(m);
3922	tp->t_flags |= TF_ACKNOW;
3923	(void) tcp_output(tp);
3924
3925	/* Don't need to check timer state as we should have done it during tcp_output */
3926	tcp_unlock(so, 1, 0);
3927	KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0);
3928	return;
3929dropwithresetnosock:
3930	nosock = 1;
3931dropwithreset:
3932	/*
3933	 * Generate a RST, dropping incoming segment.
3934	 * Make ACK acceptable to originator of segment.
3935	 * Don't bother to respond if destination was broadcast/multicast.
3936	 */
3937	if ((thflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3938		goto drop;
3939#if INET6
3940	if (isipv6) {
3941		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3942		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3943			goto drop;
3944	} else
3945#endif /* INET6 */
3946	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3947	    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3948	    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3949	    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3950		goto drop;
3951	/* IPv6 anycast check is done at tcp6_input() */
3952
3953	/*
3954	 * Perform bandwidth limiting.
3955	 */
3956#if ICMP_BANDLIM
3957	if (badport_bandlim(rstreason) < 0)
3958		goto drop;
3959#endif
3960
3961#if TCPDEBUG
3962	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3963		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3964			  &tcp_savetcp, 0);
3965#endif
3966	if (thflags & TH_ACK)
3967		/* mtod() below is safe as long as hdr dropping is delayed */
3968		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
3969		    TH_RST, ifscope, nocell);
3970	else {
3971		if (thflags & TH_SYN)
3972			tlen++;
3973		/* mtod() below is safe as long as hdr dropping is delayed */
3974		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3975		    (tcp_seq)0, TH_RST|TH_ACK, ifscope, nocell);
3976	}
3977	/* destroy temporarily created socket */
3978	if (dropsocket) {
3979		(void) soabort(so);
3980		tcp_unlock(so, 1, 0);
3981	}
3982	else if ((inp != NULL) && (nosock == 0)) {
3983		tcp_unlock(so, 1, 0);
3984	}
3985	KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0);
3986	return;
3987dropnosock:
3988	nosock = 1;
3989drop:
3990	/*
3991	 * Drop space held by incoming segment and return.
3992	 */
3993#if TCPDEBUG
3994	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3995		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3996			  &tcp_savetcp, 0);
3997#endif
3998	m_freem(m);
3999	/* destroy temporarily created socket */
4000	if (dropsocket) {
4001		(void) soabort(so);
4002		tcp_unlock(so, 1, 0);
4003	}
4004	else if (nosock == 0) {
4005		tcp_unlock(so, 1, 0);
4006	}
4007	KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0);
4008	return;
4009}
4010
4011static void
4012tcp_dooptions(tp, cp, cnt, th, to, input_ifscope)
4013/*
4014 * Parse TCP options and place in tcpopt.
4015 */
4016	struct tcpcb *tp;
4017	u_char *cp;
4018	int cnt;
4019	struct tcphdr *th;
4020	struct tcpopt *to;
4021	unsigned int input_ifscope;
4022{
4023	u_short mss = 0;
4024	int opt, optlen;
4025
4026	for (; cnt > 0; cnt -= optlen, cp += optlen) {
4027		opt = cp[0];
4028		if (opt == TCPOPT_EOL)
4029			break;
4030		if (opt == TCPOPT_NOP)
4031			optlen = 1;
4032		else {
4033			if (cnt < 2)
4034				break;
4035			optlen = cp[1];
4036			if (optlen < 2 || optlen > cnt)
4037				break;
4038		}
4039		switch (opt) {
4040
4041		default:
4042			continue;
4043
4044		case TCPOPT_MAXSEG:
4045			if (optlen != TCPOLEN_MAXSEG)
4046				continue;
4047			if (!(th->th_flags & TH_SYN))
4048				continue;
4049			bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
4050
4051#if BYTE_ORDER != BIG_ENDIAN
4052			NTOHS(mss);
4053#endif
4054
4055			break;
4056
4057		case TCPOPT_WINDOW:
4058			if (optlen != TCPOLEN_WINDOW)
4059				continue;
4060			if (!(th->th_flags & TH_SYN))
4061				continue;
4062			tp->t_flags |= TF_RCVD_SCALE;
4063			tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
4064			break;
4065
4066		case TCPOPT_TIMESTAMP:
4067			if (optlen != TCPOLEN_TIMESTAMP)
4068				continue;
4069			to->to_flags |= TOF_TS;
4070			bcopy((char *)cp + 2,
4071			    (char *)&to->to_tsval, sizeof(to->to_tsval));
4072
4073#if BYTE_ORDER != BIG_ENDIAN
4074			NTOHL(to->to_tsval);
4075#endif
4076
4077			bcopy((char *)cp + 6,
4078			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
4079
4080#if BYTE_ORDER != BIG_ENDIAN
4081			NTOHL(to->to_tsecr);
4082#endif
4083
4084			/*
4085			 * A timestamp received in a SYN makes
4086			 * it ok to send timestamp requests and replies.
