1/* inftrees.c -- generate Huffman trees for efficient decoding
2 * Copyright (C) 1995-1998 Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6#include "zutil.h"
7#include "inftrees.h"
8
9#if !defined(BUILDFIXED) && !defined(STDC)
10#  define BUILDFIXED   /* non ANSI compilers may not accept inffixed.h */
11#endif
12
13const char inflate_copyright[] =
14   " inflate 1.1.3 Copyright 1995-1998 Mark Adler ";
15/*
16  If you use the zlib library in a product, an acknowledgment is welcome
17  in the documentation of your product. If for some reason you cannot
18  include such an acknowledgment, I would appreciate that you keep this
19  copyright string in the executable of your product.
20 */
21struct internal_state  {int dummy;}; /* for buggy compilers */
22
23/* simplify the use of the inflate_huft type with some defines */
24#define exop word.what.Exop
25#define bits word.what.Bits
26
27
28local int huft_build OF((
29    uIntf *,            /* code lengths in bits */
30    uInt,               /* number of codes */
31    uInt,               /* number of "simple" codes */
32    const uIntf *,      /* list of base values for non-simple codes */
33    const uIntf *,      /* list of extra bits for non-simple codes */
34    inflate_huft * FAR*,/* result: starting table */
35    uIntf *,            /* maximum lookup bits (returns actual) */
36    inflate_huft *,     /* space for trees */
37    uInt *,             /* hufts used in space */
38    uIntf * ));         /* space for values */
39
40/* Tables for deflate from PKZIP's appnote.txt. */
41local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
42        3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
43        35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
44        /* see note #13 above about 258 */
45local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
46        0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
47        3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
48local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
49        1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
50        257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
51        8193, 12289, 16385, 24577};
52local const uInt cpdext[30] = { /* Extra bits for distance codes */
53        0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
54        7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
55        12, 12, 13, 13};
56
57/*
58   Huffman code decoding is performed using a multi-level table lookup.
59   The fastest way to decode is to simply build a lookup table whose
60   size is determined by the longest code.  However, the time it takes
61   to build this table can also be a factor if the data being decoded
62   is not very long.  The most common codes are necessarily the
63   shortest codes, so those codes dominate the decoding time, and hence
64   the speed.  The idea is you can have a shorter table that decodes the
65   shorter, more probable codes, and then point to subsidiary tables for
66   the longer codes.  The time it costs to decode the longer codes is
67   then traded against the time it takes to make longer tables.
68
69   This results of this trade are in the variables lbits and dbits
70   below.  lbits is the number of bits the first level table for literal/
71   length codes can decode in one step, and dbits is the same thing for
72   the distance codes.  Subsequent tables are also less than or equal to
73   those sizes.  These values may be adjusted either when all of the
74   codes are shorter than that, in which case the longest code length in
75   bits is used, or when the shortest code is *longer* than the requested
76   table size, in which case the length of the shortest code in bits is
77   used.
78
79   There are two different values for the two tables, since they code a
80   different number of possibilities each.  The literal/length table
81   codes 286 possible values, or in a flat code, a little over eight
82   bits.  The distance table codes 30 possible values, or a little less
83   than five bits, flat.  The optimum values for speed end up being
84   about one bit more than those, so lbits is 8+1 and dbits is 5+1.
85   The optimum values may differ though from machine to machine, and
86   possibly even between compilers.  Your mileage may vary.
