1/*
2 * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29/*
30 * Copyright (c) 1982, 1986, 1989, 1993
31 *	The Regents of the University of California.  All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 *    notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 *    notice, this list of conditions and the following disclaimer in the
40 *    documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 *    must display the following acknowledgement:
43 *	This product includes software developed by the University of
44 *	California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 *    may be used to endorse or promote products derived from this software
47 *    without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
62 */
63/*
64 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
65 * support for mandatory and extensible security protections.  This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
67 * Version 2.0.
68 */
69
70#include <sys/param.h>
71#include <sys/resourcevar.h>
72#include <sys/kernel.h>
73#include <sys/systm.h>
74#include <sys/proc_internal.h>
75#include <sys/kauth.h>
76#include <sys/vnode.h>
77#include <sys/time.h>
78#include <sys/priv.h>
79
80#include <sys/mount_internal.h>
81#include <sys/sysproto.h>
82#include <sys/signalvar.h>
83
84#include <kern/clock.h>
85#include <kern/task.h>
86#include <kern/thread_call.h>
87#if CONFIG_MACF
88#include <security/mac_framework.h>
89#endif
90
91#define HZ	100	/* XXX */
92
93/* simple lock used to access timezone, tz structure */
94lck_spin_t * tz_slock;
95lck_grp_t * tz_slock_grp;
96lck_attr_t * tz_slock_attr;
97lck_grp_attr_t	*tz_slock_grp_attr;
98
99static void		setthetime(
100					struct timeval	*tv);
101
102void time_zone_slock_init(void) __attribute__((section("__TEXT, initcode")));
103
104/*
105 * Time of day and interval timer support.
106 *
107 * These routines provide the kernel entry points to get and set
108 * the time-of-day and per-process interval timers.  Subroutines
109 * here provide support for adding and subtracting timeval structures
110 * and decrementing interval timers, optionally reloading the interval
111 * timers when they expire.
112 */
113/* ARGSUSED */
114int
115gettimeofday(
116__unused	struct proc	*p,
117			struct gettimeofday_args *uap,
118			int32_t *retval)
119{
120	int error = 0;
121	struct timezone ltz; /* local copy */
122
123	if (uap->tp) {
124		clock_sec_t		secs;
125		clock_usec_t	usecs;
126
127		clock_gettimeofday(&secs, &usecs);
128		retval[0] = secs;
129		retval[1] = usecs;
130	}
131
132	if (uap->tzp) {
133		lck_spin_lock(tz_slock);
134		ltz = tz;
135		lck_spin_unlock(tz_slock);
136
137		error = copyout((caddr_t)&ltz, CAST_USER_ADDR_T(uap->tzp), sizeof (tz));
138	}
139
140	return (error);
141}
142
143/*
144 * XXX Y2038 bug because of setthetime() argument
145 */
146/* ARGSUSED */
147int
148settimeofday(__unused struct proc *p, struct settimeofday_args  *uap, __unused int32_t *retval)
149{
150	struct timeval atv;
151	struct timezone atz;
152	int error;
153
154	bzero(&atv, sizeof(atv));
155
156#if CONFIG_MACF
157	error = mac_system_check_settime(kauth_cred_get());
158	if (error)
159		return (error);
160#endif
161#ifndef CONFIG_EMBEDDED
162	if ((error = suser(kauth_cred_get(), &p->p_acflag)))
163		return (error);
164#endif
165	/* Verify all parameters before changing time */
166	if (uap->tv) {
167		if (IS_64BIT_PROCESS(p)) {
168			struct user64_timeval user_atv;
169			error = copyin(uap->tv, &user_atv, sizeof(user_atv));
170			atv.tv_sec = user_atv.tv_sec;
171			atv.tv_usec = user_atv.tv_usec;
172		} else {
173			struct user32_timeval user_atv;
174			error = copyin(uap->tv, &user_atv, sizeof(user_atv));
175			atv.tv_sec = user_atv.tv_sec;
176			atv.tv_usec = user_atv.tv_usec;