4087			 */
4088			if (th->th_flags & TH_SYN) {
4089				tp->t_flags |= TF_RCVD_TSTMP;
4090				tp->ts_recent = to->to_tsval;
4091				tp->ts_recent_age = tcp_now;
4092			}
4093			break;
4094		case TCPOPT_SACK_PERMITTED:
4095			if (!tcp_do_sack ||
4096			    optlen != TCPOLEN_SACK_PERMITTED)
4097				continue;
4098			if (th->th_flags & TH_SYN)
4099				to->to_flags |= TOF_SACK;
4100			break;
4101		case TCPOPT_SACK:
4102			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
4103				continue;
4104			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
4105			to->to_sacks = cp + 2;
4106			tcpstat.tcps_sack_rcv_blocks++;
4107
4108			break;
4109		}
4110	}
4111	if (th->th_flags & TH_SYN)
4112		tcp_mss(tp, mss, input_ifscope);	/* sets t_maxseg */
4113}
4114
4115/*
4116 * Pull out of band byte out of a segment so
4117 * it doesn't appear in the user's data queue.
4118 * It is still reflected in the segment length for
4119 * sequencing purposes.
4120 */
4121static void
4122tcp_pulloutofband(so, th, m, off)
4123	struct socket *so;
4124	struct tcphdr *th;
4125	register struct mbuf *m;
4126	int off;		/* delayed to be droped hdrlen */
4127{
4128	int cnt = off + th->th_urp - 1;
4129
4130	while (cnt >= 0) {
4131		if (m->m_len > cnt) {
4132			char *cp = mtod(m, caddr_t) + cnt;
4133			struct tcpcb *tp = sototcpcb(so);
4134
4135			tp->t_iobc = *cp;
4136			tp->t_oobflags |= TCPOOB_HAVEDATA;
4137			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
4138			m->m_len--;
4139			if (m->m_flags & M_PKTHDR)
4140				m->m_pkthdr.len--;
4141			return;
4142		}
4143		cnt -= m->m_len;
4144		m = m->m_next;
4145		if (m == 0)
4146			break;
4147	}
4148	panic("tcp_pulloutofband");
4149}
4150
4151uint32_t
4152get_base_rtt(struct tcpcb *tp)
4153{
4154	uint32_t base_rtt = 0, i;
4155	for (i = 0; i < N_RTT_BASE; ++i) {
4156		if (tp->rtt_hist[i] != 0 &&
4157			(base_rtt == 0 || tp->rtt_hist[i] < base_rtt))
4158			base_rtt = tp->rtt_hist[i];
4159	}
4160	return base_rtt;
4161}
4162
4163/* Each value of RTT base represents the minimum RTT seen in a minute.
4164 * We keep upto N_RTT_BASE minutes worth of history.
4165 */
4166void
4167update_base_rtt(struct tcpcb *tp, uint32_t rtt)
4168{
4169	if (++tp->rtt_count >= rtt_samples_per_slot) {
4170		int i=0;
4171		for (i = (N_RTT_BASE-1); i > 0; --i) {
4172			tp->rtt_hist[i] = tp->rtt_hist[i-1];
4173		}
4174		tp->rtt_hist[0] = rtt;
4175		tp->rtt_count = 0;
4176	} else {
4177		tp->rtt_hist[0] = min(tp->rtt_hist[0], rtt);
4178	}
4179}
4180
4181/*
4182 * Collect new round-trip time estimate
4183 * and update averages and current timeout.
4184 */
4185static void
4186tcp_xmit_timer(tp, rtt)
4187	register struct tcpcb *tp;
4188	int rtt;
4189{
4190	register int delta;
4191
4192	tcpstat.tcps_rttupdated++;
4193	tp->t_rttupdated++;
4194
4195	if (rtt > 0) {
4196		tp->t_rttcur = rtt;
4197		update_base_rtt(tp, rtt);
4198	}
4199
4200	if (tp->t_srtt != 0) {
4201		/*
4202		 * srtt is stored as fixed point with 5 bits after the
4203		 * binary point (i.e., scaled by 32).  The following magic
4204		 * is equivalent to the smoothing algorithm in rfc793 with
4205		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
4206		 * point).
4207		 *
4208		 * Freebsd adjusts rtt to origin 0 by subtracting 1 from the provided
4209		 * rtt value. This was required because of the way t_rtttime was
4210		 * initiailised to 1 before. Since we changed t_rtttime to be based on
4211		 * tcp_now, this extra adjustment is not needed.
