1/*	$NetBSD: svc_dg.c,v 1.4 2000/07/06 03:10:35 christos Exp $	*/
2
3/*-
4 * Copyright (c) 2009, Sun Microsystems, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are met:
9 * - Redistributions of source code must retain the above copyright notice,
10 *   this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright notice,
12 *   this list of conditions and the following disclaimer in the documentation
13 *   and/or other materials provided with the distribution.
14 * - Neither the name of Sun Microsystems, Inc. nor the names of its
15 *   contributors may be used to endorse or promote products derived
16 *   from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31/*
32 * Copyright (c) 1986-1991 by Sun Microsystems Inc.
33 */
34
35#if defined(LIBC_SCCS) && !defined(lint)
36#ident	"@(#)svc_dg.c	1.17	94/04/24 SMI"
37#endif
38#include <sys/cdefs.h>
39__FBSDID("$FreeBSD$");
40
41/*
42 * svc_dg.c, Server side for connectionless RPC.
43 *
44 * Does some caching in the hopes of achieving execute-at-most-once semantics.
45 */
46
47#include "namespace.h"
48#include "reentrant.h"
49#include <sys/types.h>
50#include <sys/socket.h>
51#include <rpc/rpc.h>
52#include <rpc/svc_dg.h>
53#include <assert.h>
54#include <errno.h>
55#include <unistd.h>
56#include <stdio.h>
57#include <stdlib.h>
58#include <string.h>
59#ifdef RPC_CACHE_DEBUG
60#include <netconfig.h>
61#include <netdir.h>
62#endif
63#include <err.h>
64#include "un-namespace.h"
65
66#include "rpc_com.h"
67#include "mt_misc.h"
68
69#define	su_data(xprt)	((struct svc_dg_data *)(xprt->xp_p2))
70#define	rpc_buffer(xprt) ((xprt)->xp_p1)
71
72#ifndef MAX
73#define	MAX(a, b)	(((a) > (b)) ? (a) : (b))
74#endif
75
76static void svc_dg_ops(SVCXPRT *);
77static enum xprt_stat svc_dg_stat(SVCXPRT *);
78static bool_t svc_dg_recv(SVCXPRT *, struct rpc_msg *);
79static bool_t svc_dg_reply(SVCXPRT *, struct rpc_msg *);
80static bool_t svc_dg_getargs(SVCXPRT *, xdrproc_t, void *);
81static bool_t svc_dg_freeargs(SVCXPRT *, xdrproc_t, void *);
82static void svc_dg_destroy(SVCXPRT *);
83static bool_t svc_dg_control(SVCXPRT *, const u_int, void *);
84static int cache_get(SVCXPRT *, struct rpc_msg *, char **, size_t *);
85static void cache_set(SVCXPRT *, size_t);
86int svc_dg_enablecache(SVCXPRT *, u_int);
87
88/*
89 * Usage:
90 *	xprt = svc_dg_create(sock, sendsize, recvsize);
91 * Does other connectionless specific initializations.
92 * Once *xprt is initialized, it is registered.
93 * see (svc.h, xprt_register). If recvsize or sendsize are 0 suitable
94 * system defaults are chosen.
95 * The routines returns NULL if a problem occurred.
