1/* MMIX-specific support for 64-bit ELF.
2   Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007
3   Free Software Foundation, Inc.
4   Contributed by Hans-Peter Nilsson <hp@bitrange.com>
5
6   This file is part of BFD, the Binary File Descriptor library.
7
8   This program is free software; you can redistribute it and/or modify
9   it under the terms of the GNU General Public License as published by
10   the Free Software Foundation; either version 3 of the License, or
11   (at your option) any later version.
12
13   This program is distributed in the hope that it will be useful,
14   but WITHOUT ANY WARRANTY; without even the implied warranty of
15   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16   GNU General Public License for more details.
17
18   You should have received a copy of the GNU General Public License
19   along with this program; if not, write to the Free Software
20   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21   MA 02110-1301, USA.  */
22
23
24/* No specific ABI or "processor-specific supplement" defined.  */
25
26/* TODO:
27   - "Traditional" linker relaxation (shrinking whole sections).
28   - Merge reloc stubs jumping to same location.
29   - GETA stub relaxation (call a stub for out of range new
30     R_MMIX_GETA_STUBBABLE).  */
31
32#include "sysdep.h"
33#include "bfd.h"
34#include "libbfd.h"
35#include "elf-bfd.h"
36#include "elf/mmix.h"
37#include "opcode/mmix.h"
38
39#define MINUS_ONE	(((bfd_vma) 0) - 1)
40
41#define MAX_PUSHJ_STUB_SIZE (5 * 4)
42
43/* Put these everywhere in new code.  */
44#define FATAL_DEBUG						\
45 _bfd_abort (__FILE__, __LINE__,				\
46	     "Internal: Non-debugged code (test-case missing)")
47
48#define BAD_CASE(x)				\
49 _bfd_abort (__FILE__, __LINE__,		\
50	     "bad case for " #x)
51
52struct _mmix_elf_section_data
53{
54  struct bfd_elf_section_data elf;
55  union
56  {
57    struct bpo_reloc_section_info *reloc;
58    struct bpo_greg_section_info *greg;
59  } bpo;
60
61  struct pushj_stub_info
62  {
63    /* Maximum number of stubs needed for this section.  */
64    bfd_size_type n_pushj_relocs;
65
66    /* Size of stubs after a mmix_elf_relax_section round.  */
67    bfd_size_type stubs_size_sum;
68
69    /* Per-reloc stubs_size_sum information.  The stubs_size_sum member is the sum
70       of these.  Allocated in mmix_elf_check_common_relocs.  */
71    bfd_size_type *stub_size;
72
73    /* Offset of next stub during relocation.  Somewhat redundant with the
74       above: error coverage is easier and we don't have to reset the
75       stubs_size_sum for relocation.  */
76    bfd_size_type stub_offset;
77  } pjs;
78};
79
80#define mmix_elf_section_data(sec) \
81  ((struct _mmix_elf_section_data *) elf_section_data (sec))
82
83/* For each section containing a base-plus-offset (BPO) reloc, we attach
84   this struct as mmix_elf_section_data (section)->bpo, which is otherwise
85   NULL.  */
86struct bpo_reloc_section_info
87  {
88    /* The base is 1; this is the first number in this section.  */
89    size_t first_base_plus_offset_reloc;
90
91    /* Number of BPO-relocs in this section.  */
92    size_t n_bpo_relocs_this_section;
93
94    /* Running index, used at relocation time.  */
95    size_t bpo_index;
96
97    /* We don't have access to the bfd_link_info struct in
98       mmix_final_link_relocate.  What we really want to get at is the
99       global single struct greg_relocation, so we stash it here.  */
100    asection *bpo_greg_section;
101  };
102
103/* Helper struct (in global context) for the one below.
104   There's one of these created for every BPO reloc.  */
105struct bpo_reloc_request
106  {
107    bfd_vma value;
108
109    /* Valid after relaxation.  The base is 0; the first register number
110       must be added.  The offset is in range 0..255.  */
111    size_t regindex;
112    size_t offset;
113
114    /* The order number for this BPO reloc, corresponding to the order in
115       which BPO relocs were found.  Used to create an index after reloc
116       requests are sorted.  */
117    size_t bpo_reloc_no;
118
119    /* Set when the value is computed.  Better than coding "guard values"
120       into the other members.  Is FALSE only for BPO relocs in a GC:ed
121       section.  */
122    bfd_boolean valid;
123  };
124
125/* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
126   greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
127   which is linked into the register contents section
128   (MMIX_REG_CONTENTS_SECTION_NAME).  This section is created by the
129   linker; using the same hook as for usual with BPO relocs does not
130   collide.  */
131struct bpo_greg_section_info
132  {
133    /* After GC, this reflects the number of remaining, non-excluded
134       BPO-relocs.  */
135    size_t n_bpo_relocs;
136
137    /* This is the number of allocated bpo_reloc_requests; the size of
138       sorted_indexes.  Valid after the check.*relocs functions are called
139       for all incoming sections.  It includes the number of BPO relocs in
140       sections that were GC:ed.  */
141    size_t n_max_bpo_relocs;
142
143    /* A counter used to find out when to fold the BPO gregs, since we
144       don't have a single "after-relaxation" hook.  */
145    size_t n_remaining_bpo_relocs_this_relaxation_round;
146
147    /* The number of linker-allocated GREGs resulting from BPO relocs.
148       This is an approximation after _bfd_mmix_before_linker_allocation
149       and supposedly accurate after mmix_elf_relax_section is called for
150       all incoming non-collected sections.  */
151    size_t n_allocated_bpo_gregs;
152
153    /* Index into reloc_request[], sorted on increasing "value", secondary
154       by increasing index for strict sorting order.  */
155    size_t *bpo_reloc_indexes;
156
157    /* An array of all relocations, with the "value" member filled in by
158       the relaxation function.  */
159    struct bpo_reloc_request *reloc_request;
160  };
161
162static bfd_boolean mmix_elf_link_output_symbol_hook
163  PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
164	   asection *, struct elf_link_hash_entry *));
165
166static bfd_reloc_status_type mmix_elf_reloc
167  PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
168
169static reloc_howto_type *bfd_elf64_bfd_reloc_type_lookup
170  PARAMS ((bfd *, bfd_reloc_code_real_type));
171
172static void mmix_info_to_howto_rela
173  PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
174
175static int mmix_elf_sort_relocs PARAMS ((const PTR, const PTR));
176
177static bfd_boolean mmix_elf_new_section_hook
178  PARAMS ((bfd *, asection *));
179
180static bfd_boolean mmix_elf_check_relocs
181  PARAMS ((bfd *, struct bfd_link_info *, asection *,
182	   const Elf_Internal_Rela *));
183
184static bfd_boolean mmix_elf_check_common_relocs
185  PARAMS ((bfd *, struct bfd_link_info *, asection *,
186	   const Elf_Internal_Rela *));
187
188static bfd_boolean mmix_elf_relocate_section
189  PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
190	   Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
191
192static bfd_reloc_status_type mmix_final_link_relocate
193  PARAMS ((reloc_howto_type *, asection *, bfd_byte *,
194	   bfd_vma, bfd_signed_vma, bfd_vma, const char *, asection *));
195
196static bfd_reloc_status_type mmix_elf_perform_relocation
197  PARAMS ((asection *, reloc_howto_type *, PTR, bfd_vma, bfd_vma));
198
199static bfd_boolean mmix_elf_section_from_bfd_section
200  PARAMS ((bfd *, asection *, int *));
201
202static bfd_boolean mmix_elf_add_symbol_hook
203  PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
204	   const char **, flagword *, asection **, bfd_vma *));
205
206static bfd_boolean mmix_elf_is_local_label_name
207  PARAMS ((bfd *, const char *));
208
209static int bpo_reloc_request_sort_fn PARAMS ((const PTR, const PTR));
210
211static bfd_boolean mmix_elf_relax_section
212  PARAMS ((bfd *abfd, asection *sec, struct bfd_link_info *link_info,
213	   bfd_boolean *again));
214
215extern bfd_boolean mmix_elf_final_link PARAMS ((bfd *, struct bfd_link_info *));
216
217extern void mmix_elf_symbol_processing PARAMS ((bfd *, asymbol *));
218
219/* Only intended to be called from a debugger.  */
220extern void mmix_dump_bpo_gregs
221  PARAMS ((struct bfd_link_info *, bfd_error_handler_type));
222
223static void
224mmix_set_relaxable_size
225  PARAMS ((bfd *, asection *, void *));
226
227
228/* Watch out: this currently needs to have elements with the same index as
229   their R_MMIX_ number.  */
230static reloc_howto_type elf_mmix_howto_table[] =
231 {
232  /* This reloc does nothing.  */
233  HOWTO (R_MMIX_NONE,		/* type */
234	 0,			/* rightshift */
235	 2,			/* size (0 = byte, 1 = short, 2 = long) */
