1/*-
2 * Copyright (c) 1998 Matthew Dillon,
3 * Copyright (c) 1994 John S. Dyson
4 * Copyright (c) 1990 University of Utah.
5 * Copyright (c) 1982, 1986, 1989, 1993
6 *	The Regents of the University of California.  All rights reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *				New Swap System
41 *				Matthew Dillon
42 *
43 * Radix Bitmap 'blists'.
44 *
45 *	- The new swapper uses the new radix bitmap code.  This should scale
46 *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47 *	  arbitrary degree of fragmentation.
48 *
49 * Features:
50 *
51 *	- on the fly reallocation of swap during putpages.  The new system
52 *	  does not try to keep previously allocated swap blocks for dirty
53 *	  pages.
54 *
55 *	- on the fly deallocation of swap
56 *
57 *	- No more garbage collection required.  Unnecessarily allocated swap
58 *	  blocks only exist for dirty vm_page_t's now and these are already
59 *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60 *	  removal of invalidated swap blocks when a page is destroyed
61 *	  or renamed.
62 *
63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64 *
65 *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66 *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
67 */
68
69#include <sys/cdefs.h>
70__FBSDID("$FreeBSD$");
71
72#include "opt_swap.h"
73#include "opt_vm.h"
74
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/conf.h>
78#include <sys/kernel.h>
79#include <sys/priv.h>
80#include <sys/proc.h>
81#include <sys/bio.h>
82#include <sys/buf.h>
83#include <sys/disk.h>
84#include <sys/fcntl.h>
85#include <sys/mount.h>
86#include <sys/namei.h>
87#include <sys/vnode.h>
88#include <sys/malloc.h>
89#include <sys/racct.h>
90#include <sys/resource.h>
91#include <sys/resourcevar.h>
92#include <sys/rwlock.h>
93#include <sys/sysctl.h>
94#include <sys/sysproto.h>
95#include <sys/blist.h>
96#include <sys/lock.h>
97#include <sys/sx.h>
98#include <sys/vmmeter.h>
99
100#include <security/mac/mac_framework.h>
101
102#include <vm/vm.h>
103#include <vm/pmap.h>
104#include <vm/vm_map.h>
105#include <vm/vm_kern.h>
106#include <vm/vm_object.h>
107#include <vm/vm_page.h>
108#include <vm/vm_pager.h>
109#include <vm/vm_pageout.h>
110#include <vm/vm_param.h>
111#include <vm/swap_pager.h>
112#include <vm/vm_extern.h>
113#include <vm/uma.h>
114
115#include <geom/geom.h>
116
117/*
118 * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, 16
119 * or 32 pages per allocation.
120 * The 32-page limit is due to the radix code (kern/subr_blist.c).
121 */
122#ifndef MAX_PAGEOUT_CLUSTER
123#define MAX_PAGEOUT_CLUSTER 16
124#endif
125
126#if !defined(SWB_NPAGES)
127#define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
128#endif
129
130/*
131 * The swblock structure maps an object and a small, fixed-size range
132 * of page indices to disk addresses within a swap area.
133 * The collection of these mappings is implemented as a hash table.
134 * Unused disk addresses within a swap area are allocated and managed
135 * using a blist.
136 */
137#define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
138#define SWAP_META_PAGES		(SWB_NPAGES * 2)
139#define SWAP_META_MASK		(SWAP_META_PAGES - 1)
140
141struct swblock {
142	struct swblock	*swb_hnext;
143	vm_object_t	swb_object;
144	vm_pindex_t	swb_index;
145	int		swb_count;
146	daddr_t		swb_pages[SWAP_META_PAGES];
147};
148
149static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
150static struct mtx sw_dev_mtx;
151static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
152static struct swdevt *swdevhd;	/* Allocate from here next */
153static int nswapdev;		/* Number of swap devices */
154int swap_pager_avail;
155static struct sx swdev_syscall_lock;	/* serialize swap(on|off) */
156
157static vm_ooffset_t swap_total;
158SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
159    "Total amount of available swap storage.");
160static vm_ooffset_t swap_reserved;
161SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
162    "Amount of swap storage needed to back all allocated anonymous memory.");
163static int overcommit = 0;
164SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0,
165    "Configure virtual memory overcommit behavior. See tuning(7) "
166    "for details.");
167static unsigned long swzone;
168SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
169    "Actual size of swap metadata zone");
170static unsigned long swap_maxpages;
171SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
172    "Maximum amount of swap supported");
173
174/* bits from overcommit */
175#define	SWAP_RESERVE_FORCE_ON		(1 << 0)
176#define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
177#define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
178
179int
180swap_reserve(vm_ooffset_t incr)
181{
182
183	return (swap_reserve_by_cred(incr, curthread->td_ucred));
184}
185
186int
187swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
188{
189	vm_ooffset_t r, s;
190	int res, error;
191	static int curfail;
192	static struct timeval lastfail;
193	struct uidinfo *uip;
194
195	uip = cred->cr_ruidinfo;
196
197	if (incr & PAGE_MASK)
198		panic("swap_reserve: & PAGE_MASK");
199
200#ifdef RACCT
201	if (racct_enable) {
202		PROC_LOCK(curproc);
203		error = racct_add(curproc, RACCT_SWAP, incr);
204		PROC_UNLOCK(curproc);
205		if (error != 0)
206			return (0);
207	}
208#endif
209
210	res = 0;
211	mtx_lock(&sw_dev_mtx);
212	r = swap_reserved + incr;
213	if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
214		s = vm_cnt.v_page_count - vm_cnt.v_free_reserved - vm_cnt.v_wire_count;
215		s *= PAGE_SIZE;
216	} else
217		s = 0;
218	s += swap_total;
219	if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
220	    (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
221		res = 1;
222		swap_reserved = r;
223	}
224	mtx_unlock(&sw_dev_mtx);
225
226	if (res) {
227		UIDINFO_VMSIZE_LOCK(uip);
228		if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
229		    uip->ui_vmsize + incr > lim_cur(curthread, RLIMIT_SWAP) &&
230		    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
231			res = 0;
232		else
233			uip->ui_vmsize += incr;
234		UIDINFO_VMSIZE_UNLOCK(uip);
235		if (!res) {
236			mtx_lock(&sw_dev_mtx);
237			swap_reserved -= incr;
238			mtx_unlock(&sw_dev_mtx);
239		}
240	}
241	if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
242		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
243		    uip->ui_uid, curproc->p_pid, incr);
244	}
245
246#ifdef RACCT
247	if (!res) {
248		PROC_LOCK(curproc);
249		racct_sub(curproc, RACCT_SWAP, incr);
250		PROC_UNLOCK(curproc);
251	}
252#endif
253
254	return (res);
255}
256
257void
258swap_reserve_force(vm_ooffset_t incr)
259{
260	struct uidinfo *uip;
261
262	mtx_lock(&sw_dev_mtx);
263	swap_reserved += incr;
264	mtx_unlock(&sw_dev_mtx);
265
266#ifdef RACCT
267	PROC_LOCK(curproc);
268	racct_add_force(curproc, RACCT_SWAP, incr);
269	PROC_UNLOCK(curproc);
270#endif
271
272	uip = curthread->td_ucred->cr_ruidinfo;
273	PROC_LOCK(curproc);
274	UIDINFO_VMSIZE_LOCK(uip);
275	uip->ui_vmsize += incr;
276	UIDINFO_VMSIZE_UNLOCK(uip);
277	PROC_UNLOCK(curproc);
278}
279
280void
281swap_release(vm_ooffset_t decr)
282{
283	struct ucred *cred;
284
285	PROC_LOCK(curproc);
286	cred = curthread->td_ucred;
287	swap_release_by_cred(decr, cred);
288	PROC_UNLOCK(curproc);
289}
290
291void
292swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
293{
294 	struct uidinfo *uip;
295
296	uip = cred->cr_ruidinfo;
297
298	if (decr & PAGE_MASK)
299		panic("swap_release: & PAGE_MASK");
300
301	mtx_lock(&sw_dev_mtx);
302	if (swap_reserved < decr)
303		panic("swap_reserved < decr");
304	swap_reserved -= decr;
305	mtx_unlock(&sw_dev_mtx);
306
307	UIDINFO_VMSIZE_LOCK(uip);
308	if (uip->ui_vmsize < decr)
309		printf("negative vmsize for uid = %d\n", uip->ui_uid);
310	uip->ui_vmsize -= decr;
311	UIDINFO_VMSIZE_UNLOCK(uip);
312
313	racct_sub_cred(cred, RACCT_SWAP, decr);
314}
315
316#define SWM_FREE	0x02	/* free, period			*/
317#define SWM_POP		0x04	/* pop out			*/
318
319int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
320static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
321static int nsw_rcount;		/* free read buffers			*/
322static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
323static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
324static int nsw_wcount_async_max;/* assigned maximum			*/
325static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
326
327static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
328SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
329    CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
330    "Maximum running async swap ops");
331
332static struct swblock **swhash;
333static int swhash_mask;
334static struct mtx swhash_mtx;
335
336static struct sx sw_alloc_sx;
337
338/*
339 * "named" and "unnamed" anon region objects.  Try to reduce the overhead
340 * of searching a named list by hashing it just a little.
341 */
342
343#define NOBJLISTS		8
344
345#define NOBJLIST(handle)	\
346	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
347
348static struct pagerlst	swap_pager_object_list[NOBJLISTS];
349static uma_zone_t	swap_zone;
350
351/*
352 * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
353 * calls hooked from other parts of the VM system and do not appear here.
354 * (see vm/swap_pager.h).
355 */
356static vm_object_t
357		swap_pager_alloc(void *handle, vm_ooffset_t size,
358		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
359static void	swap_pager_dealloc(vm_object_t object);
360static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
361    int *);
362static int	swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
363    int *, pgo_getpages_iodone_t, void *);
364static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
365static boolean_t
366		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
367static void	swap_pager_init(void);
368static void	swap_pager_unswapped(vm_page_t);
369static void	swap_pager_swapoff(struct swdevt *sp);
370
371struct pagerops swappagerops = {
372	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
373	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
374	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
375	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
376	.pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)		*/
377	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
378	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
379	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
380};
381
382/*
383 * dmmax is in page-sized chunks with the new swap system.  It was
384 * dev-bsized chunks in the old.  dmmax is always a power of 2.
385 *
386 * swap_*() routines are externally accessible.  swp_*() routines are
387 * internal.