96 */
97static const char svc_dg_str[] = "svc_dg_create: %s";
98static const char svc_dg_err1[] = "could not get transport information";
99static const char svc_dg_err2[] = "transport does not support data transfer";
100static const char svc_dg_err3[] = "getsockname failed";
101static const char svc_dg_err4[] = "cannot set IP_RECVDSTADDR";
102static const char __no_mem_str[] = "out of memory";
103
104SVCXPRT *
105svc_dg_create(int fd, u_int sendsize, u_int recvsize)
106{
107	SVCXPRT *xprt;
108	struct svc_dg_data *su = NULL;
109	struct __rpc_sockinfo si;
110	struct sockaddr_storage ss;
111	socklen_t slen;
112
113	if (!__rpc_fd2sockinfo(fd, &si)) {
114		warnx(svc_dg_str, svc_dg_err1);
115		return (NULL);
116	}
117	/*
118	 * Find the receive and the send size
119	 */
120	sendsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)sendsize);
121	recvsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)recvsize);
122	if ((sendsize == 0) || (recvsize == 0)) {
123		warnx(svc_dg_str, svc_dg_err2);
124		return (NULL);
125	}
126
127	xprt = svc_xprt_alloc();
128	if (xprt == NULL)
129		goto freedata;
130
131	su = mem_alloc(sizeof (*su));
132	if (su == NULL)
133		goto freedata;
134	su->su_iosz = ((MAX(sendsize, recvsize) + 3) / 4) * 4;
135	if ((rpc_buffer(xprt) = mem_alloc(su->su_iosz)) == NULL)
136		goto freedata;
137	xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), su->su_iosz,
138		XDR_DECODE);
139	su->su_cache = NULL;
140	xprt->xp_fd = fd;
141	xprt->xp_p2 = su;
142	xprt->xp_verf.oa_base = su->su_verfbody;
143	svc_dg_ops(xprt);
144	xprt->xp_rtaddr.maxlen = sizeof (struct sockaddr_storage);
145
146	slen = sizeof ss;
147	if (_getsockname(fd, (struct sockaddr *)(void *)&ss, &slen) < 0) {
148		warnx(svc_dg_str, svc_dg_err3);
149		goto freedata_nowarn;
150	}
151	xprt->xp_ltaddr.buf = mem_alloc(sizeof (struct sockaddr_storage));
152	xprt->xp_ltaddr.maxlen = sizeof (struct sockaddr_storage);
153	xprt->xp_ltaddr.len = slen;
154	memcpy(xprt->xp_ltaddr.buf, &ss, slen);
155
156	if (ss.ss_family == AF_INET) {
157		struct sockaddr_in *sin;
158		static const int true_value = 1;
159
160		sin = (struct sockaddr_in *)(void *)&ss;
161		if (sin->sin_addr.s_addr == INADDR_ANY) {
162		    su->su_srcaddr.buf = mem_alloc(sizeof (ss));
163		    su->su_srcaddr.maxlen = sizeof (ss);
164
165		    if (_setsockopt(fd, IPPROTO_IP, IP_RECVDSTADDR,
166				    &true_value, sizeof(true_value))) {
167			    warnx(svc_dg_str,  svc_dg_err4);
168			    goto freedata_nowarn;
169		    }
170		}
171	}
172
173	xprt_register(xprt);
174	return (xprt);
175freedata:
176	(void) warnx(svc_dg_str, __no_mem_str);
177freedata_nowarn:
178	if (xprt) {
179		if (su)
180			(void) mem_free(su, sizeof (*su));
181		svc_xprt_free(xprt);
182	}
183	return (NULL);
184}
185
186/*ARGSUSED*/
187static enum xprt_stat
188svc_dg_stat(SVCXPRT *xprt)
189{
190	return (XPRT_IDLE);
191}
192
193static int
194svc_dg_recvfrom(int fd, char *buf, int buflen,
195    struct sockaddr *raddr, socklen_t *raddrlen,
