1/******************************************************************************
2 *                                                                            *
3 * Copyright 2014 Intel Corporation                                           *
4 *                                                                            *
5 * Licensed under the Apache License, Version 2.0 (the "License");            *
6 * you may not use this file except in compliance with the License.           *
7 * You may obtain a copy of the License at                                    *
8 *                                                                            *
9 *    http://www.apache.org/licenses/LICENSE-2.0                              *
10 *                                                                            *
11 * Unless required by applicable law or agreed to in writing, software        *
12 * distributed under the License is distributed on an "AS IS" BASIS,          *
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   *
14 * See the License for the specific language governing permissions and        *
15 * limitations under the License.                                             *
16 *                                                                            *
17 ******************************************************************************
18 *                                                                            *
19 * Developers and authors:                                                    *
20 * Shay Gueron (1, 2), and Vlad Krasnov (1)                                   *
21 * (1) Intel Corporation, Israel Development Center                           *
22 * (2) University of Haifa                                                    *
23 * Reference:                                                                 *
24 * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with *
25 *                          256 Bit Primes"                                   *
26 *                                                                            *
27 ******************************************************************************/
28
29#include <string.h>
30
31#include <openssl/bn.h>
32#include <openssl/err.h>
33#include <openssl/ec.h>
34#include "cryptlib.h"
35
36#include "ec_lcl.h"
37
38#if BN_BITS2 != 64
39# define TOBN(hi,lo)    lo,hi
40#else
41# define TOBN(hi,lo)    ((BN_ULONG)hi<<32|lo)
42#endif
43
44#if defined(__GNUC__)
45# define ALIGN32        __attribute((aligned(32)))
46#elif defined(_MSC_VER)
47# define ALIGN32        __declspec(align(32))
48#else
49# define ALIGN32
50#endif
51
52#define ALIGNPTR(p,N)   ((unsigned char *)p+N-(size_t)p%N)
53#define P256_LIMBS      (256/BN_BITS2)
54
55typedef unsigned short u16;
56
57typedef struct {
58    BN_ULONG X[P256_LIMBS];
59    BN_ULONG Y[P256_LIMBS];
60    BN_ULONG Z[P256_LIMBS];
61} P256_POINT;
62
63typedef struct {
64    BN_ULONG X[P256_LIMBS];
65    BN_ULONG Y[P256_LIMBS];
66} P256_POINT_AFFINE;
67
68typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
69
70/* structure for precomputed multiples of the generator */
71typedef struct ec_pre_comp_st {
72    const EC_GROUP *group;      /* Parent EC_GROUP object */
73    size_t w;                   /* Window size */
74    /*
75     * Constant time access to the X and Y coordinates of the pre-computed,
76     * generator multiplies, in the Montgomery domain. Pre-calculated
77     * multiplies are stored in affine form.
78     */
79    PRECOMP256_ROW *precomp;
80    void *precomp_storage;
81    int references;
82} EC_PRE_COMP;
83
84/* Functions implemented in assembly */
85/* Modular mul by 2: res = 2*a mod P */
86void ecp_nistz256_mul_by_2(BN_ULONG res[P256_LIMBS],
87                           const BN_ULONG a[P256_LIMBS]);
88/* Modular div by 2: res = a/2 mod P */
89void ecp_nistz256_div_by_2(BN_ULONG res[P256_LIMBS],
90                           const BN_ULONG a[P256_LIMBS]);
91/* Modular mul by 3: res = 3*a mod P */
92void ecp_nistz256_mul_by_3(BN_ULONG res[P256_LIMBS],
93                           const BN_ULONG a[P256_LIMBS]);
94/* Modular add: res = a+b mod P   */
95void ecp_nistz256_add(BN_ULONG res[P256_LIMBS],
96                      const BN_ULONG a[P256_LIMBS],
97                      const BN_ULONG b[P256_LIMBS]);
98/* Modular sub: res = a-b mod P   */
99void ecp_nistz256_sub(BN_ULONG res[P256_LIMBS],
100                      const BN_ULONG a[P256_LIMBS],
101                      const BN_ULONG b[P256_LIMBS]);
102/* Modular neg: res = -a mod P    */
103void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]);
104/* Montgomery mul: res = a*b*2^-256 mod P */
105void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS],
106                           const BN_ULONG a[P256_LIMBS],
107                           const BN_ULONG b[P256_LIMBS]);
108/* Montgomery sqr: res = a*a*2^-256 mod P */
109void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS],
110                           const BN_ULONG a[P256_LIMBS]);
111/* Convert a number from Montgomery domain, by multiplying with 1 */
112void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS],
113                            const BN_ULONG in[P256_LIMBS]);
114/* Convert a number to Montgomery domain, by multiplying with 2^512 mod P*/
115void ecp_nistz256_to_mont(BN_ULONG res[P256_LIMBS],
116                          const BN_ULONG in[P256_LIMBS]);
117/* Functions that perform constant time access to the precomputed tables */
118void ecp_nistz256_select_w5(P256_POINT * val,
119                            const P256_POINT * in_t, int index);
120void ecp_nistz256_select_w7(P256_POINT_AFFINE * val,
121                            const P256_POINT_AFFINE * in_t, int index);
122
123/* One converted into the Montgomery domain */
124static const BN_ULONG ONE[P256_LIMBS] = {
125    TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
126    TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe)
127};
128
129static void *ecp_nistz256_pre_comp_dup(void *);
130static void ecp_nistz256_pre_comp_free(void *);
131static void ecp_nistz256_pre_comp_clear_free(void *);
132static EC_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group);
133
134/* Precomputed tables for the default generator */
135#include "ecp_nistz256_table.c"
136
137/* Recode window to a signed digit, see ecp_nistputil.c for details */
138static unsigned int _booth_recode_w5(unsigned int in)
139{
140    unsigned int s, d;
141
142    s = ~((in >> 5) - 1);
143    d = (1 << 6) - in - 1;
144    d = (d & s) | (in & ~s);
145    d = (d >> 1) + (d & 1);
146
147    return (d << 1) + (s & 1);
148}
149
150static unsigned int _booth_recode_w7(unsigned int in)
151{
152    unsigned int s, d;
153
154    s = ~((in >> 7) - 1);
155    d = (1 << 8) - in - 1;
156    d = (d & s) | (in & ~s);
157    d = (d >> 1) + (d & 1);
158