388 */
389static int dmmax;
390static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
391static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
392
393SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &dmmax, 0,
394    "Maximum size of a swap block");
395
396static void	swp_sizecheck(void);
397static void	swp_pager_async_iodone(struct buf *bp);
398static int	swapongeom(struct vnode *);
399static int	swaponvp(struct thread *, struct vnode *, u_long);
400static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
401
402/*
403 * Swap bitmap functions
404 */
405static void	swp_pager_freeswapspace(daddr_t blk, int npages);
406static daddr_t	swp_pager_getswapspace(int npages);
407
408/*
409 * Metadata functions
410 */
411static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
412static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
413static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
414static void swp_pager_meta_free_all(vm_object_t);
415static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
416
417/*
418 * SWP_SIZECHECK() -	update swap_pager_full indication
419 *
420 *	update the swap_pager_almost_full indication and warn when we are
421 *	about to run out of swap space, using lowat/hiwat hysteresis.
422 *
423 *	Clear swap_pager_full ( task killing ) indication when lowat is met.
424 *
425 *	No restrictions on call
426 *	This routine may not block.
427 */
428static void
429swp_sizecheck(void)
430{
431
432	if (swap_pager_avail < nswap_lowat) {
433		if (swap_pager_almost_full == 0) {
434			printf("swap_pager: out of swap space\n");
435			swap_pager_almost_full = 1;
436		}
437	} else {
438		swap_pager_full = 0;
439		if (swap_pager_avail > nswap_hiwat)
440			swap_pager_almost_full = 0;
441	}
442}
443
444/*
445 * SWP_PAGER_HASH() -	hash swap meta data
446 *
447 *	This is an helper function which hashes the swapblk given
448 *	the object and page index.  It returns a pointer to a pointer
449 *	to the object, or a pointer to a NULL pointer if it could not
450 *	find a swapblk.
451 */
452static struct swblock **
453swp_pager_hash(vm_object_t object, vm_pindex_t index)
454{
455	struct swblock **pswap;
456	struct swblock *swap;
457
458	index &= ~(vm_pindex_t)SWAP_META_MASK;
459	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
460	while ((swap = *pswap) != NULL) {
461		if (swap->swb_object == object &&
462		    swap->swb_index == index
463		) {
464			break;
465		}
466		pswap = &swap->swb_hnext;
467	}
468	return (pswap);
469}
470
471/*
472 * SWAP_PAGER_INIT() -	initialize the swap pager!
473 *
474 *	Expected to be started from system init.  NOTE:  This code is run
475 *	before much else so be careful what you depend on.  Most of the VM
476 *	system has yet to be initialized at this point.
477 */
478static void
479swap_pager_init(void)
480{
481	/*
482	 * Initialize object lists
483	 */
484	int i;
485
486	for (i = 0; i < NOBJLISTS; ++i)
487		TAILQ_INIT(&swap_pager_object_list[i]);
488	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
489	sx_init(&sw_alloc_sx, "swspsx");
490	sx_init(&swdev_syscall_lock, "swsysc");
491
492	/*
493	 * Device Stripe, in PAGE_SIZE'd blocks
494	 */
495	dmmax = SWB_NPAGES * 2;
496}
497
498/*
499 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
500 *
501 *	Expected to be started from pageout process once, prior to entering
502 *	its main loop.
503 */
504void
505swap_pager_swap_init(void)
506{
507	unsigned long n, n2;
508
509	/*
510	 * Number of in-transit swap bp operations.  Don't
511	 * exhaust the pbufs completely.  Make sure we
512	 * initialize workable values (0 will work for hysteresis
513	 * but it isn't very efficient).
514	 *
515	 * The nsw_cluster_max is constrained by the bp->b_pages[]
516	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
517	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
518	 * constrained by the swap device interleave stripe size.
519	 *
520	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
521	 * designed to prevent other I/O from having high latencies due to
522	 * our pageout I/O.  The value 4 works well for one or two active swap
523	 * devices but is probably a little low if you have more.  Even so,
524	 * a higher value would probably generate only a limited improvement
525	 * with three or four active swap devices since the system does not
526	 * typically have to pageout at extreme bandwidths.   We will want
527	 * at least 2 per swap devices, and 4 is a pretty good value if you
528	 * have one NFS swap device due to the command/ack latency over NFS.
529	 * So it all works out pretty well.
530	 */
531	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
532
533	mtx_lock(&pbuf_mtx);
534	nsw_rcount = (nswbuf + 1) / 2;
535	nsw_wcount_sync = (nswbuf + 3) / 4;
536	nsw_wcount_async = 4;
537	nsw_wcount_async_max = nsw_wcount_async;
538	mtx_unlock(&pbuf_mtx);
539
540	/*
541	 * Initialize our zone.  Right now I'm just guessing on the number
542	 * we need based on the number of pages in the system.  Each swblock
543	 * can hold 32 pages, so this is probably overkill.  This reservation
544	 * is typically limited to around 32MB by default.
545	 */
546	n = vm_cnt.v_page_count / 2;
547	if (maxswzone && n > maxswzone / sizeof(struct swblock))
548		n = maxswzone / sizeof(struct swblock);
549	n2 = n;
550	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
551	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
552	if (swap_zone == NULL)
553		panic("failed to create swap_zone.");
554	do {
555		if (uma_zone_reserve_kva(swap_zone, n))
556			break;
557		/*
558		 * if the allocation failed, try a zone two thirds the
559		 * size of the previous attempt.
560		 */
561		n -= ((n + 2) / 3);
562	} while (n > 0);
563	if (n2 != n)
564		printf("Swap zone entries reduced from %lu to %lu.\n", n2, n);
565	swap_maxpages = n * SWAP_META_PAGES;
566	swzone = n * sizeof(struct swblock);
567	n2 = n;
568
569	/*
570	 * Initialize our meta-data hash table.  The swapper does not need to
571	 * be quite as efficient as the VM system, so we do not use an
572	 * oversized hash table.
573	 *
574	 * 	n: 		size of hash table, must be power of 2
575	 *	swhash_mask:	hash table index mask
576	 */
577	for (n = 1; n < n2 / 8; n *= 2)
578		;
579	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
580	swhash_mask = n - 1;
581	mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
582}
583
584static vm_object_t
585swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
586    vm_ooffset_t offset)
587{
588	vm_object_t object;
589
590	if (cred != NULL) {
591		if (!swap_reserve_by_cred(size, cred))
592			return (NULL);
593		crhold(cred);
594	}
595	object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
596	    PAGE_MASK + size));
597	object->handle = handle;
598	if (cred != NULL) {
599		object->cred = cred;
600		object->charge = size;
601	}
602	object->un_pager.swp.swp_bcount = 0;
603	return (object);
604}
605
606/*
607 * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
608 *			its metadata structures.
609 *
610 *	This routine is called from the mmap and fork code to create a new
611 *	OBJT_SWAP object.
612 *
613 *	This routine must ensure that no live duplicate is created for
614 *	the named object request, which is protected against by
615 *	holding the sw_alloc_sx lock in case handle != NULL.
616 */
617static vm_object_t
618swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
619    vm_ooffset_t offset, struct ucred *cred)
620{
621	vm_object_t object;
622
623	if (handle != NULL) {
624		/*
625		 * Reference existing named region or allocate new one.  There
626		 * should not be a race here against swp_pager_meta_build()
627		 * as called from vm_page_remove() in regards to the lookup
628		 * of the handle.
629		 */
630		sx_xlock(&sw_alloc_sx);
631		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
632		if (object == NULL) {
633			object = swap_pager_alloc_init(handle, cred, size,
634			    offset);
635			if (object != NULL) {
636				TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
637				    object, pager_object_list);
638			}
639		}
640		sx_xunlock(&sw_alloc_sx);
641	} else {
642		object = swap_pager_alloc_init(handle, cred, size, offset);
643	}
644	return (object);
645}
646
647/*
648 * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
649 *
650 *	The swap backing for the object is destroyed.  The code is
651 *	designed such that we can reinstantiate it later, but this
652 *	routine is typically called only when the entire object is
653 *	about to be destroyed.
654 *
655 *	The object must be locked.
656 */
657static void
658swap_pager_dealloc(vm_object_t object)
659{
660
661	VM_OBJECT_ASSERT_WLOCKED(object);
662	KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
663
664	/*
665	 * Remove from list right away so lookups will fail if we block for
666	 * pageout completion.
667	 */
668	if (object->handle != NULL) {
669		VM_OBJECT_WUNLOCK(object);
670		sx_xlock(&sw_alloc_sx);
671		TAILQ_REMOVE(NOBJLIST(object->handle), object,
672		    pager_object_list);
673		sx_xunlock(&sw_alloc_sx);
674		VM_OBJECT_WLOCK(object);
675	}
676
677	vm_object_pip_wait(object, "swpdea");
678
679	/*
680	 * Free all remaining metadata.  We only bother to free it from
681	 * the swap meta data.  We do not attempt to free swapblk's still
682	 * associated with vm_page_t's for this object.  We do not care
683	 * if paging is still in progress on some objects.
684	 */
685	swp_pager_meta_free_all(object);
686	object->handle = NULL;
687	object->type = OBJT_DEAD;
688}
689
690/************************************************************************
691 *			SWAP PAGER BITMAP ROUTINES			*
692 ************************************************************************/
693
694/*
695 * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
696 *
697 *	Allocate swap for the requested number of pages.  The starting
698 *	swap block number (a page index) is returned or SWAPBLK_NONE
699 *	if the allocation failed.
700 *
701 *	Also has the side effect of advising that somebody made a mistake
702 *	when they configured swap and didn't configure enough.
703 *
704 *	This routine may not sleep.
705 *
706 *	We allocate in round-robin fashion from the configured devices.
707 */
708static daddr_t
709swp_pager_getswapspace(int npages)
710{
711	daddr_t blk;
712	struct swdevt *sp;
713	int i;
714
715	blk = SWAPBLK_NONE;
716	mtx_lock(&sw_dev_mtx);
717	sp = swdevhd;
718	for (i = 0; i < nswapdev; i++) {
719		if (sp == NULL)
720			sp = TAILQ_FIRST(&swtailq);
721		if (!(sp->sw_flags & SW_CLOSING)) {
722			blk = blist_alloc(sp->sw_blist, npages);
723			if (blk != SWAPBLK_NONE) {
724				blk += sp->sw_first;
725				sp->sw_used += npages;
726				swap_pager_avail -= npages;
727				swp_sizecheck();
728				swdevhd = TAILQ_NEXT(sp, sw_list);
729				goto done;
730			}
731		}
732		sp = TAILQ_NEXT(sp, sw_list);
733	}
734	if (swap_pager_full != 2) {
735		printf("swap_pager_getswapspace(%d): failed\n", npages);
736		swap_pager_full = 2;
737		swap_pager_almost_full = 1;
738	}
739	swdevhd = NULL;
740done:
741	mtx_unlock(&sw_dev_mtx);
742	return (blk);
743}
744
745static int
746swp_pager_isondev(daddr_t blk, struct swdevt *sp)
747{
748
749	return (blk >= sp->sw_first && blk < sp->sw_end);
750}
751
752static void
753swp_pager_strategy(struct buf *bp)
754{
755	struct swdevt *sp;
756
757	mtx_lock(&sw_dev_mtx);
758	TAILQ_FOREACH(sp, &swtailq, sw_list) {
759		if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
760			mtx_unlock(&sw_dev_mtx);
761			if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
762			    unmapped_buf_allowed) {
763				bp->b_data = unmapped_buf;
764				bp->b_offset = 0;
765			} else {
766				pmap_qenter((vm_offset_t)bp->b_data,
767				    &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
768			}
769			sp->sw_strategy(bp, sp);
770			return;
771		}
772	}
773	panic("Swapdev not found");
774}
775
776
777/*
778 * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
779 *
780 *	This routine returns the specified swap blocks back to the bitmap.