177		}
178		if (error)
179			return (error);
180	}
181	if (uap->tzp && (error = copyin(uap->tzp, (caddr_t)&atz, sizeof(atz))))
182		return (error);
183	if (uap->tv) {
184		timevalfix(&atv);
185		if (atv.tv_sec < 0 || (atv.tv_sec == 0 && atv.tv_usec < 0))
186			return (EPERM);
187		setthetime(&atv);
188	}
189	if (uap->tzp) {
190		lck_spin_lock(tz_slock);
191		tz = atz;
192		lck_spin_unlock(tz_slock);
193	}
194	return (0);
195}
196
197static void
198setthetime(
199	struct timeval	*tv)
200{
201	clock_set_calendar_microtime(tv->tv_sec, tv->tv_usec);
202}
203
204/*
205 * XXX Y2038 bug because of clock_adjtime() first argument
206 */
207/* ARGSUSED */
208int
209adjtime(struct proc *p, struct adjtime_args *uap, __unused int32_t *retval)
210{
211	struct timeval atv;
212	int error;
213
214#if CONFIG_MACF
215	error = mac_system_check_settime(kauth_cred_get());
216	if (error)
217		return (error);
218#endif
219	if ((error = priv_check_cred(kauth_cred_get(), PRIV_ADJTIME, 0)))
220		return (error);
221	if (IS_64BIT_PROCESS(p)) {
222		struct user64_timeval user_atv;
223		error = copyin(uap->delta, &user_atv, sizeof(user_atv));
224		atv.tv_sec = user_atv.tv_sec;
225		atv.tv_usec = user_atv.tv_usec;
226	} else {
227		struct user32_timeval user_atv;
228		error = copyin(uap->delta, &user_atv, sizeof(user_atv));
229		atv.tv_sec = user_atv.tv_sec;
230		atv.tv_usec = user_atv.tv_usec;
231	}
232	if (error)
233		return (error);
234
235	/*
236	 * Compute the total correction and the rate at which to apply it.
237	 */
238	clock_adjtime(&atv.tv_sec, &atv.tv_usec);
239
240	if (uap->olddelta) {
241		if (IS_64BIT_PROCESS(p)) {
242			struct user64_timeval user_atv;
243			user_atv.tv_sec = atv.tv_sec;
244			user_atv.tv_usec = atv.tv_usec;
245			error = copyout(&user_atv, uap->olddelta, sizeof(user_atv));
246		} else {
247			struct user32_timeval user_atv;
248			user_atv.tv_sec = atv.tv_sec;
249			user_atv.tv_usec = atv.tv_usec;
250			error = copyout(&user_atv, uap->olddelta, sizeof(user_atv));
251		}
252	}
253
254	return (0);
255}
256
257/*
258 *	Verify the calendar value.  If negative,
259 *	reset to zero (the epoch).
260 */
261void
262inittodr(
263	__unused time_t	base)
264{
265	struct timeval	tv;
266
267	/*
268	 * Assertion:
269	 * The calendar has already been
270	 * set up from the platform clock.
271	 *
272	 * The value returned by microtime()
273	 * is gotten from the calendar.
274	 */
275	microtime(&tv);
276
277	if (tv.tv_sec < 0 || tv.tv_usec < 0) {
278		printf ("WARNING: preposterous time in Real Time Clock");
279		tv.tv_sec = 0;		/* the UNIX epoch */
280		tv.tv_usec = 0;
281		setthetime(&tv);
282		printf(" -- CHECK AND RESET THE DATE!\n");
283	}
284}
285
286time_t
287boottime_sec(void)
288{
289	clock_sec_t		secs;
290	clock_nsec_t	nanosecs;
291
292	clock_get_boottime_nanotime(&secs, &nanosecs);
293	return (secs);
294}
295
296/*
297 * Get value of an interval timer.  The process virtual and
298 * profiling virtual time timers are kept internally in the
299 * way they are specified externally: in time until they expire.
300 *
301 * The real time interval timer expiration time (p_rtime)
302 * is kept as an absolute time rather than as a delta, so that
303 * it is easy to keep periodic real-time signals from drifting.
304 *
305 * The real time timer is processed by a callout routine.
306 * Since a callout may be delayed in real time due to
307 * other processing in the system, it is possible for the real
308 * time callout routine (realitexpire, given below), to be delayed
309 * in real time past when it is supposed to occur.  It does not
310 * suffice, therefore, to reload the real time .it_value from the
311 * real time .it_interval.  Rather, we compute the next time in
312 * absolute time when the timer should go off.