87 */
88
89
90/* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
91#define BMAX 15         /* maximum bit length of any code */
92
93local int huft_build(b, n, s, d, e, t, m, hp, hn, v)
94uIntf *b;               /* code lengths in bits (all assumed <= BMAX) */
95uInt n;                 /* number of codes (assumed <= 288) */
96uInt s;                 /* number of simple-valued codes (0..s-1) */
97const uIntf *d;         /* list of base values for non-simple codes */
98const uIntf *e;         /* list of extra bits for non-simple codes */
99inflate_huft * FAR *t;  /* result: starting table */
100uIntf *m;               /* maximum lookup bits, returns actual */
101inflate_huft *hp;       /* space for trees */
102uInt *hn;               /* hufts used in space */
103uIntf *v;               /* working area: values in order of bit length */
104/* Given a list of code lengths and a maximum table size, make a set of
105   tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
106   if the given code set is incomplete (the tables are still built in this
107   case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of
108   lengths), or Z_MEM_ERROR if not enough memory. */
109{
110
111  uInt a;                       /* counter for codes of length k */
112  uInt c[BMAX+1];               /* bit length count table */
113  uInt f;                       /* i repeats in table every f entries */
114  int g;                        /* maximum code length */
115  int h;                        /* table level */
116  register uInt i;              /* counter, current code */
117  register uInt j;              /* counter */
118  register int k;               /* number of bits in current code */
119  int l;                        /* bits per table (returned in m) */
120  uInt mask;                    /* (1 << w) - 1, to avoid cc -O bug on HP */
121  register uIntf *p;            /* pointer into c[], b[], or v[] */
122  inflate_huft *q;              /* points to current table */
123  struct inflate_huft_s r;      /* table entry for structure assignment */
124  inflate_huft *u[BMAX];        /* table stack */
125  register int w;               /* bits before this table == (l * h) */
126  uInt x[BMAX+1];               /* bit offsets, then code stack */
127  uIntf *xp;                    /* pointer into x */
128  int y;                        /* number of dummy codes added */
129  uInt z;                       /* number of entries in current table */
130
131
132  /* Generate counts for each bit length */
133  p = c;
134#define C0 *p++ = 0;
135#define C2 C0 C0 C0 C0
136#define C4 C2 C2 C2 C2
137  C4                            /* clear c[]--assume BMAX+1 is 16 */
138  p = b;  i = n;
139  do {
140    c[*p++]++;                  /* assume all entries <= BMAX */
141  } while (--i);
142  if (c[0] == n)                /* null input--all zero length codes */
143  {
144    *t = (inflate_huft *)Z_NULL;
145    *m = 0;
146    return Z_OK;
147  }
148
149
150  /* Find minimum and maximum length, bound *m by those */
151  l = *m;
152  for (j = 1; j <= BMAX; j++)
153    if (c[j])
154      break;
155  k = j;                        /* minimum code length */
156  if ((uInt)l < j)
157    l = j;
158  for (i = BMAX; i; i--)
159    if (c[i])
160      break;
161  g = i;                        /* maximum code length */
162  if ((uInt)l > i)
163    l = i;
164  *m = l;
165
166
167  /* Adjust last length count to fill out codes, if needed */
168  for (y = 1 << j; j < i; j++, y <<= 1)
169    if ((y -= c[j]) < 0)
170      return Z_DATA_ERROR;
171  if ((y -= c[i]) < 0)
172    return Z_DATA_ERROR;
173  c[i] += y;
174
175
176  /* Generate starting offsets into the value table for each length */
177  x[1] = j = 0;
178  p = c + 1;  xp = x + 2;
179  while (--i) {                 /* note that i == g from above */
180    *xp++ = (j += *p++);
181  }
182
183
184  /* Make a table of values in order of bit lengths */
185  p = b;  i = 0;
186  do {
187    if ((j = *p++) != 0)
188      v[x[j]++] = i;
189  } while (++i < n);
190  n = x[g];                     /* set n to length of v */
191
192
193  /* Generate the Huffman codes and for each, make the table entries */
194  x[0] = i = 0;                 /* first Huffman code is zero */
