1/* crypto/bn/bn_gf2m.c */
2/* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4 *
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
8 *
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
11 *
12 * In addition, Sun covenants to all licensees who provide a reciprocal
13 * covenant with respect to their own patents if any, not to sue under
14 * current and future patent claims necessarily infringed by the making,
15 * using, practicing, selling, offering for sale and/or otherwise
16 * disposing of the ECC Code as delivered hereunder (or portions thereof),
17 * provided that such covenant shall not apply:
18 *  1) for code that a licensee deletes from the ECC Code;
19 *  2) separates from the ECC Code; or
20 *  3) for infringements caused by:
21 *       i) the modification of the ECC Code or
22 *      ii) the combination of the ECC Code with other software or
23 *          devices where such combination causes the infringement.
24 *
25 * The software is originally written by Sheueling Chang Shantz and
26 * Douglas Stebila of Sun Microsystems Laboratories.
27 *
28 */
29
30/* NOTE: This file is licensed pursuant to the OpenSSL license below
31 * and may be modified; but after modifications, the above covenant
32 * may no longer apply!  In such cases, the corresponding paragraph
33 * ["In addition, Sun covenants ... causes the infringement."] and
34 * this note can be edited out; but please keep the Sun copyright
35 * notice and attribution. */
36
37/* ====================================================================
38 * Copyright (c) 1998-2002 The OpenSSL Project.  All rights reserved.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 *
47 * 2. Redistributions in binary form must reproduce the above copyright
48 *    notice, this list of conditions and the following disclaimer in
49 *    the documentation and/or other materials provided with the
50 *    distribution.
51 *
52 * 3. All advertising materials mentioning features or use of this
53 *    software must display the following acknowledgment:
54 *    "This product includes software developed by the OpenSSL Project
55 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
56 *
57 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
58 *    endorse or promote products derived from this software without
59 *    prior written permission. For written permission, please contact
60 *    openssl-core@openssl.org.
61 *
62 * 5. Products derived from this software may not be called "OpenSSL"
63 *    nor may "OpenSSL" appear in their names without prior written
64 *    permission of the OpenSSL Project.
65 *
66 * 6. Redistributions of any form whatsoever must retain the following
67 *    acknowledgment:
68 *    "This product includes software developed by the OpenSSL Project
69 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
70 *
71 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
72 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
74 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
75 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
76 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
77 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
78 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
79 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
80 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
81 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
82 * OF THE POSSIBILITY OF SUCH DAMAGE.
83 * ====================================================================
84 *
85 * This product includes cryptographic software written by Eric Young
86 * (eay@cryptsoft.com).  This product includes software written by Tim
87 * Hudson (tjh@cryptsoft.com).
88 *
89 */
90
91#include <assert.h>
92#include <limits.h>
93#include <stdio.h>
94#include <openssl/local/cryptlib.h>
95#include "bn_lcl.h"
96
97/* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */
98#define MAX_ITERATIONS 50
99
100static const BN_ULONG SQR_tb[16] =
101  {     0,     1,     4,     5,    16,    17,    20,    21,
102       64,    65,    68,    69,    80,    81,    84,    85 };
103/* Platform-specific macros to accelerate squaring. */
104#if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
105#define SQR1(w) \
106    SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
107    SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
108    SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
109    SQR_tb[(w) >> 36 & 0xF] <<  8 | SQR_tb[(w) >> 32 & 0xF]
110#define SQR0(w) \
111    SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
112    SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
113    SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \
114    SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
115#endif
116#ifdef THIRTY_TWO_BIT
117#define SQR1(w) \
118    SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
119    SQR_tb[(w) >> 20 & 0xF] <<  8 | SQR_tb[(w) >> 16 & 0xF]
120#define SQR0(w) \
121    SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \
122    SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
123#endif
124
125/* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
126 * result is a polynomial r with degree < 2 * BN_BITS - 1
127 * The caller MUST ensure that the variables have the right amount
128 * of space allocated.