196    struct sockaddr *laddr, socklen_t *laddrlen)
197{
198	struct msghdr msg;
199	struct iovec msg_iov[1];
200	struct sockaddr_in *lin = (struct sockaddr_in *)laddr;
201	int rlen;
202	bool_t have_lin = FALSE;
203	char tmp[CMSG_LEN(sizeof(*lin))];
204	struct cmsghdr *cmsg;
205
206	memset((char *)&msg, 0, sizeof(msg));
207	msg_iov[0].iov_base = buf;
208	msg_iov[0].iov_len = buflen;
209	msg.msg_iov = msg_iov;
210	msg.msg_iovlen = 1;
211	msg.msg_namelen = *raddrlen;
212	msg.msg_name = (char *)raddr;
213	if (laddr != NULL) {
214	    msg.msg_control = (caddr_t)tmp;
215	    msg.msg_controllen = CMSG_LEN(sizeof(*lin));
216	}
217	rlen = _recvmsg(fd, &msg, 0);
218	if (rlen >= 0)
219		*raddrlen = msg.msg_namelen;
220
221	if (rlen == -1 || laddr == NULL ||
222	    msg.msg_controllen < sizeof(struct cmsghdr) ||
223	    msg.msg_flags & MSG_CTRUNC)
224		return rlen;
225
226	for (cmsg = CMSG_FIRSTHDR(&msg); cmsg != NULL;
227	     cmsg = CMSG_NXTHDR(&msg, cmsg)) {
228		if (cmsg->cmsg_level == IPPROTO_IP &&
229		    cmsg->cmsg_type == IP_RECVDSTADDR) {
230			have_lin = TRUE;
231			memcpy(&lin->sin_addr,
232			    (struct in_addr *)CMSG_DATA(cmsg),
233			    sizeof(struct in_addr));
234			break;
235		}
236	}
237
238	lin->sin_family = AF_INET;
239	lin->sin_port = 0;
240	*laddrlen = sizeof(struct sockaddr_in);
241
242	if (!have_lin)
243		lin->sin_addr.s_addr = INADDR_ANY;
244
245	return rlen;
246}
247
248static bool_t
249svc_dg_recv(SVCXPRT *xprt, struct rpc_msg *msg)
250{
251	struct svc_dg_data *su = su_data(xprt);
252	XDR *xdrs = &(su->su_xdrs);
253	char *reply;
254	struct sockaddr_storage ss;
255	socklen_t alen;
256	size_t replylen;
257	ssize_t rlen;
258
259again:
260	alen = sizeof (struct sockaddr_storage);
261	rlen = svc_dg_recvfrom(xprt->xp_fd, rpc_buffer(xprt), su->su_iosz,
262	    (struct sockaddr *)(void *)&ss, &alen,
263	    (struct sockaddr *)su->su_srcaddr.buf, &su->su_srcaddr.len);
264	if (rlen == -1 && errno == EINTR)
265		goto again;
266	if (rlen == -1 || (rlen < (ssize_t)(4 * sizeof (u_int32_t))))
267		return (FALSE);
268	if (xprt->xp_rtaddr.len < alen) {
269		if (xprt->xp_rtaddr.len != 0)
270			mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.len);
271		xprt->xp_rtaddr.buf = mem_alloc(alen);
272		xprt->xp_rtaddr.len = alen;
273	}
274	memcpy(xprt->xp_rtaddr.buf, &ss, alen);
275#ifdef PORTMAP
276	if (ss.ss_family == AF_INET) {
277		xprt->xp_raddr = *(struct sockaddr_in *)xprt->xp_rtaddr.buf;
278		xprt->xp_addrlen = sizeof (struct sockaddr_in);
279	}
280#endif				/* PORTMAP */
281	xdrs->x_op = XDR_DECODE;
282	XDR_SETPOS(xdrs, 0);
283	if (! xdr_callmsg(xdrs, msg)) {
284		return (FALSE);
285	}
286	su->su_xid = msg->rm_xid;
287	if (su->su_cache != NULL) {
288		if (cache_get(xprt, msg, &reply, &replylen)) {
289			(void)_sendto(xprt->xp_fd, reply, replylen, 0,
290			    (struct sockaddr *)(void *)&ss, alen);
291			return (FALSE);
292		}
293	}
294	return (TRUE);
295}
296
297static int
298svc_dg_sendto(int fd, char *buf, int buflen,