4212		 */
4213		delta = (rtt << TCP_DELTA_SHIFT)
4214			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
4215
4216		if ((tp->t_srtt += delta) <= 0)
4217			tp->t_srtt = 1;
4218
4219		/*
4220		 * We accumulate a smoothed rtt variance (actually, a
4221		 * smoothed mean difference), then set the retransmit
4222		 * timer to smoothed rtt + 4 times the smoothed variance.
4223		 * rttvar is stored as fixed point with 4 bits after the
4224		 * binary point (scaled by 16).  The following is
4225		 * equivalent to rfc793 smoothing with an alpha of .75
4226		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
4227		 * rfc793's wired-in beta.
4228		 */
4229		if (delta < 0)
4230			delta = -delta;
4231		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
4232		if ((tp->t_rttvar += delta) <= 0)
4233			tp->t_rttvar = 1;
4234		if (tp->t_rttbest == 0  ||
4235			tp->t_rttbest > (tp->t_srtt + tp->t_rttvar))
4236			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
4237	} else {
4238		/*
4239		 * No rtt measurement yet - use the unsmoothed rtt.
4240		 * Set the variance to half the rtt (so our first
4241		 * retransmit happens at 3*rtt).
4242		 */
4243		tp->t_srtt = rtt << TCP_RTT_SHIFT;
4244		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
4245	}
4246	nstat_route_rtt(tp->t_inpcb->inp_route.ro_rt, tp->t_srtt, tp->t_rttvar);
4247	tp->t_rtttime = 0;
4248	tp->t_rxtshift = 0;
4249	tp->rxt_start = 0;
4250
4251	/*
4252	 * the retransmit should happen at rtt + 4 * rttvar.
4253	 * Because of the way we do the smoothing, srtt and rttvar
4254	 * will each average +1/2 tick of bias.  When we compute
4255	 * the retransmit timer, we want 1/2 tick of rounding and
4256	 * 1 extra tick because of +-1/2 tick uncertainty in the
4257	 * firing of the timer.  The bias will give us exactly the
4258	 * 1.5 tick we need.  But, because the bias is
4259	 * statistical, we have to test that we don't drop below
4260	 * the minimum feasible timer (which is 2 ticks).
4261	 */
4262	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
4263		max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX,
4264		TCP_ADD_REXMTSLOP(tp));
4265
4266	/*
4267	 * We received an ack for a packet that wasn't retransmitted;
4268	 * it is probably safe to discard any error indications we've
4269	 * received recently.  This isn't quite right, but close enough
4270	 * for now (a route might have failed after we sent a segment,
4271	 * and the return path might not be symmetrical).
4272	 */
4273	tp->t_softerror = 0;
4274}
4275
4276static inline unsigned int
4277tcp_maxmtu(struct rtentry *rt)
4278{
4279	unsigned int maxmtu;
4280
4281	RT_LOCK_ASSERT_HELD(rt);
4282	if (rt->rt_rmx.rmx_mtu == 0)
4283		maxmtu = rt->rt_ifp->if_mtu;
4284	else
4285		maxmtu = MIN(rt->rt_rmx.rmx_mtu, rt->rt_ifp->if_mtu);
4286
4287	return (maxmtu);
4288}
4289
4290#if INET6
4291static inline unsigned int
4292tcp_maxmtu6(struct rtentry *rt)
4293{
4294	unsigned int maxmtu;
4295	struct nd_ifinfo *ndi;
4296
4297	RT_LOCK_ASSERT_HELD(rt);
4298	lck_rw_lock_shared(nd_if_rwlock);
4299	if ((ndi = ND_IFINFO(rt->rt_ifp)) != NULL && !ndi->initialized)
4300		ndi = NULL;
4301	if (ndi != NULL)
4302		lck_mtx_lock(&ndi->lock);
4303	if (rt->rt_rmx.rmx_mtu == 0)
4304		maxmtu = IN6_LINKMTU(rt->rt_ifp);
4305	else
4306		maxmtu = MIN(rt->rt_rmx.rmx_mtu, IN6_LINKMTU(rt->rt_ifp));
4307	if (ndi != NULL)
4308		lck_mtx_unlock(&ndi->lock);
4309	lck_rw_done(nd_if_rwlock);
4310
4311	return (maxmtu);
4312}
4313#endif
4314
4315/*
4316 * Determine a reasonable value for maxseg size.
4317 * If the route is known, check route for mtu.
4318 * If none, use an mss that can be handled on the outgoing
4319 * interface without forcing IP to fragment; if bigger than
4320 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
4321 * to utilize large mbufs.  If no route is found, route has no mtu,
4322 * or the destination isn't local, use a default, hopefully conservative
4323 * size (usually 512 or the default IP max size, but no more than the mtu
4324 * of the interface), as we can't discover anything about intervening
4325 * gateways or networks.  We also initialize the congestion/slow start
4326 * window to be a single segment if the destination isn't local.