313 *
314 * Returns:	0			Success
315 *		EINVAL			Invalid argument
316 *	copyout:EFAULT			Bad address
317 */
318/* ARGSUSED */
319int
320getitimer(struct proc *p, struct getitimer_args *uap, __unused int32_t *retval)
321{
322	struct itimerval aitv;
323
324	if (uap->which > ITIMER_PROF)
325		return(EINVAL);
326
327	bzero(&aitv, sizeof(aitv));
328
329	proc_spinlock(p);
330	switch (uap->which) {
331
332	case ITIMER_REAL:
333		/*
334		 * If time for real time timer has passed return 0,
335		 * else return difference between current time and
336		 * time for the timer to go off.
337		 */
338		aitv = p->p_realtimer;
339		if (timerisset(&p->p_rtime)) {
340			struct timeval		now;
341
342			microuptime(&now);
343			if (timercmp(&p->p_rtime, &now, <))
344				timerclear(&aitv.it_value);
345			else {
346				aitv.it_value = p->p_rtime;
347				timevalsub(&aitv.it_value, &now);
348			}
349		}
350		else
351			timerclear(&aitv.it_value);
352		break;
353
354	case ITIMER_VIRTUAL:
355		aitv = p->p_vtimer_user;
356		break;
357
358	case ITIMER_PROF:
359		aitv = p->p_vtimer_prof;
360		break;
361	}
362
363	proc_spinunlock(p);
364
365	if (IS_64BIT_PROCESS(p)) {
366		struct user64_itimerval user_itv;
367		user_itv.it_interval.tv_sec = aitv.it_interval.tv_sec;
368		user_itv.it_interval.tv_usec = aitv.it_interval.tv_usec;
369		user_itv.it_value.tv_sec = aitv.it_value.tv_sec;
370		user_itv.it_value.tv_usec = aitv.it_value.tv_usec;
371		return (copyout((caddr_t)&user_itv, uap->itv, sizeof (user_itv)));
372	} else {
373		struct user32_itimerval user_itv;
374		user_itv.it_interval.tv_sec = aitv.it_interval.tv_sec;
375		user_itv.it_interval.tv_usec = aitv.it_interval.tv_usec;
376		user_itv.it_value.tv_sec = aitv.it_value.tv_sec;
377		user_itv.it_value.tv_usec = aitv.it_value.tv_usec;
378		return (copyout((caddr_t)&user_itv, uap->itv, sizeof (user_itv)));
379	}
380}
381
382/*
383 * Returns:	0			Success
384 *		EINVAL			Invalid argument
385 *	copyin:EFAULT			Bad address
386 *	getitimer:EINVAL		Invalid argument
387 *	getitimer:EFAULT		Bad address
388 */
389/* ARGSUSED */
390int
391setitimer(struct proc *p, struct setitimer_args *uap, int32_t *retval)
392{
393	struct itimerval aitv;
394	user_addr_t itvp;
395	int error;
396
397	bzero(&aitv, sizeof(aitv));
398
399	if (uap->which > ITIMER_PROF)
400		return (EINVAL);
401	if ((itvp = uap->itv)) {
402		if (IS_64BIT_PROCESS(p)) {
403			struct user64_itimerval user_itv;
404			if ((error = copyin(itvp, (caddr_t)&user_itv, sizeof (user_itv))))
405				return (error);
406			aitv.it_interval.tv_sec = user_itv.it_interval.tv_sec;
407			aitv.it_interval.tv_usec = user_itv.it_interval.tv_usec;
408			aitv.it_value.tv_sec = user_itv.it_value.tv_sec;
409			aitv.it_value.tv_usec = user_itv.it_value.tv_usec;
410		} else {
411			struct user32_itimerval user_itv;
412			if ((error = copyin(itvp, (caddr_t)&user_itv, sizeof (user_itv))))
413				return (error);
414			aitv.it_interval.tv_sec = user_itv.it_interval.tv_sec;
415			aitv.it_interval.tv_usec = user_itv.it_interval.tv_usec;
416			aitv.it_value.tv_sec = user_itv.it_value.tv_sec;
417			aitv.it_value.tv_usec = user_itv.it_value.tv_usec;
418		}
419	}
420	if ((uap->itv = uap->oitv) && (error = getitimer(p, (struct getitimer_args *)uap, retval)))
421		return (error);
422	if (itvp == 0)
423		return (0);
424	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
