1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Kernel memory management.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD$");
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/kernel.h>		/* for ticks and hz */
71#include <sys/eventhandler.h>
72#include <sys/lock.h>
73#include <sys/proc.h>
74#include <sys/malloc.h>
75#include <sys/rwlock.h>
76#include <sys/sysctl.h>
77#include <sys/vmem.h>
78
79#include <vm/vm.h>
80#include <vm/vm_param.h>
81#include <vm/vm_kern.h>
82#include <vm/pmap.h>
83#include <vm/vm_map.h>
84#include <vm/vm_object.h>
85#include <vm/vm_page.h>
86#include <vm/vm_pageout.h>
87#include <vm/vm_extern.h>
88#include <vm/uma.h>
89
90vm_map_t kernel_map;
91vm_map_t exec_map;
92vm_map_t pipe_map;
93
94const void *zero_region;
95CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0);
96
97/* NB: Used by kernel debuggers. */
98const u_long vm_maxuser_address = VM_MAXUSER_ADDRESS;
99
100SYSCTL_ULONG(_vm, OID_AUTO, min_kernel_address, CTLFLAG_RD,
101    SYSCTL_NULL_ULONG_PTR, VM_MIN_KERNEL_ADDRESS, "Min kernel address");
102
103SYSCTL_ULONG(_vm, OID_AUTO, max_kernel_address, CTLFLAG_RD,
104#if defined(__arm__) || defined(__sparc64__)
105    &vm_max_kernel_address, 0,
106#else
107    SYSCTL_NULL_ULONG_PTR, VM_MAX_KERNEL_ADDRESS,
108#endif
109    "Max kernel address");
110
111/*
112 *	kva_alloc:
113 *
114 *	Allocate a virtual address range with no underlying object and
115 *	no initial mapping to physical memory.  Any mapping from this
116 *	range to physical memory must be explicitly created prior to
117 *	its use, typically with pmap_qenter().  Any attempt to create
118 *	a mapping on demand through vm_fault() will result in a panic.
119 */
120vm_offset_t
121kva_alloc(size)
122	vm_size_t size;
123{
124	vm_offset_t addr;
125
126	size = round_page(size);
127	if (vmem_alloc(kernel_arena, size, M_BESTFIT | M_NOWAIT, &addr))
128		return (0);
129
130	return (addr);
131}
132
133/*
134 *	kva_free:
135 *
136 *	Release a region of kernel virtual memory allocated
137 *	with kva_alloc, and return the physical pages
138 *	associated with that region.
139 *
140 *	This routine may not block on kernel maps.
141 */
142void
143kva_free(addr, size)
144	vm_offset_t addr;
145	vm_size_t size;
146{
147
148	size = round_page(size);
149	vmem_free(kernel_arena, addr, size);
150}
151
152/*
153 *	Allocates a region from the kernel address map and physical pages
154 *	within the specified address range to the kernel object.  Creates a
155 *	wired mapping from this region to these pages, and returns the
156 *	region's starting virtual address.  The allocated pages are not
157 *	necessarily physically contiguous.  If M_ZERO is specified through the
158 *	given flags, then the pages are zeroed before they are mapped.