4327 * While looking at the routing entry, we also initialize other path-dependent
4328 * parameters from pre-set or cached values in the routing entry.
4329 *
4330 * Also take into account the space needed for options that we
4331 * send regularly.  Make maxseg shorter by that amount to assure
4332 * that we can send maxseg amount of data even when the options
4333 * are present.  Store the upper limit of the length of options plus
4334 * data in maxopd.
4335 *
4336 * NOTE that this routine is only called when we process an incoming
4337 * segment, for outgoing segments only tcp_mssopt is called.
4338 *
4339 */
4340void
4341tcp_mss(tp, offer, input_ifscope)
4342	struct tcpcb *tp;
4343	int offer;
4344	unsigned int input_ifscope;
4345{
4346	register struct rtentry *rt;
4347	struct ifnet *ifp;
4348	register int rtt, mss;
4349	u_int32_t bufsize;
4350	struct inpcb *inp;
4351	struct socket *so;
4352	struct rmxp_tao *taop;
4353	int origoffer = offer;
4354	u_int32_t sb_max_corrected;
4355	int isnetlocal = 0;
4356#if INET6
4357	int isipv6;
4358	int min_protoh;
4359#endif
4360
4361	inp = tp->t_inpcb;
4362#if INET6
4363	isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
4364	min_protoh = isipv6 ? sizeof (struct ip6_hdr) + sizeof (struct tcphdr)
4365			    : sizeof (struct tcpiphdr);
4366#else
4367#define min_protoh  (sizeof (struct tcpiphdr))
4368#endif
4369
4370#if INET6
4371	if (isipv6) {
4372		rt = tcp_rtlookup6(inp, input_ifscope);
4373		if (rt != NULL &&
4374		    (IN6_IS_ADDR_LOOPBACK(&inp->in6p_faddr) ||
4375		    IN6_IS_ADDR_LINKLOCAL(&inp->in6p_faddr) ||
4376		    rt->rt_gateway->sa_family == AF_LINK ||
4377		    in6_localaddr(&inp->in6p_faddr))) {
4378			tp->t_flags |= TF_LOCAL;
4379		}
4380	}
4381	else
4382#endif /* INET6 */
4383	{
4384		rt = tcp_rtlookup(inp, input_ifscope);
4385		if (rt != NULL &&
4386		    (rt->rt_gateway->sa_family == AF_LINK ||
4387		    rt->rt_ifp->if_flags & IFF_LOOPBACK ||
4388		    in_localaddr(inp->inp_faddr))) {
4389			tp->t_flags |= TF_LOCAL;
4390		}
4391	}
4392	isnetlocal = (tp->t_flags & TF_LOCAL);
4393
4394	if (rt == NULL) {
4395		tp->t_maxopd = tp->t_maxseg =
4396#if INET6
4397		isipv6 ? tcp_v6mssdflt :
4398#endif /* INET6 */
4399		tcp_mssdflt;
4400		return;
4401	}
4402	ifp = rt->rt_ifp;
4403	/*
4404	 * Slower link window correction:
4405	 * If a value is specificied for slowlink_wsize use it for PPP links
4406	 * believed to be on a serial modem (speed <128Kbps). Excludes 9600bps as
4407	 * it is the default value adversized by pseudo-devices over ppp.
4408	 */
4409	if (ifp->if_type == IFT_PPP && slowlink_wsize > 0 &&
4410	    ifp->if_baudrate > 9600 && ifp->if_baudrate <= 128000) {
4411		tp->t_flags |= TF_SLOWLINK;
4412	}
4413	so = inp->inp_socket;
4414
4415	taop = rmx_taop(rt->rt_rmx);
4416	/*
4417	 * Offer == -1 means that we didn't receive SYN yet,
4418	 * use cached value in that case;
4419	 */
4420	if (offer == -1)
4421		offer = taop->tao_mssopt;
4422	/*
4423	 * Offer == 0 means that there was no MSS on the SYN segment,
4424	 * in this case we use tcp_mssdflt.
4425	 */
4426	if (offer == 0)
4427		offer =
4428#if INET6
4429			isipv6 ? tcp_v6mssdflt :
4430#endif /* INET6 */
4431			tcp_mssdflt;
4432	else {
4433		/*
4434		 * Prevent DoS attack with too small MSS. Round up
4435		 * to at least minmss.
4436		 */
4437		offer = max(offer, tcp_minmss);
4438		/*
4439		 * Sanity check: make sure that maxopd will be large
4440		 * enough to allow some data on segments even is the
4441		 * all the option space is used (40bytes).  Otherwise
4442		 * funny things may happen in tcp_output.
4443		 */
4444		offer = max(offer, 64);
4445	}
4446	taop->tao_mssopt = offer;
4447
4448	/*
4449	 * While we're here, check if there's an initial rtt
4450	 * or rttvar.  Convert from the route-table units
4451	 * to scaled multiples of the slow timeout timer.