425		return (EINVAL);
426
427	switch (uap->which) {
428
429	case ITIMER_REAL:
430		proc_spinlock(p);
431		if (timerisset(&aitv.it_value)) {
432			microuptime(&p->p_rtime);
433			timevaladd(&p->p_rtime, &aitv.it_value);
434			p->p_realtimer = aitv;
435			if (!thread_call_enter_delayed(p->p_rcall, tvtoabstime(&p->p_rtime)))
436				p->p_ractive++;
437		} else  {
438			timerclear(&p->p_rtime);
439			p->p_realtimer = aitv;
440			if (thread_call_cancel(p->p_rcall))
441				p->p_ractive--;
442		}
443		proc_spinunlock(p);
444
445		break;
446
447
448	case ITIMER_VIRTUAL:
449		if (timerisset(&aitv.it_value))
450			task_vtimer_set(p->task, TASK_VTIMER_USER);
451	else
452			task_vtimer_clear(p->task, TASK_VTIMER_USER);
453
454		proc_spinlock(p);
455		p->p_vtimer_user = aitv;
456		proc_spinunlock(p);
457		break;
458
459	case ITIMER_PROF:
460		if (timerisset(&aitv.it_value))
461			task_vtimer_set(p->task, TASK_VTIMER_PROF);
462		else
463			task_vtimer_clear(p->task, TASK_VTIMER_PROF);
464
465		proc_spinlock(p);
466		p->p_vtimer_prof = aitv;
467		proc_spinunlock(p);
468		break;
469	}
470
471	return (0);
472}
473
474/*
475 * Real interval timer expired:
476 * send process whose timer expired an alarm signal.
477 * If time is not set up to reload, then just return.
478 * Else compute next time timer should go off which is > current time.
479 * This is where delay in processing this timeout causes multiple
480 * SIGALRM calls to be compressed into one.
481 */
482void
483realitexpire(
484	struct proc	*p)
485{
486	struct proc *r;
487	struct timeval	t;
488
489	r = proc_find(p->p_pid);
490
491	proc_spinlock(p);
492
493	if (--p->p_ractive > 0 || r != p) {
494		proc_spinunlock(p);
495
496		if (r != NULL)
497			proc_rele(r);
498		return;
499	}
500
501	if (!timerisset(&p->p_realtimer.it_interval)) {
502		timerclear(&p->p_rtime);
503		proc_spinunlock(p);
504
505		psignal(p, SIGALRM);
506		proc_rele(p);
507		return;
508	}
509
510	microuptime(&t);
511	timevaladd(&p->p_rtime, &p->p_realtimer.it_interval);
512	if (timercmp(&p->p_rtime, &t, <=)) {
513		if ((p->p_rtime.tv_sec + 2) >= t.tv_sec) {
514			for (;;) {
515				timevaladd(&p->p_rtime, &p->p_realtimer.it_interval);
516				if (timercmp(&p->p_rtime, &t, >))
517					break;
518			}
519		}
520		else {
521			p->p_rtime = p->p_realtimer.it_interval;
522			timevaladd(&p->p_rtime, &t);
523		}
524	}
525
526	if (!thread_call_enter_delayed(p->p_rcall, tvtoabstime(&p->p_rtime)))
527		p->p_ractive++;
528	proc_spinunlock(p);
529
530	psignal(p, SIGALRM);
531	proc_rele(p);
532}
533
534/*
535 * Check that a proposed value to load into the .it_value or
536 * .it_interval part of an interval timer is acceptable.
537 */
538int
539itimerfix(
540	struct timeval *tv)
541{
542
543	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
544	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
545		return (EINVAL);
546	return (0);
547}
548
549/*
550 * Decrement an interval timer by a specified number
551 * of microseconds, which must be less than a second,
552 * i.e. < 1000000.  If the timer expires, then reload
553 * it.  In this case, carry over (usec - old value) to
554 * reduce the value reloaded into the timer so that
555 * the timer does not drift.  This routine assumes
556 * that it is called in a context where the timers
557 * on which it is operating cannot change in value.