159    return (d << 1) + (s & 1);
160}
161
162static void copy_conditional(BN_ULONG dst[P256_LIMBS],
163                             const BN_ULONG src[P256_LIMBS], BN_ULONG move)
164{
165    BN_ULONG mask1 = -move;
166    BN_ULONG mask2 = ~mask1;
167
168    dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
169    dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
170    dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
171    dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
172    if (P256_LIMBS == 8) {
173        dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
174        dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
175        dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
176        dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
177    }
178}
179
180static BN_ULONG is_zero(BN_ULONG in)
181{
182    in |= (0 - in);
183    in = ~in;
184    in &= BN_MASK2;
185    in >>= BN_BITS2 - 1;
186    return in;
187}
188
189static BN_ULONG is_equal(const BN_ULONG a[P256_LIMBS],
190                         const BN_ULONG b[P256_LIMBS])
191{
192    BN_ULONG res;
193
194    res = a[0] ^ b[0];
195    res |= a[1] ^ b[1];
196    res |= a[2] ^ b[2];
197    res |= a[3] ^ b[3];
198    if (P256_LIMBS == 8) {
199        res |= a[4] ^ b[4];
200        res |= a[5] ^ b[5];
201        res |= a[6] ^ b[6];
202        res |= a[7] ^ b[7];
203    }
204
205    return is_zero(res);
206}
207
208static BN_ULONG is_one(const BN_ULONG a[P256_LIMBS])
209{
210    BN_ULONG res;
211
212    res = a[0] ^ ONE[0];
213    res |= a[1] ^ ONE[1];
214    res |= a[2] ^ ONE[2];
215    res |= a[3] ^ ONE[3];
216    if (P256_LIMBS == 8) {
217        res |= a[4] ^ ONE[4];
218        res |= a[5] ^ ONE[5];
219        res |= a[6] ^ ONE[6];
220    }
221
222    return is_zero(res);
223}
224
225static int ecp_nistz256_set_words(BIGNUM *a, BN_ULONG words[P256_LIMBS])
226 {
227     if (bn_wexpand(a, P256_LIMBS) == NULL) {
228         ECerr(EC_F_ECP_NISTZ256_SET_WORDS, ERR_R_MALLOC_FAILURE);
229         return 0;
230     }
231     memcpy(a->d, words, sizeof(BN_ULONG) * P256_LIMBS);
232     a->top = P256_LIMBS;
233     bn_correct_top(a);
234     return 1;
235}
236
237#ifndef ECP_NISTZ256_REFERENCE_IMPLEMENTATION
238void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a);
239void ecp_nistz256_point_add(P256_POINT *r,
240                            const P256_POINT *a, const P256_POINT *b);
241void ecp_nistz256_point_add_affine(P256_POINT *r,
242                                   const P256_POINT *a,
243                                   const P256_POINT_AFFINE *b);
244#else
245/* Point double: r = 2*a */
246static void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a)
247{
248    BN_ULONG S[P256_LIMBS];
249    BN_ULONG M[P256_LIMBS];
250    BN_ULONG Zsqr[P256_LIMBS];
251    BN_ULONG tmp0[P256_LIMBS];
252
253    const BN_ULONG *in_x = a->X;
254    const BN_ULONG *in_y = a->Y;
255    const BN_ULONG *in_z = a->Z;
256
257    BN_ULONG *res_x = r->X;
258    BN_ULONG *res_y = r->Y;
259    BN_ULONG *res_z = r->Z;
260
261    ecp_nistz256_mul_by_2(S, in_y);
262
263    ecp_nistz256_sqr_mont(Zsqr, in_z);
264
265    ecp_nistz256_sqr_mont(S, S);
266
267    ecp_nistz256_mul_mont(res_z, in_z, in_y);
268    ecp_nistz256_mul_by_2(res_z, res_z);
269
270    ecp_nistz256_add(M, in_x, Zsqr);
271    ecp_nistz256_sub(Zsqr, in_x, Zsqr);
272
273    ecp_nistz256_sqr_mont(res_y, S);
274    ecp_nistz256_div_by_2(res_y, res_y);
275
276    ecp_nistz256_mul_mont(M, M, Zsqr);
277    ecp_nistz256_mul_by_3(M, M);
278
279    ecp_nistz256_mul_mont(S, S, in_x);
280    ecp_nistz256_mul_by_2(tmp0, S);
281
282    ecp_nistz256_sqr_mont(res_x, M);
283
284    ecp_nistz256_sub(res_x, res_x, tmp0);
285    ecp_nistz256_sub(S, S, res_x);
286
287    ecp_nistz256_mul_mont(S, S, M);
288    ecp_nistz256_sub(res_y, S, res_y);
289}
290
291/* Point addition: r = a+b */
292static void ecp_nistz256_point_add(P256_POINT *r,
293                                   const P256_POINT *a, const P256_POINT *b)
294{
295    BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
296    BN_ULONG U1[P256_LIMBS], S1[P256_LIMBS];
297    BN_ULONG Z1sqr[P256_LIMBS];
298    BN_ULONG Z2sqr[P256_LIMBS];
299    BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
300    BN_ULONG Hsqr[P256_LIMBS];
301    BN_ULONG Rsqr[P256_LIMBS];
302    BN_ULONG Hcub[P256_LIMBS];
303
304    BN_ULONG res_x[P256_LIMBS];
305    BN_ULONG res_y[P256_LIMBS];
306    BN_ULONG res_z[P256_LIMBS];
307
308    BN_ULONG in1infty, in2infty;
309
310    const BN_ULONG *in1_x = a->X;
311    const BN_ULONG *in1_y = a->Y;
312    const BN_ULONG *in1_z = a->Z;
313
314    const BN_ULONG *in2_x = b->X;
315    const BN_ULONG *in2_y = b->Y;
316    const BN_ULONG *in2_z = b->Z;
317
318    /* We encode infinity as (0,0), which is not on the curve,
319     * so it is OK. */
320    in1infty = (in1_x[0] | in1_x[1] | in1_x[2] | in1_x[3] |
321                in1_y[0] | in1_y[1] | in1_y[2] | in1_y[3]);
322    if (P256_LIMBS == 8)
323        in1infty |= (in1_x[4] | in1_x[5] | in1_x[6] | in1_x[7] |
324                     in1_y[4] | in1_y[5] | in1_y[6] | in1_y[7]);
325
326    in2infty = (in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] |
327                in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3]);
328    if (P256_LIMBS == 8)
329        in2infty |= (in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] |
330                     in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7]);
331
332    in1infty = is_zero(in1infty);
333    in2infty = is_zero(in2infty);
334
335    ecp_nistz256_sqr_mont(Z2sqr, in2_z);        /* Z2^2 */
336    ecp_nistz256_sqr_mont(Z1sqr, in1_z);        /* Z1^2 */
337
338    ecp_nistz256_mul_mont(S1, Z2sqr, in2_z);    /* S1 = Z2^3 */
339    ecp_nistz256_mul_mont(S2, Z1sqr, in1_z);    /* S2 = Z1^3 */
340
341    ecp_nistz256_mul_mont(S1, S1, in1_y);       /* S1 = Y1*Z2^3 */
342    ecp_nistz256_mul_mont(S2, S2, in2_y);       /* S2 = Y2*Z1^3 */
343    ecp_nistz256_sub(R, S2, S1);                /* R = S2 - S1 */
344
345    ecp_nistz256_mul_mont(U1, in1_x, Z2sqr);    /* U1 = X1*Z2^2 */
346    ecp_nistz256_mul_mont(U2, in2_x, Z1sqr);    /* U2 = X2*Z1^2 */
347    ecp_nistz256_sub(H, U2, U1);                /* H = U2 - U1 */
348
349    /*
350     * This should not happen during sign/ecdh, so no constant time violation
351     */
352    if (is_equal(U1, U2) && !in1infty && !in2infty) {
353        if (is_equal(S1, S2)) {
354            ecp_nistz256_point_double(r, a);
355            return;
356        } else {
357            memset(r, 0, sizeof(*r));
358            return;
359        }
360    }
361
362    ecp_nistz256_sqr_mont(Rsqr, R);             /* R^2 */
363    ecp_nistz256_mul_mont(res_z, H, in1_z);     /* Z3 = H*Z1*Z2 */
364    ecp_nistz256_sqr_mont(Hsqr, H);             /* H^2 */
365    ecp_nistz256_mul_mont(res_z, res_z, in2_z); /* Z3 = H*Z1*Z2 */