159 */
160vm_offset_t
161kmem_alloc_attr(vmem_t *vmem, vm_size_t size, int flags, vm_paddr_t low,
162    vm_paddr_t high, vm_memattr_t memattr)
163{
164	vm_object_t object = vmem == kmem_arena ? kmem_object : kernel_object;
165	vm_offset_t addr, i;
166	vm_ooffset_t offset;
167	vm_page_t m;
168	int pflags, tries;
169
170	size = round_page(size);
171	if (vmem_alloc(vmem, size, M_BESTFIT | flags, &addr))
172		return (0);
173	offset = addr - VM_MIN_KERNEL_ADDRESS;
174	pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
175	VM_OBJECT_WLOCK(object);
176	for (i = 0; i < size; i += PAGE_SIZE) {
177		tries = 0;
178retry:
179		m = vm_page_alloc_contig(object, OFF_TO_IDX(offset + i),
180		    pflags, 1, low, high, PAGE_SIZE, 0, memattr);
181		if (m == NULL) {
182			VM_OBJECT_WUNLOCK(object);
183			if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
184				if (!vm_page_reclaim_contig(pflags, 1,
185				    low, high, PAGE_SIZE, 0) &&
186				    (flags & M_WAITOK) != 0)
187					VM_WAIT;
188				VM_OBJECT_WLOCK(object);
189				tries++;
190				goto retry;
191			}
192			kmem_unback(object, addr, i);
193			vmem_free(vmem, addr, size);
194			return (0);
195		}
196		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
197			pmap_zero_page(m);
198		m->valid = VM_PAGE_BITS_ALL;
199		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL,
200		    VM_PROT_ALL | PMAP_ENTER_WIRED, 0);
201	}
202	VM_OBJECT_WUNLOCK(object);
203	return (addr);
204}
205
206/*
207 *	Allocates a region from the kernel address map and physically
208 *	contiguous pages within the specified address range to the kernel
209 *	object.  Creates a wired mapping from this region to these pages, and
210 *	returns the region's starting virtual address.  If M_ZERO is specified
211 *	through the given flags, then the pages are zeroed before they are
212 *	mapped.
213 */
214vm_offset_t
215kmem_alloc_contig(struct vmem *vmem, vm_size_t size, int flags, vm_paddr_t low,
216    vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
217    vm_memattr_t memattr)
218{
219	vm_object_t object = vmem == kmem_arena ? kmem_object : kernel_object;
220	vm_offset_t addr, tmp;
221	vm_ooffset_t offset;
222	vm_page_t end_m, m;
223	u_long npages;
224	int pflags, tries;
225
226	size = round_page(size);
227	if (vmem_alloc(vmem, size, flags | M_BESTFIT, &addr))
228		return (0);
229	offset = addr - VM_MIN_KERNEL_ADDRESS;
230	pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
231	npages = atop(size);
232	VM_OBJECT_WLOCK(object);
233	tries = 0;
234retry:
235	m = vm_page_alloc_contig(object, OFF_TO_IDX(offset), pflags,
236	    npages, low, high, alignment, boundary, memattr);
237	if (m == NULL) {
238		VM_OBJECT_WUNLOCK(object);
239		if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
240			if (!vm_page_reclaim_contig(pflags, npages, low, high,
241			    alignment, boundary) && (flags & M_WAITOK) != 0)
242				VM_WAIT;
243			VM_OBJECT_WLOCK(object);
244			tries++;
245			goto retry;
246		}
247		vmem_free(vmem, addr, size);
248		return (0);
249	}
250	end_m = m + npages;
251	tmp = addr;
252	for (; m < end_m; m++) {
253		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
254			pmap_zero_page(m);
255		m->valid = VM_PAGE_BITS_ALL;
256		pmap_enter(kernel_pmap, tmp, m, VM_PROT_ALL,
257		    VM_PROT_ALL | PMAP_ENTER_WIRED, 0);
258		tmp += PAGE_SIZE;
259	}
260	VM_OBJECT_WUNLOCK(object);
261	return (addr);
262}
263
264/*
265 *	kmem_suballoc:
266 *
267 *	Allocates a map to manage a subrange
268 *	of the kernel virtual address space.
269 *
270 *	Arguments are as follows:
271 *
272 *	parent		Map to take range from
273 *	min, max	Returned endpoints of map
274 *	size		Size of range to find
275 *	superpage_align	Request that min is superpage aligned
276 */
277vm_map_t
278kmem_suballoc(vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
279    vm_size_t size, boolean_t superpage_align)
280{
281	int ret;
282	vm_map_t result;
283
284	size = round_page(size);
285
286	*min = vm_map_min(parent);
287	ret = vm_map_find(parent, NULL, 0, min, size, 0, superpage_align ?
