1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory object module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD$");
67
68#include "opt_vm.h"
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/lock.h>
73#include <sys/mman.h>
74#include <sys/mount.h>
75#include <sys/kernel.h>
76#include <sys/sysctl.h>
77#include <sys/mutex.h>
78#include <sys/proc.h>		/* for curproc, pageproc */
79#include <sys/socket.h>
80#include <sys/resourcevar.h>
81#include <sys/rwlock.h>
82#include <sys/user.h>
83#include <sys/vnode.h>
84#include <sys/vmmeter.h>
85#include <sys/sx.h>
86
87#include <vm/vm.h>
88#include <vm/vm_param.h>
89#include <vm/pmap.h>
90#include <vm/vm_map.h>
91#include <vm/vm_object.h>
92#include <vm/vm_page.h>
93#include <vm/vm_pageout.h>
94#include <vm/vm_pager.h>
95#include <vm/swap_pager.h>
96#include <vm/vm_kern.h>
97#include <vm/vm_extern.h>
98#include <vm/vm_radix.h>
99#include <vm/vm_reserv.h>
100#include <vm/uma.h>
101
102static int old_msync;
103SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
104    "Use old (insecure) msync behavior");
105
106static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
107		    int pagerflags, int flags, boolean_t *clearobjflags,
108		    boolean_t *eio);
109static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
110		    boolean_t *clearobjflags);
111static void	vm_object_qcollapse(vm_object_t object);
112static void	vm_object_vndeallocate(vm_object_t object);
113
114/*
115 *	Virtual memory objects maintain the actual data
116 *	associated with allocated virtual memory.  A given
117 *	page of memory exists within exactly one object.
118 *
119 *	An object is only deallocated when all "references"
120 *	are given up.  Only one "reference" to a given
121 *	region of an object should be writeable.
122 *
123 *	Associated with each object is a list of all resident
124 *	memory pages belonging to that object; this list is
125 *	maintained by the "vm_page" module, and locked by the object's
126 *	lock.
127 *
128 *	Each object also records a "pager" routine which is
129 *	used to retrieve (and store) pages to the proper backing
130 *	storage.  In addition, objects may be backed by other
131 *	objects from which they were virtual-copied.
132 *
133 *	The only items within the object structure which are
134 *	modified after time of creation are:
135 *		reference count		locked by object's lock
136 *		pager routine		locked by object's lock
137 *
138 */
139
140struct object_q vm_object_list;
141struct mtx vm_object_list_mtx;	/* lock for object list and count */
142
143struct vm_object kernel_object_store;
144struct vm_object kmem_object_store;
145
146static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
147    "VM object stats");
148
149static long object_collapses;
150SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
151    &object_collapses, 0, "VM object collapses");
152
153static long object_bypasses;
154SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
155    &object_bypasses, 0, "VM object bypasses");
156
157static uma_zone_t obj_zone;
158
159static int vm_object_zinit(void *mem, int size, int flags);
160
161#ifdef INVARIANTS
162static void vm_object_zdtor(void *mem, int size, void *arg);
163
164static void
165vm_object_zdtor(void *mem, int size, void *arg)
166{
167	vm_object_t object;
168
169	object = (vm_object_t)mem;
170	KASSERT(object->ref_count == 0,
171	    ("object %p ref_count = %d", object, object->ref_count));
172	KASSERT(TAILQ_EMPTY(&object->memq),
173	    ("object %p has resident pages in its memq", object));
174	KASSERT(vm_radix_is_empty(&object->rtree),
175	    ("object %p has resident pages in its trie", object));
176#if VM_NRESERVLEVEL > 0
177	KASSERT(LIST_EMPTY(&object->rvq),
178	    ("object %p has reservations",
179	    object));
180#endif
181	KASSERT(vm_object_cache_is_empty(object),
182	    ("object %p has cached pages",
183	    object));
184	KASSERT(object->paging_in_progress == 0,
185	    ("object %p paging_in_progress = %d",
186	    object, object->paging_in_progress));
187	KASSERT(object->resident_page_count == 0,
188	    ("object %p resident_page_count = %d",
189	    object, object->resident_page_count));
190	KASSERT(object->shadow_count == 0,
191	    ("object %p shadow_count = %d",
192	    object, object->shadow_count));
193	KASSERT(object->type == OBJT_DEAD,
194	    ("object %p has non-dead type %d",
195	    object, object->type));
196}
197#endif
198
199static int
200vm_object_zinit(void *mem, int size, int flags)
201{
202	vm_object_t object;
203
204	object = (vm_object_t)mem;
205	rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
206
207	/* These are true for any object that has been freed */
208	object->type = OBJT_DEAD;
209	object->ref_count = 0;
210	object->rtree.rt_root = 0;
211	object->rtree.rt_flags = 0;
212	object->paging_in_progress = 0;
213	object->resident_page_count = 0;
214	object->shadow_count = 0;
215	object->cache.rt_root = 0;
216	object->cache.rt_flags = 0;
217
218	mtx_lock(&vm_object_list_mtx);
219	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
220	mtx_unlock(&vm_object_list_mtx);
221	return (0);
222}
223
224static void
225_vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
226{
227
228	TAILQ_INIT(&object->memq);
229	LIST_INIT(&object->shadow_head);
230
231	object->type = type;
232	switch (type) {
233	case OBJT_DEAD:
234		panic("_vm_object_allocate: can't create OBJT_DEAD");
235	case OBJT_DEFAULT:
236	case OBJT_SWAP:
237		object->flags = OBJ_ONEMAPPING;
238		break;
239	case OBJT_DEVICE:
240	case OBJT_SG:
241		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
242		break;
243	case OBJT_MGTDEVICE:
244		object->flags = OBJ_FICTITIOUS;
245		break;
246	case OBJT_PHYS:
247		object->flags = OBJ_UNMANAGED;
248		break;
249	case OBJT_VNODE:
250		object->flags = 0;
251		break;
252	default:
253		panic("_vm_object_allocate: type %d is undefined", type);
254	}
255	object->size = size;
256	object->generation = 1;
257	object->ref_count = 1;
258	object->memattr = VM_MEMATTR_DEFAULT;
259	object->cred = NULL;
260	object->charge = 0;
261	object->handle = NULL;
262	object->backing_object = NULL;
263	object->backing_object_offset = (vm_ooffset_t) 0;
264#if VM_NRESERVLEVEL > 0
265	LIST_INIT(&object->rvq);
266#endif
267	umtx_shm_object_init(object);
268}
269
270/*
271 *	vm_object_init:
272 *
273 *	Initialize the VM objects module.
274 */
275void
276vm_object_init(void)
277{
278	TAILQ_INIT(&vm_object_list);
279	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
280
281	rw_init(&kernel_object->lock, "kernel vm object");
282	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
283	    kernel_object);
284#if VM_NRESERVLEVEL > 0
285	kernel_object->flags |= OBJ_COLORED;
286	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
287#endif
288
289	rw_init(&kmem_object->lock, "kmem vm object");
290	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
291	    kmem_object);
292#if VM_NRESERVLEVEL > 0
293	kmem_object->flags |= OBJ_COLORED;
294	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
295#endif
296
297	/*
298	 * The lock portion of struct vm_object must be type stable due
299	 * to vm_pageout_fallback_object_lock locking a vm object
300	 * without holding any references to it.
301	 */
302	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
303#ifdef INVARIANTS
304	    vm_object_zdtor,
305#else
306	    NULL,
307#endif
308	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
309
310	vm_radix_init();
311}
312
313void
314vm_object_clear_flag(vm_object_t object, u_short bits)
315{
316
317	VM_OBJECT_ASSERT_WLOCKED(object);
318	object->flags &= ~bits;
319}
320
321/*
322 *	Sets the default memory attribute for the specified object.  Pages
323 *	that are allocated to this object are by default assigned this memory
324 *	attribute.
325 *
326 *	Presently, this function must be called before any pages are allocated
327 *	to the object.  In the future, this requirement may be relaxed for
328 *	"default" and "swap" objects.
329 */
330int
331vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
332{
333
334	VM_OBJECT_ASSERT_WLOCKED(object);
335	switch (object->type) {
336	case OBJT_DEFAULT:
337	case OBJT_DEVICE:
338	case OBJT_MGTDEVICE:
339	case OBJT_PHYS:
340	case OBJT_SG:
341	case OBJT_SWAP:
342	case OBJT_VNODE:
343		if (!TAILQ_EMPTY(&object->memq))
344			return (KERN_FAILURE);
345		break;
346	case OBJT_DEAD:
347		return (KERN_INVALID_ARGUMENT);
348	default:
349		panic("vm_object_set_memattr: object %p is of undefined type",
350		    object);
351	}
352	object->memattr = memattr;
353	return (KERN_SUCCESS);
354}
355
356void
357vm_object_pip_add(vm_object_t object, short i)
358{
359
360	VM_OBJECT_ASSERT_WLOCKED(object);
361	object->paging_in_progress += i;
362}
363
364void
365vm_object_pip_subtract(vm_object_t object, short i)
366{
367
368	VM_OBJECT_ASSERT_WLOCKED(object);
369	object->paging_in_progress -= i;
370}
371
372void
373vm_object_pip_wakeup(vm_object_t object)
374{
375
376	VM_OBJECT_ASSERT_WLOCKED(object);
377	object->paging_in_progress--;
378	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
379		vm_object_clear_flag(object, OBJ_PIPWNT);
380		wakeup(object);
381	}
382}
383
384void
385vm_object_pip_wakeupn(vm_object_t object, short i)
386{
387
388	VM_OBJECT_ASSERT_WLOCKED(object);
389	if (i)
390		object->paging_in_progress -= i;
391	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
392		vm_object_clear_flag(object, OBJ_PIPWNT);
393		wakeup(object);
394	}
395}
396
397void
398vm_object_pip_wait(vm_object_t object, char *waitid)
399{
400
401	VM_OBJECT_ASSERT_WLOCKED(object);
402	while (object->paging_in_progress) {
403		object->flags |= OBJ_PIPWNT;
404		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
405	}
406}
407
408/*
409 *	vm_object_allocate:
410 *
411 *	Returns a new object with the given size.