129 */
130#ifdef THIRTY_TWO_BIT
131static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
132	{
133	register BN_ULONG h, l, s;
134	BN_ULONG tab[8], top2b = a >> 30;
135	register BN_ULONG a1, a2, a4;
136
137	a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;
138
139	tab[0] =  0; tab[1] = a1;    tab[2] = a2;    tab[3] = a1^a2;
140	tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;
141
142	s = tab[b       & 0x7]; l  = s;
143	s = tab[b >>  3 & 0x7]; l ^= s <<  3; h  = s >> 29;
144	s = tab[b >>  6 & 0x7]; l ^= s <<  6; h ^= s >> 26;
145	s = tab[b >>  9 & 0x7]; l ^= s <<  9; h ^= s >> 23;
146	s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
147	s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
148	s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
149	s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
150	s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >>  8;
151	s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >>  5;
152	s = tab[b >> 30      ]; l ^= s << 30; h ^= s >>  2;
153
154	/* compensate for the top two bits of a */
155
156	if (top2b & 01) { l ^= b << 30; h ^= b >> 2; }
157	if (top2b & 02) { l ^= b << 31; h ^= b >> 1; }
158
159	*r1 = h; *r0 = l;
160	}
161#endif
162#if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
163static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
164	{
165	register BN_ULONG h, l, s;
166	BN_ULONG tab[16], top3b = a >> 61;
167	register BN_ULONG a1, a2, a4, a8;
168
169	a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1;
170
171	tab[ 0] = 0;     tab[ 1] = a1;       tab[ 2] = a2;       tab[ 3] = a1^a2;
172	tab[ 4] = a4;    tab[ 5] = a1^a4;    tab[ 6] = a2^a4;    tab[ 7] = a1^a2^a4;
173	tab[ 8] = a8;    tab[ 9] = a1^a8;    tab[10] = a2^a8;    tab[11] = a1^a2^a8;
174	tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;
175
176	s = tab[b       & 0xF]; l  = s;
177	s = tab[b >>  4 & 0xF]; l ^= s <<  4; h  = s >> 60;
178	s = tab[b >>  8 & 0xF]; l ^= s <<  8; h ^= s >> 56;
179	s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
180	s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
181	s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
182	s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
183	s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
184	s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
185	s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
186	s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
187	s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
188	s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
189	s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
190	s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >>  8;
191	s = tab[b >> 60      ]; l ^= s << 60; h ^= s >>  4;
192
193	/* compensate for the top three bits of a */
194
195	if (top3b & 01) { l ^= b << 61; h ^= b >> 3; }
196	if (top3b & 02) { l ^= b << 62; h ^= b >> 2; }
197	if (top3b & 04) { l ^= b << 63; h ^= b >> 1; }
198
199	*r1 = h; *r0 = l;
200	}
201#endif
202
203/* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
204 * result is a polynomial r with degree < 4 * BN_BITS2 - 1
205 * The caller MUST ensure that the variables have the right amount
206 * of space allocated.
207 */
208static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0)
209	{
210	BN_ULONG m1, m0;
211	/* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
212	bn_GF2m_mul_1x1(r+3, r+2, a1, b1);
213	bn_GF2m_mul_1x1(r+1, r, a0, b0);
214	bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
215	/* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
216	r[2] ^= m1 ^ r[1] ^ r[3];  /* h0 ^= m1 ^ l1 ^ h1; */
217	r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0;  /* l1 ^= l0 ^ h0 ^ m0; */
218	}
219
220
221/* Add polynomials a and b and store result in r; r could be a or b, a and b
222 * could be equal; r is the bitwise XOR of a and b.