288	    VMFS_SUPER_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL,
289	    MAP_ACC_NO_CHARGE);
290	if (ret != KERN_SUCCESS)
291		panic("kmem_suballoc: bad status return of %d", ret);
292	*max = *min + size;
293	result = vm_map_create(vm_map_pmap(parent), *min, *max);
294	if (result == NULL)
295		panic("kmem_suballoc: cannot create submap");
296	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
297		panic("kmem_suballoc: unable to change range to submap");
298	return (result);
299}
300
301/*
302 *	kmem_malloc:
303 *
304 *	Allocate wired-down pages in the kernel's address space.
305 */
306vm_offset_t
307kmem_malloc(struct vmem *vmem, vm_size_t size, int flags)
308{
309	vm_offset_t addr;
310	int rv;
311
312	size = round_page(size);
313	if (vmem_alloc(vmem, size, flags | M_BESTFIT, &addr))
314		return (0);
315
316	rv = kmem_back((vmem == kmem_arena) ? kmem_object : kernel_object,
317	    addr, size, flags);
318	if (rv != KERN_SUCCESS) {
319		vmem_free(vmem, addr, size);
320		return (0);
321	}
322	return (addr);
323}
324
325/*
326 *	kmem_back:
327 *
328 *	Allocate physical pages for the specified virtual address range.
329 */
330int
331kmem_back(vm_object_t object, vm_offset_t addr, vm_size_t size, int flags)
332{
333	vm_offset_t offset, i;
334	vm_page_t m;
335	int pflags;
336
337	KASSERT(object == kmem_object || object == kernel_object,
338	    ("kmem_back: only supports kernel objects."));
339
340	offset = addr - VM_MIN_KERNEL_ADDRESS;
341	pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
342
343	VM_OBJECT_WLOCK(object);
344	for (i = 0; i < size; i += PAGE_SIZE) {
345retry:
346		m = vm_page_alloc(object, OFF_TO_IDX(offset + i), pflags);
347
348		/*
349		 * Ran out of space, free everything up and return. Don't need
350		 * to lock page queues here as we know that the pages we got
351		 * aren't on any queues.
352		 */
353		if (m == NULL) {
354			VM_OBJECT_WUNLOCK(object);
355			if ((flags & M_NOWAIT) == 0) {
356				VM_WAIT;
357				VM_OBJECT_WLOCK(object);
358				goto retry;
359			}
360			kmem_unback(object, addr, i);
361			return (KERN_NO_SPACE);
362		}
363		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
364			pmap_zero_page(m);
365		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
366		    ("kmem_malloc: page %p is managed", m));
367		m->valid = VM_PAGE_BITS_ALL;
368		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL,
369		    VM_PROT_ALL | PMAP_ENTER_WIRED, 0);
370	}
371	VM_OBJECT_WUNLOCK(object);
372
373	return (KERN_SUCCESS);
374}
375
376/*
377 *	kmem_unback:
378 *
379 *	Unmap and free the physical pages underlying the specified virtual
380 *	address range.
381 *
382 *	A physical page must exist within the specified object at each index
383 *	that is being unmapped.
384 */
385void
386kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
387{
388	vm_page_t m;
389	vm_offset_t i, offset;
390
391	KASSERT(object == kmem_object || object == kernel_object,
392	    ("kmem_unback: only supports kernel objects."));
393
394	pmap_remove(kernel_pmap, addr, addr + size);
395	offset = addr - VM_MIN_KERNEL_ADDRESS;
396	VM_OBJECT_WLOCK(object);
397	for (i = 0; i < size; i += PAGE_SIZE) {
398		m = vm_page_lookup(object, OFF_TO_IDX(offset + i));
399		vm_page_unwire(m, PQ_NONE);
400		vm_page_free(m);
401	}
402	VM_OBJECT_WUNLOCK(object);
403}
404
405/*
406 *	kmem_free:
407 *
408 *	Free memory allocated with kmem_malloc.  The size must match the
409 *	original allocation.