4452	 */
4453	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt) != 0) {
4454		tcp_getrt_rtt(tp, rt);
4455	} else {
4456		tp->t_rttmin = isnetlocal ? tcp_TCPTV_MIN : TCPTV_REXMTMIN;
4457	}
4458
4459#if INET6
4460	mss = (isipv6 ? tcp_maxmtu6(rt) : tcp_maxmtu(rt));
4461#else
4462	mss = tcp_maxmtu(rt);
4463#endif
4464	mss -= min_protoh;
4465
4466	if (rt->rt_rmx.rmx_mtu == 0) {
4467#if INET6
4468		if (isipv6) {
4469			if (!isnetlocal)
4470				mss = min(mss, tcp_v6mssdflt);
4471		} else
4472#endif /* INET6 */
4473		if (!isnetlocal)
4474			mss = min(mss, tcp_mssdflt);
4475	}
4476
4477	mss = min(mss, offer);
4478	/*
4479	 * maxopd stores the maximum length of data AND options
4480	 * in a segment; maxseg is the amount of data in a normal
4481	 * segment.  We need to store this value (maxopd) apart
4482	 * from maxseg, because now every segment carries options
4483	 * and thus we normally have somewhat less data in segments.
4484	 */
4485	tp->t_maxopd = mss;
4486
4487	/*
4488	 * origoffer==-1 indicates, that no segments were received yet.
4489	 * In this case we just guess.
4490	 */
4491	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
4492	    (origoffer == -1 ||
4493	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
4494		mss -= TCPOLEN_TSTAMP_APPA;
4495	tp->t_maxseg = mss;
4496
4497	/*
4498	 * Calculate corrected value for sb_max; ensure to upgrade the
4499	 * numerator for large sb_max values else it will overflow.
4500	 */
4501	sb_max_corrected = (sb_max * (u_int64_t)MCLBYTES) / (MSIZE + MCLBYTES);
4502
4503	/*
4504	 * If there's a pipesize (ie loopback), change the socket
4505	 * buffer to that size only if it's bigger than the current
4506	 * sockbuf size.  Make the socket buffers an integral
4507	 * number of mss units; if the mss is larger than
4508	 * the socket buffer, decrease the mss.
4509	 */
4510#if RTV_SPIPE
4511	bufsize = rt->rt_rmx.rmx_sendpipe;
4512	if (bufsize < so->so_snd.sb_hiwat)
4513#endif
4514		bufsize = so->so_snd.sb_hiwat;
4515	if (bufsize < mss)
4516		mss = bufsize;
4517	else {
4518		bufsize = (((bufsize + (u_int64_t)mss - 1) / (u_int64_t)mss) * (u_int64_t)mss);
4519		if (bufsize > sb_max_corrected)
4520			bufsize = sb_max_corrected;
4521		(void)sbreserve(&so->so_snd, bufsize);
4522	}
4523	tp->t_maxseg = mss;
4524
4525#if RTV_RPIPE
4526	bufsize = rt->rt_rmx.rmx_recvpipe;
4527	if (bufsize < so->so_rcv.sb_hiwat)
4528#endif
4529		bufsize = so->so_rcv.sb_hiwat;
4530	if (bufsize > mss) {
4531		bufsize = (((bufsize + (u_int64_t)mss - 1) / (u_int64_t)mss) * (u_int64_t)mss);
4532		if (bufsize > sb_max_corrected)
4533			bufsize = sb_max_corrected;
4534		(void)sbreserve(&so->so_rcv, bufsize);
4535	}
4536
4537	set_tcp_stream_priority(so);
4538
4539	if (rt->rt_rmx.rmx_ssthresh) {
4540		/*
4541		 * There's some sort of gateway or interface
4542		 * buffer limit on the path.  Use this to set
4543		 * the slow start threshhold, but set the
4544		 * threshold to no less than 2*mss.
4545		 */
4546		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
4547		tcpstat.tcps_usedssthresh++;
4548	} else {
4549		tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
4550	}
4551
4552
4553	/*
4554	 * Set the slow-start flight size depending on whether this
4555	 * is a local network or not.
4556	 */
4557	if (CC_ALGO(tp)->cwnd_init != NULL)
4558		CC_ALGO(tp)->cwnd_init(tp);
4559
4560	DTRACE_TCP5(cc, void, NULL, struct inpcb *, tp->t_inpcb, struct tcpcb *, tp,
4561		struct tcphdr *, NULL, int32_t, TCP_CC_CWND_INIT);
4562
4563	/* Route locked during lookup above */
4564	RT_UNLOCK(rt);
4565}
4566
4567/*
4568 * Determine the MSS option to send on an outgoing SYN.
