1/* Object file "section" support for the BFD library.
2   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4   Free Software Foundation, Inc.
5   Written by Cygnus Support.
6
7   This file is part of BFD, the Binary File Descriptor library.
8
9   This program is free software; you can redistribute it and/or modify
10   it under the terms of the GNU General Public License as published by
11   the Free Software Foundation; either version 3 of the License, or
12   (at your option) any later version.
13
14   This program is distributed in the hope that it will be useful,
15   but WITHOUT ANY WARRANTY; without even the implied warranty of
16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17   GNU General Public License for more details.
18
19   You should have received a copy of the GNU General Public License
20   along with this program; if not, write to the Free Software
21   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22   MA 02110-1301, USA.  */
23
24/*
25SECTION
26	Sections
27
28	The raw data contained within a BFD is maintained through the
29	section abstraction.  A single BFD may have any number of
30	sections.  It keeps hold of them by pointing to the first;
31	each one points to the next in the list.
32
33	Sections are supported in BFD in <<section.c>>.
34
35@menu
36@* Section Input::
37@* Section Output::
38@* typedef asection::
39@* section prototypes::
40@end menu
41
42INODE
43Section Input, Section Output, Sections, Sections
44SUBSECTION
45	Section input
46
47	When a BFD is opened for reading, the section structures are
48	created and attached to the BFD.
49
50	Each section has a name which describes the section in the
51	outside world---for example, <<a.out>> would contain at least
52	three sections, called <<.text>>, <<.data>> and <<.bss>>.
53
54	Names need not be unique; for example a COFF file may have several
55	sections named <<.data>>.
56
57	Sometimes a BFD will contain more than the ``natural'' number of
58	sections. A back end may attach other sections containing
59	constructor data, or an application may add a section (using
60	<<bfd_make_section>>) to the sections attached to an already open
61	BFD. For example, the linker creates an extra section
62	<<COMMON>> for each input file's BFD to hold information about
63	common storage.
64
65	The raw data is not necessarily read in when
66	the section descriptor is created. Some targets may leave the
67	data in place until a <<bfd_get_section_contents>> call is
68	made. Other back ends may read in all the data at once.  For
69	example, an S-record file has to be read once to determine the
70	size of the data. An IEEE-695 file doesn't contain raw data in
71	sections, but data and relocation expressions intermixed, so
72	the data area has to be parsed to get out the data and
73	relocations.
74
75INODE
76Section Output, typedef asection, Section Input, Sections
77
78SUBSECTION
79	Section output
80
81	To write a new object style BFD, the various sections to be
82	written have to be created. They are attached to the BFD in
83	the same way as input sections; data is written to the
84	sections using <<bfd_set_section_contents>>.
85
86	Any program that creates or combines sections (e.g., the assembler
87	and linker) must use the <<asection>> fields <<output_section>> and
88	<<output_offset>> to indicate the file sections to which each
89	section must be written.  (If the section is being created from
90	scratch, <<output_section>> should probably point to the section
91	itself and <<output_offset>> should probably be zero.)
92
93	The data to be written comes from input sections attached
94	(via <<output_section>> pointers) to
95	the output sections.  The output section structure can be
96	considered a filter for the input section: the output section
97	determines the vma of the output data and the name, but the
98	input section determines the offset into the output section of
99	the data to be written.
100
101	E.g., to create a section "O", starting at 0x100, 0x123 long,
102	containing two subsections, "A" at offset 0x0 (i.e., at vma
103	0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
104	structures would look like:
105
106|   section name          "A"
107|     output_offset   0x00
108|     size            0x20
109|     output_section ----------->  section name    "O"
110|                             |    vma             0x100
111|   section name          "B" |    size            0x123
112|     output_offset   0x20    |
113|     size            0x103   |
114|     output_section  --------|
115
116SUBSECTION
117	Link orders
118
119	The data within a section is stored in a @dfn{link_order}.
120	These are much like the fixups in <<gas>>.  The link_order
121	abstraction allows a section to grow and shrink within itself.
122
123	A link_order knows how big it is, and which is the next
124	link_order and where the raw data for it is; it also points to
125	a list of relocations which apply to it.
126
127	The link_order is used by the linker to perform relaxing on
128	final code.  The compiler creates code which is as big as
129	necessary to make it work without relaxing, and the user can
130	select whether to relax.  Sometimes relaxing takes a lot of
131	time.  The linker runs around the relocations to see if any
132	are attached to data which can be shrunk, if so it does it on
133	a link_order by link_order basis.
134
135*/
136
137#include "sysdep.h"
138#include "bfd.h"
139#include "libbfd.h"
140#include "bfdlink.h"
141
142/*
143DOCDD
144INODE
145typedef asection, section prototypes, Section Output, Sections
146SUBSECTION
147	typedef asection
148
149	Here is the section structure:
150
151CODE_FRAGMENT
152.
153.typedef struct bfd_section
154.{
155.  {* The name of the section; the name isn't a copy, the pointer is
156.     the same as that passed to bfd_make_section.  *}
157.  const char *name;
158.
159.  {* A unique sequence number.  *}
160.  int id;
161.
162.  {* Which section in the bfd; 0..n-1 as sections are created in a bfd.  *}
163.  int index;
164.
165.  {* The next section in the list belonging to the BFD, or NULL.  *}
166.  struct bfd_section *next;
167.
168.  {* The previous section in the list belonging to the BFD, or NULL.  *}
169.  struct bfd_section *prev;
170.
171.  {* The field flags contains attributes of the section. Some
172.     flags are read in from the object file, and some are
173.     synthesized from other information.  *}
174.  flagword flags;
175.
176.#define SEC_NO_FLAGS   0x000
177.
178.  {* Tells the OS to allocate space for this section when loading.
179.     This is clear for a section containing debug information only.  *}
180.#define SEC_ALLOC      0x001
181.
182.  {* Tells the OS to load the section from the file when loading.
183.     This is clear for a .bss section.  *}
184.#define SEC_LOAD       0x002
185.
186.  {* The section contains data still to be relocated, so there is
187.     some relocation information too.  *}
188.#define SEC_RELOC      0x004
189.
190.  {* A signal to the OS that the section contains read only data.  *}
191.#define SEC_READONLY   0x008
192.