236	 32,			/* bitsize */
237	 FALSE,			/* pc_relative */
238	 0,			/* bitpos */
239	 complain_overflow_bitfield, /* complain_on_overflow */
240	 bfd_elf_generic_reloc,	/* special_function */
241	 "R_MMIX_NONE",		/* name */
242	 FALSE,			/* partial_inplace */
243	 0,			/* src_mask */
244	 0,			/* dst_mask */
245	 FALSE),		/* pcrel_offset */
246
247  /* An 8 bit absolute relocation.  */
248  HOWTO (R_MMIX_8,		/* type */
249	 0,			/* rightshift */
250	 0,			/* size (0 = byte, 1 = short, 2 = long) */
251	 8,			/* bitsize */
252	 FALSE,			/* pc_relative */
253	 0,			/* bitpos */
254	 complain_overflow_bitfield, /* complain_on_overflow */
255	 bfd_elf_generic_reloc,	/* special_function */
256	 "R_MMIX_8",		/* name */
257	 FALSE,			/* partial_inplace */
258	 0,			/* src_mask */
259	 0xff,			/* dst_mask */
260	 FALSE),		/* pcrel_offset */
261
262  /* An 16 bit absolute relocation.  */
263  HOWTO (R_MMIX_16,		/* type */
264	 0,			/* rightshift */
265	 1,			/* size (0 = byte, 1 = short, 2 = long) */
266	 16,			/* bitsize */
267	 FALSE,			/* pc_relative */
268	 0,			/* bitpos */
269	 complain_overflow_bitfield, /* complain_on_overflow */
270	 bfd_elf_generic_reloc,	/* special_function */
271	 "R_MMIX_16",		/* name */
272	 FALSE,			/* partial_inplace */
273	 0,			/* src_mask */
274	 0xffff,		/* dst_mask */
275	 FALSE),		/* pcrel_offset */
276
277  /* An 24 bit absolute relocation.  */
278  HOWTO (R_MMIX_24,		/* type */
279	 0,			/* rightshift */
280	 2,			/* size (0 = byte, 1 = short, 2 = long) */
281	 24,			/* bitsize */
282	 FALSE,			/* pc_relative */
283	 0,			/* bitpos */
284	 complain_overflow_bitfield, /* complain_on_overflow */
285	 bfd_elf_generic_reloc,	/* special_function */
286	 "R_MMIX_24",		/* name */
287	 FALSE,			/* partial_inplace */
288	 ~0xffffff,		/* src_mask */
289	 0xffffff,		/* dst_mask */
290	 FALSE),		/* pcrel_offset */
291
292  /* A 32 bit absolute relocation.  */
293  HOWTO (R_MMIX_32,		/* type */
294	 0,			/* rightshift */
295	 2,			/* size (0 = byte, 1 = short, 2 = long) */
296	 32,			/* bitsize */
297	 FALSE,			/* pc_relative */
298	 0,			/* bitpos */
299	 complain_overflow_bitfield, /* complain_on_overflow */
300	 bfd_elf_generic_reloc,	/* special_function */
301	 "R_MMIX_32",		/* name */
302	 FALSE,			/* partial_inplace */
303	 0,			/* src_mask */
304	 0xffffffff,		/* dst_mask */
305	 FALSE),		/* pcrel_offset */
306
307  /* 64 bit relocation.  */
308  HOWTO (R_MMIX_64,		/* type */
309	 0,			/* rightshift */
310	 4,			/* size (0 = byte, 1 = short, 2 = long) */
311	 64,			/* bitsize */
312	 FALSE,			/* pc_relative */
313	 0,			/* bitpos */
314	 complain_overflow_bitfield, /* complain_on_overflow */
315	 bfd_elf_generic_reloc,	/* special_function */
316	 "R_MMIX_64",		/* name */
317	 FALSE,			/* partial_inplace */
318	 0,			/* src_mask */
319	 MINUS_ONE,		/* dst_mask */
320	 FALSE),		/* pcrel_offset */
321
322  /* An 8 bit PC-relative relocation.  */
323  HOWTO (R_MMIX_PC_8,		/* type */
324	 0,			/* rightshift */
325	 0,			/* size (0 = byte, 1 = short, 2 = long) */
326	 8,			/* bitsize */
327	 TRUE,			/* pc_relative */
328	 0,			/* bitpos */
329	 complain_overflow_bitfield, /* complain_on_overflow */
330	 bfd_elf_generic_reloc,	/* special_function */
331	 "R_MMIX_PC_8",		/* name */
332	 FALSE,			/* partial_inplace */
333	 0,			/* src_mask */
334	 0xff,			/* dst_mask */
335	 TRUE),			/* pcrel_offset */
336
337  /* An 16 bit PC-relative relocation.  */
338  HOWTO (R_MMIX_PC_16,		/* type */
339	 0,			/* rightshift */
340	 1,			/* size (0 = byte, 1 = short, 2 = long) */
341	 16,			/* bitsize */
342	 TRUE,			/* pc_relative */
343	 0,			/* bitpos */
344	 complain_overflow_bitfield, /* complain_on_overflow */
345	 bfd_elf_generic_reloc,	/* special_function */
346	 "R_MMIX_PC_16",	/* name */
347	 FALSE,			/* partial_inplace */
348	 0,			/* src_mask */
349	 0xffff,		/* dst_mask */
350	 TRUE),			/* pcrel_offset */
351
352  /* An 24 bit PC-relative relocation.  */
353  HOWTO (R_MMIX_PC_24,		/* type */
354	 0,			/* rightshift */
355	 2,			/* size (0 = byte, 1 = short, 2 = long) */
356	 24,			/* bitsize */
357	 TRUE,			/* pc_relative */
358	 0,			/* bitpos */
359	 complain_overflow_bitfield, /* complain_on_overflow */
360	 bfd_elf_generic_reloc,	/* special_function */
361	 "R_MMIX_PC_24",	/* name */
362	 FALSE,			/* partial_inplace */
363	 ~0xffffff,		/* src_mask */
364	 0xffffff,		/* dst_mask */
365	 TRUE),			/* pcrel_offset */
366
367  /* A 32 bit absolute PC-relative relocation.  */
368  HOWTO (R_MMIX_PC_32,		/* type */
369	 0,			/* rightshift */
370	 2,			/* size (0 = byte, 1 = short, 2 = long) */
371	 32,			/* bitsize */
372	 TRUE,			/* pc_relative */
373	 0,			/* bitpos */
374	 complain_overflow_bitfield, /* complain_on_overflow */
375	 bfd_elf_generic_reloc,	/* special_function */
376	 "R_MMIX_PC_32",	/* name */
377	 FALSE,			/* partial_inplace */
378	 0,			/* src_mask */
379	 0xffffffff,		/* dst_mask */
380	 TRUE),			/* pcrel_offset */
381
382  /* 64 bit PC-relative relocation.  */
383  HOWTO (R_MMIX_PC_64,		/* type */
384	 0,			/* rightshift */
385	 4,			/* size (0 = byte, 1 = short, 2 = long) */
386	 64,			/* bitsize */
387	 TRUE,			/* pc_relative */
388	 0,			/* bitpos */
389	 complain_overflow_bitfield, /* complain_on_overflow */
390	 bfd_elf_generic_reloc,	/* special_function */
391	 "R_MMIX_PC_64",	/* name */
392	 FALSE,			/* partial_inplace */
393	 0,			/* src_mask */
394	 MINUS_ONE,		/* dst_mask */
395	 TRUE),			/* pcrel_offset */
396
397  /* GNU extension to record C++ vtable hierarchy.  */
398  HOWTO (R_MMIX_GNU_VTINHERIT, /* type */
399	 0,			/* rightshift */
400	 0,			/* size (0 = byte, 1 = short, 2 = long) */
401	 0,			/* bitsize */
402	 FALSE,			/* pc_relative */
403	 0,			/* bitpos */
404	 complain_overflow_dont, /* complain_on_overflow */
405	 NULL,			/* special_function */
406	 "R_MMIX_GNU_VTINHERIT", /* name */
407	 FALSE,			/* partial_inplace */
408	 0,			/* src_mask */
409	 0,			/* dst_mask */
410	 TRUE),			/* pcrel_offset */
411
412  /* GNU extension to record C++ vtable member usage.  */
413  HOWTO (R_MMIX_GNU_VTENTRY,	/* type */
414	 0,			/* rightshift */
415	 0,			/* size (0 = byte, 1 = short, 2 = long) */
416	 0,			/* bitsize */
417	 FALSE,			/* pc_relative */
418	 0,			/* bitpos */
419	 complain_overflow_dont, /* complain_on_overflow */
420	 _bfd_elf_rel_vtable_reloc_fn,	/* special_function */
421	 "R_MMIX_GNU_VTENTRY", /* name */
422	 FALSE,			/* partial_inplace */
423	 0,			/* src_mask */
424	 0,			/* dst_mask */
425	 FALSE),		/* pcrel_offset */
426
427  /* The GETA relocation is supposed to get any address that could
428     possibly be reached by the GETA instruction.  It can silently expand
429     to get a 64-bit operand, but will complain if any of the two least
430     significant bits are set.  The howto members reflect a simple GETA.  */
431  HOWTO (R_MMIX_GETA,		/* type */
432	 2,			/* rightshift */
433	 2,			/* size (0 = byte, 1 = short, 2 = long) */
434	 19,			/* bitsize */
435	 TRUE,			/* pc_relative */
436	 0,			/* bitpos */
437	 complain_overflow_signed, /* complain_on_overflow */
438	 mmix_elf_reloc,	/* special_function */
439	 "R_MMIX_GETA",		/* name */
440	 FALSE,			/* partial_inplace */
441	 ~0x0100ffff,		/* src_mask */
442	 0x0100ffff,		/* dst_mask */
443	 TRUE),			/* pcrel_offset */
444
445  HOWTO (R_MMIX_GETA_1,		/* type */
446	 2,			/* rightshift */
447	 2,			/* size (0 = byte, 1 = short, 2 = long) */
448	 19,			/* bitsize */
449	 TRUE,			/* pc_relative */
450	 0,			/* bitpos */
451	 complain_overflow_signed, /* complain_on_overflow */
452	 mmix_elf_reloc,	/* special_function */
453	 "R_MMIX_GETA_1",		/* name */
454	 FALSE,			/* partial_inplace */
455	 ~0x0100ffff,		/* src_mask */
456	 0x0100ffff,		/* dst_mask */
457	 TRUE),			/* pcrel_offset */
458
459  HOWTO (R_MMIX_GETA_2,		/* type */
460	 2,			/* rightshift */
461	 2,			/* size (0 = byte, 1 = short, 2 = long) */
462	 19,			/* bitsize */
463	 TRUE,			/* pc_relative */
464	 0,			/* bitpos */
465	 complain_overflow_signed, /* complain_on_overflow */
466	 mmix_elf_reloc,	/* special_function */
467	 "R_MMIX_GETA_2",		/* name */
468	 FALSE,			/* partial_inplace */
469	 ~0x0100ffff,		/* src_mask */
470	 0x0100ffff,		/* dst_mask */
471	 TRUE),			/* pcrel_offset */
472
473  HOWTO (R_MMIX_GETA_3,		/* type */
474	 2,			/* rightshift */
475	 2,			/* size (0 = byte, 1 = short, 2 = long) */
476	 19,			/* bitsize */
477	 TRUE,			/* pc_relative */
478	 0,			/* bitpos */
479	 complain_overflow_signed, /* complain_on_overflow */
480	 mmix_elf_reloc,	/* special_function */
481	 "R_MMIX_GETA_3",		/* name */
482	 FALSE,			/* partial_inplace */
483	 ~0x0100ffff,		/* src_mask */
484	 0x0100ffff,		/* dst_mask */
485	 TRUE),			/* pcrel_offset */
486
487  /* The conditional branches are supposed to reach any (code) address.