412 */
413vm_object_t
414vm_object_allocate(objtype_t type, vm_pindex_t size)
415{
416	vm_object_t object;
417
418	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
419	_vm_object_allocate(type, size, object);
420	return (object);
421}
422
423
424/*
425 *	vm_object_reference:
426 *
427 *	Gets another reference to the given object.  Note: OBJ_DEAD
428 *	objects can be referenced during final cleaning.
429 */
430void
431vm_object_reference(vm_object_t object)
432{
433	if (object == NULL)
434		return;
435	VM_OBJECT_WLOCK(object);
436	vm_object_reference_locked(object);
437	VM_OBJECT_WUNLOCK(object);
438}
439
440/*
441 *	vm_object_reference_locked:
442 *
443 *	Gets another reference to the given object.
444 *
445 *	The object must be locked.
446 */
447void
448vm_object_reference_locked(vm_object_t object)
449{
450	struct vnode *vp;
451
452	VM_OBJECT_ASSERT_WLOCKED(object);
453	object->ref_count++;
454	if (object->type == OBJT_VNODE) {
455		vp = object->handle;
456		vref(vp);
457	}
458}
459
460/*
461 * Handle deallocating an object of type OBJT_VNODE.
462 */
463static void
464vm_object_vndeallocate(vm_object_t object)
465{
466	struct vnode *vp = (struct vnode *) object->handle;
467
468	VM_OBJECT_ASSERT_WLOCKED(object);
469	KASSERT(object->type == OBJT_VNODE,
470	    ("vm_object_vndeallocate: not a vnode object"));
471	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
472#ifdef INVARIANTS
473	if (object->ref_count == 0) {
474		vn_printf(vp, "vm_object_vndeallocate ");
475		panic("vm_object_vndeallocate: bad object reference count");
476	}
477#endif
478
479	if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
480		umtx_shm_object_terminated(object);
481
482	/*
483	 * The test for text of vp vnode does not need a bypass to
484	 * reach right VV_TEXT there, since it is obtained from
485	 * object->handle.
486	 */
487	if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
488		object->ref_count--;
489		VM_OBJECT_WUNLOCK(object);
490		/* vrele may need the vnode lock. */
491		vrele(vp);
492	} else {
493		vhold(vp);
494		VM_OBJECT_WUNLOCK(object);
495		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
496		vdrop(vp);
497		VM_OBJECT_WLOCK(object);
498		object->ref_count--;
499		if (object->type == OBJT_DEAD) {
500			VM_OBJECT_WUNLOCK(object);
501			VOP_UNLOCK(vp, 0);
502		} else {
503			if (object->ref_count == 0)
504				VOP_UNSET_TEXT(vp);
505			VM_OBJECT_WUNLOCK(object);
506			vput(vp);
507		}
508	}
509}
510
511/*
512 *	vm_object_deallocate:
513 *
514 *	Release a reference to the specified object,
515 *	gained either through a vm_object_allocate
516 *	or a vm_object_reference call.  When all references
517 *	are gone, storage associated with this object
518 *	may be relinquished.
519 *
520 *	No object may be locked.
521 */
522void
523vm_object_deallocate(vm_object_t object)
524{
525	vm_object_t temp;
526	struct vnode *vp;
527
528	while (object != NULL) {
529		VM_OBJECT_WLOCK(object);
530		if (object->type == OBJT_VNODE) {
531			vm_object_vndeallocate(object);
532			return;
533		}
534
535		KASSERT(object->ref_count != 0,
536			("vm_object_deallocate: object deallocated too many times: %d", object->type));
537
538		/*
539		 * If the reference count goes to 0 we start calling
540		 * vm_object_terminate() on the object chain.
541		 * A ref count of 1 may be a special case depending on the
542		 * shadow count being 0 or 1.
543		 */
544		object->ref_count--;
545		if (object->ref_count > 1) {
546			VM_OBJECT_WUNLOCK(object);
547			return;
548		} else if (object->ref_count == 1) {
549			if (object->type == OBJT_SWAP &&
550			    (object->flags & OBJ_TMPFS) != 0) {
551				vp = object->un_pager.swp.swp_tmpfs;
552				vhold(vp);
553				VM_OBJECT_WUNLOCK(object);
554				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
555				VM_OBJECT_WLOCK(object);
556				if (object->type == OBJT_DEAD ||
557				    object->ref_count != 1) {
558					VM_OBJECT_WUNLOCK(object);
559					VOP_UNLOCK(vp, 0);
560					vdrop(vp);
561					return;
562				}
563				if ((object->flags & OBJ_TMPFS) != 0)
564					VOP_UNSET_TEXT(vp);
565				VOP_UNLOCK(vp, 0);
566				vdrop(vp);
567			}
568			if (object->shadow_count == 0 &&
569			    object->handle == NULL &&
570			    (object->type == OBJT_DEFAULT ||
571			    (object->type == OBJT_SWAP &&
572			    (object->flags & OBJ_TMPFS_NODE) == 0))) {
573				vm_object_set_flag(object, OBJ_ONEMAPPING);
574			} else if ((object->shadow_count == 1) &&
575			    (object->handle == NULL) &&
576			    (object->type == OBJT_DEFAULT ||
577			     object->type == OBJT_SWAP)) {
578				vm_object_t robject;
579
580				robject = LIST_FIRST(&object->shadow_head);
581				KASSERT(robject != NULL,
582				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
583					 object->ref_count,
584					 object->shadow_count));
585				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
586				    ("shadowed tmpfs v_object %p", object));
587				if (!VM_OBJECT_TRYWLOCK(robject)) {
588					/*
589					 * Avoid a potential deadlock.
590					 */
591					object->ref_count++;
592					VM_OBJECT_WUNLOCK(object);
593					/*
594					 * More likely than not the thread
595					 * holding robject's lock has lower
596					 * priority than the current thread.
597					 * Let the lower priority thread run.
598					 */
599					pause("vmo_de", 1);
600					continue;
601				}
602				/*
603				 * Collapse object into its shadow unless its
604				 * shadow is dead.  In that case, object will
605				 * be deallocated by the thread that is
606				 * deallocating its shadow.
607				 */
608				if ((robject->flags & OBJ_DEAD) == 0 &&
609				    (robject->handle == NULL) &&
610				    (robject->type == OBJT_DEFAULT ||
611				     robject->type == OBJT_SWAP)) {
612
613					robject->ref_count++;
614retry:
615					if (robject->paging_in_progress) {
616						VM_OBJECT_WUNLOCK(object);
617						vm_object_pip_wait(robject,
618						    "objde1");
619						temp = robject->backing_object;
620						if (object == temp) {
621							VM_OBJECT_WLOCK(object);
622							goto retry;
623						}
624					} else if (object->paging_in_progress) {
625						VM_OBJECT_WUNLOCK(robject);
626						object->flags |= OBJ_PIPWNT;
627						VM_OBJECT_SLEEP(object, object,
628						    PDROP | PVM, "objde2", 0);
629						VM_OBJECT_WLOCK(robject);
630						temp = robject->backing_object;
631						if (object == temp) {
632							VM_OBJECT_WLOCK(object);
633							goto retry;
634						}
635					} else
636						VM_OBJECT_WUNLOCK(object);
637
638					if (robject->ref_count == 1) {
639						robject->ref_count--;
640						object = robject;
641						goto doterm;
642					}
643					object = robject;
644					vm_object_collapse(object);
645					VM_OBJECT_WUNLOCK(object);
646					continue;
647				}
648				VM_OBJECT_WUNLOCK(robject);
649			}
650			VM_OBJECT_WUNLOCK(object);
651			return;
652		}
653doterm:
654		umtx_shm_object_terminated(object);
655		temp = object->backing_object;
656		if (temp != NULL) {
657			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
658			    ("shadowed tmpfs v_object 2 %p", object));
659			VM_OBJECT_WLOCK(temp);
660			LIST_REMOVE(object, shadow_list);
661			temp->shadow_count--;
662			VM_OBJECT_WUNLOCK(temp);
663			object->backing_object = NULL;
664		}
665		/*
666		 * Don't double-terminate, we could be in a termination
667		 * recursion due to the terminate having to sync data
668		 * to disk.
669		 */
670		if ((object->flags & OBJ_DEAD) == 0)
671			vm_object_terminate(object);
672		else
673			VM_OBJECT_WUNLOCK(object);
674		object = temp;
675	}
676}
677
678/*
679 *	vm_object_destroy removes the object from the global object list
680 *      and frees the space for the object.
681 */
682void
683vm_object_destroy(vm_object_t object)
684{
685
686	/*
687	 * Release the allocation charge.
688	 */
689	if (object->cred != NULL) {
690		swap_release_by_cred(object->charge, object->cred);
691		object->charge = 0;
692		crfree(object->cred);
693		object->cred = NULL;
694	}
695
696	/*
697	 * Free the space for the object.
698	 */
699	uma_zfree(obj_zone, object);
700}
701
702/*
703 *	vm_object_terminate actually destroys the specified object, freeing
704 *	up all previously used resources.
705 *
706 *	The object must be locked.
707 *	This routine may block.
708 */
709void
710vm_object_terminate(vm_object_t object)
711{
712	vm_page_t p, p_next;
713
714	VM_OBJECT_ASSERT_WLOCKED(object);
715
716	/*
717	 * Make sure no one uses us.
718	 */
719	vm_object_set_flag(object, OBJ_DEAD);
720
721	/*
722	 * wait for the pageout daemon to be done with the object
723	 */
724	vm_object_pip_wait(object, "objtrm");
725
726	KASSERT(!object->paging_in_progress,
727		("vm_object_terminate: pageout in progress"));
728
729	/*
730	 * Clean and free the pages, as appropriate. All references to the
731	 * object are gone, so we don't need to lock it.
732	 */
733	if (object->type == OBJT_VNODE) {
734		struct vnode *vp = (struct vnode *)object->handle;
735
736		/*
737		 * Clean pages and flush buffers.
738		 */
739		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
740		VM_OBJECT_WUNLOCK(object);
741
742		vinvalbuf(vp, V_SAVE, 0, 0);
743
744		BO_LOCK(&vp->v_bufobj);
745		vp->v_bufobj.bo_flag |= BO_DEAD;
746		BO_UNLOCK(&vp->v_bufobj);
747
748		VM_OBJECT_WLOCK(object);
749	}
750
751	KASSERT(object->ref_count == 0,
752		("vm_object_terminate: object with references, ref_count=%d",
753		object->ref_count));
754
755	/*
756	 * Free any remaining pageable pages.  This also removes them from the
757	 * paging queues.  However, don't free wired pages, just remove them
758	 * from the object.  Rather than incrementally removing each page from
759	 * the object, the page and object are reset to any empty state.