223 */
224int	BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
225	{
226	int i;
227	const BIGNUM *at, *bt;
228
229	bn_check_top(a);
230	bn_check_top(b);
231
232	if (a->top < b->top) { at = b; bt = a; }
233	else { at = a; bt = b; }
234
235	if(bn_wexpand(r, at->top) == NULL)
236		return 0;
237
238	for (i = 0; i < bt->top; i++)
239		{
240		r->d[i] = at->d[i] ^ bt->d[i];
241		}
242	for (; i < at->top; i++)
243		{
244		r->d[i] = at->d[i];
245		}
246
247	r->top = at->top;
248	bn_correct_top(r);
249
250	return 1;
251	}
252
253
254/* Some functions allow for representation of the irreducible polynomials
255 * as an int[], say p.  The irreducible f(t) is then of the form:
256 *     t^p[0] + t^p[1] + ... + t^p[k]
257 * where m = p[0] > p[1] > ... > p[k] = 0.
258 */
259
260
261/* Performs modular reduction of a and store result in r.  r could be a. */
262int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
263	{
264	int j, k;
265	int n, dN, d0, d1;
266	BN_ULONG zz, *z;
267
268	bn_check_top(a);
269
270	if (!p[0])
271		{
272		/* reduction mod 1 => return 0 */
273		BN_zero(r);
274		return 1;
275		}
276
277	/* Since the algorithm does reduction in the r value, if a != r, copy
278	 * the contents of a into r so we can do reduction in r.
279	 */
280	if (a != r)
281		{
282		if (!bn_wexpand(r, a->top)) return 0;
283		for (j = 0; j < a->top; j++)
284			{
285			r->d[j] = a->d[j];
286			}
287		r->top = a->top;
288		}
289	z = r->d;
290
291	/* start reduction */
292	dN = p[0] / BN_BITS2;
293	for (j = r->top - 1; j > dN;)
294		{
295		zz = z[j];
296		if (z[j] == 0) { j--; continue; }
297		z[j] = 0;
298
299		for (k = 1; p[k] != 0; k++)
300			{
301			/* reducing component t^p[k] */
302			n = p[0] - p[k];
303			d0 = n % BN_BITS2;  d1 = BN_BITS2 - d0;
304			n /= BN_BITS2;
305			z[j-n] ^= (zz>>d0);
306			if (d0) z[j-n-1] ^= (zz<<d1);
307			}
308
309		/* reducing component t^0 */
310		n = dN;
311		d0 = p[0] % BN_BITS2;
312		d1 = BN_BITS2 - d0;
313		z[j-n] ^= (zz >> d0);
314		if (d0) z[j-n-1] ^= (zz << d1);
315		}
316
317	/* final round of reduction */
318	while (j == dN)
319		{
320
321		d0 = p[0] % BN_BITS2;
322		zz = z[dN] >> d0;
323		if (zz == 0) break;
324		d1 = BN_BITS2 - d0;
325
326		/* clear up the top d1 bits */
327		if (d0)
328			z[dN] = (z[dN] << d1) >> d1;
329		else
330			z[dN] = 0;
331		z[0] ^= zz; /* reduction t^0 component */
332
333		for (k = 1; p[k] != 0; k++)
334			{
335			BN_ULONG tmp_ulong;
336
337			/* reducing component t^p[k]*/
338			n = p[k] / BN_BITS2;
339			d0 = p[k] % BN_BITS2;
340			d1 = BN_BITS2 - d0;
341			z[n] ^= (zz << d0);
342			tmp_ulong = zz >> d1;
343                        if (d0 && tmp_ulong)
344                                z[n+1] ^= tmp_ulong;
345			}
346
347
348		}
349
350	bn_correct_top(r);
351	return 1;
352	}
353
354/* Performs modular reduction of a by p and store result in r.  r could be a.
355 *
356 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
357 * function is only provided for convenience; for best performance, use the
358 * BN_GF2m_mod_arr function.