193.  {* The section contains code only.  *}
194.#define SEC_CODE       0x010
195.
196.  {* The section contains data only.  *}
197.#define SEC_DATA       0x020
198.
199.  {* The section will reside in ROM.  *}
200.#define SEC_ROM        0x040
201.
202.  {* The section contains constructor information. This section
203.     type is used by the linker to create lists of constructors and
204.     destructors used by <<g++>>. When a back end sees a symbol
205.     which should be used in a constructor list, it creates a new
206.     section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
207.     the symbol to it, and builds a relocation. To build the lists
208.     of constructors, all the linker has to do is catenate all the
209.     sections called <<__CTOR_LIST__>> and relocate the data
210.     contained within - exactly the operations it would peform on
211.     standard data.  *}
212.#define SEC_CONSTRUCTOR 0x080
213.
214.  {* The section has contents - a data section could be
215.     <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
216.     <<SEC_HAS_CONTENTS>>  *}
217.#define SEC_HAS_CONTENTS 0x100
218.
219.  {* An instruction to the linker to not output the section
220.     even if it has information which would normally be written.  *}
221.#define SEC_NEVER_LOAD 0x200
222.
223.  {* The section contains thread local data.  *}
224.#define SEC_THREAD_LOCAL 0x400
225.
226.  {* The section has GOT references.  This flag is only for the
227.     linker, and is currently only used by the elf32-hppa back end.
228.     It will be set if global offset table references were detected
229.     in this section, which indicate to the linker that the section
230.     contains PIC code, and must be handled specially when doing a
231.     static link.  *}
232.#define SEC_HAS_GOT_REF 0x800
233.
234.  {* The section contains common symbols (symbols may be defined
235.     multiple times, the value of a symbol is the amount of
236.     space it requires, and the largest symbol value is the one
237.     used).  Most targets have exactly one of these (which we
238.     translate to bfd_com_section_ptr), but ECOFF has two.  *}
239.#define SEC_IS_COMMON 0x1000
240.
241.  {* The section contains only debugging information.  For
242.     example, this is set for ELF .debug and .stab sections.
243.     strip tests this flag to see if a section can be
244.     discarded.  *}
245.#define SEC_DEBUGGING 0x2000
246.
247.  {* The contents of this section are held in memory pointed to
248.     by the contents field.  This is checked by bfd_get_section_contents,
249.     and the data is retrieved from memory if appropriate.  *}
250.#define SEC_IN_MEMORY 0x4000
251.
252.  {* The contents of this section are to be excluded by the
253.     linker for executable and shared objects unless those
254.     objects are to be further relocated.  *}
255.#define SEC_EXCLUDE 0x8000
256.
257.  {* The contents of this section are to be sorted based on the sum of
258.     the symbol and addend values specified by the associated relocation
259.     entries.  Entries without associated relocation entries will be
260.     appended to the end of the section in an unspecified order.  *}
261.#define SEC_SORT_ENTRIES 0x10000
262.
263.  {* When linking, duplicate sections of the same name should be
264.     discarded, rather than being combined into a single section as
265.     is usually done.  This is similar to how common symbols are
266.     handled.  See SEC_LINK_DUPLICATES below.  *}
267.#define SEC_LINK_ONCE 0x20000
268.
269.  {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
270.     should handle duplicate sections.  *}
271.#define SEC_LINK_DUPLICATES 0x40000
272.
273.  {* This value for SEC_LINK_DUPLICATES means that duplicate
274.     sections with the same name should simply be discarded.  *}
275.#define SEC_LINK_DUPLICATES_DISCARD 0x0
276.
277.  {* This value for SEC_LINK_DUPLICATES means that the linker
278.     should warn if there are any duplicate sections, although
279.     it should still only link one copy.  *}
280.#define SEC_LINK_DUPLICATES_ONE_ONLY 0x80000
281.
282.  {* This value for SEC_LINK_DUPLICATES means that the linker
283.     should warn if any duplicate sections are a different size.  *}
284.#define SEC_LINK_DUPLICATES_SAME_SIZE 0x100000
285.
286.  {* This value for SEC_LINK_DUPLICATES means that the linker
287.     should warn if any duplicate sections contain different
288.     contents.  *}
289.#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
290.  (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
291.
292.  {* This section was created by the linker as part of dynamic
293.     relocation or other arcane processing.  It is skipped when
294.     going through the first-pass output, trusting that someone
295.     else up the line will take care of it later.  *}
296.#define SEC_LINKER_CREATED 0x200000
297.
298.  {* This section should not be subject to garbage collection.
299.     Also set to inform the linker that this section should not be
300.     listed in the link map as discarded.  *}
301.#define SEC_KEEP 0x400000
302.
303.  {* This section contains "short" data, and should be placed
304.     "near" the GP.  *}
305.#define SEC_SMALL_DATA 0x800000
306.
307.  {* Attempt to merge identical entities in the section.
308.     Entity size is given in the entsize field.  *}
309.#define SEC_MERGE 0x1000000
310.
311.  {* If given with SEC_MERGE, entities to merge are zero terminated
312.     strings where entsize specifies character size instead of fixed
313.     size entries.  *}
314.#define SEC_STRINGS 0x2000000
315.
316.  {* This section contains data about section groups.  *}
317.#define SEC_GROUP 0x4000000
318.
319.  {* The section is a COFF shared library section.  This flag is
320.     only for the linker.  If this type of section appears in
321.     the input file, the linker must copy it to the output file
322.     without changing the vma or size.  FIXME: Although this
323.     was originally intended to be general, it really is COFF
324.     specific (and the flag was renamed to indicate this).  It
325.     might be cleaner to have some more general mechanism to
326.     allow the back end to control what the linker does with
327.     sections.  *}
328.#define SEC_COFF_SHARED_LIBRARY 0x10000000
329.
330.  {* This section contains data which may be shared with other
331.     executables or shared objects. This is for COFF only.  *}
332.#define SEC_COFF_SHARED 0x20000000
333.
334.  {* When a section with this flag is being linked, then if the size of
335.     the input section is less than a page, it should not cross a page
336.     boundary.  If the size of the input section is one page or more,
337.     it should be aligned on a page boundary.  This is for TI
338.     TMS320C54X only.  *}
339.#define SEC_TIC54X_BLOCK 0x40000000
340.