366    ecp_nistz256_mul_mont(Hcub, Hsqr, H);       /* H^3 */
367
368    ecp_nistz256_mul_mont(U2, U1, Hsqr);        /* U1*H^2 */
369    ecp_nistz256_mul_by_2(Hsqr, U2);            /* 2*U1*H^2 */
370
371    ecp_nistz256_sub(res_x, Rsqr, Hsqr);
372    ecp_nistz256_sub(res_x, res_x, Hcub);
373
374    ecp_nistz256_sub(res_y, U2, res_x);
375
376    ecp_nistz256_mul_mont(S2, S1, Hcub);
377    ecp_nistz256_mul_mont(res_y, R, res_y);
378    ecp_nistz256_sub(res_y, res_y, S2);
379
380    copy_conditional(res_x, in2_x, in1infty);
381    copy_conditional(res_y, in2_y, in1infty);
382    copy_conditional(res_z, in2_z, in1infty);
383
384    copy_conditional(res_x, in1_x, in2infty);
385    copy_conditional(res_y, in1_y, in2infty);
386    copy_conditional(res_z, in1_z, in2infty);
387
388    memcpy(r->X, res_x, sizeof(res_x));
389    memcpy(r->Y, res_y, sizeof(res_y));
390    memcpy(r->Z, res_z, sizeof(res_z));
391}
392
393/* Point addition when b is known to be affine: r = a+b */
394static void ecp_nistz256_point_add_affine(P256_POINT *r,
395                                          const P256_POINT *a,
396                                          const P256_POINT_AFFINE *b)
397{
398    BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS];
399    BN_ULONG Z1sqr[P256_LIMBS];
400    BN_ULONG H[P256_LIMBS], R[P256_LIMBS];
401    BN_ULONG Hsqr[P256_LIMBS];
402    BN_ULONG Rsqr[P256_LIMBS];
403    BN_ULONG Hcub[P256_LIMBS];
404
405    BN_ULONG res_x[P256_LIMBS];
406    BN_ULONG res_y[P256_LIMBS];
407    BN_ULONG res_z[P256_LIMBS];
408
409    BN_ULONG in1infty, in2infty;
410
411    const BN_ULONG *in1_x = a->X;
412    const BN_ULONG *in1_y = a->Y;
413    const BN_ULONG *in1_z = a->Z;
414
415    const BN_ULONG *in2_x = b->X;
416    const BN_ULONG *in2_y = b->Y;
417
418    /*
419     * In affine representation we encode infty as (0,0), which is not on the
420     * curve, so it is OK
421     */
422    in1infty = (in1_x[0] | in1_x[1] | in1_x[2] | in1_x[3] |
423                in1_y[0] | in1_y[1] | in1_y[2] | in1_y[3]);
424    if (P256_LIMBS == 8)
425        in1infty |= (in1_x[4] | in1_x[5] | in1_x[6] | in1_x[7] |
426                     in1_y[4] | in1_y[5] | in1_y[6] | in1_y[7]);
427
428    in2infty = (in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] |
429                in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3]);
430    if (P256_LIMBS == 8)
431        in2infty |= (in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] |
432                     in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7]);
433
434    in1infty = is_zero(in1infty);
435    in2infty = is_zero(in2infty);
436
437    ecp_nistz256_sqr_mont(Z1sqr, in1_z);        /* Z1^2 */
438
439    ecp_nistz256_mul_mont(U2, in2_x, Z1sqr);    /* U2 = X2*Z1^2 */
440    ecp_nistz256_sub(H, U2, in1_x);             /* H = U2 - U1 */
441
442    ecp_nistz256_mul_mont(S2, Z1sqr, in1_z);    /* S2 = Z1^3 */
443
444    ecp_nistz256_mul_mont(res_z, H, in1_z);     /* Z3 = H*Z1*Z2 */
445
446    ecp_nistz256_mul_mont(S2, S2, in2_y);       /* S2 = Y2*Z1^3 */
447    ecp_nistz256_sub(R, S2, in1_y);             /* R = S2 - S1 */
448
449    ecp_nistz256_sqr_mont(Hsqr, H);             /* H^2 */
450    ecp_nistz256_sqr_mont(Rsqr, R);             /* R^2 */
451    ecp_nistz256_mul_mont(Hcub, Hsqr, H);       /* H^3 */
452
453    ecp_nistz256_mul_mont(U2, in1_x, Hsqr);     /* U1*H^2 */
454    ecp_nistz256_mul_by_2(Hsqr, U2);            /* 2*U1*H^2 */
455
456    ecp_nistz256_sub(res_x, Rsqr, Hsqr);
457    ecp_nistz256_sub(res_x, res_x, Hcub);
458    ecp_nistz256_sub(H, U2, res_x);
459
460    ecp_nistz256_mul_mont(S2, in1_y, Hcub);
461    ecp_nistz256_mul_mont(H, H, R);
462    ecp_nistz256_sub(res_y, H, S2);
463
464    copy_conditional(res_x, in2_x, in1infty);
465    copy_conditional(res_x, in1_x, in2infty);
466
467    copy_conditional(res_y, in2_y, in1infty);
468    copy_conditional(res_y, in1_y, in2infty);
469
470    copy_conditional(res_z, ONE, in1infty);
471    copy_conditional(res_z, in1_z, in2infty);
472
473    memcpy(r->X, res_x, sizeof(res_x));
474    memcpy(r->Y, res_y, sizeof(res_y));
475    memcpy(r->Z, res_z, sizeof(res_z));
476}
477#endif
478
479/* r = in^-1 mod p */
480static void ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS],
481                                     const BN_ULONG in[P256_LIMBS])
482{
483    /*
484     * The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff
485     * ffffffff ffffffff We use FLT and used poly-2 as exponent
486     */
487    BN_ULONG p2[P256_LIMBS];
488    BN_ULONG p4[P256_LIMBS];
489    BN_ULONG p8[P256_LIMBS];
490    BN_ULONG p16[P256_LIMBS];
491    BN_ULONG p32[P256_LIMBS];
492    BN_ULONG res[P256_LIMBS];
493    int i;
494
495    ecp_nistz256_sqr_mont(res, in);
496    ecp_nistz256_mul_mont(p2, res, in);         /* 3*p */
497
498    ecp_nistz256_sqr_mont(res, p2);
499    ecp_nistz256_sqr_mont(res, res);
500    ecp_nistz256_mul_mont(p4, res, p2);         /* f*p */
501
502    ecp_nistz256_sqr_mont(res, p4);
503    ecp_nistz256_sqr_mont(res, res);
504    ecp_nistz256_sqr_mont(res, res);
505    ecp_nistz256_sqr_mont(res, res);
506    ecp_nistz256_mul_mont(p8, res, p4);         /* ff*p */
507
508    ecp_nistz256_sqr_mont(res, p8);
509    for (i = 0; i < 7; i++)
510        ecp_nistz256_sqr_mont(res, res);
511    ecp_nistz256_mul_mont(p16, res, p8);        /* ffff*p */
512
513    ecp_nistz256_sqr_mont(res, p16);
514    for (i = 0; i < 15; i++)
515        ecp_nistz256_sqr_mont(res, res);
516    ecp_nistz256_mul_mont(p32, res, p16);       /* ffffffff*p */
517
518    ecp_nistz256_sqr_mont(res, p32);
519    for (i = 0; i < 31; i++)
520        ecp_nistz256_sqr_mont(res, res);
521    ecp_nistz256_mul_mont(res, res, in);
522
523    for (i = 0; i < 32 * 4; i++)
524        ecp_nistz256_sqr_mont(res, res);
525    ecp_nistz256_mul_mont(res, res, p32);
526
527    for (i = 0; i < 32; i++)
528        ecp_nistz256_sqr_mont(res, res);
529    ecp_nistz256_mul_mont(res, res, p32);
530
531    for (i = 0; i < 16; i++)
532        ecp_nistz256_sqr_mont(res, res);
533    ecp_nistz256_mul_mont(res, res, p16);
534
535    for (i = 0; i < 8; i++)
536        ecp_nistz256_sqr_mont(res, res);
537    ecp_nistz256_mul_mont(res, res, p8);
538
539    ecp_nistz256_sqr_mont(res, res);
540    ecp_nistz256_sqr_mont(res, res);
541    ecp_nistz256_sqr_mont(res, res);
542    ecp_nistz256_sqr_mont(res, res);
543    ecp_nistz256_mul_mont(res, res, p4);
544
545    ecp_nistz256_sqr_mont(res, res);
546    ecp_nistz256_sqr_mont(res, res);
547    ecp_nistz256_mul_mont(res, res, p2);
548
549    ecp_nistz256_sqr_mont(res, res);
550    ecp_nistz256_sqr_mont(res, res);
551    ecp_nistz256_mul_mont(res, res, in);
552
553    memcpy(r, res, sizeof(res));
554}
555
556/*
557 * ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and
558 * returns one if it fits. Otherwise it returns zero.