299    const struct sockaddr *raddr, socklen_t raddrlen,
300    const struct sockaddr *laddr, socklen_t laddrlen)
301{
302	struct msghdr msg;
303	struct iovec msg_iov[1];
304	struct sockaddr_in *laddr_in = (struct sockaddr_in *)laddr;
305	struct in_addr *lin = &laddr_in->sin_addr;
306	char tmp[CMSG_SPACE(sizeof(*lin))];
307	struct cmsghdr *cmsg;
308
309	memset((char *)&msg, 0, sizeof(msg));
310	msg_iov[0].iov_base = buf;
311	msg_iov[0].iov_len = buflen;
312	msg.msg_iov = msg_iov;
313	msg.msg_iovlen = 1;
314	msg.msg_namelen = raddrlen;
315	msg.msg_name = (char *)raddr;
316
317	if (laddr != NULL && laddr->sa_family == AF_INET &&
318	    lin->s_addr != INADDR_ANY) {
319		msg.msg_control = (caddr_t)tmp;
320		msg.msg_controllen = CMSG_LEN(sizeof(*lin));
321		cmsg = CMSG_FIRSTHDR(&msg);
322		cmsg->cmsg_len = CMSG_LEN(sizeof(*lin));
323		cmsg->cmsg_level = IPPROTO_IP;
324		cmsg->cmsg_type = IP_SENDSRCADDR;
325		memcpy(CMSG_DATA(cmsg), lin, sizeof(*lin));
326	}
327
328	return _sendmsg(fd, &msg, 0);
329}
330
331static bool_t
332svc_dg_reply(SVCXPRT *xprt, struct rpc_msg *msg)
333{
334	struct svc_dg_data *su = su_data(xprt);
335	XDR *xdrs = &(su->su_xdrs);
336	bool_t stat = TRUE;
337	size_t slen;
338	xdrproc_t xdr_proc;
339	caddr_t xdr_where;
340
341	xdrs->x_op = XDR_ENCODE;
342	XDR_SETPOS(xdrs, 0);
343	msg->rm_xid = su->su_xid;
344	if (msg->rm_reply.rp_stat == MSG_ACCEPTED &&
345	    msg->rm_reply.rp_acpt.ar_stat == SUCCESS) {
346		xdr_proc = msg->acpted_rply.ar_results.proc;
347		xdr_where = msg->acpted_rply.ar_results.where;
348		msg->acpted_rply.ar_results.proc = (xdrproc_t) xdr_void;
349		msg->acpted_rply.ar_results.where = NULL;
350
351		if (!xdr_replymsg(xdrs, msg) ||
352		    !SVCAUTH_WRAP(&SVC_AUTH(xprt), xdrs, xdr_proc, xdr_where))
353			stat = FALSE;
354	} else {
355		stat = xdr_replymsg(xdrs, msg);
356	}
357	if (stat) {
358		slen = XDR_GETPOS(xdrs);
359		if (svc_dg_sendto(xprt->xp_fd, rpc_buffer(xprt), slen,
360		    (struct sockaddr *)xprt->xp_rtaddr.buf,
361		    (socklen_t)xprt->xp_rtaddr.len,
362		    (struct sockaddr *)su->su_srcaddr.buf,
363		    (socklen_t)su->su_srcaddr.len) == (ssize_t) slen) {
364			stat = TRUE;
365			if (su->su_cache)
366				cache_set(xprt, slen);
367		}
368	}
369	return (stat);
370}
371
372static bool_t
373svc_dg_getargs(SVCXPRT *xprt, xdrproc_t xdr_args, void *args_ptr)
374{
375	struct svc_dg_data *su;
376
377	assert(xprt != NULL);
378	su = su_data(xprt);
379	return (SVCAUTH_UNWRAP(&SVC_AUTH(xprt),
380		&su->su_xdrs, xdr_args, args_ptr));
381}
382
383static bool_t
384svc_dg_freeargs(SVCXPRT *xprt, xdrproc_t xdr_args, void *args_ptr)
385{
386	XDR *xdrs = &(su_data(xprt)->su_xdrs);
387
388	xdrs->x_op = XDR_FREE;
389	return (*xdr_args)(xdrs, args_ptr);
390}
391
392static void
393svc_dg_destroy(SVCXPRT *xprt)
394{
395	struct svc_dg_data *su = su_data(xprt);
396
397	xprt_unregister(xprt);
398	if (xprt->xp_fd != -1)
399		(void)_close(xprt->xp_fd);
400	XDR_DESTROY(&(su->su_xdrs));
401	(void) mem_free(rpc_buffer(xprt), su->su_iosz);