341.  {* Conditionally link this section; do not link if there are no
342.     references found to any symbol in the section.  This is for TI
343.     TMS320C54X only.  *}
344.#define SEC_TIC54X_CLINK 0x80000000
345.
346.  {*  End of section flags.  *}
347.
348.  {* Some internal packed boolean fields.  *}
349.
350.  {* See the vma field.  *}
351.  unsigned int user_set_vma : 1;
352.
353.  {* A mark flag used by some of the linker backends.  *}
354.  unsigned int linker_mark : 1;
355.
356.  {* Another mark flag used by some of the linker backends.  Set for
357.     output sections that have an input section.  *}
358.  unsigned int linker_has_input : 1;
359.
360.  {* Mark flags used by some linker backends for garbage collection.  *}
361.  unsigned int gc_mark : 1;
362.  unsigned int gc_mark_from_eh : 1;
363.
364.  {* The following flags are used by the ELF linker. *}
365.
366.  {* Mark sections which have been allocated to segments.  *}
367.  unsigned int segment_mark : 1;
368.
369.  {* Type of sec_info information.  *}
370.  unsigned int sec_info_type:3;
371.#define ELF_INFO_TYPE_NONE      0
372.#define ELF_INFO_TYPE_STABS     1
373.#define ELF_INFO_TYPE_MERGE     2
374.#define ELF_INFO_TYPE_EH_FRAME  3
375.#define ELF_INFO_TYPE_JUST_SYMS 4
376.
377.  {* Nonzero if this section uses RELA relocations, rather than REL.  *}
378.  unsigned int use_rela_p:1;
379.
380.  {* Bits used by various backends.  The generic code doesn't touch
381.     these fields.  *}
382.
383.  {* Nonzero if this section has TLS related relocations.  *}
384.  unsigned int has_tls_reloc:1;
385.
386.  {* Nonzero if this section has a gp reloc.  *}
387.  unsigned int has_gp_reloc:1;
388.
389.  {* Nonzero if this section needs the relax finalize pass.  *}
390.  unsigned int need_finalize_relax:1;
391.
392.  {* Whether relocations have been processed.  *}
393.  unsigned int reloc_done : 1;
394.
395.  {* End of internal packed boolean fields.  *}
396.
397.  {*  The virtual memory address of the section - where it will be
398.      at run time.  The symbols are relocated against this.  The
399.      user_set_vma flag is maintained by bfd; if it's not set, the
400.      backend can assign addresses (for example, in <<a.out>>, where
401.      the default address for <<.data>> is dependent on the specific
402.      target and various flags).  *}
403.  bfd_vma vma;
404.
405.  {*  The load address of the section - where it would be in a
406.      rom image; really only used for writing section header
407.      information.  *}
408.  bfd_vma lma;
409.
410.  {* The size of the section in octets, as it will be output.
411.     Contains a value even if the section has no contents (e.g., the
412.     size of <<.bss>>).  *}
413.  bfd_size_type size;
414.
415.  {* For input sections, the original size on disk of the section, in
416.     octets.  This field is used by the linker relaxation code.  It is
417.     currently only set for sections where the linker relaxation scheme
418.     doesn't cache altered section and reloc contents (stabs, eh_frame,
419.     SEC_MERGE, some coff relaxing targets), and thus the original size
420.     needs to be kept to read the section multiple times.
421.     For output sections, rawsize holds the section size calculated on
422.     a previous linker relaxation pass.  *}
423.  bfd_size_type rawsize;
424.
425.  {* If this section is going to be output, then this value is the
426.     offset in *bytes* into the output section of the first byte in the
427.     input section (byte ==> smallest addressable unit on the
428.     target).  In most cases, if this was going to start at the
429.     100th octet (8-bit quantity) in the output section, this value
430.     would be 100.  However, if the target byte size is 16 bits
431.     (bfd_octets_per_byte is "2"), this value would be 50.  *}
432.  bfd_vma output_offset;
433.
434.  {* The output section through which to map on output.  *}
435.  struct bfd_section *output_section;
436.
437.  {* The alignment requirement of the section, as an exponent of 2 -
438.     e.g., 3 aligns to 2^3 (or 8).  *}
439.  unsigned int alignment_power;
440.
441.  {* If an input section, a pointer to a vector of relocation
442.     records for the data in this section.  *}
443.  struct reloc_cache_entry *relocation;
444.
445.  {* If an output section, a pointer to a vector of pointers to
446.     relocation records for the data in this section.  *}
447.  struct reloc_cache_entry **orelocation;
448.
449.  {* The number of relocation records in one of the above.  *}
450.  unsigned reloc_count;
451.
452.  {* Information below is back end specific - and not always used
453.     or updated.  *}
454.
455.  {* File position of section data.  *}
456.  file_ptr filepos;
457.
458.  {* File position of relocation info.  *}
459.  file_ptr rel_filepos;
460.
461.  {* File position of line data.  *}
462.  file_ptr line_filepos;
463.
464.  {* Pointer to data for applications.  *}
465.  void *userdata;
466.
467.  {* If the SEC_IN_MEMORY flag is set, this points to the actual
468.     contents.  *}
469.  unsigned char *contents;
470.
471.  {* Attached line number information.  *}
472.  alent *lineno;
473.
474.  {* Number of line number records.  *}
475.  unsigned int lineno_count;
476.
477.  {* Entity size for merging purposes.  *}
478.  unsigned int entsize;
479.
480.  {* Points to the kept section if this section is a link-once section,
481.     and is discarded.  *}
482.  struct bfd_section *kept_section;
483.
484.  {* When a section is being output, this value changes as more
485.     linenumbers are written out.  *}
486.  file_ptr moving_line_filepos;
487.
488.  {* What the section number is in the target world.  *}
489.  int target_index;
490.
491.  void *used_by_bfd;
492.
493.  {* If this is a constructor section then here is a list of the
494.     relocations created to relocate items within it.  *}
495.  struct relent_chain *constructor_chain;
496.
497.  {* The BFD which owns the section.  *}
498.  bfd *owner;
499.
500.  {* A symbol which points at this section only.  *}
501.  struct bfd_symbol *symbol;
502.  struct bfd_symbol **symbol_ptr_ptr;
503.