488     It can silently expand to a 64-bit operand, but will emit an error if
489     any of the two least significant bits are set.  The howto members
490     reflect a simple branch.  */
491  HOWTO (R_MMIX_CBRANCH,	/* type */
492	 2,			/* rightshift */
493	 2,			/* size (0 = byte, 1 = short, 2 = long) */
494	 19,			/* bitsize */
495	 TRUE,			/* pc_relative */
496	 0,			/* bitpos */
497	 complain_overflow_signed, /* complain_on_overflow */
498	 mmix_elf_reloc,	/* special_function */
499	 "R_MMIX_CBRANCH",	/* name */
500	 FALSE,			/* partial_inplace */
501	 ~0x0100ffff,		/* src_mask */
502	 0x0100ffff,		/* dst_mask */
503	 TRUE),		       	/* pcrel_offset */
504
505  HOWTO (R_MMIX_CBRANCH_J,	/* type */
506	 2,			/* rightshift */
507	 2,			/* size (0 = byte, 1 = short, 2 = long) */
508	 19,			/* bitsize */
509	 TRUE,			/* pc_relative */
510	 0,			/* bitpos */
511	 complain_overflow_signed, /* complain_on_overflow */
512	 mmix_elf_reloc,	/* special_function */
513	 "R_MMIX_CBRANCH_J",	/* name */
514	 FALSE,			/* partial_inplace */
515	 ~0x0100ffff,		/* src_mask */
516	 0x0100ffff,		/* dst_mask */
517	 TRUE),			/* pcrel_offset */
518
519  HOWTO (R_MMIX_CBRANCH_1,	/* type */
520	 2,			/* rightshift */
521	 2,			/* size (0 = byte, 1 = short, 2 = long) */
522	 19,			/* bitsize */
523	 TRUE,			/* pc_relative */
524	 0,			/* bitpos */
525	 complain_overflow_signed, /* complain_on_overflow */
526	 mmix_elf_reloc,	/* special_function */
527	 "R_MMIX_CBRANCH_1",	/* name */
528	 FALSE,			/* partial_inplace */
529	 ~0x0100ffff,		/* src_mask */
530	 0x0100ffff,		/* dst_mask */
531	 TRUE),			/* pcrel_offset */
532
533  HOWTO (R_MMIX_CBRANCH_2,	/* type */
534	 2,			/* rightshift */
535	 2,			/* size (0 = byte, 1 = short, 2 = long) */
536	 19,			/* bitsize */
537	 TRUE,			/* pc_relative */
538	 0,			/* bitpos */
539	 complain_overflow_signed, /* complain_on_overflow */
540	 mmix_elf_reloc,	/* special_function */
541	 "R_MMIX_CBRANCH_2",	/* name */
542	 FALSE,			/* partial_inplace */
543	 ~0x0100ffff,		/* src_mask */
544	 0x0100ffff,		/* dst_mask */
545	 TRUE),			/* pcrel_offset */
546
547  HOWTO (R_MMIX_CBRANCH_3,	/* type */
548	 2,			/* rightshift */
549	 2,			/* size (0 = byte, 1 = short, 2 = long) */
550	 19,			/* bitsize */
551	 TRUE,			/* pc_relative */
552	 0,			/* bitpos */
553	 complain_overflow_signed, /* complain_on_overflow */
554	 mmix_elf_reloc,	/* special_function */
555	 "R_MMIX_CBRANCH_3",	/* name */
556	 FALSE,			/* partial_inplace */
557	 ~0x0100ffff,		/* src_mask */
558	 0x0100ffff,		/* dst_mask */
559	 TRUE),			/* pcrel_offset */
560
561  /* The PUSHJ instruction can reach any (code) address, as long as it's
562     the beginning of a function (no usable restriction).  It can silently
563     expand to a 64-bit operand, but will emit an error if any of the two
564     least significant bits are set.  It can also expand into a call to a
565     stub; see R_MMIX_PUSHJ_STUBBABLE.  The howto members reflect a simple
566     PUSHJ.  */
567  HOWTO (R_MMIX_PUSHJ,		/* type */
568	 2,			/* rightshift */
569	 2,			/* size (0 = byte, 1 = short, 2 = long) */
570	 19,			/* bitsize */
571	 TRUE,			/* pc_relative */
572	 0,			/* bitpos */
573	 complain_overflow_signed, /* complain_on_overflow */
574	 mmix_elf_reloc,	/* special_function */
575	 "R_MMIX_PUSHJ",	/* name */
576	 FALSE,			/* partial_inplace */
577	 ~0x0100ffff,		/* src_mask */
578	 0x0100ffff,		/* dst_mask */
579	 TRUE),			/* pcrel_offset */
580
581  HOWTO (R_MMIX_PUSHJ_1,	/* type */
582	 2,			/* rightshift */
583	 2,			/* size (0 = byte, 1 = short, 2 = long) */
584	 19,			/* bitsize */
585	 TRUE,			/* pc_relative */
586	 0,			/* bitpos */
587	 complain_overflow_signed, /* complain_on_overflow */
588	 mmix_elf_reloc,	/* special_function */
589	 "R_MMIX_PUSHJ_1",	/* name */
590	 FALSE,			/* partial_inplace */
591	 ~0x0100ffff,		/* src_mask */
592	 0x0100ffff,		/* dst_mask */
593	 TRUE),			/* pcrel_offset */
594
595  HOWTO (R_MMIX_PUSHJ_2,	/* type */
596	 2,			/* rightshift */
597	 2,			/* size (0 = byte, 1 = short, 2 = long) */
598	 19,			/* bitsize */
599	 TRUE,			/* pc_relative */
600	 0,			/* bitpos */
601	 complain_overflow_signed, /* complain_on_overflow */
602	 mmix_elf_reloc,	/* special_function */
603	 "R_MMIX_PUSHJ_2",	/* name */
604	 FALSE,			/* partial_inplace */
605	 ~0x0100ffff,		/* src_mask */
606	 0x0100ffff,		/* dst_mask */
607	 TRUE),			/* pcrel_offset */
608
609  HOWTO (R_MMIX_PUSHJ_3,	/* type */
610	 2,			/* rightshift */
611	 2,			/* size (0 = byte, 1 = short, 2 = long) */
612	 19,			/* bitsize */
613	 TRUE,			/* pc_relative */
614	 0,			/* bitpos */
615	 complain_overflow_signed, /* complain_on_overflow */
616	 mmix_elf_reloc,	/* special_function */
617	 "R_MMIX_PUSHJ_3",	/* name */
618	 FALSE,			/* partial_inplace */
619	 ~0x0100ffff,		/* src_mask */
620	 0x0100ffff,		/* dst_mask */
621	 TRUE),			/* pcrel_offset */
622
623  /* A JMP is supposed to reach any (code) address.  By itself, it can
624     reach +-64M; the expansion can reach all 64 bits.  Note that the 64M
625     limit is soon reached if you link the program in wildly different
626     memory segments.  The howto members reflect a trivial JMP.  */
627  HOWTO (R_MMIX_JMP,		/* type */
628	 2,			/* rightshift */
629	 2,			/* size (0 = byte, 1 = short, 2 = long) */
630	 27,			/* bitsize */
631	 TRUE,			/* pc_relative */
632	 0,			/* bitpos */
633	 complain_overflow_signed, /* complain_on_overflow */
634	 mmix_elf_reloc,	/* special_function */
635	 "R_MMIX_JMP",		/* name */
636	 FALSE,			/* partial_inplace */
637	 ~0x1ffffff,		/* src_mask */
638	 0x1ffffff,		/* dst_mask */
639	 TRUE),			/* pcrel_offset */
640
641  HOWTO (R_MMIX_JMP_1,		/* type */
642	 2,			/* rightshift */
643	 2,			/* size (0 = byte, 1 = short, 2 = long) */
644	 27,			/* bitsize */
645	 TRUE,			/* pc_relative */
646	 0,			/* bitpos */
647	 complain_overflow_signed, /* complain_on_overflow */
648	 mmix_elf_reloc,	/* special_function */
649	 "R_MMIX_JMP_1",	/* name */
650	 FALSE,			/* partial_inplace */
651	 ~0x1ffffff,		/* src_mask */
652	 0x1ffffff,		/* dst_mask */
653	 TRUE),			/* pcrel_offset */
654
655  HOWTO (R_MMIX_JMP_2,		/* type */
656	 2,			/* rightshift */
657	 2,			/* size (0 = byte, 1 = short, 2 = long) */
658	 27,			/* bitsize */
659	 TRUE,			/* pc_relative */
660	 0,			/* bitpos */
661	 complain_overflow_signed, /* complain_on_overflow */
662	 mmix_elf_reloc,	/* special_function */
663	 "R_MMIX_JMP_2",	/* name */
664	 FALSE,			/* partial_inplace */
665	 ~0x1ffffff,		/* src_mask */
666	 0x1ffffff,		/* dst_mask */
667	 TRUE),			/* pcrel_offset */
668
669  HOWTO (R_MMIX_JMP_3,		/* type */
670	 2,			/* rightshift */
671	 2,			/* size (0 = byte, 1 = short, 2 = long) */
672	 27,			/* bitsize */
673	 TRUE,			/* pc_relative */
674	 0,			/* bitpos */
675	 complain_overflow_signed, /* complain_on_overflow */
676	 mmix_elf_reloc,	/* special_function */
677	 "R_MMIX_JMP_3",	/* name */
678	 FALSE,			/* partial_inplace */
679	 ~0x1ffffff,		/* src_mask */
680	 0x1ffffff,		/* dst_mask */
681	 TRUE),			/* pcrel_offset */
682
683  /* When we don't emit link-time-relaxable code from the assembler, or
684     when relaxation has done all it can do, these relocs are used.  For
685     GETA/PUSHJ/branches.  */
686  HOWTO (R_MMIX_ADDR19,		/* type */