760	 */
761	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
762		vm_page_assert_unbusied(p);
763		vm_page_lock(p);
764		/*
765		 * Optimize the page's removal from the object by resetting
766		 * its "object" field.  Specifically, if the page is not
767		 * wired, then the effect of this assignment is that
768		 * vm_page_free()'s call to vm_page_remove() will return
769		 * immediately without modifying the page or the object.
770		 */
771		p->object = NULL;
772		if (p->wire_count == 0) {
773			vm_page_free(p);
774			PCPU_INC(cnt.v_pfree);
775		}
776		vm_page_unlock(p);
777	}
778	/*
779	 * If the object contained any pages, then reset it to an empty state.
780	 * None of the object's fields, including "resident_page_count", were
781	 * modified by the preceding loop.
782	 */
783	if (object->resident_page_count != 0) {
784		vm_radix_reclaim_allnodes(&object->rtree);
785		TAILQ_INIT(&object->memq);
786		object->resident_page_count = 0;
787		if (object->type == OBJT_VNODE)
788			vdrop(object->handle);
789	}
790
791#if VM_NRESERVLEVEL > 0
792	if (__predict_false(!LIST_EMPTY(&object->rvq)))
793		vm_reserv_break_all(object);
794#endif
795	if (__predict_false(!vm_object_cache_is_empty(object)))
796		vm_page_cache_free(object, 0, 0);
797
798	KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
799	    object->type == OBJT_SWAP,
800	    ("%s: non-swap obj %p has cred", __func__, object));
801
802	/*
803	 * Let the pager know object is dead.
804	 */
805	vm_pager_deallocate(object);
806	VM_OBJECT_WUNLOCK(object);
807
808	vm_object_destroy(object);
809}
810
811/*
812 * Make the page read-only so that we can clear the object flags.  However, if
813 * this is a nosync mmap then the object is likely to stay dirty so do not
814 * mess with the page and do not clear the object flags.  Returns TRUE if the
815 * page should be flushed, and FALSE otherwise.
816 */
817static boolean_t
818vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
819{
820
821	/*
822	 * If we have been asked to skip nosync pages and this is a
823	 * nosync page, skip it.  Note that the object flags were not
824	 * cleared in this case so we do not have to set them.
825	 */
826	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
827		*clearobjflags = FALSE;
828		return (FALSE);
829	} else {
830		pmap_remove_write(p);
831		return (p->dirty != 0);
832	}
833}
834
835/*
836 *	vm_object_page_clean
837 *
838 *	Clean all dirty pages in the specified range of object.  Leaves page
839 * 	on whatever queue it is currently on.   If NOSYNC is set then do not
840 *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
841 *	leaving the object dirty.
842 *
843 *	When stuffing pages asynchronously, allow clustering.  XXX we need a
844 *	synchronous clustering mode implementation.
845 *
846 *	Odd semantics: if start == end, we clean everything.
847 *
848 *	The object must be locked.
849 *
850 *	Returns FALSE if some page from the range was not written, as
851 *	reported by the pager, and TRUE otherwise.
852 */
853boolean_t
854vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
855    int flags)
856{
857	vm_page_t np, p;
858	vm_pindex_t pi, tend, tstart;
859	int curgeneration, n, pagerflags;
860	boolean_t clearobjflags, eio, res;
861
862	VM_OBJECT_ASSERT_WLOCKED(object);
863
864	/*
865	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
866	 * objects.  The check below prevents the function from
867	 * operating on non-vnode objects.
868	 */
869	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
870	    object->resident_page_count == 0)
871		return (TRUE);
872
873	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
874	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
875	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
876
877	tstart = OFF_TO_IDX(start);
878	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
879	clearobjflags = tstart == 0 && tend >= object->size;
880	res = TRUE;
881
882rescan:
883	curgeneration = object->generation;
884
885	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
886		pi = p->pindex;
887		if (pi >= tend)
888			break;
889		np = TAILQ_NEXT(p, listq);
890		if (p->valid == 0)
891			continue;
892		if (vm_page_sleep_if_busy(p, "vpcwai")) {
893			if (object->generation != curgeneration) {
894				if ((flags & OBJPC_SYNC) != 0)
895					goto rescan;
896				else
897					clearobjflags = FALSE;
898			}
899			np = vm_page_find_least(object, pi);
900			continue;
901		}
902		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
903			continue;
904
905		n = vm_object_page_collect_flush(object, p, pagerflags,
906		    flags, &clearobjflags, &eio);
907		if (eio) {
908			res = FALSE;
909			clearobjflags = FALSE;
910		}
911		if (object->generation != curgeneration) {
912			if ((flags & OBJPC_SYNC) != 0)
913				goto rescan;
914			else
915				clearobjflags = FALSE;
916		}
917
918		/*
919		 * If the VOP_PUTPAGES() did a truncated write, so
920		 * that even the first page of the run is not fully
921		 * written, vm_pageout_flush() returns 0 as the run
922		 * length.  Since the condition that caused truncated
923		 * write may be permanent, e.g. exhausted free space,
924		 * accepting n == 0 would cause an infinite loop.
925		 *
926		 * Forwarding the iterator leaves the unwritten page
927		 * behind, but there is not much we can do there if
928		 * filesystem refuses to write it.
929		 */
930		if (n == 0) {
931			n = 1;
932			clearobjflags = FALSE;
933		}
934		np = vm_page_find_least(object, pi + n);
935	}
936#if 0
937	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
938#endif
939
940	if (clearobjflags)
941		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
942	return (res);
943}
944
945static int
946vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
947    int flags, boolean_t *clearobjflags, boolean_t *eio)
948{
949	vm_page_t ma[vm_pageout_page_count], p_first, tp;
950	int count, i, mreq, runlen;
951
952	vm_page_lock_assert(p, MA_NOTOWNED);
953	VM_OBJECT_ASSERT_WLOCKED(object);
954
955	count = 1;
956	mreq = 0;
957
958	for (tp = p; count < vm_pageout_page_count; count++) {
959		tp = vm_page_next(tp);
960		if (tp == NULL || vm_page_busied(tp))
961			break;
962		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
963			break;
964	}
965
966	for (p_first = p; count < vm_pageout_page_count; count++) {
967		tp = vm_page_prev(p_first);
968		if (tp == NULL || vm_page_busied(tp))
969			break;
970		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
971			break;
972		p_first = tp;
973		mreq++;
974	}
975
976	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
977		ma[i] = tp;
978
979	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
980	return (runlen);
981}
982
983/*
984 * Note that there is absolutely no sense in writing out
985 * anonymous objects, so we track down the vnode object
986 * to write out.
987 * We invalidate (remove) all pages from the address space
988 * for semantic correctness.
989 *
990 * If the backing object is a device object with unmanaged pages, then any
991 * mappings to the specified range of pages must be removed before this
992 * function is called.
993 *
994 * Note: certain anonymous maps, such as MAP_NOSYNC maps,
995 * may start out with a NULL object.
996 */
997boolean_t
998vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
999    boolean_t syncio, boolean_t invalidate)
1000{
1001	vm_object_t backing_object;
1002	struct vnode *vp;
1003	struct mount *mp;
1004	int error, flags, fsync_after;
1005	boolean_t res;
1006
1007	if (object == NULL)
1008		return (TRUE);
1009	res = TRUE;
1010	error = 0;
1011	VM_OBJECT_WLOCK(object);
1012	while ((backing_object = object->backing_object) != NULL) {
1013		VM_OBJECT_WLOCK(backing_object);
1014		offset += object->backing_object_offset;
1015		VM_OBJECT_WUNLOCK(object);
1016		object = backing_object;
1017		if (object->size < OFF_TO_IDX(offset + size))
1018			size = IDX_TO_OFF(object->size) - offset;
1019	}
1020	/*
1021	 * Flush pages if writing is allowed, invalidate them
1022	 * if invalidation requested.  Pages undergoing I/O
1023	 * will be ignored by vm_object_page_remove().
1024	 *
1025	 * We cannot lock the vnode and then wait for paging
1026	 * to complete without deadlocking against vm_fault.
1027	 * Instead we simply call vm_object_page_remove() and
1028	 * allow it to block internally on a page-by-page
1029	 * basis when it encounters pages undergoing async
1030	 * I/O.
1031	 */
1032	if (object->type == OBJT_VNODE &&
1033	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1034		vp = object->handle;
1035		VM_OBJECT_WUNLOCK(object);
1036		(void) vn_start_write(vp, &mp, V_WAIT);
1037		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1038		if (syncio && !invalidate && offset == 0 &&
1039		    OFF_TO_IDX(size) == object->size) {
1040			/*
1041			 * If syncing the whole mapping of the file,
1042			 * it is faster to schedule all the writes in
1043			 * async mode, also allowing the clustering,
1044			 * and then wait for i/o to complete.
1045			 */
1046			flags = 0;
1047			fsync_after = TRUE;
1048		} else {
1049			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1050			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1051			fsync_after = FALSE;
1052		}
1053		VM_OBJECT_WLOCK(object);
1054		res = vm_object_page_clean(object, offset, offset + size,
1055		    flags);
1056		VM_OBJECT_WUNLOCK(object);
1057		if (fsync_after)
1058			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1059		VOP_UNLOCK(vp, 0);
1060		vn_finished_write(mp);
1061		if (error != 0)
1062			res = FALSE;
1063		VM_OBJECT_WLOCK(object);
1064	}
1065	if ((object->type == OBJT_VNODE ||
1066	     object->type == OBJT_DEVICE) && invalidate) {
1067		if (object->type == OBJT_DEVICE)
1068			/*
1069			 * The option OBJPR_NOTMAPPED must be passed here
1070			 * because vm_object_page_remove() cannot remove
1071			 * unmanaged mappings.
1072			 */
1073			flags = OBJPR_NOTMAPPED;
1074		else if (old_msync)
1075			flags = 0;
1076		else
1077			flags = OBJPR_CLEANONLY;
1078		vm_object_page_remove(object, OFF_TO_IDX(offset),
1079		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1080	}
1081	VM_OBJECT_WUNLOCK(object);
1082	return (res);
1083}
1084
1085/*
1086 *	vm_object_madvise:
1087 *
1088 *	Implements the madvise function at the object/page level.