504.  {* Early in the link process, map_head and map_tail are used to build
505.     a list of input sections attached to an output section.  Later,
506.     output sections use these fields for a list of bfd_link_order
507.     structs.  *}
508.  union {
509.    struct bfd_link_order *link_order;
510.    struct bfd_section *s;
511.  } map_head, map_tail;
512.} asection;
513.
514.{* These sections are global, and are managed by BFD.  The application
515.   and target back end are not permitted to change the values in
516.   these sections.  New code should use the section_ptr macros rather
517.   than referring directly to the const sections.  The const sections
518.   may eventually vanish.  *}
519.#define BFD_ABS_SECTION_NAME "*ABS*"
520.#define BFD_UND_SECTION_NAME "*UND*"
521.#define BFD_COM_SECTION_NAME "*COM*"
522.#define BFD_IND_SECTION_NAME "*IND*"
523.
524.{* The absolute section.  *}
525.extern asection bfd_abs_section;
526.#define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
527.#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
528.{* Pointer to the undefined section.  *}
529.extern asection bfd_und_section;
530.#define bfd_und_section_ptr ((asection *) &bfd_und_section)
531.#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
532.{* Pointer to the common section.  *}
533.extern asection bfd_com_section;
534.#define bfd_com_section_ptr ((asection *) &bfd_com_section)
535.{* Pointer to the indirect section.  *}
536.extern asection bfd_ind_section;
537.#define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
538.#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
539.
540.#define bfd_is_const_section(SEC)		\
541. (   ((SEC) == bfd_abs_section_ptr)		\
542.  || ((SEC) == bfd_und_section_ptr)		\
543.  || ((SEC) == bfd_com_section_ptr)		\
544.  || ((SEC) == bfd_ind_section_ptr))
545.
546.{* Macros to handle insertion and deletion of a bfd's sections.  These
547.   only handle the list pointers, ie. do not adjust section_count,
548.   target_index etc.  *}
549.#define bfd_section_list_remove(ABFD, S) \
550.  do							\
551.    {							\
552.      asection *_s = S;				\
553.      asection *_next = _s->next;			\
554.      asection *_prev = _s->prev;			\
555.      if (_prev)					\
556.        _prev->next = _next;				\
557.      else						\
558.        (ABFD)->sections = _next;			\
559.      if (_next)					\
560.        _next->prev = _prev;				\
561.      else						\
562.        (ABFD)->section_last = _prev;			\
563.    }							\
564.  while (0)
565.#define bfd_section_list_append(ABFD, S) \
566.  do							\
567.    {							\
568.      asection *_s = S;				\
569.      bfd *_abfd = ABFD;				\
570.      _s->next = NULL;					\
571.      if (_abfd->section_last)				\
572.        {						\
573.          _s->prev = _abfd->section_last;		\
574.          _abfd->section_last->next = _s;		\
575.        }						\
576.      else						\
577.        {						\
578.          _s->prev = NULL;				\
579.          _abfd->sections = _s;			\
580.        }						\
581.      _abfd->section_last = _s;			\
582.    }							\
583.  while (0)
584.#define bfd_section_list_prepend(ABFD, S) \
585.  do							\
586.    {							\
587.      asection *_s = S;				\
588.      bfd *_abfd = ABFD;				\
589.      _s->prev = NULL;					\
590.      if (_abfd->sections)				\
591.        {						\
592.          _s->next = _abfd->sections;			\
593.          _abfd->sections->prev = _s;			\
594.        }						\
595.      else						\
596.        {						\
597.          _s->next = NULL;				\
598.          _abfd->section_last = _s;			\
599.        }						\
600.      _abfd->sections = _s;				\
601.    }							\
602.  while (0)
603.#define bfd_section_list_insert_after(ABFD, A, S) \
604.  do							\
605.    {							\
606.      asection *_a = A;				\
607.      asection *_s = S;				\
608.      asection *_next = _a->next;			\
609.      _s->next = _next;				\
610.      _s->prev = _a;					\
611.      _a->next = _s;					\
612.      if (_next)					\
613.        _next->prev = _s;				\
614.      else						\
615.        (ABFD)->section_last = _s;			\
616.    }							\
617.  while (0)
618.#define bfd_section_list_insert_before(ABFD, B, S) \
619.  do							\
620.    {							\
621.      asection *_b = B;				\
622.      asection *_s = S;				\
623.      asection *_prev = _b->prev;			\
624.      _s->prev = _prev;				\
625.      _s->next = _b;					\
626.      _b->prev = _s;					\
627.      if (_prev)					\
628.        _prev->next = _s;				\
629.      else						\
630.        (ABFD)->sections = _s;				\
631.    }							\
632.  while (0)
633.#define bfd_section_removed_from_list(ABFD, S) \
634.  ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
635.
636.#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX)			\
637.  {* name, id,  index, next, prev, flags, user_set_vma,            *}	\
638.  { NAME,  IDX, 0,     NULL, NULL, FLAGS, 0,				\
639.									\
640.  {* linker_mark, linker_has_input, gc_mark, gc_mark_from_eh,      *}	\
641.     0,           0,                1,       0,			\
642.									\
643.  {* segment_mark, sec_info_type, use_rela_p, has_tls_reloc,       *}	\
644.     0,            0,             0,          0,			\
645.									\
646.  {* has_gp_reloc, need_finalize_relax, reloc_done,                *}	\
647.     0,            0,                   0,				\
648.									\
649.  {* vma, lma, size, rawsize                                       *}	\
650.     0,   0,   0,    0,						\
651.									\
652.  {* output_offset, output_section,              alignment_power,  *}	\
653.     0,             (struct bfd_section *) &SEC, 0,			\
654.									\
655.  {* relocation, orelocation, reloc_count, filepos, rel_filepos,   *}	\
656.     NULL,       NULL,        0,           0,       0,			\
657.									\
658.  {* line_filepos, userdata, contents, lineno, lineno_count,       *}	\
659.     0,            NULL,     NULL,     NULL,   0,			\
660.									\
661.  {* entsize, kept_section, moving_line_filepos,		     *}	\
662.     0,       NULL,	      0,					\
663.									\
664.  {* target_index, used_by_bfd, constructor_chain, owner,          *}	\
665.     0,            NULL,        NULL,              NULL,		\
666.									\
667.  {* symbol,                    symbol_ptr_ptr,                    *}	\
668.     (struct bfd_symbol *) SYM, &SEC.symbol,				\
669.									\
670.  {* map_head, map_tail                                            *}	\
671.     { NULL }, { NULL }						\
672.    }
673.