687	 2,			/* rightshift */
688	 2,			/* size (0 = byte, 1 = short, 2 = long) */
689	 19,			/* bitsize */
690	 TRUE,			/* pc_relative */
691	 0,			/* bitpos */
692	 complain_overflow_signed, /* complain_on_overflow */
693	 mmix_elf_reloc,	/* special_function */
694	 "R_MMIX_ADDR19",	/* name */
695	 FALSE,			/* partial_inplace */
696	 ~0x0100ffff,		/* src_mask */
697	 0x0100ffff,		/* dst_mask */
698	 TRUE),			/* pcrel_offset */
699
700  /* For JMP.  */
701  HOWTO (R_MMIX_ADDR27,		/* type */
702	 2,			/* rightshift */
703	 2,			/* size (0 = byte, 1 = short, 2 = long) */
704	 27,			/* bitsize */
705	 TRUE,			/* pc_relative */
706	 0,			/* bitpos */
707	 complain_overflow_signed, /* complain_on_overflow */
708	 mmix_elf_reloc,	/* special_function */
709	 "R_MMIX_ADDR27",	/* name */
710	 FALSE,			/* partial_inplace */
711	 ~0x1ffffff,		/* src_mask */
712	 0x1ffffff,		/* dst_mask */
713	 TRUE),			/* pcrel_offset */
714
715  /* A general register or the value 0..255.  If a value, then the
716     instruction (offset -3) needs adjusting.  */
717  HOWTO (R_MMIX_REG_OR_BYTE,	/* type */
718	 0,			/* rightshift */
719	 1,			/* size (0 = byte, 1 = short, 2 = long) */
720	 8,			/* bitsize */
721	 FALSE,			/* pc_relative */
722	 0,			/* bitpos */
723	 complain_overflow_bitfield, /* complain_on_overflow */
724	 mmix_elf_reloc,	/* special_function */
725	 "R_MMIX_REG_OR_BYTE",	/* name */
726	 FALSE,			/* partial_inplace */
727	 0,			/* src_mask */
728	 0xff,			/* dst_mask */
729	 FALSE),		/* pcrel_offset */
730
731  /* A general register.  */
732  HOWTO (R_MMIX_REG,		/* type */
733	 0,			/* rightshift */
734	 1,			/* size (0 = byte, 1 = short, 2 = long) */
735	 8,			/* bitsize */
736	 FALSE,			/* pc_relative */
737	 0,			/* bitpos */
738	 complain_overflow_bitfield, /* complain_on_overflow */
739	 mmix_elf_reloc,	/* special_function */
740	 "R_MMIX_REG",		/* name */
741	 FALSE,			/* partial_inplace */
742	 0,			/* src_mask */
743	 0xff,			/* dst_mask */
744	 FALSE),		/* pcrel_offset */
745
746  /* A register plus an index, corresponding to the relocation expression.
747     The sizes must correspond to the valid range of the expression, while
748     the bitmasks correspond to what we store in the image.  */
749  HOWTO (R_MMIX_BASE_PLUS_OFFSET,	/* type */
750	 0,			/* rightshift */
751	 4,			/* size (0 = byte, 1 = short, 2 = long) */
752	 64,			/* bitsize */
753	 FALSE,			/* pc_relative */
754	 0,			/* bitpos */
755	 complain_overflow_bitfield, /* complain_on_overflow */
756	 mmix_elf_reloc,	/* special_function */
757	 "R_MMIX_BASE_PLUS_OFFSET", /* name */
758	 FALSE,			/* partial_inplace */
759	 0,			/* src_mask */
760	 0xffff,		/* dst_mask */
761	 FALSE),		/* pcrel_offset */
762
763  /* A "magic" relocation for a LOCAL expression, asserting that the
764     expression is less than the number of global registers.  No actual
765     modification of the contents is done.  Implementing this as a
766     relocation was less intrusive than e.g. putting such expressions in a
767     section to discard *after* relocation.  */
768  HOWTO (R_MMIX_LOCAL,		/* type */
769	 0,			/* rightshift */
770	 0,			/* size (0 = byte, 1 = short, 2 = long) */
771	 0,			/* bitsize */
772	 FALSE,			/* pc_relative */
773	 0,			/* bitpos */
774	 complain_overflow_dont, /* complain_on_overflow */
775	 mmix_elf_reloc,	/* special_function */
776	 "R_MMIX_LOCAL",	/* name */
777	 FALSE,			/* partial_inplace */
778	 0,			/* src_mask */
779	 0,			/* dst_mask */
780	 FALSE),		/* pcrel_offset */
781
782  HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */
783	 2,			/* rightshift */
784	 2,			/* size (0 = byte, 1 = short, 2 = long) */
785	 19,			/* bitsize */
786	 TRUE,			/* pc_relative */
787	 0,			/* bitpos */
788	 complain_overflow_signed, /* complain_on_overflow */
789	 mmix_elf_reloc,	/* special_function */
790	 "R_MMIX_PUSHJ_STUBBABLE", /* name */
791	 FALSE,			/* partial_inplace */
792	 ~0x0100ffff,		/* src_mask */
793	 0x0100ffff,		/* dst_mask */
794	 TRUE)			/* pcrel_offset */
795 };
796
797
798/* Map BFD reloc types to MMIX ELF reloc types.  */
799
800struct mmix_reloc_map
801  {
802    bfd_reloc_code_real_type bfd_reloc_val;
803    enum elf_mmix_reloc_type elf_reloc_val;
804  };
805
806
807static const struct mmix_reloc_map mmix_reloc_map[] =
808  {
809    {BFD_RELOC_NONE, R_MMIX_NONE},
810    {BFD_RELOC_8, R_MMIX_8},
811    {BFD_RELOC_16, R_MMIX_16},
812    {BFD_RELOC_24, R_MMIX_24},
813    {BFD_RELOC_32, R_MMIX_32},
814    {BFD_RELOC_64, R_MMIX_64},
815    {BFD_RELOC_8_PCREL, R_MMIX_PC_8},
816    {BFD_RELOC_16_PCREL, R_MMIX_PC_16},
817    {BFD_RELOC_24_PCREL, R_MMIX_PC_24},
818    {BFD_RELOC_32_PCREL, R_MMIX_PC_32},
819    {BFD_RELOC_64_PCREL, R_MMIX_PC_64},
820    {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT},
821    {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY},
822    {BFD_RELOC_MMIX_GETA, R_MMIX_GETA},
823    {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH},
824    {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ},
825    {BFD_RELOC_MMIX_JMP, R_MMIX_JMP},
826    {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19},
827    {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27},
828    {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE},
829    {BFD_RELOC_MMIX_REG, R_MMIX_REG},
830    {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET},
831    {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL},
832    {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE}
833  };
834
835static reloc_howto_type *
836bfd_elf64_bfd_reloc_type_lookup (abfd, code)
837     bfd *abfd ATTRIBUTE_UNUSED;
838     bfd_reloc_code_real_type code;
839{
840  unsigned int i;
841
842  for (i = 0;
843       i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]);
844       i++)
845    {
846      if (mmix_reloc_map[i].bfd_reloc_val == code)
847	return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val];
848    }
849
850  return NULL;
851}
852
853static reloc_howto_type *
854bfd_elf64_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
855				 const char *r_name)
856{
857  unsigned int i;
858
859  for (i = 0;
860       i < sizeof (elf_mmix_howto_table) / sizeof (elf_mmix_howto_table[0]);
861       i++)
862    if (elf_mmix_howto_table[i].name != NULL
863	&& strcasecmp (elf_mmix_howto_table[i].name, r_name) == 0)
864      return &elf_mmix_howto_table[i];
865
866  return NULL;
867}
868
869static bfd_boolean
870mmix_elf_new_section_hook (abfd, sec)
871     bfd *abfd;
872     asection *sec;
873{
874  if (!sec->used_by_bfd)
875    {
876      struct _mmix_elf_section_data *sdata;
877      bfd_size_type amt = sizeof (*sdata);
878
879      sdata = bfd_zalloc (abfd, amt);
880      if (sdata == NULL)
881	return FALSE;
882      sec->used_by_bfd = sdata;
883    }
884
885  return _bfd_elf_new_section_hook (abfd, sec);
886}
887
888
889/* This function performs the actual bitfiddling and sanity check for a
890   final relocation.  Each relocation gets its *worst*-case expansion
891   in size when it arrives here; any reduction in size should have been
892   caught in linker relaxation earlier.  When we get here, the relocation
893   looks like the smallest instruction with SWYM:s (nop:s) appended to the
894   max size.  We fill in those nop:s.