781 *
782 *	This routine may not sleep.
783 */
784static void
785swp_pager_freeswapspace(daddr_t blk, int npages)
786{
787	struct swdevt *sp;
788
789	mtx_lock(&sw_dev_mtx);
790	TAILQ_FOREACH(sp, &swtailq, sw_list) {
791		if (blk >= sp->sw_first && blk < sp->sw_end) {
792			sp->sw_used -= npages;
793			/*
794			 * If we are attempting to stop swapping on
795			 * this device, we don't want to mark any
796			 * blocks free lest they be reused.
797			 */
798			if ((sp->sw_flags & SW_CLOSING) == 0) {
799				blist_free(sp->sw_blist, blk - sp->sw_first,
800				    npages);
801				swap_pager_avail += npages;
802				swp_sizecheck();
803			}
804			mtx_unlock(&sw_dev_mtx);
805			return;
806		}
807	}
808	panic("Swapdev not found");
809}
810
811/*
812 * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
813 *				range within an object.
814 *
815 *	This is a globally accessible routine.
816 *
817 *	This routine removes swapblk assignments from swap metadata.
818 *
819 *	The external callers of this routine typically have already destroyed
820 *	or renamed vm_page_t's associated with this range in the object so
821 *	we should be ok.
822 *
823 *	The object must be locked.
824 */
825void
826swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
827{
828
829	swp_pager_meta_free(object, start, size);
830}
831
832/*
833 * SWAP_PAGER_RESERVE() - reserve swap blocks in object
834 *
835 *	Assigns swap blocks to the specified range within the object.  The
836 *	swap blocks are not zeroed.  Any previous swap assignment is destroyed.
837 *
838 *	Returns 0 on success, -1 on failure.
839 */
840int
841swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
842{
843	int n = 0;
844	daddr_t blk = SWAPBLK_NONE;
845	vm_pindex_t beg = start;	/* save start index */
846
847	VM_OBJECT_WLOCK(object);
848	while (size) {
849		if (n == 0) {
850			n = BLIST_MAX_ALLOC;
851			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
852				n >>= 1;
853				if (n == 0) {
854					swp_pager_meta_free(object, beg, start - beg);
855					VM_OBJECT_WUNLOCK(object);
856					return (-1);
857				}
858			}
859		}
860		swp_pager_meta_build(object, start, blk);
861		--size;
862		++start;
863		++blk;
864		--n;
865	}
866	swp_pager_meta_free(object, start, n);
867	VM_OBJECT_WUNLOCK(object);
868	return (0);
869}
870
871/*
872 * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
873 *			and destroy the source.
874 *
875 *	Copy any valid swapblks from the source to the destination.  In
876 *	cases where both the source and destination have a valid swapblk,
877 *	we keep the destination's.
878 *
879 *	This routine is allowed to sleep.  It may sleep allocating metadata
880 *	indirectly through swp_pager_meta_build() or if paging is still in
881 *	progress on the source.
882 *
883 *	The source object contains no vm_page_t's (which is just as well)
884 *
885 *	The source object is of type OBJT_SWAP.
886 *
887 *	The source and destination objects must be locked.
888 *	Both object locks may temporarily be released.
889 */
890void
891swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
892    vm_pindex_t offset, int destroysource)
893{
894	vm_pindex_t i;
895
896	VM_OBJECT_ASSERT_WLOCKED(srcobject);
897	VM_OBJECT_ASSERT_WLOCKED(dstobject);
898
899	/*
900	 * If destroysource is set, we remove the source object from the
901	 * swap_pager internal queue now.
902	 */
903	if (destroysource && srcobject->handle != NULL) {
904		vm_object_pip_add(srcobject, 1);
905		VM_OBJECT_WUNLOCK(srcobject);
906		vm_object_pip_add(dstobject, 1);
907		VM_OBJECT_WUNLOCK(dstobject);
908		sx_xlock(&sw_alloc_sx);
909		TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
910		    pager_object_list);
911		sx_xunlock(&sw_alloc_sx);
912		VM_OBJECT_WLOCK(dstobject);
913		vm_object_pip_wakeup(dstobject);
914		VM_OBJECT_WLOCK(srcobject);
915		vm_object_pip_wakeup(srcobject);
916	}
917
918	/*
919	 * transfer source to destination.
920	 */
921	for (i = 0; i < dstobject->size; ++i) {
922		daddr_t dstaddr;
923
924		/*
925		 * Locate (without changing) the swapblk on the destination,
926		 * unless it is invalid in which case free it silently, or
927		 * if the destination is a resident page, in which case the
928		 * source is thrown away.
929		 */
930		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
931
932		if (dstaddr == SWAPBLK_NONE) {
933			/*
934			 * Destination has no swapblk and is not resident,
935			 * copy source.
936			 */
937			daddr_t srcaddr;
938
939			srcaddr = swp_pager_meta_ctl(
940			    srcobject,
941			    i + offset,
942			    SWM_POP
943			);
944
945			if (srcaddr != SWAPBLK_NONE) {
946				/*
947				 * swp_pager_meta_build() can sleep.
948				 */
949				vm_object_pip_add(srcobject, 1);
950				VM_OBJECT_WUNLOCK(srcobject);
951				vm_object_pip_add(dstobject, 1);
952				swp_pager_meta_build(dstobject, i, srcaddr);
953				vm_object_pip_wakeup(dstobject);
954				VM_OBJECT_WLOCK(srcobject);
955				vm_object_pip_wakeup(srcobject);
956			}
957		} else {
958			/*
959			 * Destination has valid swapblk or it is represented
960			 * by a resident page.  We destroy the sourceblock.
961			 */
962
963			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
964		}
965	}
966
967	/*
968	 * Free left over swap blocks in source.
969	 *
970	 * We have to revert the type to OBJT_DEFAULT so we do not accidentally
971	 * double-remove the object from the swap queues.
972	 */
973	if (destroysource) {
974		swp_pager_meta_free_all(srcobject);
975		/*
976		 * Reverting the type is not necessary, the caller is going
977		 * to destroy srcobject directly, but I'm doing it here
978		 * for consistency since we've removed the object from its
979		 * queues.
980		 */
981		srcobject->type = OBJT_DEFAULT;
982	}
983}
984
985/*
986 * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
987 *				the requested page.
988 *
989 *	We determine whether good backing store exists for the requested
990 *	page and return TRUE if it does, FALSE if it doesn't.
991 *
992 *	If TRUE, we also try to determine how much valid, contiguous backing
993 *	store exists before and after the requested page.
994 */
995static boolean_t
996swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
997    int *after)
998{
999	daddr_t blk, blk0;
1000	int i;
1001
1002	VM_OBJECT_ASSERT_LOCKED(object);
1003
1004	/*
1005	 * do we have good backing store at the requested index ?
1006	 */
1007	blk0 = swp_pager_meta_ctl(object, pindex, 0);
1008	if (blk0 == SWAPBLK_NONE) {
1009		if (before)
1010			*before = 0;
1011		if (after)
1012			*after = 0;
1013		return (FALSE);
1014	}
1015
1016	/*
1017	 * find backwards-looking contiguous good backing store
1018	 */
1019	if (before != NULL) {
1020		for (i = 1; i < SWB_NPAGES; i++) {
1021			if (i > pindex)
1022				break;
1023			blk = swp_pager_meta_ctl(object, pindex - i, 0);
1024			if (blk != blk0 - i)
1025				break;
1026		}
1027		*before = i - 1;
1028	}
1029
1030	/*
1031	 * find forward-looking contiguous good backing store
1032	 */
1033	if (after != NULL) {
1034		for (i = 1; i < SWB_NPAGES; i++) {
1035			blk = swp_pager_meta_ctl(object, pindex + i, 0);
1036			if (blk != blk0 + i)
1037				break;
1038		}
1039		*after = i - 1;
1040	}
1041	return (TRUE);
1042}
1043
1044/*
1045 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1046 *
1047 *	This removes any associated swap backing store, whether valid or
1048 *	not, from the page.
1049 *
1050 *	This routine is typically called when a page is made dirty, at
1051 *	which point any associated swap can be freed.  MADV_FREE also
1052 *	calls us in a special-case situation
1053 *
1054 *	NOTE!!!  If the page is clean and the swap was valid, the caller
1055 *	should make the page dirty before calling this routine.  This routine
1056 *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1057 *	depends on it.
1058 *
1059 *	This routine may not sleep.
1060 *
1061 *	The object containing the page must be locked.
1062 */
1063static void
1064swap_pager_unswapped(vm_page_t m)
1065{
1066
1067	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
1068}
1069
1070/*
1071 * swap_pager_getpages() - bring pages in from swap
1072 *
1073 *	Attempt to page in the pages in array "m" of length "count".  The caller
1074 *	may optionally specify that additional pages preceding and succeeding
1075 *	the specified range be paged in.  The number of such pages is returned
1076 *	in the "rbehind" and "rahead" parameters, and they will be in the
1077 *	inactive queue upon return.
1078 *
1079 *	The pages in "m" must be busied and will remain busied upon return.
1080 */
1081static int
1082swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind,
1083    int *rahead)
1084{
1085	struct buf *bp;
1086	vm_page_t mpred, msucc, p;
1087	vm_pindex_t pindex;
1088	daddr_t blk;
1089	int i, j, maxahead, maxbehind, reqcount, shift;
1090
1091	reqcount = count;
1092
1093	VM_OBJECT_WUNLOCK(object);
1094	bp = getpbuf(&nsw_rcount);
1095	VM_OBJECT_WLOCK(object);
1096
1097	if (!swap_pager_haspage(object, m[0]->pindex, &maxbehind, &maxahead)) {
1098		relpbuf(bp, &nsw_rcount);
1099		return (VM_PAGER_FAIL);
1100	}
1101
1102	/*
1103	 * Clip the readahead and readbehind ranges to exclude resident pages.