1089 *
1090 *	MADV_WILLNEED	(any object)
1091 *
1092 *	    Activate the specified pages if they are resident.
1093 *
1094 *	MADV_DONTNEED	(any object)
1095 *
1096 *	    Deactivate the specified pages if they are resident.
1097 *
1098 *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1099 *			 OBJ_ONEMAPPING only)
1100 *
1101 *	    Deactivate and clean the specified pages if they are
1102 *	    resident.  This permits the process to reuse the pages
1103 *	    without faulting or the kernel to reclaim the pages
1104 *	    without I/O.
1105 */
1106void
1107vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1108    int advise)
1109{
1110	vm_pindex_t tpindex;
1111	vm_object_t backing_object, tobject;
1112	vm_page_t m;
1113
1114	if (object == NULL)
1115		return;
1116	VM_OBJECT_WLOCK(object);
1117	/*
1118	 * Locate and adjust resident pages
1119	 */
1120	for (; pindex < end; pindex += 1) {
1121relookup:
1122		tobject = object;
1123		tpindex = pindex;
1124shadowlookup:
1125		/*
1126		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1127		 * and those pages must be OBJ_ONEMAPPING.
1128		 */
1129		if (advise == MADV_FREE) {
1130			if ((tobject->type != OBJT_DEFAULT &&
1131			     tobject->type != OBJT_SWAP) ||
1132			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1133				goto unlock_tobject;
1134			}
1135		} else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1136			goto unlock_tobject;
1137		m = vm_page_lookup(tobject, tpindex);
1138		if (m == NULL && advise == MADV_WILLNEED) {
1139			/*
1140			 * If the page is cached, reactivate it.
1141			 */
1142			m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1143			    VM_ALLOC_NOBUSY);
1144		}
1145		if (m == NULL) {
1146			/*
1147			 * There may be swap even if there is no backing page
1148			 */
1149			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1150				swap_pager_freespace(tobject, tpindex, 1);
1151			/*
1152			 * next object
1153			 */
1154			backing_object = tobject->backing_object;
1155			if (backing_object == NULL)
1156				goto unlock_tobject;
1157			VM_OBJECT_WLOCK(backing_object);
1158			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1159			if (tobject != object)
1160				VM_OBJECT_WUNLOCK(tobject);
1161			tobject = backing_object;
1162			goto shadowlookup;
1163		} else if (m->valid != VM_PAGE_BITS_ALL)
1164			goto unlock_tobject;
1165		/*
1166		 * If the page is not in a normal state, skip it.
1167		 */
1168		vm_page_lock(m);
1169		if (m->hold_count != 0 || m->wire_count != 0) {
1170			vm_page_unlock(m);
1171			goto unlock_tobject;
1172		}
1173		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1174		    ("vm_object_madvise: page %p is fictitious", m));
1175		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1176		    ("vm_object_madvise: page %p is not managed", m));
1177		if (vm_page_busied(m)) {
1178			if (advise == MADV_WILLNEED) {
1179				/*
1180				 * Reference the page before unlocking and
1181				 * sleeping so that the page daemon is less
1182				 * likely to reclaim it.
1183				 */
1184				vm_page_aflag_set(m, PGA_REFERENCED);
1185			}
1186			if (object != tobject)
1187				VM_OBJECT_WUNLOCK(object);
1188			VM_OBJECT_WUNLOCK(tobject);
1189			vm_page_busy_sleep(m, "madvpo");
1190			VM_OBJECT_WLOCK(object);
1191  			goto relookup;
1192		}
1193		if (advise == MADV_WILLNEED) {
1194			vm_page_activate(m);
1195		} else {
1196			vm_page_advise(m, advise);
1197		}
1198		vm_page_unlock(m);
1199		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1200			swap_pager_freespace(tobject, tpindex, 1);
1201unlock_tobject:
1202		if (tobject != object)
1203			VM_OBJECT_WUNLOCK(tobject);
1204	}
1205	VM_OBJECT_WUNLOCK(object);
1206}
1207
1208/*
1209 *	vm_object_shadow:
1210 *
1211 *	Create a new object which is backed by the
1212 *	specified existing object range.  The source
1213 *	object reference is deallocated.
1214 *
1215 *	The new object and offset into that object
1216 *	are returned in the source parameters.
1217 */
1218void
1219vm_object_shadow(
1220	vm_object_t *object,	/* IN/OUT */
1221	vm_ooffset_t *offset,	/* IN/OUT */
1222	vm_size_t length)
1223{
1224	vm_object_t source;
1225	vm_object_t result;
1226
1227	source = *object;
1228
1229	/*
1230	 * Don't create the new object if the old object isn't shared.
1231	 */
1232	if (source != NULL) {
1233		VM_OBJECT_WLOCK(source);
1234		if (source->ref_count == 1 &&
1235		    source->handle == NULL &&
1236		    (source->type == OBJT_DEFAULT ||
1237		     source->type == OBJT_SWAP)) {
1238			VM_OBJECT_WUNLOCK(source);
1239			return;
1240		}
1241		VM_OBJECT_WUNLOCK(source);
1242	}
1243
1244	/*
1245	 * Allocate a new object with the given length.
1246	 */
1247	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1248
1249	/*
1250	 * The new object shadows the source object, adding a reference to it.
1251	 * Our caller changes his reference to point to the new object,
1252	 * removing a reference to the source object.  Net result: no change
1253	 * of reference count.
1254	 *
1255	 * Try to optimize the result object's page color when shadowing
1256	 * in order to maintain page coloring consistency in the combined
1257	 * shadowed object.
1258	 */
1259	result->backing_object = source;
1260	/*
1261	 * Store the offset into the source object, and fix up the offset into
1262	 * the new object.
1263	 */
1264	result->backing_object_offset = *offset;
1265	if (source != NULL) {
1266		VM_OBJECT_WLOCK(source);
1267		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1268		source->shadow_count++;
1269#if VM_NRESERVLEVEL > 0
1270		result->flags |= source->flags & OBJ_COLORED;
1271		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1272		    ((1 << (VM_NFREEORDER - 1)) - 1);
1273#endif
1274		VM_OBJECT_WUNLOCK(source);
1275	}
1276
1277
1278	/*
1279	 * Return the new things
1280	 */
1281	*offset = 0;
1282	*object = result;
1283}
1284
1285/*
1286 *	vm_object_split:
1287 *
1288 * Split the pages in a map entry into a new object.  This affords
1289 * easier removal of unused pages, and keeps object inheritance from
1290 * being a negative impact on memory usage.
1291 */
1292void
1293vm_object_split(vm_map_entry_t entry)
1294{
1295	vm_page_t m, m_next;
1296	vm_object_t orig_object, new_object, source;
1297	vm_pindex_t idx, offidxstart;
1298	vm_size_t size;
1299
1300	orig_object = entry->object.vm_object;
1301	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1302		return;
1303	if (orig_object->ref_count <= 1)
1304		return;
1305	VM_OBJECT_WUNLOCK(orig_object);
1306
1307	offidxstart = OFF_TO_IDX(entry->offset);
1308	size = atop(entry->end - entry->start);
1309
1310	/*
1311	 * If swap_pager_copy() is later called, it will convert new_object
1312	 * into a swap object.
1313	 */
1314	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1315
1316	/*
1317	 * At this point, the new object is still private, so the order in
1318	 * which the original and new objects are locked does not matter.
1319	 */
1320	VM_OBJECT_WLOCK(new_object);
1321	VM_OBJECT_WLOCK(orig_object);
1322	source = orig_object->backing_object;
1323	if (source != NULL) {
1324		VM_OBJECT_WLOCK(source);
1325		if ((source->flags & OBJ_DEAD) != 0) {
1326			VM_OBJECT_WUNLOCK(source);
1327			VM_OBJECT_WUNLOCK(orig_object);
1328			VM_OBJECT_WUNLOCK(new_object);
1329			vm_object_deallocate(new_object);
1330			VM_OBJECT_WLOCK(orig_object);
1331			return;
1332		}
1333		LIST_INSERT_HEAD(&source->shadow_head,
1334				  new_object, shadow_list);
1335		source->shadow_count++;
1336		vm_object_reference_locked(source);	/* for new_object */
1337		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1338		VM_OBJECT_WUNLOCK(source);
1339		new_object->backing_object_offset =
1340			orig_object->backing_object_offset + entry->offset;
1341		new_object->backing_object = source;
1342	}
1343	if (orig_object->cred != NULL) {
1344		new_object->cred = orig_object->cred;
1345		crhold(orig_object->cred);
1346		new_object->charge = ptoa(size);
1347		KASSERT(orig_object->charge >= ptoa(size),
1348		    ("orig_object->charge < 0"));
1349		orig_object->charge -= ptoa(size);
1350	}
1351retry:
1352	m = vm_page_find_least(orig_object, offidxstart);
1353	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1354	    m = m_next) {
1355		m_next = TAILQ_NEXT(m, listq);
1356
1357		/*
1358		 * We must wait for pending I/O to complete before we can
1359		 * rename the page.
1360		 *
1361		 * We do not have to VM_PROT_NONE the page as mappings should
1362		 * not be changed by this operation.
1363		 */
1364		if (vm_page_busied(m)) {
1365			VM_OBJECT_WUNLOCK(new_object);
1366			vm_page_lock(m);
1367			VM_OBJECT_WUNLOCK(orig_object);
1368			vm_page_busy_sleep(m, "spltwt");
1369			VM_OBJECT_WLOCK(orig_object);
1370			VM_OBJECT_WLOCK(new_object);
1371			goto retry;
1372		}
1373
1374		/* vm_page_rename() will handle dirty and cache. */
1375		if (vm_page_rename(m, new_object, idx)) {
1376			VM_OBJECT_WUNLOCK(new_object);
1377			VM_OBJECT_WUNLOCK(orig_object);
1378			VM_WAIT;
1379			VM_OBJECT_WLOCK(orig_object);
1380			VM_OBJECT_WLOCK(new_object);
1381			goto retry;
1382		}
1383#if VM_NRESERVLEVEL > 0
1384		/*
1385		 * If some of the reservation's allocated pages remain with
1386		 * the original object, then transferring the reservation to
1387		 * the new object is neither particularly beneficial nor
1388		 * particularly harmful as compared to leaving the reservation
1389		 * with the original object.  If, however, all of the
1390		 * reservation's allocated pages are transferred to the new
1391		 * object, then transferring the reservation is typically
1392		 * beneficial.  Determining which of these two cases applies
1393		 * would be more costly than unconditionally renaming the
1394		 * reservation.