558 */
559int
560itimerdecr(proc_t p,
561	struct itimerval *itp, int usec)
562{
563
564	proc_spinlock(p);
565
566	if (itp->it_value.tv_usec < usec) {
567		if (itp->it_value.tv_sec == 0) {
568			/* expired, and already in next interval */
569			usec -= itp->it_value.tv_usec;
570			goto expire;
571		}
572		itp->it_value.tv_usec += 1000000;
573		itp->it_value.tv_sec--;
574	}
575	itp->it_value.tv_usec -= usec;
576	usec = 0;
577	if (timerisset(&itp->it_value)) {
578		proc_spinunlock(p);
579		return (1);
580	}
581	/* expired, exactly at end of interval */
582expire:
583	if (timerisset(&itp->it_interval)) {
584		itp->it_value = itp->it_interval;
585		if (itp->it_value.tv_sec > 0) {
586		itp->it_value.tv_usec -= usec;
587		if (itp->it_value.tv_usec < 0) {
588			itp->it_value.tv_usec += 1000000;
589			itp->it_value.tv_sec--;
590			}
591		}
592	} else
593		itp->it_value.tv_usec = 0;		/* sec is already 0 */
594	proc_spinunlock(p);
595	return (0);
596}
597
598/*
599 * Add and subtract routines for timevals.
600 * N.B.: subtract routine doesn't deal with
601 * results which are before the beginning,
602 * it just gets very confused in this case.
603 * Caveat emptor.
604 */
605void
606timevaladd(
607	struct timeval *t1,
608	struct timeval *t2)
609{
610
611	t1->tv_sec += t2->tv_sec;
612	t1->tv_usec += t2->tv_usec;
613	timevalfix(t1);
614}
615void
616timevalsub(
617	struct timeval *t1,
618	struct timeval *t2)
619{
620
621	t1->tv_sec -= t2->tv_sec;
622	t1->tv_usec -= t2->tv_usec;
623	timevalfix(t1);
624}
625void
626timevalfix(
627	struct timeval *t1)
628{
629
630	if (t1->tv_usec < 0) {
631		t1->tv_sec--;
632		t1->tv_usec += 1000000;
633	}
634	if (t1->tv_usec >= 1000000) {
635		t1->tv_sec++;
636		t1->tv_usec -= 1000000;
637	}
638}
639
640/*
641 * Return the best possible estimate of the time in the timeval
642 * to which tvp points.
643 */
644void
645microtime(
646	struct timeval	*tvp)
647{
648	clock_sec_t		tv_sec;
649	clock_usec_t	tv_usec;
650
651	clock_get_calendar_microtime(&tv_sec, &tv_usec);
652
653	tvp->tv_sec = tv_sec;
654	tvp->tv_usec = tv_usec;
655}
656
657void
658microuptime(
659	struct timeval	*tvp)
660{
661	clock_sec_t		tv_sec;
662	clock_usec_t	tv_usec;
663
664	clock_get_system_microtime(&tv_sec, &tv_usec);
665
666	tvp->tv_sec = tv_sec;
667	tvp->tv_usec = tv_usec;
668}
669
670/*
671 * Ditto for timespec.
672 */
673void
674nanotime(
675	struct timespec *tsp)
676{
677	clock_sec_t		tv_sec;
678	clock_nsec_t	tv_nsec;
679
680	clock_get_calendar_nanotime(&tv_sec, &tv_nsec);
681
682	tsp->tv_sec = tv_sec;
683	tsp->tv_nsec = tv_nsec;
684}
685
686void
687nanouptime(
688	struct timespec *tsp)
689{
690	clock_sec_t		tv_sec;
691	clock_nsec_t	tv_nsec;
692
693	clock_get_system_nanotime(&tv_sec, &tv_nsec);
694
695	tsp->tv_sec = tv_sec;
696	tsp->tv_nsec = tv_nsec;
697}
698
699uint64_t
700tvtoabstime(
701	struct timeval	*tvp)
702{
703	uint64_t	result, usresult;
704
705	clock_interval_to_absolutetime_interval(
706						tvp->tv_sec, NSEC_PER_SEC, &result);
707	clock_interval_to_absolutetime_interval(
708						tvp->tv_usec, NSEC_PER_USEC, &usresult);
709
710	return (result + usresult);
711}
712void
713time_zone_slock_init(void)
714{
715	/* allocate lock group attribute and group */
716	tz_slock_grp_attr = lck_grp_attr_alloc_init();
717
718	tz_slock_grp =  lck_grp_alloc_init("tzlock", tz_slock_grp_attr);
719
720	/* Allocate lock attribute */
721	tz_slock_attr = lck_attr_alloc_init();
722
723	/* Allocate the spin lock */
724	tz_slock = lck_spin_alloc_init(tz_slock_grp, tz_slock_attr);
725}
726