359 */
360int	BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
361	{
362	int ret = 0;
363	const int max = BN_num_bits(p) + 1;
364	int *arr=NULL;
365	bn_check_top(a);
366	bn_check_top(p);
367	if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
368	ret = BN_GF2m_poly2arr(p, arr, max);
369	if (!ret || ret > max)
370		{
371		BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH);
372		goto err;
373		}
374	ret = BN_GF2m_mod_arr(r, a, arr);
375	bn_check_top(r);
376err:
377	if (arr) OPENSSL_free(arr);
378	return ret;
379	}
380
381
382/* Compute the product of two polynomials a and b, reduce modulo p, and store
383 * the result in r.  r could be a or b; a could be b.
384 */
385int	BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
386	{
387	int zlen, i, j, k, ret = 0;
388	BIGNUM *s;
389	BN_ULONG x1, x0, y1, y0, zz[4];
390
391	bn_check_top(a);
392	bn_check_top(b);
393
394	if (a == b)
395		{
396		return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
397		}
398
399	BN_CTX_start(ctx);
400	if ((s = BN_CTX_get(ctx)) == NULL) goto err;
401
402	zlen = a->top + b->top + 4;
403	if (!bn_wexpand(s, zlen)) goto err;
404	s->top = zlen;
405
406	for (i = 0; i < zlen; i++) s->d[i] = 0;
407
408	for (j = 0; j < b->top; j += 2)
409		{
410		y0 = b->d[j];
411		y1 = ((j+1) == b->top) ? 0 : b->d[j+1];
412		for (i = 0; i < a->top; i += 2)
413			{
414			x0 = a->d[i];
415			x1 = ((i+1) == a->top) ? 0 : a->d[i+1];
416			bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
417			for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k];
418			}
419		}
420
421	bn_correct_top(s);
422	if (BN_GF2m_mod_arr(r, s, p))
423		ret = 1;
424	bn_check_top(r);
425
426err:
427	BN_CTX_end(ctx);
428	return ret;
429	}
430
431/* Compute the product of two polynomials a and b, reduce modulo p, and store
432 * the result in r.  r could be a or b; a could equal b.
433 *
434 * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper
435 * function is only provided for convenience; for best performance, use the
436 * BN_GF2m_mod_mul_arr function.
437 */
438int	BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
439	{
440	int ret = 0;
441	const int max = BN_num_bits(p) + 1;
442	int *arr=NULL;
443	bn_check_top(a);
444	bn_check_top(b);
445	bn_check_top(p);
446	if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
447	ret = BN_GF2m_poly2arr(p, arr, max);
448	if (!ret || ret > max)
449		{
450		BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH);
451		goto err;
452		}
453	ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
454	bn_check_top(r);
455err:
456	if (arr) OPENSSL_free(arr);
457	return ret;
458	}
459
460
461/* Square a, reduce the result mod p, and store it in a.  r could be a. */
462int	BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
463	{
464	int i, ret = 0;
465	BIGNUM *s;
466
467	bn_check_top(a);
468	BN_CTX_start(ctx);
469	if ((s = BN_CTX_get(ctx)) == NULL) return 0;
470	if (!bn_wexpand(s, 2 * a->top)) goto err;
471
472	for (i = a->top - 1; i >= 0; i--)
473		{
474		s->d[2*i+1] = SQR1(a->d[i]);
475		s->d[2*i  ] = SQR0(a->d[i]);
476		}
477
478	s->top = 2 * a->top;
479	bn_correct_top(s);
480	if (!BN_GF2m_mod_arr(r, s, p)) goto err;
481	bn_check_top(r);
482	ret = 1;
483err:
484	BN_CTX_end(ctx);
485	return ret;
486	}
487
488/* Square a, reduce the result mod p, and store it in a.  r could be a.
489 *
490 * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper
491 * function is only provided for convenience; for best performance, use the
492 * BN_GF2m_mod_sqr_arr function.