1104	 */
1105	if (rahead != NULL) {
1106		KASSERT(reqcount - 1 <= maxahead,
1107		    ("page count %d extends beyond swap block", reqcount));
1108		*rahead = imin(*rahead, maxahead - (reqcount - 1));
1109		pindex = m[reqcount - 1]->pindex;
1110		msucc = TAILQ_NEXT(m[reqcount - 1], listq);
1111		if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1112			*rahead = msucc->pindex - pindex - 1;
1113	}
1114	if (rbehind != NULL) {
1115		*rbehind = imin(*rbehind, maxbehind);
1116		pindex = m[0]->pindex;
1117		mpred = TAILQ_PREV(m[0], pglist, listq);
1118		if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1119			*rbehind = pindex - mpred->pindex - 1;
1120	}
1121
1122	/*
1123	 * Allocate readahead and readbehind pages.
1124	 */
1125	shift = rbehind != NULL ? *rbehind : 0;
1126	if (shift != 0) {
1127		for (i = 1; i <= shift; i++) {
1128			p = vm_page_alloc(object, m[0]->pindex - i,
1129			    VM_ALLOC_NORMAL | VM_ALLOC_IFNOTCACHED);
1130			if (p == NULL) {
1131				/* Shift allocated pages to the left. */
1132				for (j = 0; j < i - 1; j++)
1133					bp->b_pages[j] =
1134					    bp->b_pages[j + shift - i + 1];
1135				break;
1136			}
1137			bp->b_pages[shift - i] = p;
1138		}
1139		shift = i - 1;
1140		*rbehind = shift;
1141	}
1142	for (i = 0; i < reqcount; i++)
1143		bp->b_pages[i + shift] = m[i];
1144	if (rahead != NULL) {
1145		for (i = 0; i < *rahead; i++) {
1146			p = vm_page_alloc(object,
1147			    m[reqcount - 1]->pindex + i + 1,
1148			    VM_ALLOC_NORMAL | VM_ALLOC_IFNOTCACHED);
1149			if (p == NULL)
1150				break;
1151			bp->b_pages[shift + reqcount + i] = p;
1152		}
1153		*rahead = i;
1154	}
1155	if (rbehind != NULL)
1156		count += *rbehind;
1157	if (rahead != NULL)
1158		count += *rahead;
1159
1160	vm_object_pip_add(object, count);
1161
1162	for (i = 0; i < count; i++)
1163		bp->b_pages[i]->oflags |= VPO_SWAPINPROG;
1164
1165	pindex = bp->b_pages[0]->pindex;
1166	blk = swp_pager_meta_ctl(object, pindex, 0);
1167	KASSERT(blk != SWAPBLK_NONE,
1168	    ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1169
1170	VM_OBJECT_WUNLOCK(object);
1171
1172	bp->b_flags |= B_PAGING;
1173	bp->b_iocmd = BIO_READ;
1174	bp->b_iodone = swp_pager_async_iodone;
1175	bp->b_rcred = crhold(thread0.td_ucred);
1176	bp->b_wcred = crhold(thread0.td_ucred);
1177	bp->b_blkno = blk;
1178	bp->b_bcount = PAGE_SIZE * count;
1179	bp->b_bufsize = PAGE_SIZE * count;
1180	bp->b_npages = count;
1181	bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1182	bp->b_pgafter = rahead != NULL ? *rahead : 0;
1183
1184	PCPU_INC(cnt.v_swapin);
1185	PCPU_ADD(cnt.v_swappgsin, count);
1186
1187	/*
1188	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1189	 * this point because we automatically release it on completion.
1190	 * Instead, we look at the one page we are interested in which we
1191	 * still hold a lock on even through the I/O completion.
1192	 *
1193	 * The other pages in our m[] array are also released on completion,
1194	 * so we cannot assume they are valid anymore either.
1195	 *
1196	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1197	 */
1198	BUF_KERNPROC(bp);
1199	swp_pager_strategy(bp);
1200
1201	/*
1202	 * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1203	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1204	 * is set in the metadata for each page in the request.
1205	 */
1206	VM_OBJECT_WLOCK(object);
1207	while ((m[0]->oflags & VPO_SWAPINPROG) != 0) {
1208		m[0]->oflags |= VPO_SWAPSLEEP;
1209		PCPU_INC(cnt.v_intrans);
1210		if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
1211		    "swread", hz * 20)) {
1212			printf(
1213"swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1214			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1215		}
1216	}
1217
1218	/*
1219	 * If we had an unrecoverable read error pages will not be valid.
1220	 */
1221	for (i = 0; i < reqcount; i++)
1222		if (m[i]->valid != VM_PAGE_BITS_ALL)
1223			return (VM_PAGER_ERROR);
1224
1225	return (VM_PAGER_OK);
1226
1227	/*
1228	 * A final note: in a low swap situation, we cannot deallocate swap
1229	 * and mark a page dirty here because the caller is likely to mark
1230	 * the page clean when we return, causing the page to possibly revert
1231	 * to all-zero's later.
1232	 */
1233}
1234
1235/*
1236 * 	swap_pager_getpages_async():
1237 *
1238 *	Right now this is emulation of asynchronous operation on top of
1239 *	swap_pager_getpages().
1240 */
1241static int
1242swap_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
1243    int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1244{
1245	int r, error;
1246
1247	r = swap_pager_getpages(object, m, count, rbehind, rahead);
1248	VM_OBJECT_WUNLOCK(object);
1249	switch (r) {
1250	case VM_PAGER_OK:
1251		error = 0;
1252		break;
1253	case VM_PAGER_ERROR:
1254		error = EIO;
1255		break;
1256	case VM_PAGER_FAIL:
1257		error = EINVAL;
1258		break;
1259	default:
1260		panic("unhandled swap_pager_getpages() error %d", r);
1261	}
1262	(iodone)(arg, m, count, error);
1263	VM_OBJECT_WLOCK(object);
1264
1265	return (r);
1266}
1267
1268/*
1269 *	swap_pager_putpages:
1270 *
1271 *	Assign swap (if necessary) and initiate I/O on the specified pages.
1272 *
1273 *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1274 *	are automatically converted to SWAP objects.
1275 *
1276 *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1277 *	vm_page reservation system coupled with properly written VFS devices
1278 *	should ensure that no low-memory deadlock occurs.  This is an area
1279 *	which needs work.
1280 *
1281 *	The parent has N vm_object_pip_add() references prior to
1282 *	calling us and will remove references for rtvals[] that are
1283 *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1284 *	completion.
1285 *
1286 *	The parent has soft-busy'd the pages it passes us and will unbusy
1287 *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1288 *	We need to unbusy the rest on I/O completion.
1289 */
1290static void
1291swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1292    int flags, int *rtvals)
1293{
1294	int i, n;
1295	boolean_t sync;
1296
1297	if (count && m[0]->object != object) {
1298		panic("swap_pager_putpages: object mismatch %p/%p",
1299		    object,
1300		    m[0]->object
1301		);
1302	}
1303
1304	/*
1305	 * Step 1
1306	 *
1307	 * Turn object into OBJT_SWAP
1308	 * check for bogus sysops
1309	 * force sync if not pageout process
1310	 */
1311	if (object->type != OBJT_SWAP)
1312		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1313	VM_OBJECT_WUNLOCK(object);
1314
1315	n = 0;
1316	if (curproc != pageproc)
1317		sync = TRUE;
1318	else
1319		sync = (flags & VM_PAGER_PUT_SYNC) != 0;
1320
1321	/*
1322	 * Step 2
1323	 *
1324	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1325	 * The page is left dirty until the pageout operation completes
1326	 * successfully.
1327	 */
1328	for (i = 0; i < count; i += n) {
1329		int j;
1330		struct buf *bp;
1331		daddr_t blk;
1332
1333		/*
1334		 * Maximum I/O size is limited by a number of factors.
1335		 */
1336		n = min(BLIST_MAX_ALLOC, count - i);
1337		n = min(n, nsw_cluster_max);
1338
1339		/*
1340		 * Get biggest block of swap we can.  If we fail, fall
1341		 * back and try to allocate a smaller block.  Don't go
1342		 * overboard trying to allocate space if it would overly
1343		 * fragment swap.
1344		 */
1345		while (
1346		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1347		    n > 4
1348		) {
1349			n >>= 1;
1350		}
1351		if (blk == SWAPBLK_NONE) {
1352			for (j = 0; j < n; ++j)
1353				rtvals[i+j] = VM_PAGER_FAIL;
1354			continue;
1355		}
1356
1357		/*
1358		 * All I/O parameters have been satisfied, build the I/O
1359		 * request and assign the swap space.
1360		 */
1361		if (sync == TRUE) {
1362			bp = getpbuf(&nsw_wcount_sync);
1363		} else {
1364			bp = getpbuf(&nsw_wcount_async);
1365			bp->b_flags = B_ASYNC;
1366		}
1367		bp->b_flags |= B_PAGING;
1368		bp->b_iocmd = BIO_WRITE;
1369
1370		bp->b_rcred = crhold(thread0.td_ucred);
1371		bp->b_wcred = crhold(thread0.td_ucred);
1372		bp->b_bcount = PAGE_SIZE * n;
1373		bp->b_bufsize = PAGE_SIZE * n;
1374		bp->b_blkno = blk;
1375
1376		VM_OBJECT_WLOCK(object);
1377		for (j = 0; j < n; ++j) {
1378			vm_page_t mreq = m[i+j];
1379
1380			swp_pager_meta_build(
1381			    mreq->object,
1382			    mreq->pindex,
1383			    blk + j
1384			);
1385			vm_page_dirty(mreq);
1386			mreq->oflags |= VPO_SWAPINPROG;
1387			bp->b_pages[j] = mreq;
1388		}
1389		VM_OBJECT_WUNLOCK(object);
1390		bp->b_npages = n;
1391		/*
1392		 * Must set dirty range for NFS to work.
1393		 */
1394		bp->b_dirtyoff = 0;
1395		bp->b_dirtyend = bp->b_bcount;
1396
1397		PCPU_INC(cnt.v_swapout);
1398		PCPU_ADD(cnt.v_swappgsout, bp->b_npages);
1399
1400		/*
1401		 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1402		 * can call the async completion routine at the end of a
1403		 * synchronous I/O operation.  Otherwise, our caller would
1404		 * perform duplicate unbusy and wakeup operations on the page
1405		 * and object, respectively.
1406		 */
1407		for (j = 0; j < n; j++)
1408			rtvals[i + j] = VM_PAGER_PEND;
1409
1410		/*
1411		 * asynchronous
1412		 *
1413		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1414		 */
1415		if (sync == FALSE) {
1416			bp->b_iodone = swp_pager_async_iodone;
1417			BUF_KERNPROC(bp);
1418			swp_pager_strategy(bp);
1419			continue;
1420		}
1421
1422		/*
1423		 * synchronous
1424		 *
1425		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1426		 */
1427		bp->b_iodone = bdone;
1428		swp_pager_strategy(bp);
1429
1430		/*
1431		 * Wait for the sync I/O to complete.