559 */
560static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS],
561                                             const BIGNUM *in)
562{
563    if (in->top > P256_LIMBS)
564        return 0;
565
566    memset(out, 0, sizeof(BN_ULONG) * P256_LIMBS);
567    memcpy(out, in->d, sizeof(BN_ULONG) * in->top);
568    return 1;
569}
570
571/* r = sum(scalar[i]*point[i]) */
572static int ecp_nistz256_windowed_mul(const EC_GROUP *group,
573                                      P256_POINT *r,
574                                      const BIGNUM **scalar,
575                                      const EC_POINT **point,
576                                      int num, BN_CTX *ctx)
577{
578
579    int i, j, ret = 0;
580    unsigned int index;
581    unsigned char (*p_str)[33] = NULL;
582    const unsigned int window_size = 5;
583    const unsigned int mask = (1 << (window_size + 1)) - 1;
584    unsigned int wvalue;
585    BN_ULONG tmp[P256_LIMBS];
586    ALIGN32 P256_POINT h;
587    const BIGNUM **scalars = NULL;
588    P256_POINT (*table)[16] = NULL;
589    void *table_storage = NULL;
590
591    if ((table_storage =
592         OPENSSL_malloc(num * 16 * sizeof(P256_POINT) + 64)) == NULL
593        || (p_str =
594            OPENSSL_malloc(num * 33 * sizeof(unsigned char))) == NULL
595        || (scalars = OPENSSL_malloc(num * sizeof(BIGNUM *))) == NULL) {
596        ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, ERR_R_MALLOC_FAILURE);
597        goto err;
598    } else {
599        table = (void *)ALIGNPTR(table_storage, 64);
600    }
601
602    for (i = 0; i < num; i++) {
603        P256_POINT *row = table[i];
604
605        /* This is an unusual input, we don't guarantee constant-timeness. */
606        if ((BN_num_bits(scalar[i]) > 256) || BN_is_negative(scalar[i])) {
607            BIGNUM *mod;
608
609            if ((mod = BN_CTX_get(ctx)) == NULL)
610                goto err;
611            if (!BN_nnmod(mod, scalar[i], &group->order, ctx)) {
612                ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, ERR_R_BN_LIB);
613                goto err;
614            }
615            scalars[i] = mod;
616        } else
617            scalars[i] = scalar[i];
618
619        for (j = 0; j < scalars[i]->top * BN_BYTES; j += BN_BYTES) {
620            BN_ULONG d = scalars[i]->d[j / BN_BYTES];
621
622            p_str[i][j + 0] = d & 0xff;
623            p_str[i][j + 1] = (d >> 8) & 0xff;
624            p_str[i][j + 2] = (d >> 16) & 0xff;
625            p_str[i][j + 3] = (d >>= 24) & 0xff;
626            if (BN_BYTES == 8) {
627                d >>= 8;
628                p_str[i][j + 4] = d & 0xff;
629                p_str[i][j + 5] = (d >> 8) & 0xff;
630                p_str[i][j + 6] = (d >> 16) & 0xff;
631                p_str[i][j + 7] = (d >> 24) & 0xff;
632            }
633        }
634        for (; j < 33; j++)
635            p_str[i][j] = 0;
636
637        /* table[0] is implicitly (0,0,0) (the point at infinity),
638         * therefore it is not stored. All other values are actually
639         * stored with an offset of -1 in table.
640         */
641
642        if (!ecp_nistz256_bignum_to_field_elem(row[1 - 1].X, &point[i]->X)
643            || !ecp_nistz256_bignum_to_field_elem(row[1 - 1].Y, &point[i]->Y)
644            || !ecp_nistz256_bignum_to_field_elem(row[1 - 1].Z, &point[i]->Z)) {
645            ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, EC_R_COORDINATES_OUT_OF_RANGE);
646            goto err;
647        }
648
649        ecp_nistz256_point_double(&row[ 2 - 1], &row[ 1 - 1]);
650        ecp_nistz256_point_add   (&row[ 3 - 1], &row[ 2 - 1], &row[1 - 1]);
651        ecp_nistz256_point_double(&row[ 4 - 1], &row[ 2 - 1]);
652        ecp_nistz256_point_double(&row[ 6 - 1], &row[ 3 - 1]);
653        ecp_nistz256_point_double(&row[ 8 - 1], &row[ 4 - 1]);
654        ecp_nistz256_point_double(&row[12 - 1], &row[ 6 - 1]);
655        ecp_nistz256_point_add   (&row[ 5 - 1], &row[ 4 - 1], &row[1 - 1]);
656        ecp_nistz256_point_add   (&row[ 7 - 1], &row[ 6 - 1], &row[1 - 1]);
657        ecp_nistz256_point_add   (&row[ 9 - 1], &row[ 8 - 1], &row[1 - 1]);
658        ecp_nistz256_point_add   (&row[13 - 1], &row[12 - 1], &row[1 - 1]);
659        ecp_nistz256_point_double(&row[14 - 1], &row[ 7 - 1]);
660        ecp_nistz256_point_double(&row[10 - 1], &row[ 5 - 1]);
661        ecp_nistz256_point_add   (&row[15 - 1], &row[14 - 1], &row[1 - 1]);
662        ecp_nistz256_point_add   (&row[11 - 1], &row[10 - 1], &row[1 - 1]);
663        ecp_nistz256_point_add   (&row[16 - 1], &row[15 - 1], &row[1 - 1]);
664    }
665
666    index = 255;
667
668    wvalue = p_str[0][(index - 1) / 8];
669    wvalue = (wvalue >> ((index - 1) % 8)) & mask;
670
671    ecp_nistz256_select_w5(r, table[0], _booth_recode_w5(wvalue) >> 1);
672
673    while (index >= 5) {
674        for (i = (index == 255 ? 1 : 0); i < num; i++) {
675            unsigned int off = (index - 1) / 8;
676
677            wvalue = p_str[i][off] | p_str[i][off + 1] << 8;
678            wvalue = (wvalue >> ((index - 1) % 8)) & mask;
679
680            wvalue = _booth_recode_w5(wvalue);
681
682            ecp_nistz256_select_w5(&h, table[i], wvalue >> 1);
683
684            ecp_nistz256_neg(tmp, h.Y);
685            copy_conditional(h.Y, tmp, (wvalue & 1));
686
687            ecp_nistz256_point_add(r, r, &h);
688        }
689
690        index -= window_size;
691
692        ecp_nistz256_point_double(r, r);
693        ecp_nistz256_point_double(r, r);
694        ecp_nistz256_point_double(r, r);
695        ecp_nistz256_point_double(r, r);
696        ecp_nistz256_point_double(r, r);
697    }
698
699    /* Final window */
700    for (i = 0; i < num; i++) {
701        wvalue = p_str[i][0];
702        wvalue = (wvalue << 1) & mask;
703
704        wvalue = _booth_recode_w5(wvalue);
705
706        ecp_nistz256_select_w5(&h, table[i], wvalue >> 1);
707
708        ecp_nistz256_neg(tmp, h.Y);
709        copy_conditional(h.Y, tmp, wvalue & 1);
710
711        ecp_nistz256_point_add(r, r, &h);
712    }
713
714    ret = 1;
715 err:
716    if (table_storage)
717        OPENSSL_free(table_storage);
718    if (p_str)
719        OPENSSL_free(p_str);
720    if (scalars)
721        OPENSSL_free(scalars);
722    return ret;
723}
724
725/* Coordinates of G, for which we have precomputed tables */
726const static BN_ULONG def_xG[P256_LIMBS] = {
727    TOBN(0x79e730d4, 0x18a9143c), TOBN(0x75ba95fc, 0x5fedb601),
728    TOBN(0x79fb732b, 0x77622510), TOBN(0x18905f76, 0xa53755c6)
729};
730
731const static BN_ULONG def_yG[P256_LIMBS] = {
732    TOBN(0xddf25357, 0xce95560a), TOBN(0x8b4ab8e4, 0xba19e45c),
733    TOBN(0xd2e88688, 0xdd21f325), TOBN(0x8571ff18, 0x25885d85)
734};
735
736/*
737 * ecp_nistz256_is_affine_G returns one if |generator| is the standard, P-256
738 * generator.
739 */
740static int ecp_nistz256_is_affine_G(const EC_POINT *generator)
741{
742    return (generator->X.top == P256_LIMBS) &&
743        (generator->Y.top == P256_LIMBS) &&
744        (generator->Z.top == (P256_LIMBS - P256_LIMBS / 8)) &&
745        is_equal(generator->X.d, def_xG) &&
746        is_equal(generator->Y.d, def_yG) && is_one(generator->Z.d);
747}
748
749static int ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx)
750{
751    /*
752     * We precompute a table for a Booth encoded exponent (wNAF) based
753     * computation. Each table holds 64 values for safe access, with an
754     * implicit value of infinity at index zero. We use window of size 7, and
755     * therefore require ceil(256/7) = 37 tables.