493 */
494int	BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
495	{
496	int ret = 0;
497	const int max = BN_num_bits(p) + 1;
498	int *arr=NULL;
499
500	bn_check_top(a);
501	bn_check_top(p);
502	if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
503	ret = BN_GF2m_poly2arr(p, arr, max);
504	if (!ret || ret > max)
505		{
506		BNerr(BN_F_BN_GF2M_MOD_SQR,BN_R_INVALID_LENGTH);
507		goto err;
508		}
509	ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
510	bn_check_top(r);
511err:
512	if (arr) OPENSSL_free(arr);
513	return ret;
514	}
515
516
517/* Invert a, reduce modulo p, and store the result in r. r could be a.
518 * Uses Modified Almost Inverse Algorithm (Algorithm 10) from
519 *     Hankerson, D., Hernandez, J.L., and Menezes, A.  "Software Implementation
520 *     of Elliptic Curve Cryptography Over Binary Fields".
521 */
522int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
523	{
524	BIGNUM *b, *c, *u, *v, *tmp;
525	int ret = 0;
526
527	bn_check_top(a);
528	bn_check_top(p);
529
530	BN_CTX_start(ctx);
531
532	b = BN_CTX_get(ctx);
533	c = BN_CTX_get(ctx);
534	u = BN_CTX_get(ctx);
535	v = BN_CTX_get(ctx);
536	if (v == NULL) goto err;
537
538	if (!BN_one(b)) goto err;
539	if (!BN_GF2m_mod(u, a, p)) goto err;
540	if (!BN_copy(v, p)) goto err;
541
542	if (BN_is_zero(u)) goto err;
543
544	while (1)
545		{
546		while (!BN_is_odd(u))
547			{
548			if (!BN_rshift1(u, u)) goto err;
549			if (BN_is_odd(b))
550				{
551				if (!BN_GF2m_add(b, b, p)) goto err;
552				}
553			if (!BN_rshift1(b, b)) goto err;
554			}
555
556		if (BN_abs_is_word(u, 1)) break;
557
558		if (BN_num_bits(u) < BN_num_bits(v))
559			{
560			tmp = u; u = v; v = tmp;
561			tmp = b; b = c; c = tmp;
562			}
563
564		if (!BN_GF2m_add(u, u, v)) goto err;
565		if (!BN_GF2m_add(b, b, c)) goto err;
566		}
567
568
569	if (!BN_copy(r, b)) goto err;
570	bn_check_top(r);
571	ret = 1;
572
573err:
574  	BN_CTX_end(ctx);
575	return ret;
576	}
577
578/* Invert xx, reduce modulo p, and store the result in r. r could be xx.
579 *
580 * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper
581 * function is only provided for convenience; for best performance, use the
582 * BN_GF2m_mod_inv function.
583 */
584int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], BN_CTX *ctx)
585	{
586	BIGNUM *field;
587	int ret = 0;
588
589	bn_check_top(xx);
590	BN_CTX_start(ctx);
591	if ((field = BN_CTX_get(ctx)) == NULL) goto err;
592	if (!BN_GF2m_arr2poly(p, field)) goto err;
593
594	ret = BN_GF2m_mod_inv(r, xx, field, ctx);
595	bn_check_top(r);
596
597err:
598	BN_CTX_end(ctx);
599	return ret;
600	}
601
602
603#ifndef OPENSSL_SUN_GF2M_DIV
604/* Divide y by x, reduce modulo p, and store the result in r. r could be x
605 * or y, x could equal y.
606 */
607int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
608	{
609	BIGNUM *xinv = NULL;
610	int ret = 0;
611
612	bn_check_top(y);
613	bn_check_top(x);
614	bn_check_top(p);
615
616	BN_CTX_start(ctx);
617	xinv = BN_CTX_get(ctx);
618	if (xinv == NULL) goto err;
619
620	if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err;
621	if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err;
622	bn_check_top(r);
623	ret = 1;
624
625err:
626	BN_CTX_end(ctx);
627	return ret;
628	}
629#else
630/* Divide y by x, reduce modulo p, and store the result in r. r could be x
631 * or y, x could equal y.