1432		 */
1433		bwait(bp, PVM, "swwrt");
1434
1435		/*
1436		 * Now that we are through with the bp, we can call the
1437		 * normal async completion, which frees everything up.
1438		 */
1439		swp_pager_async_iodone(bp);
1440	}
1441	VM_OBJECT_WLOCK(object);
1442}
1443
1444/*
1445 *	swp_pager_async_iodone:
1446 *
1447 *	Completion routine for asynchronous reads and writes from/to swap.
1448 *	Also called manually by synchronous code to finish up a bp.
1449 *
1450 *	This routine may not sleep.
1451 */
1452static void
1453swp_pager_async_iodone(struct buf *bp)
1454{
1455	int i;
1456	vm_object_t object = NULL;
1457
1458	/*
1459	 * report error
1460	 */
1461	if (bp->b_ioflags & BIO_ERROR) {
1462		printf(
1463		    "swap_pager: I/O error - %s failed; blkno %ld,"
1464			"size %ld, error %d\n",
1465		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1466		    (long)bp->b_blkno,
1467		    (long)bp->b_bcount,
1468		    bp->b_error
1469		);
1470	}
1471
1472	/*
1473	 * remove the mapping for kernel virtual
1474	 */
1475	if (buf_mapped(bp))
1476		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1477	else
1478		bp->b_data = bp->b_kvabase;
1479
1480	if (bp->b_npages) {
1481		object = bp->b_pages[0]->object;
1482		VM_OBJECT_WLOCK(object);
1483	}
1484
1485	/*
1486	 * cleanup pages.  If an error occurs writing to swap, we are in
1487	 * very serious trouble.  If it happens to be a disk error, though,
1488	 * we may be able to recover by reassigning the swap later on.  So
1489	 * in this case we remove the m->swapblk assignment for the page
1490	 * but do not free it in the rlist.  The errornous block(s) are thus
1491	 * never reallocated as swap.  Redirty the page and continue.
1492	 */
1493	for (i = 0; i < bp->b_npages; ++i) {
1494		vm_page_t m = bp->b_pages[i];
1495
1496		m->oflags &= ~VPO_SWAPINPROG;
1497		if (m->oflags & VPO_SWAPSLEEP) {
1498			m->oflags &= ~VPO_SWAPSLEEP;
1499			wakeup(&object->paging_in_progress);
1500		}
1501
1502		if (bp->b_ioflags & BIO_ERROR) {
1503			/*
1504			 * If an error occurs I'd love to throw the swapblk
1505			 * away without freeing it back to swapspace, so it
1506			 * can never be used again.  But I can't from an
1507			 * interrupt.
1508			 */
1509			if (bp->b_iocmd == BIO_READ) {
1510				/*
1511				 * NOTE: for reads, m->dirty will probably
1512				 * be overridden by the original caller of
1513				 * getpages so don't play cute tricks here.
1514				 */
1515				m->valid = 0;
1516			} else {
1517				/*
1518				 * If a write error occurs, reactivate page
1519				 * so it doesn't clog the inactive list,
1520				 * then finish the I/O.
1521				 */
1522				vm_page_dirty(m);
1523				vm_page_lock(m);
1524				vm_page_activate(m);
1525				vm_page_unlock(m);
1526				vm_page_sunbusy(m);
1527			}
1528		} else if (bp->b_iocmd == BIO_READ) {
1529			/*
1530			 * NOTE: for reads, m->dirty will probably be
1531			 * overridden by the original caller of getpages so
1532			 * we cannot set them in order to free the underlying
1533			 * swap in a low-swap situation.  I don't think we'd
1534			 * want to do that anyway, but it was an optimization
1535			 * that existed in the old swapper for a time before
1536			 * it got ripped out due to precisely this problem.
1537			 */
1538			KASSERT(!pmap_page_is_mapped(m),
1539			    ("swp_pager_async_iodone: page %p is mapped", m));
1540			KASSERT(m->dirty == 0,
1541			    ("swp_pager_async_iodone: page %p is dirty", m));
1542
1543			m->valid = VM_PAGE_BITS_ALL;
1544			if (i < bp->b_pgbefore ||
1545			    i >= bp->b_npages - bp->b_pgafter)
1546				vm_page_readahead_finish(m);
1547		} else {
1548			/*
1549			 * For write success, clear the dirty
1550			 * status, then finish the I/O ( which decrements the
1551			 * busy count and possibly wakes waiter's up ).
1552			 */
1553			KASSERT(!pmap_page_is_write_mapped(m),
1554			    ("swp_pager_async_iodone: page %p is not write"
1555			    " protected", m));
1556			vm_page_undirty(m);
1557			vm_page_sunbusy(m);
1558			if (vm_page_count_severe()) {
1559				vm_page_lock(m);
1560				vm_page_try_to_cache(m);
1561				vm_page_unlock(m);
1562			}
1563		}
1564	}
1565
1566	/*
1567	 * adjust pip.  NOTE: the original parent may still have its own
1568	 * pip refs on the object.
1569	 */
1570	if (object != NULL) {
1571		vm_object_pip_wakeupn(object, bp->b_npages);
1572		VM_OBJECT_WUNLOCK(object);
1573	}
1574
1575	/*
1576	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1577	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1578	 * trigger a KASSERT in relpbuf().
1579	 */
1580	if (bp->b_vp) {
1581		    bp->b_vp = NULL;
1582		    bp->b_bufobj = NULL;
1583	}
1584	/*
1585	 * release the physical I/O buffer
1586	 */
1587	relpbuf(
1588	    bp,
1589	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1590		((bp->b_flags & B_ASYNC) ?
1591		    &nsw_wcount_async :
1592		    &nsw_wcount_sync
1593		)
1594	    )
1595	);
1596}
1597
1598/*
1599 *	swap_pager_isswapped:
1600 *
1601 *	Return 1 if at least one page in the given object is paged
1602 *	out to the given swap device.
1603 *
1604 *	This routine may not sleep.
1605 */
1606int
1607swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
1608{
1609	daddr_t index = 0;
1610	int bcount;
1611	int i;
1612
1613	VM_OBJECT_ASSERT_WLOCKED(object);
1614	if (object->type != OBJT_SWAP)
1615		return (0);
1616
1617	mtx_lock(&swhash_mtx);
1618	for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1619		struct swblock *swap;
1620
1621		if ((swap = *swp_pager_hash(object, index)) != NULL) {
1622			for (i = 0; i < SWAP_META_PAGES; ++i) {
1623				if (swp_pager_isondev(swap->swb_pages[i], sp)) {
1624					mtx_unlock(&swhash_mtx);
1625					return (1);
1626				}
1627			}
1628		}
1629		index += SWAP_META_PAGES;
1630	}
1631	mtx_unlock(&swhash_mtx);
1632	return (0);
1633}
1634
1635/*
1636 * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1637 *
1638 *	This routine dissociates the page at the given index within a
1639 *	swap block from its backing store, paging it in if necessary.
1640 *	If the page is paged in, it is placed in the inactive queue,
1641 *	since it had its backing store ripped out from under it.
1642 *	We also attempt to swap in all other pages in the swap block,
1643 *	we only guarantee that the one at the specified index is
1644 *	paged in.
1645 *
1646 *	XXX - The code to page the whole block in doesn't work, so we
1647 *	      revert to the one-by-one behavior for now.  Sigh.
1648 */
1649static inline void
1650swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1651{
1652	vm_page_t m;
1653
1654	vm_object_pip_add(object, 1);
1655	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
1656	if (m->valid == VM_PAGE_BITS_ALL) {
1657		vm_object_pip_wakeup(object);
1658		vm_page_dirty(m);
1659		vm_page_lock(m);
1660		vm_page_activate(m);
1661		vm_page_unlock(m);
1662		vm_page_xunbusy(m);
1663		vm_pager_page_unswapped(m);
1664		return;
1665	}
1666
1667	if (swap_pager_getpages(object, &m, 1, NULL, NULL) != VM_PAGER_OK)
1668		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1669	vm_object_pip_wakeup(object);
1670	vm_page_dirty(m);
1671	vm_page_lock(m);
1672	vm_page_deactivate(m);
1673	vm_page_unlock(m);
1674	vm_page_xunbusy(m);
1675	vm_pager_page_unswapped(m);
1676}
1677
1678/*
1679 *	swap_pager_swapoff:
1680 *
1681 *	Page in all of the pages that have been paged out to the
1682 *	given device.  The corresponding blocks in the bitmap must be
1683 *	marked as allocated and the device must be flagged SW_CLOSING.
1684 *	There may be no processes swapped out to the device.
1685 *
1686 *	This routine may block.
1687 */
1688static void
1689swap_pager_swapoff(struct swdevt *sp)
1690{
1691	struct swblock *swap;
1692	vm_object_t locked_obj, object;
1693	vm_pindex_t pindex;
1694	int i, j, retries;
1695
1696	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1697
1698	retries = 0;
1699	locked_obj = NULL;
1700full_rescan:
1701	mtx_lock(&swhash_mtx);
1702	for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1703restart:
1704		for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
1705			object = swap->swb_object;
1706			pindex = swap->swb_index;
1707			for (j = 0; j < SWAP_META_PAGES; ++j) {
1708				if (!swp_pager_isondev(swap->swb_pages[j], sp))
1709					continue;
1710				if (locked_obj != object) {
1711					if (locked_obj != NULL)
1712						VM_OBJECT_WUNLOCK(locked_obj);
1713					locked_obj = object;
1714					if (!VM_OBJECT_TRYWLOCK(object)) {
1715						mtx_unlock(&swhash_mtx);
1716						/* Depends on type-stability. */
1717						VM_OBJECT_WLOCK(object);
1718						mtx_lock(&swhash_mtx);
1719						goto restart;
1720					}
1721				}
1722				MPASS(locked_obj == object);
1723				mtx_unlock(&swhash_mtx);
1724				swp_pager_force_pagein(object, pindex + j);
1725				mtx_lock(&swhash_mtx);
1726				goto restart;
1727			}
1728		}
1729	}
1730	mtx_unlock(&swhash_mtx);
1731	if (locked_obj != NULL) {
1732		VM_OBJECT_WUNLOCK(locked_obj);
1733		locked_obj = NULL;
1734	}
1735	if (sp->sw_used) {
1736		/*
1737		 * Objects may be locked or paging to the device being
1738		 * removed, so we will miss their pages and need to
1739		 * make another pass.  We have marked this device as
1740		 * SW_CLOSING, so the activity should finish soon.