195  p = v;                        /* grab values in bit order */
196  h = -1;                       /* no tables yet--level -1 */
197  w = -l;                       /* bits decoded == (l * h) */
198  u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
199  q = (inflate_huft *)Z_NULL;   /* ditto */
200  z = 0;                        /* ditto */
201  r.base = 0;			/* ditto */
202
203  /* go through the bit lengths (k already is bits in shortest code) */
204  for (; k <= g; k++)
205  {
206    a = c[k];
207    while (a--)
208    {
209      /* here i is the Huffman code of length k bits for value *p */
210      /* make tables up to required level */
211      while (k > w + l)
212      {
213        h++;
214        w += l;                 /* previous table always l bits */
215
216        /* compute minimum size table less than or equal to l bits */
217        z = g - w;
218        z = z > (uInt)l ? l : z;        /* table size upper limit */
219        if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
220        {                       /* too few codes for k-w bit table */
221          f -= a + 1;           /* deduct codes from patterns left */
222          xp = c + k;
223          if (j < z)
224            while (++j < z)     /* try smaller tables up to z bits */
225            {
226              if ((f <<= 1) <= *++xp)
227                break;          /* enough codes to use up j bits */
228              f -= *xp;         /* else deduct codes from patterns */
229            }
230        }
231        z = 1 << j;             /* table entries for j-bit table */
232
233        /* allocate new table */
234        if (*hn + z > MANY)     /* (note: doesn't matter for fixed) */
235          return Z_MEM_ERROR;   /* not enough memory */
236        u[h] = q = hp + *hn;
237        *hn += z;
238
239        /* connect to last table, if there is one */
240        if (h)
241        {
242          x[h] = i;             /* save pattern for backing up */
243          r.bits = (Byte)l;     /* bits to dump before this table */
244          r.exop = (Byte)j;     /* bits in this table */
245          j = i >> (w - l);
246          r.base = (uInt)(q - u[h-1] - j);   /* offset to this table */
247          u[h-1][j] = r;        /* connect to last table */
248        }
249        else
250          *t = q;               /* first table is returned result */
251      }
252
253      /* set up table entry in r */
254      r.bits = (Byte)(k - w);
255      if (p >= v + n)
256        r.exop = 128 + 64;      /* out of values--invalid code */
257      else if (*p < s)
258      {
259        r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
260        r.base = *p++;          /* simple code is just the value */
261      }
262      else
263      {
264        r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
265        r.base = d[*p++ - s];
266      }
267
268      /* fill code-like entries with r */
269      f = 1 << (k - w);
270      for (j = i >> w; j < z; j += f)
271        q[j] = r;
272
273      /* backwards increment the k-bit code i */
274      for (j = 1 << (k - 1); i & j; j >>= 1)
275        i ^= j;
276      i ^= j;
277
278      /* backup over finished tables */
279      mask = (1 << w) - 1;      /* needed on HP, cc -O bug */
280      while ((i & mask) != x[h])
281      {
282        h--;                    /* don't need to update q */
283        w -= l;
284        mask = (1 << w) - 1;
285      }
286    }
287  }
288
289
290  /* Return Z_BUF_ERROR if we were given an incomplete table */
291  return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
292}
293
294
295int inflate_trees_bits(c, bb, tb, hp, z)
296uIntf *c;               /* 19 code lengths */
297uIntf *bb;              /* bits tree desired/actual depth */
298inflate_huft * FAR *tb; /* bits tree result */
299inflate_huft *hp;       /* space for trees */
300z_streamp z;            /* for messages */
301{
302  int r;
303  uInt hn = 0;          /* hufts used in space */
304  uIntf *v;             /* work area for huft_build */
305
306  if ((v = (uIntf*)ZALLOC(z, 19, sizeof(uInt))) == Z_NULL)
307    return Z_MEM_ERROR;
308  r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL,
309                 tb, bb, hp, &hn, v);
310  if (r == Z_DATA_ERROR)
311    z->msg = (char*)"oversubscribed dynamic bit lengths tree";