756     */
757    BIGNUM *order;
758    EC_POINT *P = NULL, *T = NULL;
759    const EC_POINT *generator;
760    EC_PRE_COMP *pre_comp;
761    BN_CTX *new_ctx = NULL;
762    int i, j, k, ret = 0;
763    size_t w;
764
765    PRECOMP256_ROW *preComputedTable = NULL;
766    unsigned char *precomp_storage = NULL;
767
768    /* if there is an old EC_PRE_COMP object, throw it away */
769    EC_EX_DATA_free_data(&group->extra_data, ecp_nistz256_pre_comp_dup,
770                         ecp_nistz256_pre_comp_free,
771                         ecp_nistz256_pre_comp_clear_free);
772
773    generator = EC_GROUP_get0_generator(group);
774    if (generator == NULL) {
775        ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, EC_R_UNDEFINED_GENERATOR);
776        return 0;
777    }
778
779    if (ecp_nistz256_is_affine_G(generator)) {
780        /*
781         * No need to calculate tables for the standard generator because we
782         * have them statically.
783         */
784        return 1;
785    }
786
787    if ((pre_comp = ecp_nistz256_pre_comp_new(group)) == NULL)
788        return 0;
789
790    if (ctx == NULL) {
791        ctx = new_ctx = BN_CTX_new();
792        if (ctx == NULL)
793            goto err;
794    }
795
796    BN_CTX_start(ctx);
797    order = BN_CTX_get(ctx);
798
799    if (order == NULL)
800        goto err;
801
802    if (!EC_GROUP_get_order(group, order, ctx))
803        goto err;
804
805    if (BN_is_zero(order)) {
806        ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, EC_R_UNKNOWN_ORDER);
807        goto err;
808    }
809
810    w = 7;
811
812    if ((precomp_storage =
813         OPENSSL_malloc(37 * 64 * sizeof(P256_POINT_AFFINE) + 64)) == NULL) {
814        ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, ERR_R_MALLOC_FAILURE);
815        goto err;
816    } else {
817        preComputedTable = (void *)ALIGNPTR(precomp_storage, 64);
818    }
819
820    P = EC_POINT_new(group);
821    T = EC_POINT_new(group);
822    if (P == NULL || T == NULL)
823        goto err;
824
825    /*
826     * The zero entry is implicitly infinity, and we skip it, storing other
827     * values with -1 offset.
828     */
829    if (!EC_POINT_copy(T, generator))
830        goto err;
831
832    for (k = 0; k < 64; k++) {
833        if (!EC_POINT_copy(P, T))
834            goto err;
835        for (j = 0; j < 37; j++) {
836            /*
837             * It would be faster to use EC_POINTs_make_affine and
838             * make multiple points affine at the same time.
839             */
840            if (!EC_POINT_make_affine(group, P, ctx))
841                goto err;
842            if (!ecp_nistz256_bignum_to_field_elem(preComputedTable[j][k].X,
843                                                   &P->X) ||
844                !ecp_nistz256_bignum_to_field_elem(preComputedTable[j][k].Y,
845                                                   &P->Y)) {
846                ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE,
847                      EC_R_COORDINATES_OUT_OF_RANGE);
848                goto err;
849            }
850            for (i = 0; i < 7; i++) {
851                if (!EC_POINT_dbl(group, P, P, ctx))
852                    goto err;
853            }
854        }
855        if (!EC_POINT_add(group, T, T, generator, ctx))
856            goto err;
857    }
858
859    pre_comp->group = group;
860    pre_comp->w = w;
861    pre_comp->precomp = preComputedTable;
862    pre_comp->precomp_storage = precomp_storage;
863
864    precomp_storage = NULL;
865
866    if (!EC_EX_DATA_set_data(&group->extra_data, pre_comp,
867                             ecp_nistz256_pre_comp_dup,
868                             ecp_nistz256_pre_comp_free,
869                             ecp_nistz256_pre_comp_clear_free)) {
870        goto err;
871    }
872
873    pre_comp = NULL;
874
875    ret = 1;
876
877 err:
878    if (ctx != NULL)
879        BN_CTX_end(ctx);
880    BN_CTX_free(new_ctx);
881
882    if (pre_comp)
883        ecp_nistz256_pre_comp_free(pre_comp);
884    if (precomp_storage)
885        OPENSSL_free(precomp_storage);
886    if (P)
887        EC_POINT_free(P);
888    if (T)
889        EC_POINT_free(T);
890    return ret;
891}
892
893/*
894 * Note that by default ECP_NISTZ256_AVX2 is undefined. While it's great
895 * code processing 4 points in parallel, corresponding serial operation
896 * is several times slower, because it uses 29x29=58-bit multiplication
897 * as opposite to 64x64=128-bit in integer-only scalar case. As result
898 * it doesn't provide *significant* performance improvement. Note that
899 * just defining ECP_NISTZ256_AVX2 is not sufficient to make it work,
900 * you'd need to compile even asm/ecp_nistz256-avx.pl module.
901 */
902#if defined(ECP_NISTZ256_AVX2)
903# if !(defined(__x86_64) || defined(__x86_64__)) || \
904       defined(_M_AMD64) || defined(_MX64)) || \
905     !(defined(__GNUC__) || defined(_MSC_VER)) /* this is for ALIGN32 */
906#  undef ECP_NISTZ256_AVX2
907# else
908/* Constant time access, loading four values, from four consecutive tables */
909void ecp_nistz256_avx2_select_w7(P256_POINT_AFFINE * val,
910                                 const P256_POINT_AFFINE * in_t, int index);
911void ecp_nistz256_avx2_multi_select_w7(void *result, const void *in, int index0,
912                                       int index1, int index2, int index3);
913void ecp_nistz256_avx2_transpose_convert(void *RESULTx4, const void *in);
914void ecp_nistz256_avx2_convert_transpose_back(void *result, const void *Ax4);
915void ecp_nistz256_avx2_point_add_affine_x4(void *RESULTx4, const void *Ax4,
916                                           const void *Bx4);
917void ecp_nistz256_avx2_point_add_affines_x4(void *RESULTx4, const void *Ax4,
918                                            const void *Bx4);
919void ecp_nistz256_avx2_to_mont(void *RESULTx4, const void *Ax4);
920void ecp_nistz256_avx2_from_mont(void *RESULTx4, const void *Ax4);
921void ecp_nistz256_avx2_set1(void *RESULTx4);
922int ecp_nistz_avx2_eligible(void);
923
924static void booth_recode_w7(unsigned char *sign,
925                            unsigned char *digit, unsigned char in)
926{
927    unsigned char s, d;
928
929    s = ~((in >> 7) - 1);
930    d = (1 << 8) - in - 1;
931    d = (d & s) | (in & ~s);
932    d = (d >> 1) + (d & 1);
933
934    *sign = s & 1;
935    *digit = d;
936}
937
938/*
939 * ecp_nistz256_avx2_mul_g performs multiplication by G, using only the
940 * precomputed table. It does 4 affine point additions in parallel,
941 * significantly speeding up point multiplication for a fixed value.