1395		 */
1396		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1397#endif
1398		if (orig_object->type == OBJT_SWAP)
1399			vm_page_xbusy(m);
1400	}
1401	if (orig_object->type == OBJT_SWAP) {
1402		/*
1403		 * swap_pager_copy() can sleep, in which case the orig_object's
1404		 * and new_object's locks are released and reacquired.
1405		 */
1406		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1407		TAILQ_FOREACH(m, &new_object->memq, listq)
1408			vm_page_xunbusy(m);
1409
1410		/*
1411		 * Transfer any cached pages from orig_object to new_object.
1412		 * If swap_pager_copy() found swapped out pages within the
1413		 * specified range of orig_object, then it changed
1414		 * new_object's type to OBJT_SWAP when it transferred those
1415		 * pages to new_object.  Otherwise, new_object's type
1416		 * should still be OBJT_DEFAULT and orig_object should not
1417		 * contain any cached pages within the specified range.
1418		 */
1419		if (__predict_false(!vm_object_cache_is_empty(orig_object)))
1420			vm_page_cache_transfer(orig_object, offidxstart,
1421			    new_object);
1422	}
1423	VM_OBJECT_WUNLOCK(orig_object);
1424	VM_OBJECT_WUNLOCK(new_object);
1425	entry->object.vm_object = new_object;
1426	entry->offset = 0LL;
1427	vm_object_deallocate(orig_object);
1428	VM_OBJECT_WLOCK(new_object);
1429}
1430
1431#define	OBSC_COLLAPSE_NOWAIT	0x0002
1432#define	OBSC_COLLAPSE_WAIT	0x0004
1433
1434static vm_page_t
1435vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1436    int op)
1437{
1438	vm_object_t backing_object;
1439
1440	VM_OBJECT_ASSERT_WLOCKED(object);
1441	backing_object = object->backing_object;
1442	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1443
1444	KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1445	KASSERT(p == NULL || p->object == object || p->object == backing_object,
1446	    ("invalid ownership %p %p %p", p, object, backing_object));
1447	if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1448		return (next);
1449	if (p != NULL)
1450		vm_page_lock(p);
1451	VM_OBJECT_WUNLOCK(object);
1452	VM_OBJECT_WUNLOCK(backing_object);
1453	if (p == NULL)
1454		VM_WAIT;
1455	else
1456		vm_page_busy_sleep(p, "vmocol");
1457	VM_OBJECT_WLOCK(object);
1458	VM_OBJECT_WLOCK(backing_object);
1459	return (TAILQ_FIRST(&backing_object->memq));
1460}
1461
1462static bool
1463vm_object_scan_all_shadowed(vm_object_t object)
1464{
1465	vm_object_t backing_object;
1466	vm_page_t p, pp;
1467	vm_pindex_t backing_offset_index, new_pindex;
1468
1469	VM_OBJECT_ASSERT_WLOCKED(object);
1470	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1471
1472	backing_object = object->backing_object;
1473
1474	/*
1475	 * Initial conditions:
1476	 *
1477	 * We do not want to have to test for the existence of cache or swap
1478	 * pages in the backing object.  XXX but with the new swapper this
1479	 * would be pretty easy to do.
1480	 */
1481	if (backing_object->type != OBJT_DEFAULT)
1482		return (false);
1483
1484	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1485
1486	for (p = TAILQ_FIRST(&backing_object->memq); p != NULL;
1487	    p = TAILQ_NEXT(p, listq)) {
1488		new_pindex = p->pindex - backing_offset_index;
1489
1490		/*
1491		 * Ignore pages outside the parent object's range and outside
1492		 * the parent object's mapping of the backing object.
1493		 */
1494		if (p->pindex < backing_offset_index ||
1495		    new_pindex >= object->size)
1496			continue;
1497
1498		/*
1499		 * See if the parent has the page or if the parent's object
1500		 * pager has the page.  If the parent has the page but the page
1501		 * is not valid, the parent's object pager must have the page.
1502		 *
1503		 * If this fails, the parent does not completely shadow the
1504		 * object and we might as well give up now.
1505		 */
1506		pp = vm_page_lookup(object, new_pindex);
1507		if ((pp == NULL || pp->valid == 0) &&
1508		    !vm_pager_has_page(object, new_pindex, NULL, NULL))
1509			return (false);
1510	}
1511	return (true);
1512}
1513
1514static bool
1515vm_object_collapse_scan(vm_object_t object, int op)
1516{
1517	vm_object_t backing_object;
1518	vm_page_t next, p, pp;
1519	vm_pindex_t backing_offset_index, new_pindex;
1520
1521	VM_OBJECT_ASSERT_WLOCKED(object);
1522	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1523
1524	backing_object = object->backing_object;
1525	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1526
1527	/*
1528	 * Initial conditions
1529	 */
1530	if ((op & OBSC_COLLAPSE_WAIT) != 0)
1531		vm_object_set_flag(backing_object, OBJ_DEAD);
1532
1533	/*
1534	 * Our scan
1535	 */
1536	for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1537		next = TAILQ_NEXT(p, listq);
1538		new_pindex = p->pindex - backing_offset_index;
1539
1540		/*
1541		 * Check for busy page
1542		 */
1543		if (vm_page_busied(p)) {
1544			next = vm_object_collapse_scan_wait(object, p, next, op);
1545			continue;
1546		}
1547
1548		KASSERT(p->object == backing_object,
1549		    ("vm_object_collapse_scan: object mismatch"));
1550
1551		if (p->pindex < backing_offset_index ||
1552		    new_pindex >= object->size) {
1553			if (backing_object->type == OBJT_SWAP)
1554				swap_pager_freespace(backing_object, p->pindex,
1555				    1);
1556
1557			/*
1558			 * Page is out of the parent object's range, we can
1559			 * simply destroy it.
1560			 */
1561			vm_page_lock(p);
1562			KASSERT(!pmap_page_is_mapped(p),
1563			    ("freeing mapped page %p", p));
1564			if (p->wire_count == 0)
1565				vm_page_free(p);
1566			else
1567				vm_page_remove(p);
1568			vm_page_unlock(p);
1569			continue;
1570		}
1571
1572		pp = vm_page_lookup(object, new_pindex);
1573		if (pp != NULL && vm_page_busied(pp)) {
1574			/*
1575			 * The page in the parent is busy and possibly not
1576			 * (yet) valid.  Until its state is finalized by the
1577			 * busy bit owner, we can't tell whether it shadows the
1578			 * original page.  Therefore, we must either skip it
1579			 * and the original (backing_object) page or wait for
1580			 * its state to be finalized.
1581			 *
1582			 * This is due to a race with vm_fault() where we must
1583			 * unbusy the original (backing_obj) page before we can
1584			 * (re)lock the parent.  Hence we can get here.
1585			 */
1586			next = vm_object_collapse_scan_wait(object, pp, next,
1587			    op);
1588			continue;
1589		}
1590
1591		KASSERT(pp == NULL || pp->valid != 0,
1592		    ("unbusy invalid page %p", pp));
1593
1594		if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1595			NULL)) {
1596			/*
1597			 * The page already exists in the parent OR swap exists
1598			 * for this location in the parent.  Leave the parent's
1599			 * page alone.  Destroy the original page from the
1600			 * backing object.
1601			 */
1602			if (backing_object->type == OBJT_SWAP)
1603				swap_pager_freespace(backing_object, p->pindex,
1604				    1);
1605			vm_page_lock(p);
1606			KASSERT(!pmap_page_is_mapped(p),
1607			    ("freeing mapped page %p", p));
1608			if (p->wire_count == 0)
1609				vm_page_free(p);
1610			else
1611				vm_page_remove(p);
1612			vm_page_unlock(p);
1613			continue;
1614		}
1615
1616		/*
1617		 * Page does not exist in parent, rename the page from the
1618		 * backing object to the main object.
1619		 *
1620		 * If the page was mapped to a process, it can remain mapped
1621		 * through the rename.  vm_page_rename() will handle dirty and
1622		 * cache.
1623		 */
1624		if (vm_page_rename(p, object, new_pindex)) {
1625			next = vm_object_collapse_scan_wait(object, NULL, next,
1626			    op);
1627			continue;
1628		}
1629
1630		/* Use the old pindex to free the right page. */
1631		if (backing_object->type == OBJT_SWAP)
1632			swap_pager_freespace(backing_object,
1633			    new_pindex + backing_offset_index, 1);
1634
1635#if VM_NRESERVLEVEL > 0
1636		/*
1637		 * Rename the reservation.
1638		 */
1639		vm_reserv_rename(p, object, backing_object,
1640		    backing_offset_index);
1641#endif
1642	}
1643	return (true);
1644}
1645
1646
1647/*
1648 * this version of collapse allows the operation to occur earlier and
1649 * when paging_in_progress is true for an object...  This is not a complete
1650 * operation, but should plug 99.9% of the rest of the leaks.
1651 */
1652static void
1653vm_object_qcollapse(vm_object_t object)
1654{
1655	vm_object_t backing_object = object->backing_object;
1656
1657	VM_OBJECT_ASSERT_WLOCKED(object);
1658	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1659
1660	if (backing_object->ref_count != 1)
1661		return;
1662
1663	vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1664}
1665
1666/*
1667 *	vm_object_collapse:
1668 *
1669 *	Collapse an object with the object backing it.
1670 *	Pages in the backing object are moved into the
1671 *	parent, and the backing object is deallocated.
1672 */
1673void
1674vm_object_collapse(vm_object_t object)
1675{
1676	vm_object_t backing_object, new_backing_object;
1677
1678	VM_OBJECT_ASSERT_WLOCKED(object);
1679
1680	while (TRUE) {
1681		/*
1682		 * Verify that the conditions are right for collapse:
1683		 *
1684		 * The object exists and the backing object exists.