1741		 */
1742		retries++;
1743		if (retries > 100) {
1744			panic("swapoff: failed to locate %d swap blocks",
1745			    sp->sw_used);
1746		}
1747		pause("swpoff", hz / 20);
1748		goto full_rescan;
1749	}
1750}
1751
1752/************************************************************************
1753 *				SWAP META DATA 				*
1754 ************************************************************************
1755 *
1756 *	These routines manipulate the swap metadata stored in the
1757 *	OBJT_SWAP object.
1758 *
1759 *	Swap metadata is implemented with a global hash and not directly
1760 *	linked into the object.  Instead the object simply contains
1761 *	appropriate tracking counters.
1762 */
1763
1764/*
1765 * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1766 *
1767 *	We first convert the object to a swap object if it is a default
1768 *	object.
1769 *
1770 *	The specified swapblk is added to the object's swap metadata.  If
1771 *	the swapblk is not valid, it is freed instead.  Any previously
1772 *	assigned swapblk is freed.
1773 */
1774static void
1775swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1776{
1777	static volatile int exhausted;
1778	struct swblock *swap;
1779	struct swblock **pswap;
1780	int idx;
1781
1782	VM_OBJECT_ASSERT_WLOCKED(object);
1783	/*
1784	 * Convert default object to swap object if necessary
1785	 */
1786	if (object->type != OBJT_SWAP) {
1787		object->type = OBJT_SWAP;
1788		object->un_pager.swp.swp_bcount = 0;
1789		KASSERT(object->handle == NULL, ("default pager with handle"));
1790	}
1791
1792	/*
1793	 * Locate hash entry.  If not found create, but if we aren't adding
1794	 * anything just return.  If we run out of space in the map we wait
1795	 * and, since the hash table may have changed, retry.
1796	 */
1797retry:
1798	mtx_lock(&swhash_mtx);
1799	pswap = swp_pager_hash(object, pindex);
1800
1801	if ((swap = *pswap) == NULL) {
1802		int i;
1803
1804		if (swapblk == SWAPBLK_NONE)
1805			goto done;
1806
1807		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT |
1808		    (curproc == pageproc ? M_USE_RESERVE : 0));
1809		if (swap == NULL) {
1810			mtx_unlock(&swhash_mtx);
1811			VM_OBJECT_WUNLOCK(object);
1812			if (uma_zone_exhausted(swap_zone)) {
1813				if (atomic_cmpset_int(&exhausted, 0, 1))
1814					printf("swap zone exhausted, "
1815					    "increase kern.maxswzone\n");
1816				vm_pageout_oom(VM_OOM_SWAPZ);
1817				pause("swzonex", 10);
1818			} else
1819				VM_WAIT;
1820			VM_OBJECT_WLOCK(object);
1821			goto retry;
1822		}
1823
1824		if (atomic_cmpset_int(&exhausted, 1, 0))
1825			printf("swap zone ok\n");
1826
1827		swap->swb_hnext = NULL;
1828		swap->swb_object = object;
1829		swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1830		swap->swb_count = 0;
1831
1832		++object->un_pager.swp.swp_bcount;
1833
1834		for (i = 0; i < SWAP_META_PAGES; ++i)
1835			swap->swb_pages[i] = SWAPBLK_NONE;
1836	}
1837
1838	/*
1839	 * Delete prior contents of metadata
1840	 */
1841	idx = pindex & SWAP_META_MASK;
1842
1843	if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1844		swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1845		--swap->swb_count;
1846	}
1847
1848	/*
1849	 * Enter block into metadata
1850	 */
1851	swap->swb_pages[idx] = swapblk;
1852	if (swapblk != SWAPBLK_NONE)
1853		++swap->swb_count;
1854done:
1855	mtx_unlock(&swhash_mtx);
1856}
1857
1858/*
1859 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1860 *
1861 *	The requested range of blocks is freed, with any associated swap
1862 *	returned to the swap bitmap.
1863 *
1864 *	This routine will free swap metadata structures as they are cleaned
1865 *	out.  This routine does *NOT* operate on swap metadata associated
1866 *	with resident pages.
1867 */
1868static void
1869swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1870{
1871
1872	VM_OBJECT_ASSERT_LOCKED(object);
1873	if (object->type != OBJT_SWAP)
1874		return;
1875
1876	while (count > 0) {
1877		struct swblock **pswap;
1878		struct swblock *swap;
1879
1880		mtx_lock(&swhash_mtx);
1881		pswap = swp_pager_hash(object, index);
1882
1883		if ((swap = *pswap) != NULL) {
1884			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1885
1886			if (v != SWAPBLK_NONE) {
1887				swp_pager_freeswapspace(v, 1);
1888				swap->swb_pages[index & SWAP_META_MASK] =
1889					SWAPBLK_NONE;
1890				if (--swap->swb_count == 0) {
1891					*pswap = swap->swb_hnext;
1892					uma_zfree(swap_zone, swap);
1893					--object->un_pager.swp.swp_bcount;
1894				}
1895			}
1896			--count;
1897			++index;
1898		} else {
1899			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1900			count -= n;
1901			index += n;
1902		}
1903		mtx_unlock(&swhash_mtx);
1904	}
1905}
1906
1907/*
1908 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1909 *
1910 *	This routine locates and destroys all swap metadata associated with
1911 *	an object.
1912 */
1913static void
1914swp_pager_meta_free_all(vm_object_t object)
1915{
1916	daddr_t index = 0;
1917
1918	VM_OBJECT_ASSERT_WLOCKED(object);
1919	if (object->type != OBJT_SWAP)
1920		return;
1921
1922	while (object->un_pager.swp.swp_bcount) {
1923		struct swblock **pswap;
1924		struct swblock *swap;
1925
1926		mtx_lock(&swhash_mtx);
1927		pswap = swp_pager_hash(object, index);
1928		if ((swap = *pswap) != NULL) {
1929			int i;
1930
1931			for (i = 0; i < SWAP_META_PAGES; ++i) {
1932				daddr_t v = swap->swb_pages[i];
1933				if (v != SWAPBLK_NONE) {
1934					--swap->swb_count;
1935					swp_pager_freeswapspace(v, 1);
1936				}
1937			}
1938			if (swap->swb_count != 0)
1939				panic("swap_pager_meta_free_all: swb_count != 0");
1940			*pswap = swap->swb_hnext;
1941			uma_zfree(swap_zone, swap);
1942			--object->un_pager.swp.swp_bcount;
1943		}
1944		mtx_unlock(&swhash_mtx);
1945		index += SWAP_META_PAGES;
1946	}
1947}
1948
1949/*
1950 * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1951 *
1952 *	This routine is capable of looking up, popping, or freeing
1953 *	swapblk assignments in the swap meta data or in the vm_page_t.
1954 *	The routine typically returns the swapblk being looked-up, or popped,
1955 *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1956 *	was invalid.  This routine will automatically free any invalid
1957 *	meta-data swapblks.
1958 *
1959 *	It is not possible to store invalid swapblks in the swap meta data
1960 *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1961 *
1962 *	When acting on a busy resident page and paging is in progress, we
1963 *	have to wait until paging is complete but otherwise can act on the
1964 *	busy page.
1965 *
1966 *	SWM_FREE	remove and free swap block from metadata
1967 *	SWM_POP		remove from meta data but do not free.. pop it out
1968 */
1969static daddr_t
1970swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
1971{
1972	struct swblock **pswap;
1973	struct swblock *swap;
1974	daddr_t r1;
1975	int idx;
1976
1977	VM_OBJECT_ASSERT_LOCKED(object);
1978	/*
1979	 * The meta data only exists of the object is OBJT_SWAP
1980	 * and even then might not be allocated yet.
1981	 */
1982	if (object->type != OBJT_SWAP)
1983		return (SWAPBLK_NONE);
1984
1985	r1 = SWAPBLK_NONE;
1986	mtx_lock(&swhash_mtx);
1987	pswap = swp_pager_hash(object, pindex);
1988
1989	if ((swap = *pswap) != NULL) {
1990		idx = pindex & SWAP_META_MASK;
1991		r1 = swap->swb_pages[idx];
1992
1993		if (r1 != SWAPBLK_NONE) {
1994			if (flags & SWM_FREE) {
1995				swp_pager_freeswapspace(r1, 1);
1996				r1 = SWAPBLK_NONE;
1997			}
1998			if (flags & (SWM_FREE|SWM_POP)) {
1999				swap->swb_pages[idx] = SWAPBLK_NONE;
2000				if (--swap->swb_count == 0) {
2001					*pswap = swap->swb_hnext;
2002					uma_zfree(swap_zone, swap);
2003					--object->un_pager.swp.swp_bcount;
2004				}
2005			}
2006		}
2007	}
2008	mtx_unlock(&swhash_mtx);
2009	return (r1);
2010}
2011
2012/*
2013 * System call swapon(name) enables swapping on device name,
2014 * which must be in the swdevsw.  Return EBUSY
2015 * if already swapping on this device.
2016 */
2017#ifndef _SYS_SYSPROTO_H_
2018struct swapon_args {
2019	char *name;
2020};
2021#endif
2022
2023/*
2024 * MPSAFE
2025 */
2026/* ARGSUSED */
2027int
2028sys_swapon(struct thread *td, struct swapon_args *uap)
2029{
2030	struct vattr attr;
2031	struct vnode *vp;
2032	struct nameidata nd;
2033	int error;
2034
2035	error = priv_check(td, PRIV_SWAPON);
2036	if (error)
2037		return (error);
2038
2039	sx_xlock(&swdev_syscall_lock);
2040
2041	/*
2042	 * Swap metadata may not fit in the KVM if we have physical
2043	 * memory of >1GB.
2044	 */
2045	if (swap_zone == NULL) {
2046		error = ENOMEM;
2047		goto done;
2048	}
2049
2050	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2051	    uap->name, td);
2052	error = namei(&nd);
2053	if (error)
2054		goto done;
2055
2056	NDFREE(&nd, NDF_ONLY_PNBUF);
2057	vp = nd.ni_vp;
2058
2059	if (vn_isdisk(vp, &error)) {
2060		error = swapongeom(vp);
2061	} else if (vp->v_type == VREG &&
2062	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2063	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2064		/*
2065		 * Allow direct swapping to NFS regular files in the same
2066		 * way that nfs_mountroot() sets up diskless swapping.
2067		 */
2068		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2069	}
2070
2071	if (error)
2072		vrele(vp);
2073done:
2074	sx_xunlock(&swdev_syscall_lock);
2075	return (error);
2076}
2077
2078/*
2079 * Check that the total amount of swap currently configured does not
2080 * exceed half the theoretical maximum.  If it does, print a warning
2081 * message and return -1; otherwise, return 0.