4569 */
4570int
4571tcp_mssopt(tp)
4572	struct tcpcb *tp;
4573{
4574	struct rtentry *rt;
4575	int mss;
4576#if INET6
4577	int isipv6;
4578	int min_protoh;
4579#endif
4580
4581#if INET6
4582	isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
4583	min_protoh = isipv6 ? sizeof (struct ip6_hdr) + sizeof (struct tcphdr)
4584			    : sizeof (struct tcpiphdr);
4585#else
4586#define min_protoh  (sizeof (struct tcpiphdr))
4587#endif
4588
4589#if INET6
4590	if (isipv6)
4591		rt = tcp_rtlookup6(tp->t_inpcb, IFSCOPE_NONE);
4592	else
4593#endif /* INET6 */
4594	rt = tcp_rtlookup(tp->t_inpcb, IFSCOPE_NONE);
4595	if (rt == NULL) {
4596		return (
4597#if INET6
4598			isipv6 ? tcp_v6mssdflt :
4599#endif /* INET6 */
4600			tcp_mssdflt);
4601	}
4602	/*
4603	 * Slower link window correction:
4604	 * If a value is specificied for slowlink_wsize use it for PPP links
4605	 * believed to be on a serial modem (speed <128Kbps). Excludes 9600bps as
4606	 * it is the default value adversized by pseudo-devices over ppp.
4607	 */
4608	if (rt->rt_ifp->if_type == IFT_PPP && slowlink_wsize > 0 &&
4609	    rt->rt_ifp->if_baudrate > 9600 && rt->rt_ifp->if_baudrate <= 128000) {
4610		tp->t_flags |= TF_SLOWLINK;
4611	}
4612
4613#if INET6
4614	mss = (isipv6 ? tcp_maxmtu6(rt) : tcp_maxmtu(rt));
4615#else
4616	mss = tcp_maxmtu(rt);
4617#endif
4618	/* Route locked during lookup above */
4619	RT_UNLOCK(rt);
4620	return (mss - min_protoh);
4621}
4622
4623/*
4624 * On a partial ack arrives, force the retransmission of the
4625 * next unacknowledged segment.  Do not clear tp->t_dupacks.
4626 * By setting snd_nxt to th_ack, this forces retransmission timer to
4627 * be started again.
4628 */
4629static void
4630tcp_newreno_partial_ack(tp, th)
4631	struct tcpcb *tp;
4632	struct tcphdr *th;
4633{
4634		tcp_seq onxt = tp->snd_nxt;
4635		u_int32_t  ocwnd = tp->snd_cwnd;
4636		tp->t_timer[TCPT_REXMT] = 0;
4637		tp->t_rtttime = 0;
4638		tp->snd_nxt = th->th_ack;
4639		/*
4640		 * Set snd_cwnd to one segment beyond acknowledged offset
4641		 * (tp->snd_una has not yet been updated when this function
4642		 *  is called)
4643		 */
4644		tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
4645		tp->t_flags |= TF_ACKNOW;
4646		(void) tcp_output(tp);
4647		tp->snd_cwnd = ocwnd;
4648		if (SEQ_GT(onxt, tp->snd_nxt))
4649			tp->snd_nxt = onxt;
4650		/*
4651		 * Partial window deflation.  Relies on fact that tp->snd_una
4652		 * not updated yet.
4653		 */
4654		if (tp->snd_cwnd > th->th_ack - tp->snd_una)
4655			tp->snd_cwnd -= th->th_ack - tp->snd_una;
4656		else
4657			tp->snd_cwnd = 0;
4658		tp->snd_cwnd += tp->t_maxseg;
4659
4660}
4661
4662/*
4663 * Drop a random TCP connection that hasn't been serviced yet and
4664 * is eligible for discard.  There is a one in qlen chance that
4665 * we will return a null, saying that there are no dropable
4666 * requests.  In this case, the protocol specific code should drop
4667 * the new request.  This insures fairness.
4668 *
4669 * The listening TCP socket "head" must be locked
4670 */
4671static int
4672tcp_dropdropablreq(struct socket *head)
4673{
4674	struct socket *so, *sonext;
4675	unsigned int i, j, qlen;
4676	static int rnd;
4677	static struct timeval old_runtime;
4678	static unsigned int cur_cnt, old_cnt;
4679	struct timeval tv;
4680	struct inpcb *inp = NULL;
4681	struct tcpcb *tp;
4682
4683	if ((head->so_options & SO_ACCEPTCONN) == 0)
4684		return 0;
4685
4686	so = TAILQ_FIRST(&head->so_incomp);
4687	if (!so)
4688		return 0;
4689
4690	microtime(&tv);
4691	if ((i = (tv.tv_sec - old_runtime.tv_sec)) != 0) {
4692		old_runtime = tv;
4693		old_cnt = cur_cnt / i;
4694		cur_cnt = 0;
4695	}
4696
4697
4698	qlen = head->so_incqlen;
4699	if (++cur_cnt > qlen || old_cnt > qlen) {
4700		rnd = (314159 * rnd + 66329) & 0xffff;
4701		j = ((qlen + 1) * rnd) >> 16;
4702
4703		while (j-- && so)
4704			so = TAILQ_NEXT(so, so_list);
4705	}
4706	/* Find a connection that is not already closing (or being served) */
4707	while (so) {
4708		inp = (struct inpcb *)so->so_pcb;
4709
4710		sonext = TAILQ_NEXT(so, so_list);
4711
4712		if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) != WNT_STOPUSING) {
4713			/* Avoid the issue of a socket being accepted by one input thread
4714			 * and being dropped by another input thread.