1685		 */
1686		if ((backing_object = object->backing_object) == NULL)
1687			break;
1688
1689		/*
1690		 * we check the backing object first, because it is most likely
1691		 * not collapsable.
1692		 */
1693		VM_OBJECT_WLOCK(backing_object);
1694		if (backing_object->handle != NULL ||
1695		    (backing_object->type != OBJT_DEFAULT &&
1696		     backing_object->type != OBJT_SWAP) ||
1697		    (backing_object->flags & OBJ_DEAD) ||
1698		    object->handle != NULL ||
1699		    (object->type != OBJT_DEFAULT &&
1700		     object->type != OBJT_SWAP) ||
1701		    (object->flags & OBJ_DEAD)) {
1702			VM_OBJECT_WUNLOCK(backing_object);
1703			break;
1704		}
1705
1706		if (object->paging_in_progress != 0 ||
1707		    backing_object->paging_in_progress != 0) {
1708			vm_object_qcollapse(object);
1709			VM_OBJECT_WUNLOCK(backing_object);
1710			break;
1711		}
1712
1713		/*
1714		 * We know that we can either collapse the backing object (if
1715		 * the parent is the only reference to it) or (perhaps) have
1716		 * the parent bypass the object if the parent happens to shadow
1717		 * all the resident pages in the entire backing object.
1718		 *
1719		 * This is ignoring pager-backed pages such as swap pages.
1720		 * vm_object_collapse_scan fails the shadowing test in this
1721		 * case.
1722		 */
1723		if (backing_object->ref_count == 1) {
1724			vm_object_pip_add(object, 1);
1725			vm_object_pip_add(backing_object, 1);
1726
1727			/*
1728			 * If there is exactly one reference to the backing
1729			 * object, we can collapse it into the parent.
1730			 */
1731			vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1732
1733#if VM_NRESERVLEVEL > 0
1734			/*
1735			 * Break any reservations from backing_object.
1736			 */
1737			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1738				vm_reserv_break_all(backing_object);
1739#endif
1740
1741			/*
1742			 * Move the pager from backing_object to object.
1743			 */
1744			if (backing_object->type == OBJT_SWAP) {
1745				/*
1746				 * swap_pager_copy() can sleep, in which case
1747				 * the backing_object's and object's locks are
1748				 * released and reacquired.
1749				 * Since swap_pager_copy() is being asked to
1750				 * destroy the source, it will change the
1751				 * backing_object's type to OBJT_DEFAULT.
1752				 */
1753				swap_pager_copy(
1754				    backing_object,
1755				    object,
1756				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1757
1758				/*
1759				 * Free any cached pages from backing_object.
1760				 */
1761				if (__predict_false(
1762				    !vm_object_cache_is_empty(backing_object)))
1763					vm_page_cache_free(backing_object, 0, 0);
1764			}
1765			/*
1766			 * Object now shadows whatever backing_object did.
1767			 * Note that the reference to
1768			 * backing_object->backing_object moves from within
1769			 * backing_object to within object.
1770			 */
1771			LIST_REMOVE(object, shadow_list);
1772			backing_object->shadow_count--;
1773			if (backing_object->backing_object) {
1774				VM_OBJECT_WLOCK(backing_object->backing_object);
1775				LIST_REMOVE(backing_object, shadow_list);
1776				LIST_INSERT_HEAD(
1777				    &backing_object->backing_object->shadow_head,
1778				    object, shadow_list);
1779				/*
1780				 * The shadow_count has not changed.
1781				 */
1782				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1783			}
1784			object->backing_object = backing_object->backing_object;
1785			object->backing_object_offset +=
1786			    backing_object->backing_object_offset;
1787
1788			/*
1789			 * Discard backing_object.
1790			 *
1791			 * Since the backing object has no pages, no pager left,
1792			 * and no object references within it, all that is
1793			 * necessary is to dispose of it.
1794			 */
1795			KASSERT(backing_object->ref_count == 1, (
1796"backing_object %p was somehow re-referenced during collapse!",
1797			    backing_object));
1798			vm_object_pip_wakeup(backing_object);
1799			backing_object->type = OBJT_DEAD;
1800			backing_object->ref_count = 0;
1801			VM_OBJECT_WUNLOCK(backing_object);
1802			vm_object_destroy(backing_object);
1803
1804			vm_object_pip_wakeup(object);
1805			object_collapses++;
1806		} else {
1807			/*
1808			 * If we do not entirely shadow the backing object,
1809			 * there is nothing we can do so we give up.
1810			 */
1811			if (object->resident_page_count != object->size &&
1812			    !vm_object_scan_all_shadowed(object)) {
1813				VM_OBJECT_WUNLOCK(backing_object);
1814				break;
1815			}
1816
1817			/*
1818			 * Make the parent shadow the next object in the
1819			 * chain.  Deallocating backing_object will not remove
1820			 * it, since its reference count is at least 2.
1821			 */
1822			LIST_REMOVE(object, shadow_list);
1823			backing_object->shadow_count--;
1824
1825			new_backing_object = backing_object->backing_object;
1826			if ((object->backing_object = new_backing_object) != NULL) {
1827				VM_OBJECT_WLOCK(new_backing_object);
1828				LIST_INSERT_HEAD(
1829				    &new_backing_object->shadow_head,
1830				    object,
1831				    shadow_list
1832				);
1833				new_backing_object->shadow_count++;
1834				vm_object_reference_locked(new_backing_object);
1835				VM_OBJECT_WUNLOCK(new_backing_object);
1836				object->backing_object_offset +=
1837					backing_object->backing_object_offset;
1838			}
1839
1840			/*
1841			 * Drop the reference count on backing_object. Since
1842			 * its ref_count was at least 2, it will not vanish.
1843			 */
1844			backing_object->ref_count--;
1845			VM_OBJECT_WUNLOCK(backing_object);
1846			object_bypasses++;
1847		}
1848
1849		/*
1850		 * Try again with this object's new backing object.
1851		 */
1852	}
1853}
1854
1855/*
1856 *	vm_object_page_remove:
1857 *
1858 *	For the given object, either frees or invalidates each of the
1859 *	specified pages.  In general, a page is freed.  However, if a page is
1860 *	wired for any reason other than the existence of a managed, wired
1861 *	mapping, then it may be invalidated but not removed from the object.
1862 *	Pages are specified by the given range ["start", "end") and the option
1863 *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1864 *	extends from "start" to the end of the object.  If the option
1865 *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1866 *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1867 *	specified, then the pages within the specified range must have no
1868 *	mappings.  Otherwise, if this option is not specified, any mappings to
1869 *	the specified pages are removed before the pages are freed or
1870 *	invalidated.
1871 *
1872 *	In general, this operation should only be performed on objects that
1873 *	contain managed pages.  There are, however, two exceptions.  First, it
1874 *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1875 *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1876 *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1877 *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1878 *
1879 *	The object must be locked.
1880 */
1881void
1882vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1883    int options)
1884{
1885	vm_page_t p, next;
1886
1887	VM_OBJECT_ASSERT_WLOCKED(object);
1888	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1889	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1890	    ("vm_object_page_remove: illegal options for object %p", object));
1891	if (object->resident_page_count == 0)
1892		goto skipmemq;
1893	vm_object_pip_add(object, 1);
1894again:
1895	p = vm_page_find_least(object, start);
1896
1897	/*
1898	 * Here, the variable "p" is either (1) the page with the least pindex
1899	 * greater than or equal to the parameter "start" or (2) NULL.
1900	 */
1901	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1902		next = TAILQ_NEXT(p, listq);
1903
1904		/*
1905		 * If the page is wired for any reason besides the existence
1906		 * of managed, wired mappings, then it cannot be freed.  For
1907		 * example, fictitious pages, which represent device memory,
1908		 * are inherently wired and cannot be freed.  They can,
1909		 * however, be invalidated if the option OBJPR_CLEANONLY is
1910		 * not specified.
1911		 */
1912		vm_page_lock(p);
1913		if (vm_page_xbusied(p)) {
1914			VM_OBJECT_WUNLOCK(object);
1915			vm_page_busy_sleep(p, "vmopax");
1916			VM_OBJECT_WLOCK(object);
1917			goto again;
1918		}
1919		if (p->wire_count != 0) {
1920			if ((options & OBJPR_NOTMAPPED) == 0)
1921				pmap_remove_all(p);
1922			if ((options & OBJPR_CLEANONLY) == 0) {
1923				p->valid = 0;
1924				vm_page_undirty(p);
1925			}
1926			goto next;
1927		}
1928		if (vm_page_busied(p)) {
1929			VM_OBJECT_WUNLOCK(object);
1930			vm_page_busy_sleep(p, "vmopar");
1931			VM_OBJECT_WLOCK(object);
1932			goto again;
1933		}
1934		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1935		    ("vm_object_page_remove: page %p is fictitious", p));
1936		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1937			if ((options & OBJPR_NOTMAPPED) == 0)
1938				pmap_remove_write(p);
1939			if (p->dirty)
1940				goto next;
1941		}
1942		if ((options & OBJPR_NOTMAPPED) == 0)
1943			pmap_remove_all(p);
1944		vm_page_free(p);
1945next:
1946		vm_page_unlock(p);
1947	}
1948	vm_object_pip_wakeup(object);
1949skipmemq:
1950	if (__predict_false(!vm_object_cache_is_empty(object)))
1951		vm_page_cache_free(object, start, end);
1952}
1953
1954/*
1955 *	vm_object_page_noreuse:
1956 *
1957 *	For the given object, attempt to move the specified pages to
1958 *	the head of the inactive queue.  This bypasses regular LRU
1959 *	operation and allows the pages to be reused quickly under memory
1960 *	pressure.  If a page is wired for any reason, then it will not
1961 *	be queued.  Pages are specified by the range ["start", "end").
1962 *	As a special case, if "end" is zero, then the range extends from
1963 *	"start" to the end of the object.
1964 *
1965 *	This operation should only be performed on objects that
1966 *	contain non-fictitious, managed pages.
1967 *
1968 *	The object must be locked.
1969 */
1970void
1971vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1972{
1973	struct mtx *mtx, *new_mtx;
1974	vm_page_t p, next;
1975
1976	VM_OBJECT_ASSERT_WLOCKED(object);
1977	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1978	    ("vm_object_page_noreuse: illegal object %p", object));
1979	if (object->resident_page_count == 0)
1980		return;
1981	p = vm_page_find_least(object, start);
1982
1983	/*
1984	 * Here, the variable "p" is either (1) the page with the least pindex
1985	 * greater than or equal to the parameter "start" or (2) NULL.