2082 */
2083static int
2084swapon_check_swzone(unsigned long npages)
2085{
2086	unsigned long maxpages;
2087
2088	/* absolute maximum we can handle assuming 100% efficiency */
2089	maxpages = uma_zone_get_max(swap_zone) * SWAP_META_PAGES;
2090
2091	/* recommend using no more than half that amount */
2092	if (npages > maxpages / 2) {
2093		printf("warning: total configured swap (%lu pages) "
2094		    "exceeds maximum recommended amount (%lu pages).\n",
2095		    npages, maxpages / 2);
2096		printf("warning: increase kern.maxswzone "
2097		    "or reduce amount of swap.\n");
2098		return (-1);
2099	}
2100	return (0);
2101}
2102
2103static void
2104swaponsomething(struct vnode *vp, void *id, u_long nblks,
2105    sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2106{
2107	struct swdevt *sp, *tsp;
2108	swblk_t dvbase;
2109	u_long mblocks;
2110
2111	/*
2112	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2113	 * First chop nblks off to page-align it, then convert.
2114	 *
2115	 * sw->sw_nblks is in page-sized chunks now too.
2116	 */
2117	nblks &= ~(ctodb(1) - 1);
2118	nblks = dbtoc(nblks);
2119
2120	/*
2121	 * If we go beyond this, we get overflows in the radix
2122	 * tree bitmap code.
2123	 */
2124	mblocks = 0x40000000 / BLIST_META_RADIX;
2125	if (nblks > mblocks) {
2126		printf(
2127    "WARNING: reducing swap size to maximum of %luMB per unit\n",
2128		    mblocks / 1024 / 1024 * PAGE_SIZE);
2129		nblks = mblocks;
2130	}
2131
2132	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2133	sp->sw_vp = vp;
2134	sp->sw_id = id;
2135	sp->sw_dev = dev;
2136	sp->sw_flags = 0;
2137	sp->sw_nblks = nblks;
2138	sp->sw_used = 0;
2139	sp->sw_strategy = strategy;
2140	sp->sw_close = close;
2141	sp->sw_flags = flags;
2142
2143	sp->sw_blist = blist_create(nblks, M_WAITOK);
2144	/*
2145	 * Do not free the first two block in order to avoid overwriting
2146	 * any bsd label at the front of the partition
2147	 */
2148	blist_free(sp->sw_blist, 2, nblks - 2);
2149
2150	dvbase = 0;
2151	mtx_lock(&sw_dev_mtx);
2152	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2153		if (tsp->sw_end >= dvbase) {
2154			/*
2155			 * We put one uncovered page between the devices
2156			 * in order to definitively prevent any cross-device
2157			 * I/O requests
2158			 */
2159			dvbase = tsp->sw_end + 1;
2160		}
2161	}
2162	sp->sw_first = dvbase;
2163	sp->sw_end = dvbase + nblks;
2164	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2165	nswapdev++;
2166	swap_pager_avail += nblks;
2167	swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
2168	swapon_check_swzone(swap_total / PAGE_SIZE);
2169	swp_sizecheck();
2170	mtx_unlock(&sw_dev_mtx);
2171}
2172
2173/*
2174 * SYSCALL: swapoff(devname)
2175 *
2176 * Disable swapping on the given device.
2177 *
2178 * XXX: Badly designed system call: it should use a device index
2179 * rather than filename as specification.  We keep sw_vp around
2180 * only to make this work.
2181 */
2182#ifndef _SYS_SYSPROTO_H_
2183struct swapoff_args {
2184	char *name;
2185};
2186#endif
2187
2188/*
2189 * MPSAFE
2190 */
2191/* ARGSUSED */
2192int
2193sys_swapoff(struct thread *td, struct swapoff_args *uap)
2194{
2195	struct vnode *vp;
2196	struct nameidata nd;
2197	struct swdevt *sp;
2198	int error;
2199
2200	error = priv_check(td, PRIV_SWAPOFF);
2201	if (error)
2202		return (error);
2203
2204	sx_xlock(&swdev_syscall_lock);
2205
2206	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2207	    td);
2208	error = namei(&nd);
2209	if (error)
2210		goto done;
2211	NDFREE(&nd, NDF_ONLY_PNBUF);
2212	vp = nd.ni_vp;
2213
2214	mtx_lock(&sw_dev_mtx);
2215	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2216		if (sp->sw_vp == vp)
2217			break;
2218	}
2219	mtx_unlock(&sw_dev_mtx);
2220	if (sp == NULL) {
2221		error = EINVAL;
2222		goto done;
2223	}
2224	error = swapoff_one(sp, td->td_ucred);
2225done:
2226	sx_xunlock(&swdev_syscall_lock);
2227	return (error);
2228}
2229
2230static int
2231swapoff_one(struct swdevt *sp, struct ucred *cred)
2232{
2233	u_long nblks, dvbase;
2234#ifdef MAC
2235	int error;
2236#endif
2237
2238	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2239#ifdef MAC
2240	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2241	error = mac_system_check_swapoff(cred, sp->sw_vp);
2242	(void) VOP_UNLOCK(sp->sw_vp, 0);
2243	if (error != 0)
2244		return (error);
2245#endif
2246	nblks = sp->sw_nblks;
2247
2248	/*
2249	 * We can turn off this swap device safely only if the
2250	 * available virtual memory in the system will fit the amount
2251	 * of data we will have to page back in, plus an epsilon so
2252	 * the system doesn't become critically low on swap space.
2253	 */
2254	if (vm_cnt.v_free_count + vm_cnt.v_cache_count + swap_pager_avail <
2255	    nblks + nswap_lowat) {
2256		return (ENOMEM);
2257	}
2258
2259	/*
2260	 * Prevent further allocations on this device.
2261	 */
2262	mtx_lock(&sw_dev_mtx);
2263	sp->sw_flags |= SW_CLOSING;
2264	for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
2265		swap_pager_avail -= blist_fill(sp->sw_blist,
2266		     dvbase, dmmax);
2267	}
2268	swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
2269	mtx_unlock(&sw_dev_mtx);
2270
2271	/*
2272	 * Page in the contents of the device and close it.
2273	 */
2274	swap_pager_swapoff(sp);
2275
2276	sp->sw_close(curthread, sp);
2277	mtx_lock(&sw_dev_mtx);
2278	sp->sw_id = NULL;
2279	TAILQ_REMOVE(&swtailq, sp, sw_list);
2280	nswapdev--;
2281	if (nswapdev == 0) {
2282		swap_pager_full = 2;
2283		swap_pager_almost_full = 1;
2284	}
2285	if (swdevhd == sp)
2286		swdevhd = NULL;
2287	mtx_unlock(&sw_dev_mtx);
2288	blist_destroy(sp->sw_blist);
2289	free(sp, M_VMPGDATA);
2290	return (0);
2291}
2292
2293void
2294swapoff_all(void)
2295{
2296	struct swdevt *sp, *spt;
2297	const char *devname;
2298	int error;
2299
2300	sx_xlock(&swdev_syscall_lock);
2301
2302	mtx_lock(&sw_dev_mtx);
2303	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2304		mtx_unlock(&sw_dev_mtx);
2305		if (vn_isdisk(sp->sw_vp, NULL))
2306			devname = devtoname(sp->sw_vp->v_rdev);
2307		else
2308			devname = "[file]";
2309		error = swapoff_one(sp, thread0.td_ucred);
2310		if (error != 0) {
2311			printf("Cannot remove swap device %s (error=%d), "
2312			    "skipping.\n", devname, error);
2313		} else if (bootverbose) {
2314			printf("Swap device %s removed.\n", devname);
2315		}
2316		mtx_lock(&sw_dev_mtx);
2317	}
2318	mtx_unlock(&sw_dev_mtx);
2319
2320	sx_xunlock(&swdev_syscall_lock);
2321}
2322
2323void
2324swap_pager_status(int *total, int *used)
2325{
2326	struct swdevt *sp;
2327
2328	*total = 0;
2329	*used = 0;
2330	mtx_lock(&sw_dev_mtx);
2331	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2332		*total += sp->sw_nblks;
2333		*used += sp->sw_used;
2334	}
2335	mtx_unlock(&sw_dev_mtx);
2336}
2337
2338int
2339swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2340{
2341	struct swdevt *sp;
2342	const char *tmp_devname;
2343	int error, n;
2344
2345	n = 0;
2346	error = ENOENT;
2347	mtx_lock(&sw_dev_mtx);
2348	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2349		if (n != name) {
2350			n++;
2351			continue;
2352		}
2353		xs->xsw_version = XSWDEV_VERSION;
2354		xs->xsw_dev = sp->sw_dev;
2355		xs->xsw_flags = sp->sw_flags;
2356		xs->xsw_nblks = sp->sw_nblks;
2357		xs->xsw_used = sp->sw_used;
2358		if (devname != NULL) {
2359			if (vn_isdisk(sp->sw_vp, NULL))
2360				tmp_devname = devtoname(sp->sw_vp->v_rdev);
2361			else
2362				tmp_devname = "[file]";
2363			strncpy(devname, tmp_devname, len);
2364		}
2365		error = 0;
2366		break;
2367	}
2368	mtx_unlock(&sw_dev_mtx);
2369	return (error);
2370}
2371
2372static int
2373sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2374{
2375	struct xswdev xs;
2376	int error;
2377
2378	if (arg2 != 1)			/* name length */
2379		return (EINVAL);
2380	error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2381	if (error != 0)
2382		return (error);
2383	error = SYSCTL_OUT(req, &xs, sizeof(xs));
2384	return (error);
2385}
2386
2387SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2388    "Number of swap devices");
2389SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2390    sysctl_vm_swap_info,
2391    "Swap statistics by device");
2392
2393/*
2394 * vmspace_swap_count() - count the approximate swap usage in pages for a
2395 *			  vmspace.
2396 *
2397 *	The map must be locked.
2398 *
2399 *	Swap usage is determined by taking the proportional swap used by
2400 *	VM objects backing the VM map.  To make up for fractional losses,
2401 *	if the VM object has any swap use at all the associated map entries
2402 *	count for at least 1 swap page.
2403 */
2404long
2405vmspace_swap_count(struct vmspace *vmspace)
2406{
2407	vm_map_t map;
2408	vm_map_entry_t cur;
2409	vm_object_t object;
2410	long count, n;
2411
2412	map = &vmspace->vm_map;
2413	count = 0;
2414
2415	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2416		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2417		    (object = cur->object.vm_object) != NULL) {
2418			VM_OBJECT_WLOCK(object);
2419			if (object->type == OBJT_SWAP &&
2420			    object->un_pager.swp.swp_bcount != 0) {
2421				n = (cur->end - cur->start) / PAGE_SIZE;
2422				count += object->un_pager.swp.swp_bcount *
2423				    SWAP_META_PAGES * n / object->size + 1;
2424			}
2425			VM_OBJECT_WUNLOCK(object);
2426		}
2427	}
2428	return (count);
2429}
2430
2431/*
2432 * GEOM backend
2433 *
2434 * Swapping onto disk devices.