4715			 * If we can't get a hold on this mutex, then grab the next socket in line.
4716			 */
4717			if (lck_mtx_try_lock(&inp->inpcb_mtx)) {
4718				so->so_usecount++;
4719				if ((so->so_usecount == 2) &&
4720				    (so->so_state & SS_INCOMP) != 0 &&
4721				    (so->so_flags & SOF_INCOMP_INPROGRESS) == 0)
4722					break;
4723				else {/* don't use if being accepted or used in any other way */
4724					in_pcb_checkstate(inp, WNT_RELEASE, 1);
4725					tcp_unlock(so, 1, 0);
4726				}
4727			}
4728			else {
4729				/* do not try to lock the inp in in_pcb_checkstate
4730				 * because the lock is already held in some other thread.
4731				 * Only drop the inp_wntcnt reference.
4732				 */
4733				in_pcb_checkstate(inp, WNT_RELEASE, 1);
4734			}
4735		}
4736		so = sonext;
4737
4738	}
4739	if (!so)
4740		return 0;
4741
4742	/* Makes sure socket is still in the right state to be discarded */
4743
4744	if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
4745		tcp_unlock(so, 1, 0);
4746		return 0;
4747	}
4748
4749	if (so->so_usecount != 2 || !(so->so_state & SS_INCOMP)) {
4750		/* do not discard: that socket is being accepted */
4751		tcp_unlock(so, 1, 0);
4752		return 0;
4753	}
4754
4755	TAILQ_REMOVE(&head->so_incomp, so, so_list);
4756	tcp_unlock(head, 0, 0);
4757
4758	lck_mtx_assert(&inp->inpcb_mtx, LCK_MTX_ASSERT_OWNED);
4759	tp = sototcpcb(so);
4760	so->so_flags |= SOF_OVERFLOW;
4761	so->so_head = NULL;
4762
4763	tcp_close(tp);
4764	tp->t_unacksegs = 0;
4765
4766	if (inp->inp_wantcnt > 0 && inp->inp_wantcnt != WNT_STOPUSING) {
4767		/* Some one has a wantcnt on this pcb. Since WNT_ACQUIRE
4768		 * doesn't require a lock, it could have happened while
4769		 * we are holding the lock. This pcb will have to
4770		 * be garbage collected later.
4771		 * Release the reference held for so_incomp queue
4772		 */
4773		so->so_usecount--;
4774
4775		tcp_unlock(so, 1, 0);
4776	} else {
4777		/* Unlock this socket and leave the reference on. We need to
4778		 * acquire the pcbinfo lock in order to fully dispose it off
4779		 */
4780		tcp_unlock(so, 0, 0);
4781
4782		lck_rw_lock_exclusive(tcbinfo.mtx);
4783
4784		tcp_lock(so, 0, 0);
4785		/* Release the reference held for so_incomp queue */
4786		so->so_usecount--;
4787
4788		if (so->so_usecount != 1 ||
4789		    (inp->inp_wantcnt > 0 && inp->inp_wantcnt != WNT_STOPUSING)) {
4790			/* There is an extra wantcount or usecount that must
4791			 * have been added when the socket was unlocked. This
4792			 * socket will have to be garbage collected later
4793			 */
4794			tcp_unlock(so, 1, 0);
4795		} else {
4796
4797			/* Drop the reference held for this function */
4798			so->so_usecount--;
4799
4800			in_pcbdispose(inp);
4801		}
4802		lck_rw_done(tcbinfo.mtx);
4803	}
4804	tcpstat.tcps_drops++;
4805
4806	tcp_lock(head, 0, 0);
4807	head->so_incqlen--;
4808	head->so_qlen--;
4809	return(1);
4810}
4811
4812/* Set background congestion control on a socket */
4813void
4814tcp_set_background_cc(struct socket *so)
4815{
4816	tcp_set_new_cc(so, TCP_CC_ALGO_BACKGROUND_INDEX);
4817}
4818
4819/* Set foreground congestion control on a socket */
4820void
4821tcp_set_foreground_cc(struct socket *so)
4822{
4823	tcp_set_new_cc(so, TCP_CC_ALGO_NEWRENO_INDEX);
4824}
4825
4826static void
4827tcp_set_new_cc(struct socket *so, uint16_t cc_index)
4828{
4829	struct inpcb *inp = sotoinpcb(so);
4830	struct tcpcb *tp = intotcpcb(inp);
4831	uint16_t old_cc_index = 0;
4832	if (tp->tcp_cc_index != cc_index) {
4833
4834		old_cc_index = tp->tcp_cc_index;
4835
4836		if (CC_ALGO(tp)->cleanup != NULL)
4837			CC_ALGO(tp)->cleanup(tp);
4838		tp->tcp_cc_index = cc_index;
4839
4840		/* Decide if the connection is just starting or if
4841		 * we have sent some packets on it.