632 * Uses algorithm Modular_Division_GF(2^m) from
633 *     Chang-Shantz, S.  "From Euclid's GCD to Montgomery Multiplication to
634 *     the Great Divide".
635 */
636int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
637	{
638	BIGNUM *a, *b, *u, *v;
639	int ret = 0;
640
641	bn_check_top(y);
642	bn_check_top(x);
643	bn_check_top(p);
644
645	BN_CTX_start(ctx);
646
647	a = BN_CTX_get(ctx);
648	b = BN_CTX_get(ctx);
649	u = BN_CTX_get(ctx);
650	v = BN_CTX_get(ctx);
651	if (v == NULL) goto err;
652
653	/* reduce x and y mod p */
654	if (!BN_GF2m_mod(u, y, p)) goto err;
655	if (!BN_GF2m_mod(a, x, p)) goto err;
656	if (!BN_copy(b, p)) goto err;
657
658	while (!BN_is_odd(a))
659		{
660		if (!BN_rshift1(a, a)) goto err;
661		if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
662		if (!BN_rshift1(u, u)) goto err;
663		}
664
665	do
666		{
667		if (BN_GF2m_cmp(b, a) > 0)
668			{
669			if (!BN_GF2m_add(b, b, a)) goto err;
670			if (!BN_GF2m_add(v, v, u)) goto err;
671			do
672				{
673				if (!BN_rshift1(b, b)) goto err;
674				if (BN_is_odd(v)) if (!BN_GF2m_add(v, v, p)) goto err;
675				if (!BN_rshift1(v, v)) goto err;
676				} while (!BN_is_odd(b));
677			}
678		else if (BN_abs_is_word(a, 1))
679			break;
680		else
681			{
682			if (!BN_GF2m_add(a, a, b)) goto err;
683			if (!BN_GF2m_add(u, u, v)) goto err;
684			do
685				{
686				if (!BN_rshift1(a, a)) goto err;
687				if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
688				if (!BN_rshift1(u, u)) goto err;
689				} while (!BN_is_odd(a));
690			}
691		} while (1);
692
693	if (!BN_copy(r, u)) goto err;
694	bn_check_top(r);
695	ret = 1;
696
697err:
698  	BN_CTX_end(ctx);
699	return ret;
700	}
701#endif
702
703/* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
704 * or yy, xx could equal yy.
705 *
706 * This function calls down to the BN_GF2m_mod_div implementation; this wrapper
707 * function is only provided for convenience; for best performance, use the
708 * BN_GF2m_mod_div function.
709 */
710int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const int p[], BN_CTX *ctx)
711	{
712	BIGNUM *field;
713	int ret = 0;
714
715	bn_check_top(yy);
716	bn_check_top(xx);
717
718	BN_CTX_start(ctx);
719	if ((field = BN_CTX_get(ctx)) == NULL) goto err;
720	if (!BN_GF2m_arr2poly(p, field)) goto err;
721
722	ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
723	bn_check_top(r);
724
725err:
726	BN_CTX_end(ctx);
727	return ret;
728	}
729
730
731/* Compute the bth power of a, reduce modulo p, and store
732 * the result in r.  r could be a.
733 * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
734 */
735int	BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
736	{
737	int ret = 0, i, n;
738	BIGNUM *u;
739
740	bn_check_top(a);
741	bn_check_top(b);
742
743	if (BN_is_zero(b))
744		return(BN_one(r));
745
746	if (BN_abs_is_word(b, 1))
747		return (BN_copy(r, a) != NULL);
748
749	BN_CTX_start(ctx);
750	if ((u = BN_CTX_get(ctx)) == NULL) goto err;
751
752	if (!BN_GF2m_mod_arr(u, a, p)) goto err;
753
754	n = BN_num_bits(b) - 1;
755	for (i = n - 1; i >= 0; i--)
756		{
757		if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err;
758		if (BN_is_bit_set(b, i))
759			{
760			if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err;
761			}
762		}
763	if (!BN_copy(r, u)) goto err;
764	bn_check_top(r);
765	ret = 1;
766err:
767	BN_CTX_end(ctx);
768	return ret;
769	}
770
771/* Compute the bth power of a, reduce modulo p, and store
772 * the result in r.  r could be a.