674*/
675
676/* We use a macro to initialize the static asymbol structures because
677   traditional C does not permit us to initialize a union member while
678   gcc warns if we don't initialize it.  */
679 /* the_bfd, name, value, attr, section [, udata] */
680#ifdef __STDC__
681#define GLOBAL_SYM_INIT(NAME, SECTION) \
682  { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION, { 0 }}
683#else
684#define GLOBAL_SYM_INIT(NAME, SECTION) \
685  { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION }
686#endif
687
688/* These symbols are global, not specific to any BFD.  Therefore, anything
689   that tries to change them is broken, and should be repaired.  */
690
691static const asymbol global_syms[] =
692{
693  GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, &bfd_com_section),
694  GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, &bfd_und_section),
695  GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, &bfd_abs_section),
696  GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, &bfd_ind_section)
697};
698
699#define STD_SECTION(SEC, FLAGS, NAME, IDX)				\
700  asection SEC = BFD_FAKE_SECTION(SEC, FLAGS, &global_syms[IDX],	\
701				  NAME, IDX)
702
703STD_SECTION (bfd_com_section, SEC_IS_COMMON, BFD_COM_SECTION_NAME, 0);
704STD_SECTION (bfd_und_section, 0, BFD_UND_SECTION_NAME, 1);
705STD_SECTION (bfd_abs_section, 0, BFD_ABS_SECTION_NAME, 2);
706STD_SECTION (bfd_ind_section, 0, BFD_IND_SECTION_NAME, 3);
707#undef STD_SECTION
708
709/* Initialize an entry in the section hash table.  */
710
711struct bfd_hash_entry *
712bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
713			  struct bfd_hash_table *table,
714			  const char *string)
715{
716  /* Allocate the structure if it has not already been allocated by a
717     subclass.  */
718  if (entry == NULL)
719    {
720      entry = (struct bfd_hash_entry *)
721	bfd_hash_allocate (table, sizeof (struct section_hash_entry));
722      if (entry == NULL)
723	return entry;
724    }
725
726  /* Call the allocation method of the superclass.  */
727  entry = bfd_hash_newfunc (entry, table, string);
728  if (entry != NULL)
729    memset (&((struct section_hash_entry *) entry)->section, 0,
730	    sizeof (asection));
731
732  return entry;
733}
734
735#define section_hash_lookup(table, string, create, copy) \
736  ((struct section_hash_entry *) \
737   bfd_hash_lookup ((table), (string), (create), (copy)))
738
739/* Create a symbol whose only job is to point to this section.  This
740   is useful for things like relocs which are relative to the base
741   of a section.  */
742
743bfd_boolean
744_bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
745{
746  newsect->symbol = bfd_make_empty_symbol (abfd);
747  if (newsect->symbol == NULL)
748    return FALSE;
749
750  newsect->symbol->name = newsect->name;
751  newsect->symbol->value = 0;
752  newsect->symbol->section = newsect;
753  newsect->symbol->flags = BSF_SECTION_SYM;
754
755  newsect->symbol_ptr_ptr = &newsect->symbol;
756  return TRUE;
757}
758
759/* Initializes a new section.  NEWSECT->NAME is already set.  */
760
761static asection *
762bfd_section_init (bfd *abfd, asection *newsect)
763{
764  static int section_id = 0x10;  /* id 0 to 3 used by STD_SECTION.  */
765
766  newsect->id = section_id;
767  newsect->index = abfd->section_count;
768  newsect->owner = abfd;
769
770  if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
771    return NULL;
772
773  section_id++;
774  abfd->section_count++;
775  bfd_section_list_append (abfd, newsect);
776  return newsect;
777}
778
779/*
780DOCDD
781INODE
782section prototypes,  , typedef asection, Sections
783SUBSECTION
784	Section prototypes
785
786These are the functions exported by the section handling part of BFD.
787*/
788
789/*
790FUNCTION
791	bfd_section_list_clear
792
793SYNOPSIS
794	void bfd_section_list_clear (bfd *);
795
796DESCRIPTION
797	Clears the section list, and also resets the section count and
798	hash table entries.
799*/
800
801void
802bfd_section_list_clear (bfd *abfd)
803{
804  abfd->sections = NULL;
805  abfd->section_last = NULL;
806  abfd->section_count = 0;
807  memset (abfd->section_htab.table, 0,
808	  abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
809}
810
811/*
812FUNCTION
813	bfd_get_section_by_name
814
815SYNOPSIS
816	asection *bfd_get_section_by_name (bfd *abfd, const char *name);
817
818DESCRIPTION
819	Run through @var{abfd} and return the one of the
820	<<asection>>s whose name matches @var{name}, otherwise <<NULL>>.
821	@xref{Sections}, for more information.
822
823	This should only be used in special cases; the normal way to process
824	all sections of a given name is to use <<bfd_map_over_sections>> and
825	<<strcmp>> on the name (or better yet, base it on the section flags
826	or something else) for each section.
827*/
828
829asection *
830bfd_get_section_by_name (bfd *abfd, const char *name)
831{
832  struct section_hash_entry *sh;
833
834  sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
835  if (sh != NULL)
836    return &sh->section;
837
838  return NULL;
839}
840
841/*
842FUNCTION
843	bfd_get_section_by_name_if
844
845SYNOPSIS
846	asection *bfd_get_section_by_name_if
847	  (bfd *abfd,
848	   const char *name,
849	   bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
850	   void *obj);
851
852DESCRIPTION
853	Call the provided function @var{func} for each section
854	attached to the BFD @var{abfd} whose name matches @var{name},
855	passing @var{obj} as an argument. The function will be called
856	as if by
857
858|	func (abfd, the_section, obj);
859
860	It returns the first section for which @var{func} returns true,
861	otherwise <<NULL>>.