895
896   R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
897    GETA $N,foo
898   ->
899    SETL $N,foo & 0xffff
900    INCML $N,(foo >> 16) & 0xffff
901    INCMH $N,(foo >> 32) & 0xffff
902    INCH $N,(foo >> 48) & 0xffff
903
904   R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
905   condbranches needing relaxation might be rare enough to not be
906   worthwhile.)
907    [P]Bcc $N,foo
908   ->
909    [~P]B~cc $N,.+20
910    SETL $255,foo & ...
911    INCML ...
912    INCMH ...
913    INCH ...
914    GO $255,$255,0
915
916   R_MMIX_PUSHJ: (FIXME: Relaxation...)
917    PUSHJ $N,foo
918   ->
919    SETL $255,foo & ...
920    INCML ...
921    INCMH ...
922    INCH ...
923    PUSHGO $N,$255,0
924
925   R_MMIX_JMP: (FIXME: Relaxation...)
926    JMP foo
927   ->
928    SETL $255,foo & ...
929    INCML ...
930    INCMH ...
931    INCH ...
932    GO $255,$255,0
933
934   R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in.  */
935
936static bfd_reloc_status_type
937mmix_elf_perform_relocation (isec, howto, datap, addr, value)
938     asection *isec;
939     reloc_howto_type *howto;
940     PTR datap;
941     bfd_vma addr;
942     bfd_vma value;
943{
944  bfd *abfd = isec->owner;
945  bfd_reloc_status_type flag = bfd_reloc_ok;
946  bfd_reloc_status_type r;
947  int offs = 0;
948  int reg = 255;
949
950  /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
951     We handle the differences here and the common sequence later.  */
952  switch (howto->type)
953    {
954    case R_MMIX_GETA:
955      offs = 0;
956      reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
957
958      /* We change to an absolute value.  */
959      value += addr;
960      break;
961
962    case R_MMIX_CBRANCH:
963      {
964	int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16;
965
966	/* Invert the condition and prediction bit, and set the offset
967	   to five instructions ahead.
968
969	   We *can* do better if we want to.  If the branch is found to be
970	   within limits, we could leave the branch as is; there'll just
971	   be a bunch of NOP:s after it.  But we shouldn't see this
972	   sequence often enough that it's worth doing it.  */
973
974	bfd_put_32 (abfd,
975		    (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff)
976		     | (24/4)),
977		    (bfd_byte *) datap);
978
979	/* Put a "GO $255,$255,0" after the common sequence.  */
980	bfd_put_32 (abfd,
981		    ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00,
982		    (bfd_byte *) datap + 20);
983
984	/* Common sequence starts at offset 4.  */
985	offs = 4;
986
987	/* We change to an absolute value.  */
988	value += addr;
989      }
990      break;
991
992    case R_MMIX_PUSHJ_STUBBABLE:
993      /* If the address fits, we're fine.  */
994      if ((value & 3) == 0
995	  /* Note rightshift 0; see R_MMIX_JMP case below.  */
996	  && (r = bfd_check_overflow (complain_overflow_signed,
997				      howto->bitsize,
998				      0,
999				      bfd_arch_bits_per_address (abfd),
1000				      value)) == bfd_reloc_ok)
1001	goto pcrel_mmix_reloc_fits;
1002      else
1003	{
1004	  bfd_size_type size = isec->rawsize ? isec->rawsize : isec->size;
1005
1006	  /* We have the bytes at the PUSHJ insn and need to get the
1007	     position for the stub.  There's supposed to be room allocated
1008	     for the stub.  */
1009	  bfd_byte *stubcontents
1010	    = ((bfd_byte *) datap
1011	       - (addr - (isec->output_section->vma + isec->output_offset))
1012	       + size
1013	       + mmix_elf_section_data (isec)->pjs.stub_offset);
1014	  bfd_vma stubaddr;
1015
1016	  /* The address doesn't fit, so redirect the PUSHJ to the
1017	     location of the stub.  */
1018	  r = mmix_elf_perform_relocation (isec,
1019					   &elf_mmix_howto_table
1020					   [R_MMIX_ADDR19],
1021					   datap,
1022					   addr,
1023					   isec->output_section->vma
1024					   + isec->output_offset
1025					   + size
1026					   + (mmix_elf_section_data (isec)
1027					      ->pjs.stub_offset)
1028					   - addr);
1029	  if (r != bfd_reloc_ok)
1030	    return r;
1031
1032	  stubaddr
1033	    = (isec->output_section->vma
1034	       + isec->output_offset
1035	       + size
1036	       + mmix_elf_section_data (isec)->pjs.stub_offset);
1037
1038	  /* We generate a simple JMP if that suffices, else the whole 5
1039	     insn stub.  */
1040	  if (bfd_check_overflow (complain_overflow_signed,
1041				  elf_mmix_howto_table[R_MMIX_ADDR27].bitsize,
1042				  0,
1043				  bfd_arch_bits_per_address (abfd),
1044				  addr + value - stubaddr) == bfd_reloc_ok)
1045	    {
1046	      bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents);
1047	      r = mmix_elf_perform_relocation (isec,
1048					       &elf_mmix_howto_table
1049					       [R_MMIX_ADDR27],
1050					       stubcontents,
1051					       stubaddr,
1052					       value + addr - stubaddr);
1053	      mmix_elf_section_data (isec)->pjs.stub_offset += 4;
1054
1055	      if (size + mmix_elf_section_data (isec)->pjs.stub_offset
1056		  > isec->size)
1057		abort ();
1058
1059	      return r;
1060	    }
1061	  else
1062	    {
1063	      /* Put a "GO $255,0" after the common sequence.  */
1064	      bfd_put_32 (abfd,
1065			  ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1066			  | 0xff00, (bfd_byte *) stubcontents + 16);
1067
1068	      /* Prepare for the general code to set the first part of the
1069		 linker stub, and */
1070	      value += addr;
1071	      datap = stubcontents;
1072	      mmix_elf_section_data (isec)->pjs.stub_offset
1073		+= MAX_PUSHJ_STUB_SIZE;
1074	    }
1075	}
1076      break;
1077
1078    case R_MMIX_PUSHJ:
1079      {
1080	int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
1081
1082	/* Put a "PUSHGO $N,$255,0" after the common sequence.  */
1083	bfd_put_32 (abfd,
1084		    ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1085		    | (inreg << 16)
1086		    | 0xff00,
1087		    (bfd_byte *) datap + 16);
1088
1089	/* We change to an absolute value.  */
1090	value += addr;
1091      }
1092      break;
1093
1094    case R_MMIX_JMP:
1095      /* This one is a little special.  If we get here on a non-relaxing
1096	 link, and the destination is actually in range, we don't need to
1097	 execute the nops.