402	if (su->su_srcaddr.buf)
403		(void) mem_free(su->su_srcaddr.buf, su->su_srcaddr.maxlen);
404	(void) mem_free(su, sizeof (*su));
405	if (xprt->xp_rtaddr.buf)
406		(void) mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.maxlen);
407	if (xprt->xp_ltaddr.buf)
408		(void) mem_free(xprt->xp_ltaddr.buf, xprt->xp_ltaddr.maxlen);
409	free(xprt->xp_tp);
410	svc_xprt_free(xprt);
411}
412
413static bool_t
414/*ARGSUSED*/
415svc_dg_control(SVCXPRT *xprt, const u_int rq, void *in)
416{
417	return (FALSE);
418}
419
420static void
421svc_dg_ops(SVCXPRT *xprt)
422{
423	static struct xp_ops ops;
424	static struct xp_ops2 ops2;
425
426/* VARIABLES PROTECTED BY ops_lock: ops */
427
428	mutex_lock(&ops_lock);
429	if (ops.xp_recv == NULL) {
430		ops.xp_recv = svc_dg_recv;
431		ops.xp_stat = svc_dg_stat;
432		ops.xp_getargs = svc_dg_getargs;
433		ops.xp_reply = svc_dg_reply;
434		ops.xp_freeargs = svc_dg_freeargs;
435		ops.xp_destroy = svc_dg_destroy;
436		ops2.xp_control = svc_dg_control;
437	}
438	xprt->xp_ops = &ops;
439	xprt->xp_ops2 = &ops2;
440	mutex_unlock(&ops_lock);
441}
442
443/*  The CACHING COMPONENT */
444
445/*
446 * Could have been a separate file, but some part of it depends upon the
447 * private structure of the client handle.
448 *
449 * Fifo cache for cl server
450 * Copies pointers to reply buffers into fifo cache
451 * Buffers are sent again if retransmissions are detected.
452 */
453
454#define	SPARSENESS 4	/* 75% sparse */
455
456#define	ALLOC(type, size)	\
457	(type *) mem_alloc((sizeof (type) * (size)))
458
459#define	MEMZERO(addr, type, size)	 \
460	(void) memset((void *) (addr), 0, sizeof (type) * (int) (size))
461
462#define	FREE(addr, type, size)	\
463	mem_free((addr), (sizeof (type) * (size)))
464
465/*
466 * An entry in the cache
467 */
468typedef struct cache_node *cache_ptr;
469struct cache_node {
470	/*
471	 * Index into cache is xid, proc, vers, prog and address
472	 */
473	u_int32_t cache_xid;
474	rpcproc_t cache_proc;
475	rpcvers_t cache_vers;
476	rpcprog_t cache_prog;
477	struct netbuf cache_addr;
478	/*
479	 * The cached reply and length
480	 */
481	char *cache_reply;
482	size_t cache_replylen;
483	/*
484	 * Next node on the list, if there is a collision
485	 */
486	cache_ptr cache_next;
487};
488
489/*
490 * The entire cache
491 */
492struct cl_cache {
493	u_int uc_size;		/* size of cache */
494	cache_ptr *uc_entries;	/* hash table of entries in cache */
495	cache_ptr *uc_fifo;	/* fifo list of entries in cache */
496	u_int uc_nextvictim;	/* points to next victim in fifo list */
497	rpcprog_t uc_prog;	/* saved program number */
498	rpcvers_t uc_vers;	/* saved version number */
499	rpcproc_t uc_proc;	/* saved procedure number */
500};
501
502
503/*
504 * the hashing function
505 */
506#define	CACHE_LOC(transp, xid)	\
507	(xid % (SPARSENESS * ((struct cl_cache *) \
508		su_data(transp)->su_cache)->uc_size))
509
510/*
511 * Enable use of the cache. Returns 1 on success, 0 on failure.
512 * Note: there is no disable.