862
863*/
864
865asection *
866bfd_get_section_by_name_if (bfd *abfd, const char *name,
867			    bfd_boolean (*operation) (bfd *,
868						      asection *,
869						      void *),
870			    void *user_storage)
871{
872  struct section_hash_entry *sh;
873  unsigned long hash;
874
875  sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
876  if (sh == NULL)
877    return NULL;
878
879  hash = sh->root.hash;
880  do
881    {
882      if ((*operation) (abfd, &sh->section, user_storage))
883	return &sh->section;
884      sh = (struct section_hash_entry *) sh->root.next;
885    }
886  while (sh != NULL && sh->root.hash == hash
887	 && strcmp (sh->root.string, name) == 0);
888
889  return NULL;
890}
891
892/*
893FUNCTION
894	bfd_get_unique_section_name
895
896SYNOPSIS
897	char *bfd_get_unique_section_name
898	  (bfd *abfd, const char *templat, int *count);
899
900DESCRIPTION
901	Invent a section name that is unique in @var{abfd} by tacking
902	a dot and a digit suffix onto the original @var{templat}.  If
903	@var{count} is non-NULL, then it specifies the first number
904	tried as a suffix to generate a unique name.  The value
905	pointed to by @var{count} will be incremented in this case.
906*/
907
908char *
909bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
910{
911  int num;
912  unsigned int len;
913  char *sname;
914
915  len = strlen (templat);
916  sname = bfd_malloc (len + 8);
917  if (sname == NULL)
918    return NULL;
919  memcpy (sname, templat, len);
920  num = 1;
921  if (count != NULL)
922    num = *count;
923
924  do
925    {
926      /* If we have a million sections, something is badly wrong.  */
927      if (num > 999999)
928	abort ();
929      sprintf (sname + len, ".%d", num++);
930    }
931  while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
932
933  if (count != NULL)
934    *count = num;
935  return sname;
936}
937
938/*
939FUNCTION
940	bfd_make_section_old_way
941
942SYNOPSIS
943	asection *bfd_make_section_old_way (bfd *abfd, const char *name);
944
945DESCRIPTION
946	Create a new empty section called @var{name}
947	and attach it to the end of the chain of sections for the
948	BFD @var{abfd}. An attempt to create a section with a name which
949	is already in use returns its pointer without changing the
950	section chain.
951
952	It has the funny name since this is the way it used to be
953	before it was rewritten....
954
955	Possible errors are:
956	o <<bfd_error_invalid_operation>> -
957	If output has already started for this BFD.
958	o <<bfd_error_no_memory>> -
959	If memory allocation fails.
960
961*/
962
963asection *
964bfd_make_section_old_way (bfd *abfd, const char *name)
965{
966  asection *newsect;
967
968  if (abfd->output_has_begun)
969    {
970      bfd_set_error (bfd_error_invalid_operation);
971      return NULL;
972    }
973
974  if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
975    newsect = bfd_abs_section_ptr;
976  else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
977    newsect = bfd_com_section_ptr;
978  else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
979    newsect = bfd_und_section_ptr;
980  else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
981    newsect = bfd_ind_section_ptr;
982  else
983    {
984      struct section_hash_entry *sh;
985
986      sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
987      if (sh == NULL)
988	return NULL;
989
990      newsect = &sh->section;
991      if (newsect->name != NULL)
992	{
993	  /* Section already exists.  */
994	  return newsect;
995	}
996
997      newsect->name = name;
998      return bfd_section_init (abfd, newsect);
999    }
1000
1001  /* Call new_section_hook when "creating" the standard abs, com, und
1002     and ind sections to tack on format specific section data.
1003     Also, create a proper section symbol.  */
1004  if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1005    return NULL;
1006  return newsect;
1007}
1008
1009/*
1010FUNCTION
1011	bfd_make_section_anyway_with_flags
1012
1013SYNOPSIS
1014	asection *bfd_make_section_anyway_with_flags
1015	  (bfd *abfd, const char *name, flagword flags);
1016
1017DESCRIPTION
1018   Create a new empty section called @var{name} and attach it to the end of
1019   the chain of sections for @var{abfd}.  Create a new section even if there
1020   is already a section with that name.  Also set the attributes of the
1021   new section to the value @var{flags}.
1022
1023   Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1024   o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1025   o <<bfd_error_no_memory>> - If memory allocation fails.
1026*/
1027
1028sec_ptr
1029bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1030				    flagword flags)
1031{
1032  struct section_hash_entry *sh;
1033  asection *newsect;
1034
1035  if (abfd->output_has_begun)
1036    {
1037      bfd_set_error (bfd_error_invalid_operation);
1038      return NULL;
1039    }
1040
1041  sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1042  if (sh == NULL)
1043    return NULL;
1044
1045  newsect = &sh->section;
1046  if (newsect->name != NULL)
1047    {
1048      /* We are making a section of the same name.  Put it in the
1049	 section hash table.  Even though we can't find it directly by a
1050	 hash lookup, we'll be able to find the section by traversing
1051	 sh->root.next quicker than looking at all the bfd sections.  */
1052      struct section_hash_entry *new_sh;
1053      new_sh = (struct section_hash_entry *)
1054	bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1055      if (new_sh == NULL)
1056	return NULL;
1057
1058      new_sh->root = sh->root;
1059      sh->root.next = &new_sh->root;
1060      newsect = &new_sh->section;
1061    }
1062
1063  newsect->flags = flags;
1064  newsect->name = name;
1065  return bfd_section_init (abfd, newsect);
1066}
1067
1068/*
1069FUNCTION
1070	bfd_make_section_anyway
1071
1072SYNOPSIS
1073	asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1074
1075DESCRIPTION
1076   Create a new empty section called @var{name} and attach it to the end of
1077   the chain of sections for @var{abfd}.  Create a new section even if there
1078   is already a section with that name.
1079
1080   Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1081   o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1082   o <<bfd_error_no_memory>> - If memory allocation fails.
1083*/
1084
1085sec_ptr
1086bfd_make_section_anyway (bfd *abfd, const char *name)
1087{
1088  return bfd_make_section_anyway_with_flags (abfd, name, 0);
1089}
1090
1091/*
1092FUNCTION
1093	bfd_make_section_with_flags
1094
1095SYNOPSIS
1096	asection *bfd_make_section_with_flags
1097	  (bfd *, const char *name, flagword flags);
1098
1099DESCRIPTION
1100   Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1101   bfd_set_error ()) without changing the section chain if there is already a
1102   section named @var{name}.  Also set the attributes of the new section to
1103   the value @var{flags}.  If there is an error, return <<NULL>> and set
1104   <<bfd_error>>.