942 */
943static void ecp_nistz256_avx2_mul_g(P256_POINT *r,
944                                    unsigned char p_str[33],
945                                    const P256_POINT_AFFINE(*preComputedTable)[64])
946{
947    const unsigned int window_size = 7;
948    const unsigned int mask = (1 << (window_size + 1)) - 1;
949    unsigned int wvalue;
950    /* Using 4 windows at a time */
951    unsigned char sign0, digit0;
952    unsigned char sign1, digit1;
953    unsigned char sign2, digit2;
954    unsigned char sign3, digit3;
955    unsigned int index = 0;
956    BN_ULONG tmp[P256_LIMBS];
957    int i;
958
959    ALIGN32 BN_ULONG aX4[4 * 9 * 3] = { 0 };
960    ALIGN32 BN_ULONG bX4[4 * 9 * 2] = { 0 };
961    ALIGN32 P256_POINT_AFFINE point_arr[P256_LIMBS];
962    ALIGN32 P256_POINT res_point_arr[P256_LIMBS];
963
964    /* Initial four windows */
965    wvalue = *((u16 *) & p_str[0]);
966    wvalue = (wvalue << 1) & mask;
967    index += window_size;
968    booth_recode_w7(&sign0, &digit0, wvalue);
969    wvalue = *((u16 *) & p_str[(index - 1) / 8]);
970    wvalue = (wvalue >> ((index - 1) % 8)) & mask;
971    index += window_size;
972    booth_recode_w7(&sign1, &digit1, wvalue);
973    wvalue = *((u16 *) & p_str[(index - 1) / 8]);
974    wvalue = (wvalue >> ((index - 1) % 8)) & mask;
975    index += window_size;
976    booth_recode_w7(&sign2, &digit2, wvalue);
977    wvalue = *((u16 *) & p_str[(index - 1) / 8]);
978    wvalue = (wvalue >> ((index - 1) % 8)) & mask;
979    index += window_size;
980    booth_recode_w7(&sign3, &digit3, wvalue);
981
982    ecp_nistz256_avx2_multi_select_w7(point_arr, preComputedTable[0],
983                                      digit0, digit1, digit2, digit3);
984
985    ecp_nistz256_neg(tmp, point_arr[0].Y);
986    copy_conditional(point_arr[0].Y, tmp, sign0);
987    ecp_nistz256_neg(tmp, point_arr[1].Y);
988    copy_conditional(point_arr[1].Y, tmp, sign1);
989    ecp_nistz256_neg(tmp, point_arr[2].Y);
990    copy_conditional(point_arr[2].Y, tmp, sign2);
991    ecp_nistz256_neg(tmp, point_arr[3].Y);
992    copy_conditional(point_arr[3].Y, tmp, sign3);
993
994    ecp_nistz256_avx2_transpose_convert(aX4, point_arr);
995    ecp_nistz256_avx2_to_mont(aX4, aX4);
996    ecp_nistz256_avx2_to_mont(&aX4[4 * 9], &aX4[4 * 9]);
997    ecp_nistz256_avx2_set1(&aX4[4 * 9 * 2]);
998
999    wvalue = *((u16 *) & p_str[(index - 1) / 8]);
1000    wvalue = (wvalue >> ((index - 1) % 8)) & mask;
1001    index += window_size;
1002    booth_recode_w7(&sign0, &digit0, wvalue);
1003    wvalue = *((u16 *) & p_str[(index - 1) / 8]);
1004    wvalue = (wvalue >> ((index - 1) % 8)) & mask;
1005    index += window_size;
1006    booth_recode_w7(&sign1, &digit1, wvalue);
1007    wvalue = *((u16 *) & p_str[(index - 1) / 8]);
1008    wvalue = (wvalue >> ((index - 1) % 8)) & mask;
1009    index += window_size;
1010    booth_recode_w7(&sign2, &digit2, wvalue);
1011    wvalue = *((u16 *) & p_str[(index - 1) / 8]);
1012    wvalue = (wvalue >> ((index - 1) % 8)) & mask;
1013    index += window_size;
1014    booth_recode_w7(&sign3, &digit3, wvalue);
1015
1016    ecp_nistz256_avx2_multi_select_w7(point_arr, preComputedTable[4 * 1],
1017                                      digit0, digit1, digit2, digit3);
1018
1019    ecp_nistz256_neg(tmp, point_arr[0].Y);
1020    copy_conditional(point_arr[0].Y, tmp, sign0);
1021    ecp_nistz256_neg(tmp, point_arr[1].Y);
1022    copy_conditional(point_arr[1].Y, tmp, sign1);
1023    ecp_nistz256_neg(tmp, point_arr[2].Y);
1024    copy_conditional(point_arr[2].Y, tmp, sign2);
1025    ecp_nistz256_neg(tmp, point_arr[3].Y);
1026    copy_conditional(point_arr[3].Y, tmp, sign3);
1027
1028    ecp_nistz256_avx2_transpose_convert(bX4, point_arr);
1029    ecp_nistz256_avx2_to_mont(bX4, bX4);
1030    ecp_nistz256_avx2_to_mont(&bX4[4 * 9], &bX4[4 * 9]);
1031    /* Optimized when both inputs are affine */
1032    ecp_nistz256_avx2_point_add_affines_x4(aX4, aX4, bX4);
1033
1034    for (i = 2; i < 9; i++) {
1035        wvalue = *((u16 *) & p_str[(index - 1) / 8]);
1036        wvalue = (wvalue >> ((index - 1) % 8)) & mask;
1037        index += window_size;
1038        booth_recode_w7(&sign0, &digit0, wvalue);
1039        wvalue = *((u16 *) & p_str[(index - 1) / 8]);
1040        wvalue = (wvalue >> ((index - 1) % 8)) & mask;
1041        index += window_size;
1042        booth_recode_w7(&sign1, &digit1, wvalue);
1043        wvalue = *((u16 *) & p_str[(index - 1) / 8]);
1044        wvalue = (wvalue >> ((index - 1) % 8)) & mask;
1045        index += window_size;
1046        booth_recode_w7(&sign2, &digit2, wvalue);
1047        wvalue = *((u16 *) & p_str[(index - 1) / 8]);
1048        wvalue = (wvalue >> ((index - 1) % 8)) & mask;
1049        index += window_size;
1050        booth_recode_w7(&sign3, &digit3, wvalue);
1051
1052        ecp_nistz256_avx2_multi_select_w7(point_arr,
1053                                          preComputedTable[4 * i],
1054                                          digit0, digit1, digit2, digit3);
1055
1056        ecp_nistz256_neg(tmp, point_arr[0].Y);
1057        copy_conditional(point_arr[0].Y, tmp, sign0);
1058        ecp_nistz256_neg(tmp, point_arr[1].Y);
1059        copy_conditional(point_arr[1].Y, tmp, sign1);
1060        ecp_nistz256_neg(tmp, point_arr[2].Y);
1061        copy_conditional(point_arr[2].Y, tmp, sign2);
1062        ecp_nistz256_neg(tmp, point_arr[3].Y);
1063        copy_conditional(point_arr[3].Y, tmp, sign3);
1064
1065        ecp_nistz256_avx2_transpose_convert(bX4, point_arr);
1066        ecp_nistz256_avx2_to_mont(bX4, bX4);
1067        ecp_nistz256_avx2_to_mont(&bX4[4 * 9], &bX4[4 * 9]);
1068
1069        ecp_nistz256_avx2_point_add_affine_x4(aX4, aX4, bX4);
1070    }
1071
1072    ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 0], &aX4[4 * 9 * 0]);
1073    ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 1], &aX4[4 * 9 * 1]);
1074    ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 2], &aX4[4 * 9 * 2]);
1075
1076    ecp_nistz256_avx2_convert_transpose_back(res_point_arr, aX4);
1077    /* Last window is performed serially */
1078    wvalue = *((u16 *) & p_str[(index - 1) / 8]);
1079    wvalue = (wvalue >> ((index - 1) % 8)) & mask;
1080    booth_recode_w7(&sign0, &digit0, wvalue);
1081    ecp_nistz256_avx2_select_w7((P256_POINT_AFFINE *) r,
1082                                preComputedTable[36], digit0);
1083    ecp_nistz256_neg(tmp, r->Y);
1084    copy_conditional(r->Y, tmp, sign0);
1085    memcpy(r->Z, ONE, sizeof(ONE));
1086    /* Sum the four windows */
1087    ecp_nistz256_point_add(r, r, &res_point_arr[0]);
1088    ecp_nistz256_point_add(r, r, &res_point_arr[1]);
1089    ecp_nistz256_point_add(r, r, &res_point_arr[2]);
1090    ecp_nistz256_point_add(r, r, &res_point_arr[3]);
1091}
1092# endif
1093#endif
1094
1095static int ecp_nistz256_set_from_affine(EC_POINT *out, const EC_GROUP *group,
1096                                        const P256_POINT_AFFINE *in,
1097                                        BN_CTX *ctx)
1098{
1099    BIGNUM x, y;
1100    BN_ULONG d_x[P256_LIMBS], d_y[P256_LIMBS];
1101    int ret = 0;
1102
1103    memcpy(d_x, in->X, sizeof(d_x));