513 */
514static const char cache_enable_str[] = "svc_enablecache: %s %s";
515static const char alloc_err[] = "could not allocate cache ";
516static const char enable_err[] = "cache already enabled";
517
518int
519svc_dg_enablecache(SVCXPRT *transp, u_int size)
520{
521	struct svc_dg_data *su = su_data(transp);
522	struct cl_cache *uc;
523
524	mutex_lock(&dupreq_lock);
525	if (su->su_cache != NULL) {
526		(void) warnx(cache_enable_str, enable_err, " ");
527		mutex_unlock(&dupreq_lock);
528		return (0);
529	}
530	uc = ALLOC(struct cl_cache, 1);
531	if (uc == NULL) {
532		warnx(cache_enable_str, alloc_err, " ");
533		mutex_unlock(&dupreq_lock);
534		return (0);
535	}
536	uc->uc_size = size;
537	uc->uc_nextvictim = 0;
538	uc->uc_entries = ALLOC(cache_ptr, size * SPARSENESS);
539	if (uc->uc_entries == NULL) {
540		warnx(cache_enable_str, alloc_err, "data");
541		FREE(uc, struct cl_cache, 1);
542		mutex_unlock(&dupreq_lock);
543		return (0);
544	}
545	MEMZERO(uc->uc_entries, cache_ptr, size * SPARSENESS);
546	uc->uc_fifo = ALLOC(cache_ptr, size);
547	if (uc->uc_fifo == NULL) {
548		warnx(cache_enable_str, alloc_err, "fifo");
549		FREE(uc->uc_entries, cache_ptr, size * SPARSENESS);
550		FREE(uc, struct cl_cache, 1);
551		mutex_unlock(&dupreq_lock);
552		return (0);
553	}
554	MEMZERO(uc->uc_fifo, cache_ptr, size);
555	su->su_cache = (char *)(void *)uc;
556	mutex_unlock(&dupreq_lock);
557	return (1);
558}
559
560/*
561 * Set an entry in the cache.  It assumes that the uc entry is set from
562 * the earlier call to cache_get() for the same procedure.  This will always
563 * happen because cache_get() is calle by svc_dg_recv and cache_set() is called
564 * by svc_dg_reply().  All this hoopla because the right RPC parameters are
565 * not available at svc_dg_reply time.
566 */
567
568static const char cache_set_str[] = "cache_set: %s";
569static const char cache_set_err1[] = "victim not found";
570static const char cache_set_err2[] = "victim alloc failed";
571static const char cache_set_err3[] = "could not allocate new rpc buffer";
572
573static void
574cache_set(SVCXPRT *xprt, size_t replylen)
575{
576	cache_ptr victim;
577	cache_ptr *vicp;
578	struct svc_dg_data *su = su_data(xprt);
579	struct cl_cache *uc = (struct cl_cache *) su->su_cache;
580	u_int loc;
581	char *newbuf;
582#ifdef RPC_CACHE_DEBUG
583	struct netconfig *nconf;
584	char *uaddr;
585#endif
586
587	mutex_lock(&dupreq_lock);
588	/*
589	 * Find space for the new entry, either by
590	 * reusing an old entry, or by mallocing a new one
591	 */
592	victim = uc->uc_fifo[uc->uc_nextvictim];
593	if (victim != NULL) {
594		loc = CACHE_LOC(xprt, victim->cache_xid);
595		for (vicp = &uc->uc_entries[loc];
596			*vicp != NULL && *vicp != victim;
597			vicp = &(*vicp)->cache_next)
598			;
599		if (*vicp == NULL) {
600			warnx(cache_set_str, cache_set_err1);
601			mutex_unlock(&dupreq_lock);
602			return;
603		}
604		*vicp = victim->cache_next;	/* remove from cache */
605		newbuf = victim->cache_reply;
606	} else {
607		victim = ALLOC(struct cache_node, 1);
608		if (victim == NULL) {
609			warnx(cache_set_str, cache_set_err2);
610			mutex_unlock(&dupreq_lock);
611			return;
612		}