1098	 If so, we fall through to the bit-fiddling relocs.
1099
1100	 FIXME: bfd_check_overflow seems broken; the relocation is
1101	 rightshifted before testing, so supply a zero rightshift.  */
1102
1103      if (! ((value & 3) == 0
1104	     && (r = bfd_check_overflow (complain_overflow_signed,
1105					 howto->bitsize,
1106					 0,
1107					 bfd_arch_bits_per_address (abfd),
1108					 value)) == bfd_reloc_ok))
1109	{
1110	  /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1111	     modified below, and put a "GO $255,$255,0" after the
1112	     address-loading sequence.  */
1113	  bfd_put_32 (abfd,
1114		      ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1115		      | 0xffff00,
1116		      (bfd_byte *) datap + 16);
1117
1118	  /* We change to an absolute value.  */
1119	  value += addr;
1120	  break;
1121	}
1122      /* FALLTHROUGH.  */
1123    case R_MMIX_ADDR19:
1124    case R_MMIX_ADDR27:
1125    pcrel_mmix_reloc_fits:
1126      /* These must be in range, or else we emit an error.  */
1127      if ((value & 3) == 0
1128	  /* Note rightshift 0; see above.  */
1129	  && (r = bfd_check_overflow (complain_overflow_signed,
1130				      howto->bitsize,
1131				      0,
1132				      bfd_arch_bits_per_address (abfd),
1133				      value)) == bfd_reloc_ok)
1134	{
1135	  bfd_vma in1
1136	    = bfd_get_32 (abfd, (bfd_byte *) datap);
1137	  bfd_vma highbit;
1138
1139	  if ((bfd_signed_vma) value < 0)
1140	    {
1141	      highbit = 1 << 24;
1142	      value += (1 << (howto->bitsize - 1));
1143	    }
1144	  else
1145	    highbit = 0;
1146
1147	  value >>= 2;
1148
1149	  bfd_put_32 (abfd,
1150		      (in1 & howto->src_mask)
1151		      | highbit
1152		      | (value & howto->dst_mask),
1153		      (bfd_byte *) datap);
1154
1155	  return bfd_reloc_ok;
1156	}
1157      else
1158	return bfd_reloc_overflow;
1159
1160    case R_MMIX_BASE_PLUS_OFFSET:
1161      {
1162	struct bpo_reloc_section_info *bpodata
1163	  = mmix_elf_section_data (isec)->bpo.reloc;
1164	asection *bpo_greg_section
1165	  = bpodata->bpo_greg_section;
1166	struct bpo_greg_section_info *gregdata
1167	  = mmix_elf_section_data (bpo_greg_section)->bpo.greg;
1168	size_t bpo_index
1169	  = gregdata->bpo_reloc_indexes[bpodata->bpo_index++];
1170
1171	/* A consistency check: The value we now have in "relocation" must
1172	   be the same as the value we stored for that relocation.  It
1173	   doesn't cost much, so can be left in at all times.  */
1174	if (value != gregdata->reloc_request[bpo_index].value)
1175	  {
1176	    (*_bfd_error_handler)
1177	      (_("%s: Internal inconsistency error for value for\n\
1178 linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"),
1179	       bfd_get_filename (isec->owner),
1180	       (unsigned long) (value >> 32), (unsigned long) value,
1181	       (unsigned long) (gregdata->reloc_request[bpo_index].value
1182				>> 32),
1183	       (unsigned long) gregdata->reloc_request[bpo_index].value);
1184	    bfd_set_error (bfd_error_bad_value);
1185	    return bfd_reloc_overflow;
1186	  }
1187
1188	/* Then store the register number and offset for that register
1189	   into datap and datap + 1 respectively.  */
1190	bfd_put_8 (abfd,
1191		   gregdata->reloc_request[bpo_index].regindex
1192		   + bpo_greg_section->output_section->vma / 8,
1193		   datap);
1194	bfd_put_8 (abfd,
1195		   gregdata->reloc_request[bpo_index].offset,
1196		   ((unsigned char *) datap) + 1);
1197	return bfd_reloc_ok;
1198      }
1199
1200    case R_MMIX_REG_OR_BYTE:
1201    case R_MMIX_REG:
1202      if (value > 255)
1203	return bfd_reloc_overflow;
1204      bfd_put_8 (abfd, value, datap);
1205      return bfd_reloc_ok;
1206
1207    default:
1208      BAD_CASE (howto->type);
1209    }
1210
1211  /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1212     sequence.  */
1213
1214  /* Lowest two bits must be 0.  We return bfd_reloc_overflow for
1215     everything that looks strange.  */
1216  if (value & 3)
1217    flag = bfd_reloc_overflow;
1218
1219  bfd_put_32 (abfd,
1220	      (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16),
1221	      (bfd_byte *) datap + offs);
1222  bfd_put_32 (abfd,
1223	      (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16),
1224	      (bfd_byte *) datap + offs + 4);
1225  bfd_put_32 (abfd,
1226	      (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16),
1227	      (bfd_byte *) datap + offs + 8);
1228  bfd_put_32 (abfd,
1229	      (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16),
1230	      (bfd_byte *) datap + offs + 12);
1231
1232  return flag;
1233}
1234
1235/* Set the howto pointer for an MMIX ELF reloc (type RELA).  */
1236
1237static void
1238mmix_info_to_howto_rela (abfd, cache_ptr, dst)
1239     bfd *abfd ATTRIBUTE_UNUSED;
1240     arelent *cache_ptr;
1241     Elf_Internal_Rela *dst;
1242{
1243  unsigned int r_type;
1244
1245  r_type = ELF64_R_TYPE (dst->r_info);
1246  BFD_ASSERT (r_type < (unsigned int) R_MMIX_max);
1247  cache_ptr->howto = &elf_mmix_howto_table[r_type];
1248}
1249
1250/* Any MMIX-specific relocation gets here at assembly time or when linking
1251   to other formats (such as mmo); this is the relocation function from
1252   the reloc_table.  We don't get here for final pure ELF linking.  */
1253
1254static bfd_reloc_status_type
1255mmix_elf_reloc (abfd, reloc_entry, symbol, data, input_section,
1256		output_bfd, error_message)
1257     bfd *abfd;
1258     arelent *reloc_entry;
1259     asymbol *symbol;
1260     PTR data;
1261     asection *input_section;
1262     bfd *output_bfd;
1263     char **error_message ATTRIBUTE_UNUSED;
1264{
1265  bfd_vma relocation;
1266  bfd_reloc_status_type r;
1267  asection *reloc_target_output_section;
1268  bfd_reloc_status_type flag = bfd_reloc_ok;
1269  bfd_vma output_base = 0;
1270  bfd_vma addr;
1271
1272  r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1273			     input_section, output_bfd, error_message);
1274
1275  /* If that was all that was needed (i.e. this isn't a final link, only
1276     some segment adjustments), we're done.  */
1277  if (r != bfd_reloc_continue)
1278    return r;
1279
1280  if (bfd_is_und_section (symbol->section)
1281      && (symbol->flags & BSF_WEAK) == 0
1282      && output_bfd == (bfd *) NULL)
1283    return bfd_reloc_undefined;
1284
1285  /* Is the address of the relocation really within the section?  */
1286  if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1287    return bfd_reloc_outofrange;
1288
1289  /* Work out which section the relocation is targeted at and the
1290     initial relocation command value.  */
1291
1292  /* Get symbol value.  (Common symbols are special.)  */
1293  if (bfd_is_com_section (symbol->section))
1294    relocation = 0;
1295  else
1296    relocation = symbol->value;
1297
1298  reloc_target_output_section = bfd_get_output_section (symbol);
1299
1300  /* Here the variable relocation holds the final address of the symbol we
1301     are relocating against, plus any addend.  */
1302  if (output_bfd)
1303    output_base = 0;
1304  else
1305    output_base = reloc_target_output_section->vma;
1306
1307  relocation += output_base + symbol->section->output_offset;
1308
1309  /* Get position of relocation.  */
1310  addr = (reloc_entry->address + input_section->output_section->vma
1311	  + input_section->output_offset);
1312  if (output_bfd != (bfd *) NULL)
1313    {
1314      /* Add in supplied addend.  */
1315      relocation += reloc_entry->addend;
1316
1317      /* This is a partial relocation, and we want to apply the
1318	 relocation to the reloc entry rather than the raw data.
1319	 Modify the reloc inplace to reflect what we now know.  */
1320      reloc_entry->addend = relocation;
1321      reloc_entry->address += input_section->output_offset;
1322      return flag;
1323    }
1324
1325  return mmix_final_link_relocate (reloc_entry->howto, input_section,
1326				   data, reloc_entry->address,
1327				   reloc_entry->addend, relocation,
1328				   bfd_asymbol_name (symbol),
1329				   reloc_target_output_section);
1330}
1331
1332/* Relocate an MMIX ELF section.  Modified from elf32-fr30.c; look to it
1333   for guidance if you're thinking of copying this.  */
1334
1335static bfd_boolean
1336mmix_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1337			   contents, relocs, local_syms, local_sections)
1338     bfd *output_bfd ATTRIBUTE_UNUSED;
1339     struct bfd_link_info *info;
1340     bfd *input_bfd;
1341     asection *input_section;
1342     bfd_byte *contents;
1343     Elf_Internal_Rela *relocs;
1344     Elf_Internal_Sym *local_syms;
1345     asection **local_sections;
1346{
1347  Elf_Internal_Shdr *symtab_hdr;
1348  struct elf_link_hash_entry **sym_hashes;
1349  Elf_Internal_Rela *rel;
1350  Elf_Internal_Rela *relend;
1351  bfd_size_type size;
1352  size_t pjsno = 0;
1353
1354  size = input_section->rawsize ? input_section->rawsize : input_section->size;
1355  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1356  sym_hashes = elf_sym_hashes (input_bfd);
1357  relend = relocs + input_section->reloc_count;
1358
1359  /* Zero the stub area before we start.  */
1360  if (input_section->rawsize != 0
1361      && input_section->size > input_section->rawsize)
1362    memset (contents + input_section->rawsize, 0,
1363	    input_section->size - input_section->rawsize);
1364
1365  for (rel = relocs; rel < relend; rel ++)
1366    {
1367      reloc_howto_type *howto;
1368      unsigned long r_symndx;
1369      Elf_Internal_Sym *sym;
1370      asection *sec;
1371      struct elf_link_hash_entry *h;
1372      bfd_vma relocation;
1373      bfd_reloc_status_type r;
1374      const char *name = NULL;
1375      int r_type;
1376      bfd_boolean undefined_signalled = FALSE;
1377
1378      r_type = ELF64_R_TYPE (rel->r_info);
1379
1380      if (r_type == R_MMIX_GNU_VTINHERIT
1381	  || r_type == R_MMIX_GNU_VTENTRY)
1382	continue;
1383
1384      r_symndx = ELF64_R_SYM (rel->r_info);
1385
1386      howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info);
1387      h = NULL;
1388      sym = NULL;
1389      sec = NULL;
1390
1391      if (r_symndx < symtab_hdr->sh_info)
1392	{
1393	  sym = local_syms + r_symndx;
1394	  sec = local_sections [r_symndx];
1395	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1396
1397	  name = bfd_elf_string_from_elf_section (input_bfd,
1398						  symtab_hdr->sh_link,
1399						  sym->st_name);
1400	  if (name == NULL)
1401	    name = bfd_section_name (input_bfd, sec);
1402	}
1403      else
1404	{
1405	  bfd_boolean unresolved_reloc;
1406
1407	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1408				   r_symndx, symtab_hdr, sym_hashes,
1409				   h, sec, relocation,
1410				   unresolved_reloc, undefined_signalled);
1411	  name = h->root.root.string;
1412	}
1413
1414      if (sec != NULL && elf_discarded_section (sec))
1415	{
1416	  /* For relocs against symbols from removed linkonce sections,
1417	     or sections discarded by a linker script, we just want the
1418	     section contents zeroed.  Avoid any special processing.  */
1419	  _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
1420	  rel->r_info = 0;
1421	  rel->r_addend = 0;
1422	  continue;
1423	}
1424
1425      if (info->relocatable)
1426	{
1427	  /* This is a relocatable link.  For most relocs we don't have to
1428	     change anything, unless the reloc is against a section
1429	     symbol, in which case we have to adjust according to where
1430	     the section symbol winds up in the output section.  */
1431	  if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1432	    rel->r_addend += sec->output_offset;
1433
1434	  /* For PUSHJ stub relocs however, we may need to change the
1435	     reloc and the section contents, if the reloc doesn't reach
1436	     beyond the end of the output section and previous stubs.