2435 *
2436 */
2437
2438static g_orphan_t swapgeom_orphan;
2439
2440static struct g_class g_swap_class = {
2441	.name = "SWAP",
2442	.version = G_VERSION,
2443	.orphan = swapgeom_orphan,
2444};
2445
2446DECLARE_GEOM_CLASS(g_swap_class, g_class);
2447
2448
2449static void
2450swapgeom_close_ev(void *arg, int flags)
2451{
2452	struct g_consumer *cp;
2453
2454	cp = arg;
2455	g_access(cp, -1, -1, 0);
2456	g_detach(cp);
2457	g_destroy_consumer(cp);
2458}
2459
2460/*
2461 * Add a reference to the g_consumer for an inflight transaction.
2462 */
2463static void
2464swapgeom_acquire(struct g_consumer *cp)
2465{
2466
2467	mtx_assert(&sw_dev_mtx, MA_OWNED);
2468	cp->index++;
2469}
2470
2471/*
2472 * Remove a reference from the g_consumer.  Post a close event if all
2473 * references go away, since the function might be called from the
2474 * biodone context.
2475 */
2476static void
2477swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2478{
2479
2480	mtx_assert(&sw_dev_mtx, MA_OWNED);
2481	cp->index--;
2482	if (cp->index == 0) {
2483		if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2484			sp->sw_id = NULL;
2485	}
2486}
2487
2488static void
2489swapgeom_done(struct bio *bp2)
2490{
2491	struct swdevt *sp;
2492	struct buf *bp;
2493	struct g_consumer *cp;
2494
2495	bp = bp2->bio_caller2;
2496	cp = bp2->bio_from;
2497	bp->b_ioflags = bp2->bio_flags;
2498	if (bp2->bio_error)
2499		bp->b_ioflags |= BIO_ERROR;
2500	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2501	bp->b_error = bp2->bio_error;
2502	bufdone(bp);
2503	sp = bp2->bio_caller1;
2504	mtx_lock(&sw_dev_mtx);
2505	swapgeom_release(cp, sp);
2506	mtx_unlock(&sw_dev_mtx);
2507	g_destroy_bio(bp2);
2508}
2509
2510static void
2511swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2512{
2513	struct bio *bio;
2514	struct g_consumer *cp;
2515
2516	mtx_lock(&sw_dev_mtx);
2517	cp = sp->sw_id;
2518	if (cp == NULL) {
2519		mtx_unlock(&sw_dev_mtx);
2520		bp->b_error = ENXIO;
2521		bp->b_ioflags |= BIO_ERROR;
2522		bufdone(bp);
2523		return;
2524	}
2525	swapgeom_acquire(cp);
2526	mtx_unlock(&sw_dev_mtx);
2527	if (bp->b_iocmd == BIO_WRITE)
2528		bio = g_new_bio();
2529	else
2530		bio = g_alloc_bio();
2531	if (bio == NULL) {
2532		mtx_lock(&sw_dev_mtx);
2533		swapgeom_release(cp, sp);
2534		mtx_unlock(&sw_dev_mtx);
2535		bp->b_error = ENOMEM;
2536		bp->b_ioflags |= BIO_ERROR;
2537		bufdone(bp);
2538		return;
2539	}
2540
2541	bio->bio_caller1 = sp;
2542	bio->bio_caller2 = bp;
2543	bio->bio_cmd = bp->b_iocmd;
2544	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2545	bio->bio_length = bp->b_bcount;
2546	bio->bio_done = swapgeom_done;
2547	if (!buf_mapped(bp)) {
2548		bio->bio_ma = bp->b_pages;
2549		bio->bio_data = unmapped_buf;
2550		bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2551		bio->bio_ma_n = bp->b_npages;
2552		bio->bio_flags |= BIO_UNMAPPED;
2553	} else {
2554		bio->bio_data = bp->b_data;
2555		bio->bio_ma = NULL;
2556	}
2557	g_io_request(bio, cp);
2558	return;
2559}
2560
2561static void
2562swapgeom_orphan(struct g_consumer *cp)
2563{
2564	struct swdevt *sp;
2565	int destroy;
2566
2567	mtx_lock(&sw_dev_mtx);
2568	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2569		if (sp->sw_id == cp) {
2570			sp->sw_flags |= SW_CLOSING;
2571			break;
2572		}
2573	}
2574	/*
2575	 * Drop reference we were created with. Do directly since we're in a
2576	 * special context where we don't have to queue the call to
2577	 * swapgeom_close_ev().
2578	 */
2579	cp->index--;
2580	destroy = ((sp != NULL) && (cp->index == 0));
2581	if (destroy)
2582		sp->sw_id = NULL;
2583	mtx_unlock(&sw_dev_mtx);
2584	if (destroy)
2585		swapgeom_close_ev(cp, 0);
2586}
2587
2588static void
2589swapgeom_close(struct thread *td, struct swdevt *sw)
2590{
2591	struct g_consumer *cp;
2592
2593	mtx_lock(&sw_dev_mtx);
2594	cp = sw->sw_id;
2595	sw->sw_id = NULL;
2596	mtx_unlock(&sw_dev_mtx);
2597
2598	/*
2599	 * swapgeom_close() may be called from the biodone context,
2600	 * where we cannot perform topology changes.  Delegate the
2601	 * work to the events thread.
2602	 */
2603	if (cp != NULL)
2604		g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2605}
2606
2607static int
2608swapongeom_locked(struct cdev *dev, struct vnode *vp)
2609{
2610	struct g_provider *pp;
2611	struct g_consumer *cp;
2612	static struct g_geom *gp;
2613	struct swdevt *sp;
2614	u_long nblks;
2615	int error;
2616
2617	pp = g_dev_getprovider(dev);
2618	if (pp == NULL)
2619		return (ENODEV);
2620	mtx_lock(&sw_dev_mtx);
2621	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2622		cp = sp->sw_id;
2623		if (cp != NULL && cp->provider == pp) {
2624			mtx_unlock(&sw_dev_mtx);
2625			return (EBUSY);
2626		}
2627	}
2628	mtx_unlock(&sw_dev_mtx);
2629	if (gp == NULL)
2630		gp = g_new_geomf(&g_swap_class, "swap");
2631	cp = g_new_consumer(gp);
2632	cp->index = 1;	/* Number of active I/Os, plus one for being active. */
2633	cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2634	g_attach(cp, pp);
2635	/*
2636	 * XXX: Every time you think you can improve the margin for
2637	 * footshooting, somebody depends on the ability to do so:
2638	 * savecore(8) wants to write to our swapdev so we cannot
2639	 * set an exclusive count :-(
2640	 */
2641	error = g_access(cp, 1, 1, 0);
2642	if (error != 0) {
2643		g_detach(cp);
2644		g_destroy_consumer(cp);
2645		return (error);
2646	}
2647	nblks = pp->mediasize / DEV_BSIZE;
2648	swaponsomething(vp, cp, nblks, swapgeom_strategy,
2649	    swapgeom_close, dev2udev(dev),
2650	    (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2651	return (0);
2652}
2653
2654static int
2655swapongeom(struct vnode *vp)
2656{
2657	int error;
2658
2659	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2660	if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) {
2661		error = ENOENT;
2662	} else {
2663		g_topology_lock();
2664		error = swapongeom_locked(vp->v_rdev, vp);
2665		g_topology_unlock();
2666	}
2667	VOP_UNLOCK(vp, 0);
2668	return (error);
2669}
2670
2671/*
2672 * VNODE backend
2673 *
2674 * This is used mainly for network filesystem (read: probably only tested
2675 * with NFS) swapfiles.
2676 *
2677 */
2678
2679static void
2680swapdev_strategy(struct buf *bp, struct swdevt *sp)
2681{
2682	struct vnode *vp2;
2683
2684	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2685
2686	vp2 = sp->sw_id;
2687	vhold(vp2);
2688	if (bp->b_iocmd == BIO_WRITE) {
2689		if (bp->b_bufobj)
2690			bufobj_wdrop(bp->b_bufobj);
2691		bufobj_wref(&vp2->v_bufobj);
2692	}
2693	if (bp->b_bufobj != &vp2->v_bufobj)
2694		bp->b_bufobj = &vp2->v_bufobj;
2695	bp->b_vp = vp2;
2696	bp->b_iooffset = dbtob(bp->b_blkno);
2697	bstrategy(bp);
2698	return;
2699}
2700
2701static void
2702swapdev_close(struct thread *td, struct swdevt *sp)
2703{
2704
2705	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2706	vrele(sp->sw_vp);
2707}
2708
2709
2710static int
2711swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2712{
2713	struct swdevt *sp;
2714	int error;
2715
2716	if (nblks == 0)
2717		return (ENXIO);
2718	mtx_lock(&sw_dev_mtx);
2719	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2720		if (sp->sw_id == vp) {
2721			mtx_unlock(&sw_dev_mtx);
2722			return (EBUSY);
2723		}
2724	}
2725	mtx_unlock(&sw_dev_mtx);
2726
2727	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2728#ifdef MAC
2729	error = mac_system_check_swapon(td->td_ucred, vp);
2730	if (error == 0)
2731#endif
2732		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2733	(void) VOP_UNLOCK(vp, 0);
2734	if (error)
2735		return (error);
2736
2737	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2738	    NODEV, 0);
2739	return (0);
2740}
2741
2742static int
2743sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
2744{
2745	int error, new, n;
2746
2747	new = nsw_wcount_async_max;
2748	error = sysctl_handle_int(oidp, &new, 0, req);
2749	if (error != 0 || req->newptr == NULL)
2750		return (error);
2751
2752	if (new > nswbuf / 2 || new < 1)
2753		return (EINVAL);
2754
2755	mtx_lock(&pbuf_mtx);
2756	while (nsw_wcount_async_max != new) {
2757		/*
2758		 * Adjust difference.  If the current async count is too low,
2759		 * we will need to sqeeze our update slowly in.  Sleep with a
2760		 * higher priority than getpbuf() to finish faster.
2761		 */
2762		n = new - nsw_wcount_async_max;
2763		if (nsw_wcount_async + n >= 0) {
2764			nsw_wcount_async += n;
2765			nsw_wcount_async_max += n;
2766			wakeup(&nsw_wcount_async);
2767		} else {
2768			nsw_wcount_async_max -= nsw_wcount_async;
2769			nsw_wcount_async = 0;
2770			msleep(&nsw_wcount_async, &pbuf_mtx, PSWP,
2771			    "swpsysctl", 0);
2772		}
2773	}
2774	mtx_unlock(&pbuf_mtx);
2775
2776	return (0);
2777}
2778