312  else if (r == Z_BUF_ERROR || *bb == 0)
313  {
314    z->msg = (char*)"incomplete dynamic bit lengths tree";
315    r = Z_DATA_ERROR;
316  }
317  ZFREE(z, v);
318  return r;
319}
320
321
322int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, hp, z)
323uInt nl;                /* number of literal/length codes */
324uInt nd;                /* number of distance codes */
325uIntf *c;               /* that many (total) code lengths */
326uIntf *bl;              /* literal desired/actual bit depth */
327uIntf *bd;              /* distance desired/actual bit depth */
328inflate_huft * FAR *tl; /* literal/length tree result */
329inflate_huft * FAR *td; /* distance tree result */
330inflate_huft *hp;       /* space for trees */
331z_streamp z;            /* for messages */
332{
333  int r;
334  uInt hn = 0;          /* hufts used in space */
335  uIntf *v;             /* work area for huft_build */
336
337  /* allocate work area */
338  if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
339    return Z_MEM_ERROR;
340
341  /* build literal/length tree */
342  r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v);
343  if (r != Z_OK || *bl == 0)
344  {
345    if (r == Z_DATA_ERROR)
346      z->msg = (char*)"oversubscribed literal/length tree";
347    else if (r != Z_MEM_ERROR)
348    {
349      z->msg = (char*)"incomplete literal/length tree";
350      r = Z_DATA_ERROR;
351    }
352    ZFREE(z, v);
353    return r;
354  }
355
356  /* build distance tree */
357  r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v);
358  if (r != Z_OK || (*bd == 0 && nl > 257))
359  {
360    if (r == Z_DATA_ERROR)
361      z->msg = (char*)"oversubscribed distance tree";
362    else if (r == Z_BUF_ERROR) {
363#ifdef PKZIP_BUG_WORKAROUND
364      r = Z_OK;
365    }
366#else
367      z->msg = (char*)"incomplete distance tree";
368      r = Z_DATA_ERROR;
369    }
370    else if (r != Z_MEM_ERROR)
371    {
372      z->msg = (char*)"empty distance tree with lengths";
373      r = Z_DATA_ERROR;
374    }
375    ZFREE(z, v);
376    return r;
377#endif
378  }
379
380  /* done */
381  ZFREE(z, v);
382  return Z_OK;
383}
384
385
386/* build fixed tables only once--keep them here */
387#ifdef BUILDFIXED
388local int fixed_built = 0;
389#define FIXEDH 544      /* number of hufts used by fixed tables */
390local inflate_huft fixed_mem[FIXEDH];
391local uInt fixed_bl;
392local uInt fixed_bd;
393local inflate_huft *fixed_tl;
394local inflate_huft *fixed_td;
395#else
396#include "inffixed.h"
397#endif
398
399
400int inflate_trees_fixed(bl, bd, tl, td, z)
401uIntf *bl;               /* literal desired/actual bit depth */
402uIntf *bd;               /* distance desired/actual bit depth */
403inflate_huft * FAR *tl;  /* literal/length tree result */
404inflate_huft * FAR *td;  /* distance tree result */
405z_streamp z;             /* for memory allocation */
406{
407#ifdef BUILDFIXED
408  /* build fixed tables if not already */
409  if (!fixed_built)
410  {
411    int k;              /* temporary variable */
412    uInt f = 0;         /* number of hufts used in fixed_mem */
413    uIntf *c;           /* length list for huft_build */
414    uIntf *v;           /* work area for huft_build */
415
416    /* allocate memory */
417    if ((c = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
418      return Z_MEM_ERROR;
419    if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
420    {
421      ZFREE(z, c);
422      return Z_MEM_ERROR;
423    }
424
425    /* literal table */
426    for (k = 0; k < 144; k++)
427      c[k] = 8;
428    for (; k < 256; k++)
429      c[k] = 9;
430    for (; k < 280; k++)
431      c[k] = 7;
432    for (; k < 288; k++)
433      c[k] = 8;
434    fixed_bl = 9;
435    huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl,
436               fixed_mem, &f, v);
437
438    /* distance table */
439    for (k = 0; k < 30; k++)
440      c[k] = 5;
441    fixed_bd = 5;
442    huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd,
443               fixed_mem, &f, v);
444
445    /* done */
446    ZFREE(z, v);
447    ZFREE(z, c);
448    fixed_built = 1;
449  }
450#endif
451  *bl = fixed_bl;
452  *bd = fixed_bd;
453  *tl = fixed_tl;
454  *td = fixed_td;
455  return Z_OK;
456}
457