1986	 */
1987	mtx = NULL;
1988	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1989		next = TAILQ_NEXT(p, listq);
1990
1991		/*
1992		 * Avoid releasing and reacquiring the same page lock.
1993		 */
1994		new_mtx = vm_page_lockptr(p);
1995		if (mtx != new_mtx) {
1996			if (mtx != NULL)
1997				mtx_unlock(mtx);
1998			mtx = new_mtx;
1999			mtx_lock(mtx);
2000		}
2001		vm_page_deactivate_noreuse(p);
2002	}
2003	if (mtx != NULL)
2004		mtx_unlock(mtx);
2005}
2006
2007/*
2008 *	Populate the specified range of the object with valid pages.  Returns
2009 *	TRUE if the range is successfully populated and FALSE otherwise.
2010 *
2011 *	Note: This function should be optimized to pass a larger array of
2012 *	pages to vm_pager_get_pages() before it is applied to a non-
2013 *	OBJT_DEVICE object.
2014 *
2015 *	The object must be locked.
2016 */
2017boolean_t
2018vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2019{
2020	vm_page_t m;
2021	vm_pindex_t pindex;
2022	int rv;
2023
2024	VM_OBJECT_ASSERT_WLOCKED(object);
2025	for (pindex = start; pindex < end; pindex++) {
2026		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2027		if (m->valid != VM_PAGE_BITS_ALL) {
2028			rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2029			if (rv != VM_PAGER_OK) {
2030				vm_page_lock(m);
2031				vm_page_free(m);
2032				vm_page_unlock(m);
2033				break;
2034			}
2035		}
2036		/*
2037		 * Keep "m" busy because a subsequent iteration may unlock
2038		 * the object.
2039		 */
2040	}
2041	if (pindex > start) {
2042		m = vm_page_lookup(object, start);
2043		while (m != NULL && m->pindex < pindex) {
2044			vm_page_xunbusy(m);
2045			m = TAILQ_NEXT(m, listq);
2046		}
2047	}
2048	return (pindex == end);
2049}
2050
2051/*
2052 *	Routine:	vm_object_coalesce
2053 *	Function:	Coalesces two objects backing up adjoining
2054 *			regions of memory into a single object.
2055 *
2056 *	returns TRUE if objects were combined.
2057 *
2058 *	NOTE:	Only works at the moment if the second object is NULL -
2059 *		if it's not, which object do we lock first?
2060 *
2061 *	Parameters:
2062 *		prev_object	First object to coalesce
2063 *		prev_offset	Offset into prev_object
2064 *		prev_size	Size of reference to prev_object
2065 *		next_size	Size of reference to the second object
2066 *		reserved	Indicator that extension region has
2067 *				swap accounted for
2068 *
2069 *	Conditions:
2070 *	The object must *not* be locked.
2071 */
2072boolean_t
2073vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2074    vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2075{
2076	vm_pindex_t next_pindex;
2077
2078	if (prev_object == NULL)
2079		return (TRUE);
2080	VM_OBJECT_WLOCK(prev_object);
2081	if ((prev_object->type != OBJT_DEFAULT &&
2082	    prev_object->type != OBJT_SWAP) ||
2083	    (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2084		VM_OBJECT_WUNLOCK(prev_object);
2085		return (FALSE);
2086	}
2087
2088	/*
2089	 * Try to collapse the object first
2090	 */
2091	vm_object_collapse(prev_object);
2092
2093	/*
2094	 * Can't coalesce if: . more than one reference . paged out . shadows
2095	 * another object . has a copy elsewhere (any of which mean that the
2096	 * pages not mapped to prev_entry may be in use anyway)
2097	 */
2098	if (prev_object->backing_object != NULL) {
2099		VM_OBJECT_WUNLOCK(prev_object);
2100		return (FALSE);
2101	}
2102
2103	prev_size >>= PAGE_SHIFT;
2104	next_size >>= PAGE_SHIFT;
2105	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2106
2107	if ((prev_object->ref_count > 1) &&
2108	    (prev_object->size != next_pindex)) {
2109		VM_OBJECT_WUNLOCK(prev_object);
2110		return (FALSE);
2111	}
2112
2113	/*
2114	 * Account for the charge.
2115	 */
2116	if (prev_object->cred != NULL) {
2117
2118		/*
2119		 * If prev_object was charged, then this mapping,
2120		 * although not charged now, may become writable
2121		 * later. Non-NULL cred in the object would prevent
2122		 * swap reservation during enabling of the write
2123		 * access, so reserve swap now. Failed reservation
2124		 * cause allocation of the separate object for the map
2125		 * entry, and swap reservation for this entry is
2126		 * managed in appropriate time.
2127		 */
2128		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2129		    prev_object->cred)) {
2130			VM_OBJECT_WUNLOCK(prev_object);
2131			return (FALSE);
2132		}
2133		prev_object->charge += ptoa(next_size);
2134	}
2135
2136	/*
2137	 * Remove any pages that may still be in the object from a previous
2138	 * deallocation.
2139	 */
2140	if (next_pindex < prev_object->size) {
2141		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2142		    next_size, 0);
2143		if (prev_object->type == OBJT_SWAP)
2144			swap_pager_freespace(prev_object,
2145					     next_pindex, next_size);
2146#if 0
2147		if (prev_object->cred != NULL) {
2148			KASSERT(prev_object->charge >=
2149			    ptoa(prev_object->size - next_pindex),
2150			    ("object %p overcharged 1 %jx %jx", prev_object,
2151				(uintmax_t)next_pindex, (uintmax_t)next_size));
2152			prev_object->charge -= ptoa(prev_object->size -
2153			    next_pindex);
2154		}
2155#endif
2156	}
2157
2158	/*
2159	 * Extend the object if necessary.
2160	 */
2161	if (next_pindex + next_size > prev_object->size)
2162		prev_object->size = next_pindex + next_size;
2163
2164	VM_OBJECT_WUNLOCK(prev_object);
2165	return (TRUE);
2166}
2167
2168void
2169vm_object_set_writeable_dirty(vm_object_t object)
2170{
2171
2172	VM_OBJECT_ASSERT_WLOCKED(object);
2173	if (object->type != OBJT_VNODE) {
2174		if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2175			KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2176			vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2177		}
2178		return;
2179	}
2180	object->generation++;
2181	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2182		return;
2183	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2184}
2185
2186/*
2187 *	vm_object_unwire:
2188 *
2189 *	For each page offset within the specified range of the given object,
2190 *	find the highest-level page in the shadow chain and unwire it.  A page
2191 *	must exist at every page offset, and the highest-level page must be
2192 *	wired.
2193 */
2194void
2195vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2196    uint8_t queue)
2197{
2198	vm_object_t tobject;
2199	vm_page_t m, tm;
2200	vm_pindex_t end_pindex, pindex, tpindex;
2201	int depth, locked_depth;
2202
2203	KASSERT((offset & PAGE_MASK) == 0,
2204	    ("vm_object_unwire: offset is not page aligned"));
2205	KASSERT((length & PAGE_MASK) == 0,
2206	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2207	/* The wired count of a fictitious page never changes. */
2208	if ((object->flags & OBJ_FICTITIOUS) != 0)
2209		return;
2210	pindex = OFF_TO_IDX(offset);
2211	end_pindex = pindex + atop(length);
2212	locked_depth = 1;
2213	VM_OBJECT_RLOCK(object);
2214	m = vm_page_find_least(object, pindex);
2215	while (pindex < end_pindex) {
2216		if (m == NULL || pindex < m->pindex) {
2217			/*
2218			 * The first object in the shadow chain doesn't
2219			 * contain a page at the current index.  Therefore,
2220			 * the page must exist in a backing object.
2221			 */
2222			tobject = object;
2223			tpindex = pindex;
2224			depth = 0;
2225			do {
2226				tpindex +=
2227				    OFF_TO_IDX(tobject->backing_object_offset);
2228				tobject = tobject->backing_object;
2229				KASSERT(tobject != NULL,
2230				    ("vm_object_unwire: missing page"));
2231				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2232					goto next_page;
2233				depth++;
2234				if (depth == locked_depth) {
2235					locked_depth++;
2236					VM_OBJECT_RLOCK(tobject);
2237				}
2238			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2239			    NULL);
2240		} else {
2241			tm = m;
2242			m = TAILQ_NEXT(m, listq);
2243		}
2244		vm_page_lock(tm);
2245		vm_page_unwire(tm, queue);
2246		vm_page_unlock(tm);
2247next_page:
2248		pindex++;
2249	}
2250	/* Release the accumulated object locks. */
2251	for (depth = 0; depth < locked_depth; depth++) {
2252		tobject = object->backing_object;
2253		VM_OBJECT_RUNLOCK(object);
2254		object = tobject;
2255	}
2256}
2257
2258struct vnode *
2259vm_object_vnode(vm_object_t object)
2260{
2261
2262	VM_OBJECT_ASSERT_LOCKED(object);
2263	if (object->type == OBJT_VNODE)
2264		return (object->handle);
2265	if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2266		return (object->un_pager.swp.swp_tmpfs);
2267	return (NULL);
2268}
2269
2270static int
2271sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2272{
2273	struct kinfo_vmobject kvo;
2274	char *fullpath, *freepath;
2275	struct vnode *vp;
2276	struct vattr va;
2277	vm_object_t obj;
2278	vm_page_t m;
2279	int count, error;
2280
2281	if (req->oldptr == NULL) {
2282		/*
2283		 * If an old buffer has not been provided, generate an
2284		 * estimate of the space needed for a subsequent call.
2285		 */
2286		mtx_lock(&vm_object_list_mtx);
2287		count = 0;
2288		TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2289			if (obj->type == OBJT_DEAD)
2290				continue;
2291			count++;
2292		}
2293		mtx_unlock(&vm_object_list_mtx);
2294		return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2295		    count * 11 / 10));
2296	}
2297
2298	error = 0;
2299
2300	/*
2301	 * VM objects are type stable and are never removed from the
2302	 * list once added.  This allows us to safely read obj->object_list
2303	 * after reacquiring the VM object lock.