1104    x.d = d_x;
1105    x.dmax = x.top = P256_LIMBS;
1106    x.neg = 0;
1107    x.flags = BN_FLG_STATIC_DATA;
1108
1109    memcpy(d_y, in->Y, sizeof(d_y));
1110    y.d = d_y;
1111    y.dmax = y.top = P256_LIMBS;
1112    y.neg = 0;
1113    y.flags = BN_FLG_STATIC_DATA;
1114
1115    ret = EC_POINT_set_affine_coordinates_GFp(group, out, &x, &y, ctx);
1116
1117    return ret;
1118}
1119
1120/* r = scalar*G + sum(scalars[i]*points[i]) */
1121static int ecp_nistz256_points_mul(const EC_GROUP *group,
1122                                   EC_POINT *r,
1123                                   const BIGNUM *scalar,
1124                                   size_t num,
1125                                   const EC_POINT *points[],
1126                                   const BIGNUM *scalars[], BN_CTX *ctx)
1127{
1128    int i = 0, ret = 0, no_precomp_for_generator = 0, p_is_infinity = 0;
1129    size_t j;
1130    unsigned char p_str[33] = { 0 };
1131    const PRECOMP256_ROW *preComputedTable = NULL;
1132    const EC_PRE_COMP *pre_comp = NULL;
1133    const EC_POINT *generator = NULL;
1134    unsigned int index = 0;
1135    BN_CTX *new_ctx = NULL;
1136    const BIGNUM **new_scalars = NULL;
1137    const EC_POINT **new_points = NULL;
1138    const unsigned int window_size = 7;
1139    const unsigned int mask = (1 << (window_size + 1)) - 1;
1140    unsigned int wvalue;
1141    ALIGN32 union {
1142        P256_POINT p;
1143        P256_POINT_AFFINE a;
1144    } t, p;
1145    BIGNUM *tmp_scalar;
1146
1147    if (group->meth != r->meth) {
1148        ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, EC_R_INCOMPATIBLE_OBJECTS);
1149        return 0;
1150    }
1151
1152    if ((scalar == NULL) && (num == 0))
1153        return EC_POINT_set_to_infinity(group, r);
1154
1155    for (j = 0; j < num; j++) {
1156        if (group->meth != points[j]->meth) {
1157            ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, EC_R_INCOMPATIBLE_OBJECTS);
1158            return 0;
1159        }
1160    }
1161
1162    if (ctx == NULL) {
1163        ctx = new_ctx = BN_CTX_new();
1164        if (ctx == NULL)
1165            goto err;
1166    }
1167
1168    BN_CTX_start(ctx);
1169
1170    if (scalar) {
1171        generator = EC_GROUP_get0_generator(group);
1172        if (generator == NULL) {
1173            ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, EC_R_UNDEFINED_GENERATOR);
1174            goto err;
1175        }
1176
1177        /* look if we can use precomputed multiples of generator */
1178        pre_comp =
1179            EC_EX_DATA_get_data(group->extra_data, ecp_nistz256_pre_comp_dup,
1180                                ecp_nistz256_pre_comp_free,
1181                                ecp_nistz256_pre_comp_clear_free);
1182
1183        if (pre_comp) {
1184            /*
1185             * If there is a precomputed table for the generator, check that
1186             * it was generated with the same generator.
1187             */
1188            EC_POINT *pre_comp_generator = EC_POINT_new(group);
1189            if (pre_comp_generator == NULL)
1190                goto err;
1191
1192            if (!ecp_nistz256_set_from_affine
1193                (pre_comp_generator, group, pre_comp->precomp[0], ctx)) {
1194                EC_POINT_free(pre_comp_generator);
1195                goto err;
1196            }
1197
1198            if (0 == EC_POINT_cmp(group, generator, pre_comp_generator, ctx))
1199                preComputedTable = (const PRECOMP256_ROW *)pre_comp->precomp;
1200
1201            EC_POINT_free(pre_comp_generator);
1202        }
1203
1204        if (preComputedTable == NULL && ecp_nistz256_is_affine_G(generator)) {
1205            /*
1206             * If there is no precomputed data, but the generator
1207             * is the default, a hardcoded table of precomputed
1208             * data is used. This is because applications, such as
1209             * Apache, do not use EC_KEY_precompute_mult.
1210             */
1211            preComputedTable = (const PRECOMP256_ROW *)ecp_nistz256_precomputed;
1212        }
1213
1214        if (preComputedTable) {
1215            if ((BN_num_bits(scalar) > 256)
1216                || BN_is_negative(scalar)) {
1217                if ((tmp_scalar = BN_CTX_get(ctx)) == NULL)
1218                    goto err;
1219
1220                if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx)) {
1221                    ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_BN_LIB);
1222                    goto err;
1223                }
1224                scalar = tmp_scalar;
1225            }
1226
1227            for (i = 0; i < scalar->top * BN_BYTES; i += BN_BYTES) {
1228                BN_ULONG d = scalar->d[i / BN_BYTES];
1229
1230                p_str[i + 0] = d & 0xff;
1231                p_str[i + 1] = (d >> 8) & 0xff;
1232                p_str[i + 2] = (d >> 16) & 0xff;
1233                p_str[i + 3] = (d >>= 24) & 0xff;
1234                if (BN_BYTES == 8) {
1235                    d >>= 8;
1236                    p_str[i + 4] = d & 0xff;
1237                    p_str[i + 5] = (d >> 8) & 0xff;
1238                    p_str[i + 6] = (d >> 16) & 0xff;
1239                    p_str[i + 7] = (d >> 24) & 0xff;
1240                }
1241            }
1242
1243            for (; i < 33; i++)
1244                p_str[i] = 0;
1245
1246#if defined(ECP_NISTZ256_AVX2)
1247            if (ecp_nistz_avx2_eligible()) {
1248                ecp_nistz256_avx2_mul_g(&p.p, p_str, preComputedTable);
1249            } else
1250#endif
1251            {
1252                /* First window */
1253                wvalue = (p_str[0] << 1) & mask;
1254                index += window_size;
1255
1256                wvalue = _booth_recode_w7(wvalue);
1257
1258                ecp_nistz256_select_w7(&p.a, preComputedTable[0], wvalue >> 1);
1259
1260                ecp_nistz256_neg(p.p.Z, p.p.Y);
1261                copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
1262
1263                memcpy(p.p.Z, ONE, sizeof(ONE));
1264
1265                for (i = 1; i < 37; i++) {
1266                    unsigned int off = (index - 1) / 8;
1267                    wvalue = p_str[off] | p_str[off + 1] << 8;
1268                    wvalue = (wvalue >> ((index - 1) % 8)) & mask;
1269                    index += window_size;
1270
1271                    wvalue = _booth_recode_w7(wvalue);
1272
1273                    ecp_nistz256_select_w7(&t.a,
1274                                           preComputedTable[i], wvalue >> 1);
1275
1276                    ecp_nistz256_neg(t.p.Z, t.a.Y);
1277                    copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
1278
1279                    ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
1280                }
1281            }
1282        } else {
1283            p_is_infinity = 1;
1284            no_precomp_for_generator = 1;
1285        }
1286    } else
1287        p_is_infinity = 1;
1288
1289    if (no_precomp_for_generator) {
1290        /*
1291         * Without a precomputed table for the generator, it has to be
1292         * handled like a normal point.