410 */
411void
412kmem_free(struct vmem *vmem, vm_offset_t addr, vm_size_t size)
413{
414
415	size = round_page(size);
416	kmem_unback((vmem == kmem_arena) ? kmem_object : kernel_object,
417	    addr, size);
418	vmem_free(vmem, addr, size);
419}
420
421/*
422 *	kmap_alloc_wait:
423 *
424 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
425 *	has no room, the caller sleeps waiting for more memory in the submap.
426 *
427 *	This routine may block.
428 */
429vm_offset_t
430kmap_alloc_wait(map, size)
431	vm_map_t map;
432	vm_size_t size;
433{
434	vm_offset_t addr;
435
436	size = round_page(size);
437	if (!swap_reserve(size))
438		return (0);
439
440	for (;;) {
441		/*
442		 * To make this work for more than one map, use the map's lock
443		 * to lock out sleepers/wakers.
444		 */
445		vm_map_lock(map);
446		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
447			break;
448		/* no space now; see if we can ever get space */
449		if (vm_map_max(map) - vm_map_min(map) < size) {
450			vm_map_unlock(map);
451			swap_release(size);
452			return (0);
453		}
454		map->needs_wakeup = TRUE;
455		vm_map_unlock_and_wait(map, 0);
456	}
457	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL,
458	    VM_PROT_ALL, MAP_ACC_CHARGED);
459	vm_map_unlock(map);
460	return (addr);
461}
462
463/*
464 *	kmap_free_wakeup:
465 *
466 *	Returns memory to a submap of the kernel, and wakes up any processes
467 *	waiting for memory in that map.
468 */
469void
470kmap_free_wakeup(map, addr, size)
471	vm_map_t map;
472	vm_offset_t addr;
473	vm_size_t size;
474{
475
476	vm_map_lock(map);
477	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
478	if (map->needs_wakeup) {
479		map->needs_wakeup = FALSE;
480		vm_map_wakeup(map);
481	}
482	vm_map_unlock(map);
483}
484
485void
486kmem_init_zero_region(void)
487{
488	vm_offset_t addr, i;
489	vm_page_t m;
490
491	/*
492	 * Map a single physical page of zeros to a larger virtual range.
493	 * This requires less looping in places that want large amounts of
494	 * zeros, while not using much more physical resources.
495	 */
496	addr = kva_alloc(ZERO_REGION_SIZE);
497	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
498	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
499	if ((m->flags & PG_ZERO) == 0)
500		pmap_zero_page(m);
501	for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE)
502		pmap_qenter(addr + i, &m, 1);
503	pmap_protect(kernel_pmap, addr, addr + ZERO_REGION_SIZE, VM_PROT_READ);
504
505	zero_region = (const void *)addr;
506}
507
508/*
509 * 	kmem_init:
510 *
511 *	Create the kernel map; insert a mapping covering kernel text,
512 *	data, bss, and all space allocated thus far (`boostrap' data).  The
513 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
514 *	`start' as allocated, and the range between `start' and `end' as free.
515 */
516void
517kmem_init(start, end)
518	vm_offset_t start, end;
519{
520	vm_map_t m;
521
522	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
523	m->system_map = 1;
524	vm_map_lock(m);
525	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
526	kernel_map = m;
527	(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
528#ifdef __amd64__
529	    KERNBASE,
530#else
531	    VM_MIN_KERNEL_ADDRESS,
532#endif
533	    start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
534	/* ... and ending with the completion of the above `insert' */
535	vm_map_unlock(m);
536}
537
538#ifdef DIAGNOSTIC
539/*
540 * Allow userspace to directly trigger the VM drain routine for testing
541 * purposes.
542 */
543static int
544debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
545{
546	int error, i;
547
548	i = 0;
549	error = sysctl_handle_int(oidp, &i, 0, req);
550	if (error)
551		return (error);
552	if (i)
553		EVENTHANDLER_INVOKE(vm_lowmem, 0);
554	return (0);
555}
556
557SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
558    debug_vm_lowmem, "I", "set to trigger vm_lowmem event");
559#endif
560