2304	 */
2305	mtx_lock(&vm_object_list_mtx);
2306	TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2307		if (obj->type == OBJT_DEAD)
2308			continue;
2309		VM_OBJECT_RLOCK(obj);
2310		if (obj->type == OBJT_DEAD) {
2311			VM_OBJECT_RUNLOCK(obj);
2312			continue;
2313		}
2314		mtx_unlock(&vm_object_list_mtx);
2315		kvo.kvo_size = ptoa(obj->size);
2316		kvo.kvo_resident = obj->resident_page_count;
2317		kvo.kvo_ref_count = obj->ref_count;
2318		kvo.kvo_shadow_count = obj->shadow_count;
2319		kvo.kvo_memattr = obj->memattr;
2320		kvo.kvo_active = 0;
2321		kvo.kvo_inactive = 0;
2322		TAILQ_FOREACH(m, &obj->memq, listq) {
2323			/*
2324			 * A page may belong to the object but be
2325			 * dequeued and set to PQ_NONE while the
2326			 * object lock is not held.  This makes the
2327			 * reads of m->queue below racy, and we do not
2328			 * count pages set to PQ_NONE.  However, this
2329			 * sysctl is only meant to give an
2330			 * approximation of the system anyway.
2331			 */
2332			if (m->queue == PQ_ACTIVE)
2333				kvo.kvo_active++;
2334			else if (m->queue == PQ_INACTIVE)
2335				kvo.kvo_inactive++;
2336		}
2337
2338		kvo.kvo_vn_fileid = 0;
2339		kvo.kvo_vn_fsid = 0;
2340		freepath = NULL;
2341		fullpath = "";
2342		vp = NULL;
2343		switch (obj->type) {
2344		case OBJT_DEFAULT:
2345			kvo.kvo_type = KVME_TYPE_DEFAULT;
2346			break;
2347		case OBJT_VNODE:
2348			kvo.kvo_type = KVME_TYPE_VNODE;
2349			vp = obj->handle;
2350			vref(vp);
2351			break;
2352		case OBJT_SWAP:
2353			kvo.kvo_type = KVME_TYPE_SWAP;
2354			break;
2355		case OBJT_DEVICE:
2356			kvo.kvo_type = KVME_TYPE_DEVICE;
2357			break;
2358		case OBJT_PHYS:
2359			kvo.kvo_type = KVME_TYPE_PHYS;
2360			break;
2361		case OBJT_DEAD:
2362			kvo.kvo_type = KVME_TYPE_DEAD;
2363			break;
2364		case OBJT_SG:
2365			kvo.kvo_type = KVME_TYPE_SG;
2366			break;
2367		case OBJT_MGTDEVICE:
2368			kvo.kvo_type = KVME_TYPE_MGTDEVICE;
2369			break;
2370		default:
2371			kvo.kvo_type = KVME_TYPE_UNKNOWN;
2372			break;
2373		}
2374		VM_OBJECT_RUNLOCK(obj);
2375		if (vp != NULL) {
2376			vn_fullpath(curthread, vp, &fullpath, &freepath);
2377			vn_lock(vp, LK_SHARED | LK_RETRY);
2378			if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2379				kvo.kvo_vn_fileid = va.va_fileid;
2380				kvo.kvo_vn_fsid = va.va_fsid;
2381			}
2382			vput(vp);
2383		}
2384
2385		strlcpy(kvo.kvo_path, fullpath, sizeof(kvo.kvo_path));
2386		if (freepath != NULL)
2387			free(freepath, M_TEMP);
2388
2389		/* Pack record size down */
2390		kvo.kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) +
2391		    strlen(kvo.kvo_path) + 1;
2392		kvo.kvo_structsize = roundup(kvo.kvo_structsize,
2393		    sizeof(uint64_t));
2394		error = SYSCTL_OUT(req, &kvo, kvo.kvo_structsize);
2395		mtx_lock(&vm_object_list_mtx);
2396		if (error)
2397			break;
2398	}
2399	mtx_unlock(&vm_object_list_mtx);
2400	return (error);
2401}
2402SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2403    CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2404    "List of VM objects");
2405
2406#include "opt_ddb.h"
2407#ifdef DDB
2408#include <sys/kernel.h>
2409
2410#include <sys/cons.h>
2411
2412#include <ddb/ddb.h>
2413
2414static int
2415_vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2416{
2417	vm_map_t tmpm;
2418	vm_map_entry_t tmpe;
2419	vm_object_t obj;
2420	int entcount;
2421
2422	if (map == 0)
2423		return 0;
2424
2425	if (entry == 0) {
2426		tmpe = map->header.next;
2427		entcount = map->nentries;
2428		while (entcount-- && (tmpe != &map->header)) {
2429			if (_vm_object_in_map(map, object, tmpe)) {
2430				return 1;
2431			}
2432			tmpe = tmpe->next;
2433		}
2434	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2435		tmpm = entry->object.sub_map;
2436		tmpe = tmpm->header.next;
2437		entcount = tmpm->nentries;
2438		while (entcount-- && tmpe != &tmpm->header) {
2439			if (_vm_object_in_map(tmpm, object, tmpe)) {
2440				return 1;
2441			}
2442			tmpe = tmpe->next;
2443		}
2444	} else if ((obj = entry->object.vm_object) != NULL) {
2445		for (; obj; obj = obj->backing_object)
2446			if (obj == object) {
2447				return 1;
2448			}
2449	}
2450	return 0;
2451}
2452
2453static int
2454vm_object_in_map(vm_object_t object)
2455{
2456	struct proc *p;
2457
2458	/* sx_slock(&allproc_lock); */
2459	FOREACH_PROC_IN_SYSTEM(p) {
2460		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2461			continue;
2462		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2463			/* sx_sunlock(&allproc_lock); */
2464			return 1;
2465		}
2466	}
2467	/* sx_sunlock(&allproc_lock); */
2468	if (_vm_object_in_map(kernel_map, object, 0))
2469		return 1;
2470	return 0;
2471}
2472
2473DB_SHOW_COMMAND(vmochk, vm_object_check)
2474{
2475	vm_object_t object;
2476
2477	/*
2478	 * make sure that internal objs are in a map somewhere
2479	 * and none have zero ref counts.
2480	 */
2481	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2482		if (object->handle == NULL &&
2483		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2484			if (object->ref_count == 0) {
2485				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2486					(long)object->size);
2487			}
2488			if (!vm_object_in_map(object)) {
2489				db_printf(
2490			"vmochk: internal obj is not in a map: "
2491			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2492				    object->ref_count, (u_long)object->size,
2493				    (u_long)object->size,
2494				    (void *)object->backing_object);
2495			}
2496		}
2497	}
2498}
2499
2500/*
2501 *	vm_object_print:	[ debug ]
2502 */
2503DB_SHOW_COMMAND(object, vm_object_print_static)
2504{
2505	/* XXX convert args. */
2506	vm_object_t object = (vm_object_t)addr;
2507	boolean_t full = have_addr;
2508
2509	vm_page_t p;
2510
2511	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2512#define	count	was_count
2513
2514	int count;
2515
2516	if (object == NULL)
2517		return;
2518
2519	db_iprintf(
2520	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2521	    object, (int)object->type, (uintmax_t)object->size,
2522	    object->resident_page_count, object->ref_count, object->flags,
2523	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2524	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2525	    object->shadow_count,
2526	    object->backing_object ? object->backing_object->ref_count : 0,
2527	    object->backing_object, (uintmax_t)object->backing_object_offset);
2528
2529	if (!full)
2530		return;
2531
2532	db_indent += 2;
2533	count = 0;
2534	TAILQ_FOREACH(p, &object->memq, listq) {
2535		if (count == 0)
2536			db_iprintf("memory:=");
2537		else if (count == 6) {
2538			db_printf("\n");
2539			db_iprintf(" ...");
2540			count = 0;
2541		} else
2542			db_printf(",");
2543		count++;
2544
2545		db_printf("(off=0x%jx,page=0x%jx)",
2546		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2547	}
2548	if (count != 0)
2549		db_printf("\n");
2550	db_indent -= 2;
2551}
2552
2553/* XXX. */
2554#undef count
2555
2556/* XXX need this non-static entry for calling from vm_map_print. */
2557void
2558vm_object_print(
2559        /* db_expr_t */ long addr,
2560	boolean_t have_addr,
2561	/* db_expr_t */ long count,
2562	char *modif)
2563{
2564	vm_object_print_static(addr, have_addr, count, modif);
2565}
2566
2567DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2568{
2569	vm_object_t object;
2570	vm_pindex_t fidx;
2571	vm_paddr_t pa;
2572	vm_page_t m, prev_m;
2573	int rcount, nl, c;
2574
2575	nl = 0;
2576	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2577		db_printf("new object: %p\n", (void *)object);
2578		if (nl > 18) {
2579			c = cngetc();
2580			if (c != ' ')
2581				return;
2582			nl = 0;
2583		}
2584		nl++;
2585		rcount = 0;
2586		fidx = 0;
2587		pa = -1;
2588		TAILQ_FOREACH(m, &object->memq, listq) {
2589			if (m->pindex > 128)
2590				break;
2591			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2592			    prev_m->pindex + 1 != m->pindex) {
2593				if (rcount) {
2594					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2595						(long)fidx, rcount, (long)pa);
2596					if (nl > 18) {
2597						c = cngetc();
2598						if (c != ' ')
2599							return;
2600						nl = 0;
2601					}
2602					nl++;
2603					rcount = 0;
2604				}
2605			}
2606			if (rcount &&
2607				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2608				++rcount;
2609				continue;
2610			}
2611			if (rcount) {
2612				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2613					(long)fidx, rcount, (long)pa);
2614				if (nl > 18) {
2615					c = cngetc();
2616					if (c != ' ')
2617						return;
2618					nl = 0;
2619				}
2620				nl++;
2621			}
2622			fidx = m->pindex;
2623			pa = VM_PAGE_TO_PHYS(m);
2624			rcount = 1;
2625		}
2626		if (rcount) {
2627			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2628				(long)fidx, rcount, (long)pa);
2629			if (nl > 18) {
2630				c = cngetc();
2631				if (c != ' ')
2632					return;
2633				nl = 0;
2634			}
2635			nl++;
2636		}
2637	}
2638}
2639#endif /* DDB */
2640