773 *
774 * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper
775 * function is only provided for convenience; for best performance, use the
776 * BN_GF2m_mod_exp_arr function.
777 */
778int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
779	{
780	int ret = 0;
781	const int max = BN_num_bits(p) + 1;
782	int *arr=NULL;
783	bn_check_top(a);
784	bn_check_top(b);
785	bn_check_top(p);
786	if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
787	ret = BN_GF2m_poly2arr(p, arr, max);
788	if (!ret || ret > max)
789		{
790		BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH);
791		goto err;
792		}
793	ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
794	bn_check_top(r);
795err:
796	if (arr) OPENSSL_free(arr);
797	return ret;
798	}
799
800/* Compute the square root of a, reduce modulo p, and store
801 * the result in r.  r could be a.
802 * Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
803 */
804int	BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
805	{
806	int ret = 0;
807	BIGNUM *u;
808
809	bn_check_top(a);
810
811	if (!p[0])
812		{
813		/* reduction mod 1 => return 0 */
814		BN_zero(r);
815		return 1;
816		}
817
818	BN_CTX_start(ctx);
819	if ((u = BN_CTX_get(ctx)) == NULL) goto err;
820
821	if (!BN_set_bit(u, p[0] - 1)) goto err;
822	ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
823	bn_check_top(r);
824
825err:
826	BN_CTX_end(ctx);
827	return ret;
828	}
829
830/* Compute the square root of a, reduce modulo p, and store
831 * the result in r.  r could be a.
832 *
833 * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper
834 * function is only provided for convenience; for best performance, use the
835 * BN_GF2m_mod_sqrt_arr function.
836 */
837int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
838	{
839	int ret = 0;
840	const int max = BN_num_bits(p) + 1;
841	int *arr=NULL;
842	bn_check_top(a);
843	bn_check_top(p);
844	if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
845	ret = BN_GF2m_poly2arr(p, arr, max);
846	if (!ret || ret > max)
847		{
848		BNerr(BN_F_BN_GF2M_MOD_SQRT,BN_R_INVALID_LENGTH);
849		goto err;
850		}
851	ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
852	bn_check_top(r);
853err:
854	if (arr) OPENSSL_free(arr);
855	return ret;
856	}
857
858/* Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns 0.