4842		 */
4843		if (tp->snd_nxt > tp->iss) {
4844			/* Already sent some packets */
4845			if (CC_ALGO(tp)->switch_to != NULL)
4846				CC_ALGO(tp)->switch_to(tp, old_cc_index);
4847		} else {
4848			if (CC_ALGO(tp)->init != NULL)
4849				CC_ALGO(tp)->init(tp);
4850		}
4851		DTRACE_TCP5(cc, void, NULL, struct inpcb *, inp,
4852			struct tcpcb *, tp, struct tcphdr *, NULL,
4853			int32_t, TCP_CC_CHANGE_ALGO);
4854	}
4855}
4856
4857void
4858tcp_set_recv_bg(struct socket *so)
4859{
4860	if (!IS_TCP_RECV_BG(so))
4861		so->so_traffic_mgt_flags |= TRAFFIC_MGT_TCP_RECVBG;
4862}
4863
4864void
4865tcp_clear_recv_bg(struct socket *so)
4866{
4867	if (IS_TCP_RECV_BG(so))
4868		so->so_traffic_mgt_flags &= ~(TRAFFIC_MGT_TCP_RECVBG);
4869}
4870
4871void
4872inp_fc_unthrottle_tcp(struct inpcb *inp)
4873{
4874	struct tcpcb *tp = inp->inp_ppcb;
4875	/*
4876	 * Back off the slow-start threshold and enter
4877	 * congestion avoidance phase
4878	 */
4879	if (CC_ALGO(tp)->pre_fr != NULL)
4880		CC_ALGO(tp)->pre_fr(tp);
4881
4882	tp->snd_cwnd = tp->snd_ssthresh;
4883
4884	/*
4885	 * Restart counting for ABC as we changed the
4886	 * congestion window just now.
4887	 */
4888	tp->t_bytes_acked = 0;
4889
4890	/* Reset retransmit shift as we know that the reason
4891	 * for delay in sending a packet is due to flow
4892	 * control on the outgoing interface. There is no need
4893	 * to backoff retransmit timer.
4894	 */
4895	tp->t_rxtshift = 0;
4896
4897	/*
4898	 * Start the output stream again. Since we are
4899	 * not retransmitting data, do not reset the
4900	 * retransmit timer or rtt calculation.
4901	 */
4902	tcp_output(tp);
4903}
4904
4905static int
4906tcp_getstat SYSCTL_HANDLER_ARGS
4907{
4908#pragma unused(oidp, arg1, arg2)
4909
4910	int error;
4911
4912	if (req->oldptr == 0) {
4913		req->oldlen= (size_t)sizeof(struct tcpstat);
4914	}
4915
4916	error = SYSCTL_OUT(req, &tcpstat, MIN(sizeof (tcpstat), req->oldlen));
4917
4918        return (error);
4919
4920}
4921
4922SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
4923    tcp_getstat, "S,tcpstat", "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
4924
4925static int
4926sysctl_rexmtthresh SYSCTL_HANDLER_ARGS
4927{
4928#pragma unused(arg1, arg2)
4929
4930	int error, val = tcprexmtthresh;
4931
4932	error = sysctl_handle_int(oidp, &val, 0, req);
4933	if (error || !req->newptr)
4934                return (error);
4935
4936	/*
4937	 * Constrain the number of duplicate ACKs
4938	 * to consider for TCP fast retransmit
4939	 * to either 2 or 3
4940	 */
4941
4942        if (val < 2 || val > 3)
4943		return (EINVAL);
4944
4945	 tcprexmtthresh = val;
4946
4947	return (0);
4948}
4949
4950SYSCTL_PROC(_net_inet_tcp, OID_AUTO, rexmt_thresh, CTLTYPE_INT|CTLFLAG_RW | CTLFLAG_LOCKED,
4951	&tcprexmtthresh, 0, &sysctl_rexmtthresh, "I", "Duplicate ACK Threshold for Fast Retransmit");
4952