613		newbuf = mem_alloc(su->su_iosz);
614		if (newbuf == NULL) {
615			warnx(cache_set_str, cache_set_err3);
616			FREE(victim, struct cache_node, 1);
617			mutex_unlock(&dupreq_lock);
618			return;
619		}
620	}
621
622	/*
623	 * Store it away
624	 */
625#ifdef RPC_CACHE_DEBUG
626	if (nconf = getnetconfigent(xprt->xp_netid)) {
627		uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr);
628		freenetconfigent(nconf);
629		printf(
630	"cache set for xid= %x prog=%d vers=%d proc=%d for rmtaddr=%s\n",
631			su->su_xid, uc->uc_prog, uc->uc_vers,
632			uc->uc_proc, uaddr);
633		free(uaddr);
634	}
635#endif
636	victim->cache_replylen = replylen;
637	victim->cache_reply = rpc_buffer(xprt);
638	rpc_buffer(xprt) = newbuf;
639	xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt),
640			su->su_iosz, XDR_ENCODE);
641	victim->cache_xid = su->su_xid;
642	victim->cache_proc = uc->uc_proc;
643	victim->cache_vers = uc->uc_vers;
644	victim->cache_prog = uc->uc_prog;
645	victim->cache_addr = xprt->xp_rtaddr;
646	victim->cache_addr.buf = ALLOC(char, xprt->xp_rtaddr.len);
647	(void) memcpy(victim->cache_addr.buf, xprt->xp_rtaddr.buf,
648	    (size_t)xprt->xp_rtaddr.len);
649	loc = CACHE_LOC(xprt, victim->cache_xid);
650	victim->cache_next = uc->uc_entries[loc];
651	uc->uc_entries[loc] = victim;
652	uc->uc_fifo[uc->uc_nextvictim++] = victim;
653	uc->uc_nextvictim %= uc->uc_size;
654	mutex_unlock(&dupreq_lock);
655}
656
657/*
658 * Try to get an entry from the cache
659 * return 1 if found, 0 if not found and set the stage for cache_set()
660 */
661static int
662cache_get(SVCXPRT *xprt, struct rpc_msg *msg, char **replyp, size_t *replylenp)
663{
664	u_int loc;
665	cache_ptr ent;
666	struct svc_dg_data *su = su_data(xprt);
667	struct cl_cache *uc = (struct cl_cache *) su->su_cache;
668#ifdef RPC_CACHE_DEBUG
669	struct netconfig *nconf;
670	char *uaddr;
671#endif
672
673	mutex_lock(&dupreq_lock);
674	loc = CACHE_LOC(xprt, su->su_xid);
675	for (ent = uc->uc_entries[loc]; ent != NULL; ent = ent->cache_next) {
676		if (ent->cache_xid == su->su_xid &&
677			ent->cache_proc == msg->rm_call.cb_proc &&
678			ent->cache_vers == msg->rm_call.cb_vers &&
679			ent->cache_prog == msg->rm_call.cb_prog &&
680			ent->cache_addr.len == xprt->xp_rtaddr.len &&
681			(memcmp(ent->cache_addr.buf, xprt->xp_rtaddr.buf,
682				xprt->xp_rtaddr.len) == 0)) {
683#ifdef RPC_CACHE_DEBUG
684			if (nconf = getnetconfigent(xprt->xp_netid)) {
685				uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr);
686				freenetconfigent(nconf);
687				printf(
688	"cache entry found for xid=%x prog=%d vers=%d proc=%d for rmtaddr=%s\n",
689					su->su_xid, msg->rm_call.cb_prog,
690					msg->rm_call.cb_vers,
691					msg->rm_call.cb_proc, uaddr);
692				free(uaddr);
693			}
694#endif
695			*replyp = ent->cache_reply;
696			*replylenp = ent->cache_replylen;
697			mutex_unlock(&dupreq_lock);
698			return (1);
699		}
700	}
701	/*
702	 * Failed to find entry
703	 * Remember a few things so we can do a set later
704	 */
705	uc->uc_proc = msg->rm_call.cb_proc;
706	uc->uc_vers = msg->rm_call.cb_vers;
707	uc->uc_prog = msg->rm_call.cb_prog;
708	mutex_unlock(&dupreq_lock);
709	return (0);
710}
711