1293         */
1294        new_scalars = OPENSSL_malloc((num + 1) * sizeof(BIGNUM *));
1295        if (!new_scalars) {
1296            ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1297            goto err;
1298        }
1299
1300        new_points = OPENSSL_malloc((num + 1) * sizeof(EC_POINT *));
1301        if (!new_points) {
1302            ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1303            goto err;
1304        }
1305
1306        memcpy(new_scalars, scalars, num * sizeof(BIGNUM *));
1307        new_scalars[num] = scalar;
1308        memcpy(new_points, points, num * sizeof(EC_POINT *));
1309        new_points[num] = generator;
1310
1311        scalars = new_scalars;
1312        points = new_points;
1313        num++;
1314    }
1315
1316    if (num) {
1317        P256_POINT *out = &t.p;
1318        if (p_is_infinity)
1319            out = &p.p;
1320
1321        if (!ecp_nistz256_windowed_mul(group, out, scalars, points, num, ctx))
1322            goto err;
1323
1324        if (!p_is_infinity)
1325            ecp_nistz256_point_add(&p.p, &p.p, out);
1326    }
1327
1328    /* Not constant-time, but we're only operating on the public output. */
1329    if (!ecp_nistz256_set_words(&r->X, p.p.X) ||
1330        !ecp_nistz256_set_words(&r->Y, p.p.Y) ||
1331        !ecp_nistz256_set_words(&r->Z, p.p.Z)) {
1332        goto err;
1333    }
1334    r->Z_is_one = is_one(p.p.Z) & 1;
1335
1336    ret = 1;
1337
1338err:
1339    if (ctx)
1340        BN_CTX_end(ctx);
1341    BN_CTX_free(new_ctx);
1342    if (new_points)
1343        OPENSSL_free(new_points);
1344    if (new_scalars)
1345        OPENSSL_free(new_scalars);
1346    return ret;
1347}
1348
1349static int ecp_nistz256_get_affine(const EC_GROUP *group,
1350                                   const EC_POINT *point,
1351                                   BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
1352{
1353    BN_ULONG z_inv2[P256_LIMBS];
1354    BN_ULONG z_inv3[P256_LIMBS];
1355    BN_ULONG x_aff[P256_LIMBS];
1356    BN_ULONG y_aff[P256_LIMBS];
1357    BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS];
1358    BN_ULONG x_ret[P256_LIMBS], y_ret[P256_LIMBS];
1359
1360    if (EC_POINT_is_at_infinity(group, point)) {
1361        ECerr(EC_F_ECP_NISTZ256_GET_AFFINE, EC_R_POINT_AT_INFINITY);
1362        return 0;
1363    }
1364
1365    if (!ecp_nistz256_bignum_to_field_elem(point_x, &point->X) ||
1366        !ecp_nistz256_bignum_to_field_elem(point_y, &point->Y) ||
1367        !ecp_nistz256_bignum_to_field_elem(point_z, &point->Z)) {
1368        ECerr(EC_F_ECP_NISTZ256_GET_AFFINE, EC_R_COORDINATES_OUT_OF_RANGE);
1369        return 0;
1370    }
1371
1372    ecp_nistz256_mod_inverse(z_inv3, point_z);
1373    ecp_nistz256_sqr_mont(z_inv2, z_inv3);
1374    ecp_nistz256_mul_mont(x_aff, z_inv2, point_x);
1375
1376    if (x != NULL) {
1377        ecp_nistz256_from_mont(x_ret, x_aff);
1378        if (!ecp_nistz256_set_words(x, x_ret))
1379            return 0;
1380    }
1381
1382    if (y != NULL) {
1383        ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
1384        ecp_nistz256_mul_mont(y_aff, z_inv3, point_y);
1385        ecp_nistz256_from_mont(y_ret, y_aff);
1386        if (!ecp_nistz256_set_words(y, y_ret))
1387            return 0;
1388    }
1389
1390    return 1;
1391}
1392
1393static EC_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group)
1394{
1395    EC_PRE_COMP *ret = NULL;
1396
1397    if (!group)
1398        return NULL;
1399
1400    ret = (EC_PRE_COMP *)OPENSSL_malloc(sizeof(EC_PRE_COMP));
1401
1402    if (!ret) {
1403        ECerr(EC_F_ECP_NISTZ256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1404        return ret;
1405    }
1406
1407    ret->group = group;
1408    ret->w = 6;                 /* default */
1409    ret->precomp = NULL;
1410    ret->precomp_storage = NULL;
1411    ret->references = 1;
1412    return ret;
1413}
1414
1415static void *ecp_nistz256_pre_comp_dup(void *src_)
1416{
1417    EC_PRE_COMP *src = src_;
1418
1419    /* no need to actually copy, these objects never change! */
1420    CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
1421
1422    return src_;
1423}
1424
1425static void ecp_nistz256_pre_comp_free(void *pre_)
1426{
1427    int i;
1428    EC_PRE_COMP *pre = pre_;
1429
1430    if (!pre)
1431        return;
1432
1433    i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
1434    if (i > 0)
1435        return;
1436
1437    if (pre->precomp_storage)
1438        OPENSSL_free(pre->precomp_storage);
1439
1440    OPENSSL_free(pre);
1441}
1442
1443static void ecp_nistz256_pre_comp_clear_free(void *pre_)
1444{
1445    int i;
1446    EC_PRE_COMP *pre = pre_;
1447
1448    if (!pre)
1449        return;
1450
1451    i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
1452    if (i > 0)
1453        return;
1454
1455    if (pre->precomp_storage) {
1456        OPENSSL_cleanse(pre->precomp,
1457                        32 * sizeof(unsigned char) * (1 << pre->w) * 2 * 37);
1458        OPENSSL_free(pre->precomp_storage);
1459    }
1460    OPENSSL_cleanse(pre, sizeof *pre);
1461    OPENSSL_free(pre);
1462}
1463
1464static int ecp_nistz256_window_have_precompute_mult(const EC_GROUP *group)
1465{
1466    /* There is a hard-coded table for the default generator. */
1467    const EC_POINT *generator = EC_GROUP_get0_generator(group);
1468    if (generator != NULL && ecp_nistz256_is_affine_G(generator)) {
1469        /* There is a hard-coded table for the default generator. */
1470        return 1;
1471    }
1472
1473    return EC_EX_DATA_get_data(group->extra_data, ecp_nistz256_pre_comp_dup,
1474                               ecp_nistz256_pre_comp_free,
1475                               ecp_nistz256_pre_comp_clear_free) != NULL;
1476}
1477
1478const EC_METHOD *EC_GFp_nistz256_method(void)
1479{
1480    static const EC_METHOD ret = {
1481        EC_FLAGS_DEFAULT_OCT,
1482        NID_X9_62_prime_field,
1483        ec_GFp_mont_group_init,
1484        ec_GFp_mont_group_finish,
1485        ec_GFp_mont_group_clear_finish,
1486        ec_GFp_mont_group_copy,
1487        ec_GFp_mont_group_set_curve,
1488        ec_GFp_simple_group_get_curve,
1489        ec_GFp_simple_group_get_degree,
1490        ec_GFp_simple_group_check_discriminant,
1491        ec_GFp_simple_point_init,
1492        ec_GFp_simple_point_finish,
1493        ec_GFp_simple_point_clear_finish,
1494        ec_GFp_simple_point_copy,
1495        ec_GFp_simple_point_set_to_infinity,
1496        ec_GFp_simple_set_Jprojective_coordinates_GFp,
1497        ec_GFp_simple_get_Jprojective_coordinates_GFp,
1498        ec_GFp_simple_point_set_affine_coordinates,
1499        ecp_nistz256_get_affine,
1500        0, 0, 0,
1501        ec_GFp_simple_add,
1502        ec_GFp_simple_dbl,
1503        ec_GFp_simple_invert,
1504        ec_GFp_simple_is_at_infinity,
1505        ec_GFp_simple_is_on_curve,
1506        ec_GFp_simple_cmp,
1507        ec_GFp_simple_make_affine,
1508        ec_GFp_simple_points_make_affine,
1509        ecp_nistz256_points_mul,                    /* mul */
1510        ecp_nistz256_mult_precompute,               /* precompute_mult */
1511        ecp_nistz256_window_have_precompute_mult,   /* have_precompute_mult */
1512        ec_GFp_mont_field_mul,
1513        ec_GFp_mont_field_sqr,
1514        0,                                          /* field_div */
1515        ec_GFp_mont_field_encode,
1516        ec_GFp_mont_field_decode,
1517        ec_GFp_mont_field_set_to_one
1518    };
1519
1520    return &ret;
1521}
1522