1105*/
1106
1107asection *
1108bfd_make_section_with_flags (bfd *abfd, const char *name,
1109			     flagword flags)
1110{
1111  struct section_hash_entry *sh;
1112  asection *newsect;
1113
1114  if (abfd->output_has_begun)
1115    {
1116      bfd_set_error (bfd_error_invalid_operation);
1117      return NULL;
1118    }
1119
1120  if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1121      || strcmp (name, BFD_COM_SECTION_NAME) == 0
1122      || strcmp (name, BFD_UND_SECTION_NAME) == 0
1123      || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1124    return NULL;
1125
1126  sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1127  if (sh == NULL)
1128    return NULL;
1129
1130  newsect = &sh->section;
1131  if (newsect->name != NULL)
1132    {
1133      /* Section already exists.  */
1134      return NULL;
1135    }
1136
1137  newsect->name = name;
1138  newsect->flags = flags;
1139  return bfd_section_init (abfd, newsect);
1140}
1141
1142/*
1143FUNCTION
1144	bfd_make_section
1145
1146SYNOPSIS
1147	asection *bfd_make_section (bfd *, const char *name);
1148
1149DESCRIPTION
1150   Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1151   bfd_set_error ()) without changing the section chain if there is already a
1152   section named @var{name}.  If there is an error, return <<NULL>> and set
1153   <<bfd_error>>.
1154*/
1155
1156asection *
1157bfd_make_section (bfd *abfd, const char *name)
1158{
1159  return bfd_make_section_with_flags (abfd, name, 0);
1160}
1161
1162/*
1163FUNCTION
1164	bfd_set_section_flags
1165
1166SYNOPSIS
1167	bfd_boolean bfd_set_section_flags
1168	  (bfd *abfd, asection *sec, flagword flags);
1169
1170DESCRIPTION
1171	Set the attributes of the section @var{sec} in the BFD
1172	@var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1173	<<FALSE>> on error. Possible error returns are:
1174
1175	o <<bfd_error_invalid_operation>> -
1176	The section cannot have one or more of the attributes
1177	requested. For example, a .bss section in <<a.out>> may not
1178	have the <<SEC_HAS_CONTENTS>> field set.
1179
1180*/
1181
1182bfd_boolean
1183bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1184		       sec_ptr section,
1185		       flagword flags)
1186{
1187  section->flags = flags;
1188  return TRUE;
1189}
1190
1191/*
1192FUNCTION
1193	bfd_map_over_sections
1194
1195SYNOPSIS
1196	void bfd_map_over_sections
1197	  (bfd *abfd,
1198	   void (*func) (bfd *abfd, asection *sect, void *obj),
1199	   void *obj);
1200
1201DESCRIPTION
1202	Call the provided function @var{func} for each section
1203	attached to the BFD @var{abfd}, passing @var{obj} as an
1204	argument. The function will be called as if by
1205
1206|	func (abfd, the_section, obj);
1207
1208	This is the preferred method for iterating over sections; an
1209	alternative would be to use a loop:
1210
1211|	   section *p;
1212|	   for (p = abfd->sections; p != NULL; p = p->next)
1213|	      func (abfd, p, ...)
1214
1215*/
1216
1217void
1218bfd_map_over_sections (bfd *abfd,
1219		       void (*operation) (bfd *, asection *, void *),
1220		       void *user_storage)
1221{
1222  asection *sect;
1223  unsigned int i = 0;
1224
1225  for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1226    (*operation) (abfd, sect, user_storage);
1227
1228  if (i != abfd->section_count)	/* Debugging */
1229    abort ();
1230}
1231
1232/*
1233FUNCTION
1234	bfd_sections_find_if
1235
1236SYNOPSIS
1237	asection *bfd_sections_find_if
1238	  (bfd *abfd,
1239	   bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1240	   void *obj);
1241
1242DESCRIPTION
1243	Call the provided function @var{operation} for each section
1244	attached to the BFD @var{abfd}, passing @var{obj} as an
1245	argument. The function will be called as if by
1246
1247|	operation (abfd, the_section, obj);
1248
1249	It returns the first section for which @var{operation} returns true.
1250
1251*/
1252
1253asection *
1254bfd_sections_find_if (bfd *abfd,
1255		      bfd_boolean (*operation) (bfd *, asection *, void *),
1256		      void *user_storage)
1257{
1258  asection *sect;
1259
1260  for (sect = abfd->sections; sect != NULL; sect = sect->next)
1261    if ((*operation) (abfd, sect, user_storage))
1262      break;
1263
1264  return sect;
1265}
1266
1267/*
1268FUNCTION
1269	bfd_set_section_size
1270
1271SYNOPSIS
1272	bfd_boolean bfd_set_section_size
1273	  (bfd *abfd, asection *sec, bfd_size_type val);
1274
1275DESCRIPTION
1276	Set @var{sec} to the size @var{val}. If the operation is
1277	ok, then <<TRUE>> is returned, else <<FALSE>>.
1278
1279	Possible error returns:
1280	o <<bfd_error_invalid_operation>> -
1281	Writing has started to the BFD, so setting the size is invalid.
1282
1283*/
1284
1285bfd_boolean
1286bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1287{
1288  /* Once you've started writing to any section you cannot create or change
1289     the size of any others.  */
1290
1291  if (abfd->output_has_begun)
1292    {
1293      bfd_set_error (bfd_error_invalid_operation);
1294      return FALSE;
1295    }
1296
1297  ptr->size = val;
1298  return TRUE;
1299}
1300
1301/*
1302FUNCTION
1303	bfd_set_section_contents
1304
1305SYNOPSIS
1306	bfd_boolean bfd_set_section_contents
1307	  (bfd *abfd, asection *section, const void *data,
1308	   file_ptr offset, bfd_size_type count);
1309
1310DESCRIPTION
1311	Sets the contents of the section @var{section} in BFD
1312	@var{abfd} to the data starting in memory at @var{data}. The
1313	data is written to the output section starting at offset
1314	@var{offset} for @var{count} octets.