859 * Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
860 */
861int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], BN_CTX *ctx)
862	{
863	int ret = 0, count = 0, j;
864	BIGNUM *a, *z, *rho, *w, *w2, *tmp;
865
866	bn_check_top(a_);
867
868	if (!p[0])
869		{
870		/* reduction mod 1 => return 0 */
871		BN_zero(r);
872		return 1;
873		}
874
875	BN_CTX_start(ctx);
876	a = BN_CTX_get(ctx);
877	z = BN_CTX_get(ctx);
878	w = BN_CTX_get(ctx);
879	if (w == NULL) goto err;
880
881	if (!BN_GF2m_mod_arr(a, a_, p)) goto err;
882
883	if (BN_is_zero(a))
884		{
885		BN_zero(r);
886		ret = 1;
887		goto err;
888		}
889
890	if (p[0] & 0x1) /* m is odd */
891		{
892		/* compute half-trace of a */
893		if (!BN_copy(z, a)) goto err;
894		for (j = 1; j <= (p[0] - 1) / 2; j++)
895			{
896			if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
897			if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
898			if (!BN_GF2m_add(z, z, a)) goto err;
899			}
900
901		}
902	else /* m is even */
903		{
904		rho = BN_CTX_get(ctx);
905		w2 = BN_CTX_get(ctx);
906		tmp = BN_CTX_get(ctx);
907		if (tmp == NULL) goto err;
908		do
909			{
910			if (!BN_rand(rho, p[0], 0, 0)) goto err;
911			if (!BN_GF2m_mod_arr(rho, rho, p)) goto err;
912			BN_zero(z);
913			if (!BN_copy(w, rho)) goto err;
914			for (j = 1; j <= p[0] - 1; j++)
915				{
916				if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
917				if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto err;
918				if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) goto err;
919				if (!BN_GF2m_add(z, z, tmp)) goto err;
920				if (!BN_GF2m_add(w, w2, rho)) goto err;
921				}
922			count++;
923			} while (BN_is_zero(w) && (count < MAX_ITERATIONS));
924		if (BN_is_zero(w))
925			{
926			BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,BN_R_TOO_MANY_ITERATIONS);
927			goto err;
928			}
929		}
930
931	if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err;
932	if (!BN_GF2m_add(w, z, w)) goto err;
933	if (BN_GF2m_cmp(w, a))
934		{
935		BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
936		goto err;
937		}
938
939	if (!BN_copy(r, z)) goto err;
940	bn_check_top(r);
941
942	ret = 1;
943
944err:
945	BN_CTX_end(ctx);
946	return ret;
947	}
948
949/* Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns 0.
950 *
951 * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper
952 * function is only provided for convenience; for best performance, use the
953 * BN_GF2m_mod_solve_quad_arr function.
954 */
955int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
956	{
957	int ret = 0;
958	const int max = BN_num_bits(p) + 1;
959	int *arr=NULL;
960	bn_check_top(a);
961	bn_check_top(p);
962	if ((arr = (int *)OPENSSL_malloc(sizeof(int) *
963						max)) == NULL) goto err;
964	ret = BN_GF2m_poly2arr(p, arr, max);
965	if (!ret || ret > max)
966		{
967		BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD,BN_R_INVALID_LENGTH);
968		goto err;
969		}
970	ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
971	bn_check_top(r);
972err:
973	if (arr) OPENSSL_free(arr);
974	return ret;
975	}
976
977/* Convert the bit-string representation of a polynomial
978 * ( \sum_{i=0}^n a_i * x^i) into an array of integers corresponding
979 * to the bits with non-zero coefficient.  Array is terminated with -1.
980 * Up to max elements of the array will be filled.  Return value is total
981 * number of array elements that would be filled if array was large enough.
982 */
983int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
984	{
985	int i, j, k = 0;
986	BN_ULONG mask;
987
988	if (BN_is_zero(a))
989		return 0;
990
991	for (i = a->top - 1; i >= 0; i--)
992		{
993		if (!a->d[i])
994			/* skip word if a->d[i] == 0 */
995			continue;
996		mask = BN_TBIT;
997		for (j = BN_BITS2 - 1; j >= 0; j--)
998			{
999			if (a->d[i] & mask)
1000				{
1001				if (k < max) p[k] = BN_BITS2 * i + j;
1002				k++;
1003				}
1004			mask >>= 1;
1005			}
1006		}
1007
1008	if (k < max) {
1009		p[k] = -1;
1010		k++;
1011	}
1012
1013	return k;
1014	}
1015
1016/* Convert the coefficient array representation of a polynomial to a
1017 * bit-string.  The array must be terminated by -1.
1018 */
1019int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
1020	{
1021	int i;
1022
1023	bn_check_top(a);
1024	BN_zero(a);
1025	for (i = 0; p[i] != -1; i++)
1026		{
1027		if (BN_set_bit(a, p[i]) == 0)
1028			return 0;
1029		}
1030	bn_check_top(a);
1031
1032	return 1;
1033	}
1034
1035