1437	     Then we change the section contents to be a PUSHJ to the end
1438	     of the input section plus stubs (we can do that without using
1439	     a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1440	     at the stub location.  */
1441	  if (r_type == R_MMIX_PUSHJ_STUBBABLE)
1442	    {
1443	      /* We've already checked whether we need a stub; use that
1444		 knowledge.  */
1445	      if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno]
1446		  != 0)
1447		{
1448		  Elf_Internal_Rela relcpy;
1449
1450		  if (mmix_elf_section_data (input_section)
1451		      ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE)
1452		    abort ();
1453
1454		  /* There's already a PUSHJ insn there, so just fill in
1455		     the offset bits to the stub.  */
1456		  if (mmix_final_link_relocate (elf_mmix_howto_table
1457						+ R_MMIX_ADDR19,
1458						input_section,
1459						contents,
1460						rel->r_offset,
1461						0,
1462						input_section
1463						->output_section->vma
1464						+ input_section->output_offset
1465						+ size
1466						+ mmix_elf_section_data (input_section)
1467						->pjs.stub_offset,
1468						NULL, NULL) != bfd_reloc_ok)
1469		    return FALSE;
1470
1471		  /* Put a JMP insn at the stub; it goes with the
1472		     R_MMIX_JMP reloc.  */
1473		  bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24,
1474			      contents
1475			      + size
1476			      + mmix_elf_section_data (input_section)
1477			      ->pjs.stub_offset);
1478
1479		  /* Change the reloc to be at the stub, and to a full
1480		     R_MMIX_JMP reloc.  */
1481		  rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP);
1482		  rel->r_offset
1483		    = (size
1484		       + mmix_elf_section_data (input_section)
1485		       ->pjs.stub_offset);
1486
1487		  mmix_elf_section_data (input_section)->pjs.stub_offset
1488		    += MAX_PUSHJ_STUB_SIZE;
1489
1490		  /* Shift this reloc to the end of the relocs to maintain
1491		     the r_offset sorted reloc order.  */
1492		  relcpy = *rel;
1493		  memmove (rel, rel + 1, (char *) relend - (char *) rel);
1494		  relend[-1] = relcpy;
1495
1496		  /* Back up one reloc, or else we'd skip the next reloc
1497		   in turn.  */
1498		  rel--;
1499		}
1500
1501	      pjsno++;
1502	    }
1503	  continue;
1504	}
1505
1506      r = mmix_final_link_relocate (howto, input_section,
1507				    contents, rel->r_offset,
1508				    rel->r_addend, relocation, name, sec);
1509
1510      if (r != bfd_reloc_ok)
1511	{
1512	  bfd_boolean check_ok = TRUE;
1513	  const char * msg = (const char *) NULL;
1514
1515	  switch (r)
1516	    {
1517	    case bfd_reloc_overflow:
1518	      check_ok = info->callbacks->reloc_overflow
1519		(info, (h ? &h->root : NULL), name, howto->name,
1520		 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
1521	      break;
1522
1523	    case bfd_reloc_undefined:
1524	      /* We may have sent this message above.  */
1525	      if (! undefined_signalled)
1526		check_ok = info->callbacks->undefined_symbol
1527		  (info, name, input_bfd, input_section, rel->r_offset,
1528		   TRUE);
1529	      undefined_signalled = TRUE;
1530	      break;
1531
1532	    case bfd_reloc_outofrange:
1533	      msg = _("internal error: out of range error");
1534	      break;
1535
1536	    case bfd_reloc_notsupported:
1537	      msg = _("internal error: unsupported relocation error");
1538	      break;
1539
1540	    case bfd_reloc_dangerous:
1541	      msg = _("internal error: dangerous relocation");
1542	      break;
1543
1544	    default:
1545	      msg = _("internal error: unknown error");
1546	      break;
1547	    }
1548
1549	  if (msg)
1550	    check_ok = info->callbacks->warning
1551	      (info, msg, name, input_bfd, input_section, rel->r_offset);
1552
1553	  if (! check_ok)
1554	    return FALSE;
1555	}
1556    }
1557
1558  return TRUE;
1559}
1560
1561/* Perform a single relocation.  By default we use the standard BFD
1562   routines.  A few relocs we have to do ourselves.  */
1563
1564static bfd_reloc_status_type
1565mmix_final_link_relocate (howto, input_section, contents,
1566			  r_offset, r_addend, relocation, symname, symsec)
1567     reloc_howto_type *howto;
1568     asection *input_section;
1569     bfd_byte *contents;
1570     bfd_vma r_offset;
1571     bfd_signed_vma r_addend;
1572     bfd_vma relocation;
1573     const char *symname;
1574     asection *symsec;
1575{
1576  bfd_reloc_status_type r = bfd_reloc_ok;
1577  bfd_vma addr
1578    = (input_section->output_section->vma
1579       + input_section->output_offset
1580       + r_offset);
1581  bfd_signed_vma srel
1582    = (bfd_signed_vma) relocation + r_addend;
1583
1584  switch (howto->type)
1585    {
1586      /* All these are PC-relative.  */
1587    case R_MMIX_PUSHJ_STUBBABLE:
1588    case R_MMIX_PUSHJ:
1589    case R_MMIX_CBRANCH:
1590    case R_MMIX_ADDR19:
1591    case R_MMIX_GETA:
1592    case R_MMIX_ADDR27:
1593    case R_MMIX_JMP:
1594      contents += r_offset;
1595
1596      srel -= (input_section->output_section->vma
1597	       + input_section->output_offset
1598	       + r_offset);
1599
1600      r = mmix_elf_perform_relocation (input_section, howto, contents,
1601				       addr, srel);
1602      break;
1603
1604    case R_MMIX_BASE_PLUS_OFFSET:
1605      if (symsec == NULL)
1606	return bfd_reloc_undefined;
1607
1608      /* Check that we're not relocating against a register symbol.  */
1609      if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1610		  MMIX_REG_CONTENTS_SECTION_NAME) == 0
1611	  || strcmp (bfd_get_section_name (symsec->owner, symsec),
1612		     MMIX_REG_SECTION_NAME) == 0)
1613	{
1614	  /* Note: This is separated out into two messages in order
1615	     to ease the translation into other languages.  */
1616	  if (symname == NULL || *symname == 0)
1617	    (*_bfd_error_handler)
1618	      (_("%s: base-plus-offset relocation against register symbol: (unknown) in %s"),
1619	       bfd_get_filename (input_section->owner),
1620	       bfd_get_section_name (symsec->owner, symsec));
1621	  else
1622	    (*_bfd_error_handler)
1623	      (_("%s: base-plus-offset relocation against register symbol: %s in %s"),
1624	       bfd_get_filename (input_section->owner), symname,
1625	       bfd_get_section_name (symsec->owner, symsec));
1626	  return bfd_reloc_overflow;
1627	}
1628      goto do_mmix_reloc;
1629
1630    case R_MMIX_REG_OR_BYTE:
1631    case R_MMIX_REG:
1632      /* For now, we handle these alike.  They must refer to an register
1633	 symbol, which is either relative to the register section and in
1634	 the range 0..255, or is in the register contents section with vma
1635	 regno * 8.  */
1636
1637      /* FIXME: A better way to check for reg contents section?
1638	 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1639      if (symsec == NULL)
1640	return bfd_reloc_undefined;
1641
1642      if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1643		  MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1644	{
1645	  if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1646	    {
1647	      /* The bfd_reloc_outofrange return value, though intuitively
1648		 a better value, will not get us an error.  */
1649	      return bfd_reloc_overflow;
1650	    }
1651	  srel /= 8;
1652	}
1653      else if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1654		       MMIX_REG_SECTION_NAME) == 0)
1655	{
1656	  if (srel < 0 || srel > 255)
1657	    /* The bfd_reloc_outofrange return value, though intuitively a
1658	       better value, will not get us an error.  */
1659	    return bfd_reloc_overflow;
1660	}
1661      else
1662	{
1663	  /* Note: This is separated out into two messages in order
1664	     to ease the translation into other languages.  */
1665	  if (symname == NULL || *symname == 0)
1666	    (*_bfd_error_handler)
1667	      (_("%s: register relocation against non-register symbol: (unknown) in %s"),
1668	       bfd_get_filename (input_section->owner),
1669	       bfd_get_section_name (symsec->owner, symsec));
1670	  else
1671	    (*_bfd_error_handler)
1672	      (_("%s: register relocation against non-register symbol: %s in %s"),
1673	       bfd_get_filename (input_section->owner), symname,
1674	       bfd_get_section_name (symsec->owner, symsec));
1675
1676	  /* The bfd_reloc_outofrange return value, though intuitively a
1677	     better value, will not get us an error.  */
1678	  return bfd_reloc_overflow;
1679	}
1680    do_mmix_reloc:
1681      contents += r_offset;
1682      r = mmix_elf_perform_relocation (input_section, howto, contents,
1683				       addr, srel);
1684      break;
1685
1686    case R_MMIX_LOCAL:
1687      /* This isn't a real relocation, it's just an assertion that the
1688	 final relocation value corresponds to a local register.  We
1689	 ignore the actual relocation; nothing is changed.  */
1690      {
1691	asection *regsec
1692	  = bfd_get_section_by_name (input_section->output_section->owner,
1693				     MMIX_REG_CONTENTS_SECTION_NAME);
1694	bfd_vma first_global;
1695
1696	/* Check that this is an absolute value, or a reference to the
1697	   register contents section or the register (symbol) section.