1315
1316	Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1317	returns are:
1318	o <<bfd_error_no_contents>> -
1319	The output section does not have the <<SEC_HAS_CONTENTS>>
1320	attribute, so nothing can be written to it.
1321	o and some more too
1322
1323	This routine is front end to the back end function
1324	<<_bfd_set_section_contents>>.
1325
1326*/
1327
1328bfd_boolean
1329bfd_set_section_contents (bfd *abfd,
1330			  sec_ptr section,
1331			  const void *location,
1332			  file_ptr offset,
1333			  bfd_size_type count)
1334{
1335  bfd_size_type sz;
1336
1337  if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1338    {
1339      bfd_set_error (bfd_error_no_contents);
1340      return FALSE;
1341    }
1342
1343  sz = section->size;
1344  if ((bfd_size_type) offset > sz
1345      || count > sz
1346      || offset + count > sz
1347      || count != (size_t) count)
1348    {
1349      bfd_set_error (bfd_error_bad_value);
1350      return FALSE;
1351    }
1352
1353  if (!bfd_write_p (abfd))
1354    {
1355      bfd_set_error (bfd_error_invalid_operation);
1356      return FALSE;
1357    }
1358
1359  /* Record a copy of the data in memory if desired.  */
1360  if (section->contents
1361      && location != section->contents + offset)
1362    memcpy (section->contents + offset, location, (size_t) count);
1363
1364  if (BFD_SEND (abfd, _bfd_set_section_contents,
1365		(abfd, section, location, offset, count)))
1366    {
1367      abfd->output_has_begun = TRUE;
1368      return TRUE;
1369    }
1370
1371  return FALSE;
1372}
1373
1374/*
1375FUNCTION
1376	bfd_get_section_contents
1377
1378SYNOPSIS
1379	bfd_boolean bfd_get_section_contents
1380	  (bfd *abfd, asection *section, void *location, file_ptr offset,
1381	   bfd_size_type count);
1382
1383DESCRIPTION
1384	Read data from @var{section} in BFD @var{abfd}
1385	into memory starting at @var{location}. The data is read at an
1386	offset of @var{offset} from the start of the input section,
1387	and is read for @var{count} bytes.
1388
1389	If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1390	flag set are requested or if the section does not have the
1391	<<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1392	with zeroes. If no errors occur, <<TRUE>> is returned, else
1393	<<FALSE>>.
1394
1395*/
1396bfd_boolean
1397bfd_get_section_contents (bfd *abfd,
1398			  sec_ptr section,
1399			  void *location,
1400			  file_ptr offset,
1401			  bfd_size_type count)
1402{
1403  bfd_size_type sz;
1404
1405  if (section->flags & SEC_CONSTRUCTOR)
1406    {
1407      memset (location, 0, (size_t) count);
1408      return TRUE;
1409    }
1410
1411  sz = section->rawsize ? section->rawsize : section->size;
1412  if ((bfd_size_type) offset > sz
1413      || count > sz
1414      || offset + count > sz
1415      || count != (size_t) count)
1416    {
1417      bfd_set_error (bfd_error_bad_value);
1418      return FALSE;
1419    }
1420
1421  if (count == 0)
1422    /* Don't bother.  */
1423    return TRUE;
1424
1425  if ((section->flags & SEC_HAS_CONTENTS) == 0)
1426    {
1427      memset (location, 0, (size_t) count);
1428      return TRUE;
1429    }
1430
1431  if ((section->flags & SEC_IN_MEMORY) != 0)
1432    {
1433      memcpy (location, section->contents + offset, (size_t) count);
1434      return TRUE;
1435    }
1436
1437  return BFD_SEND (abfd, _bfd_get_section_contents,
1438		   (abfd, section, location, offset, count));
1439}
1440
1441/*
1442FUNCTION
1443	bfd_malloc_and_get_section
1444
1445SYNOPSIS
1446	bfd_boolean bfd_malloc_and_get_section
1447	  (bfd *abfd, asection *section, bfd_byte **buf);
1448
1449DESCRIPTION
1450	Read all data from @var{section} in BFD @var{abfd}
1451	into a buffer, *@var{buf}, malloc'd by this function.
1452*/
1453
1454bfd_boolean
1455bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1456{
1457  bfd_size_type sz = sec->rawsize ? sec->rawsize : sec->size;
1458  bfd_byte *p = NULL;
1459
1460  *buf = p;
1461  if (sz == 0)
1462    return TRUE;
1463
1464  p = bfd_malloc (sec->rawsize > sec->size ? sec->rawsize : sec->size);
1465  if (p == NULL)
1466    return FALSE;
1467  *buf = p;
1468
1469  return bfd_get_section_contents (abfd, sec, p, 0, sz);
1470}
1471/*
1472FUNCTION
1473	bfd_copy_private_section_data
1474
1475SYNOPSIS
1476	bfd_boolean bfd_copy_private_section_data
1477	  (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1478
1479DESCRIPTION
1480	Copy private section information from @var{isec} in the BFD
1481	@var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1482	Return <<TRUE>> on success, <<FALSE>> on error.  Possible error
1483	returns are:
1484
1485	o <<bfd_error_no_memory>> -
1486	Not enough memory exists to create private data for @var{osec}.
1487
1488.#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1489.     BFD_SEND (obfd, _bfd_copy_private_section_data, \
1490.		(ibfd, isection, obfd, osection))
1491*/
1492
1493/*
1494FUNCTION
1495	bfd_generic_is_group_section
1496
1497SYNOPSIS
1498	bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1499
1500DESCRIPTION
1501	Returns TRUE if @var{sec} is a member of a group.
1502*/
1503
1504bfd_boolean
1505bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1506			      const asection *sec ATTRIBUTE_UNUSED)
1507{
1508  return FALSE;
1509}
1510
1511/*
1512FUNCTION
1513	bfd_generic_discard_group
1514
1515SYNOPSIS
1516	bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1517
1518DESCRIPTION
1519	Remove all members of @var{group} from the output.
1520*/
1521
1522bfd_boolean
1523bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1524			   asection *group ATTRIBUTE_UNUSED)
1525{
1526  return TRUE;
1527}
1528