1698	   Absolute numbers can get here as undefined section.  Undefined
1699	   symbols are signalled elsewhere, so there's no conflict in us
1700	   accidentally handling it.  */
1701	if (!bfd_is_abs_section (symsec)
1702	    && !bfd_is_und_section (symsec)
1703	    && strcmp (bfd_get_section_name (symsec->owner, symsec),
1704		       MMIX_REG_CONTENTS_SECTION_NAME) != 0
1705	    && strcmp (bfd_get_section_name (symsec->owner, symsec),
1706		       MMIX_REG_SECTION_NAME) != 0)
1707	{
1708	  (*_bfd_error_handler)
1709	    (_("%s: directive LOCAL valid only with a register or absolute value"),
1710	     bfd_get_filename (input_section->owner));
1711
1712	  return bfd_reloc_overflow;
1713	}
1714
1715      /* If we don't have a register contents section, then $255 is the
1716	 first global register.  */
1717      if (regsec == NULL)
1718	first_global = 255;
1719      else
1720	{
1721	  first_global = bfd_get_section_vma (abfd, regsec) / 8;
1722	  if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1723		      MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1724	    {
1725	      if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1726		/* The bfd_reloc_outofrange return value, though
1727		   intuitively a better value, will not get us an error.  */
1728		return bfd_reloc_overflow;
1729	      srel /= 8;
1730	    }
1731	}
1732
1733	if ((bfd_vma) srel >= first_global)
1734	  {
1735	    /* FIXME: Better error message.  */
1736	    (*_bfd_error_handler)
1737	      (_("%s: LOCAL directive: Register $%ld is not a local register.  First global register is $%ld."),
1738	       bfd_get_filename (input_section->owner), (long) srel, (long) first_global);
1739
1740	    return bfd_reloc_overflow;
1741	  }
1742      }
1743      r = bfd_reloc_ok;
1744      break;
1745
1746    default:
1747      r = _bfd_final_link_relocate (howto, input_section->owner, input_section,
1748				    contents, r_offset,
1749				    relocation, r_addend);
1750    }
1751
1752  return r;
1753}
1754
1755/* Return the section that should be marked against GC for a given
1756   relocation.  */
1757
1758static asection *
1759mmix_elf_gc_mark_hook (asection *sec,
1760		       struct bfd_link_info *info,
1761		       Elf_Internal_Rela *rel,
1762		       struct elf_link_hash_entry *h,
1763		       Elf_Internal_Sym *sym)
1764{
1765  if (h != NULL)
1766    switch (ELF64_R_TYPE (rel->r_info))
1767      {
1768      case R_MMIX_GNU_VTINHERIT:
1769      case R_MMIX_GNU_VTENTRY:
1770	return NULL;
1771      }
1772
1773  return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1774}
1775
1776/* Update relocation info for a GC-excluded section.  We could supposedly
1777   perform the allocation after GC, but there's no suitable hook between
1778   GC (or section merge) and the point when all input sections must be
1779   present.  Better to waste some memory and (perhaps) a little time.  */
1780
1781static bfd_boolean
1782mmix_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
1783			struct bfd_link_info *info ATTRIBUTE_UNUSED,
1784			asection *sec,
1785			const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
1786{
1787  struct bpo_reloc_section_info *bpodata
1788    = mmix_elf_section_data (sec)->bpo.reloc;
1789  asection *allocated_gregs_section;
1790
1791  /* If no bpodata here, we have nothing to do.  */
1792  if (bpodata == NULL)
1793    return TRUE;
1794
1795  allocated_gregs_section = bpodata->bpo_greg_section;
1796
1797  mmix_elf_section_data (allocated_gregs_section)->bpo.greg->n_bpo_relocs
1798    -= bpodata->n_bpo_relocs_this_section;
1799
1800  return TRUE;
1801}
1802
1803/* Sort register relocs to come before expanding relocs.  */
1804
1805static int
1806mmix_elf_sort_relocs (p1, p2)
1807     const PTR p1;
1808     const PTR p2;
1809{
1810  const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1;
1811  const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2;
1812  int r1_is_reg, r2_is_reg;
1813
1814  /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1815     insns.  */
1816  if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3))
1817    return 1;
1818  else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3))
1819    return -1;
1820
1821  r1_is_reg
1822    = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE
1823       || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG);
1824  r2_is_reg
1825    = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE
1826       || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG);
1827  if (r1_is_reg != r2_is_reg)
1828    return r2_is_reg - r1_is_reg;
1829
1830  /* Neither or both are register relocs.  Then sort on full offset.  */
1831  if (r1->r_offset > r2->r_offset)
1832    return 1;
1833  else if (r1->r_offset < r2->r_offset)
1834    return -1;
1835  return 0;
1836}
1837
1838/* Subset of mmix_elf_check_relocs, common to ELF and mmo linking.  */
1839
1840static bfd_boolean
1841mmix_elf_check_common_relocs  (abfd, info, sec, relocs)
1842     bfd *abfd;
1843     struct bfd_link_info *info;
1844     asection *sec;
1845     const Elf_Internal_Rela *relocs;
1846{
1847  bfd *bpo_greg_owner = NULL;
1848  asection *allocated_gregs_section = NULL;
1849  struct bpo_greg_section_info *gregdata = NULL;
1850  struct bpo_reloc_section_info *bpodata = NULL;
1851  const Elf_Internal_Rela *rel;
1852  const Elf_Internal_Rela *rel_end;
1853
1854  /* We currently have to abuse this COFF-specific member, since there's
1855     no target-machine-dedicated member.  There's no alternative outside
1856     the bfd_link_info struct; we can't specialize a hash-table since
1857     they're different between ELF and mmo.  */
1858  bpo_greg_owner = (bfd *) info->base_file;
1859
1860  rel_end = relocs + sec->reloc_count;
1861  for (rel = relocs; rel < rel_end; rel++)
1862    {
1863      switch (ELF64_R_TYPE (rel->r_info))
1864        {
1865	  /* This relocation causes a GREG allocation.  We need to count
1866	     them, and we need to create a section for them, so we need an
1867	     object to fake as the owner of that section.  We can't use
1868	     the ELF dynobj for this, since the ELF bits assume lots of
1869	     DSO-related stuff if that member is non-NULL.  */
1870	case R_MMIX_BASE_PLUS_OFFSET:
1871	  /* We don't do anything with this reloc for a relocatable link.  */
1872	  if (info->relocatable)
1873	    break;
1874
1875	  if (bpo_greg_owner == NULL)
1876	    {
1877	      bpo_greg_owner = abfd;
1878	      info->base_file = (PTR) bpo_greg_owner;
1879	    }
1880
1881	  if (allocated_gregs_section == NULL)
1882	    allocated_gregs_section
1883	      = bfd_get_section_by_name (bpo_greg_owner,
1884					 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1885
1886	  if (allocated_gregs_section == NULL)
1887	    {
1888	      allocated_gregs_section
1889		= bfd_make_section_with_flags (bpo_greg_owner,
1890					       MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME,
1891					       (SEC_HAS_CONTENTS
1892						| SEC_IN_MEMORY
1893						| SEC_LINKER_CREATED));
1894	      /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1895		 treated like any other section, and we'd get errors for
1896		 address overlap with the text section.  Let's set none of
1897		 those flags, as that is what currently happens for usual
1898		 GREG allocations, and that works.  */
1899	      if (allocated_gregs_section == NULL
1900		  || !bfd_set_section_alignment (bpo_greg_owner,
1901						 allocated_gregs_section,
1902						 3))
1903		return FALSE;
1904
1905	      gregdata = (struct bpo_greg_section_info *)
1906		bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info));
1907	      if (gregdata == NULL)
1908		return FALSE;
1909	      mmix_elf_section_data (allocated_gregs_section)->bpo.greg
1910		= gregdata;
1911	    }
1912	  else if (gregdata == NULL)
1913	    gregdata
1914	      = mmix_elf_section_data (allocated_gregs_section)->bpo.greg;
1915
1916	  /* Get ourselves some auxiliary info for the BPO-relocs.  */
1917	  if (bpodata == NULL)
1918	    {
1919	      /* No use doing a separate iteration pass to find the upper
1920		 limit - just use the number of relocs.  */
1921	      bpodata = (struct bpo_reloc_section_info *)
1922		bfd_alloc (bpo_greg_owner,
1923			   sizeof (struct bpo_reloc_section_info)
1924			   * (sec->reloc_count + 1));
1925	      if (bpodata == NULL)
1926		return FALSE;
1927	      mmix_elf_section_data (sec)->bpo.reloc = bpodata;
1928	      bpodata->first_base_plus_offset_reloc
1929		= bpodata->bpo_index
1930		= gregdata->n_max_bpo_relocs;
1931	      bpodata->bpo_greg_section
1932		= allocated_gregs_section;
1933	      bpodata->n_bpo_relocs_this_section = 0;
1934	    }
1935
1936	  bpodata->n_bpo_relocs_this_section++;
1937	  gregdata->n_max_bpo_relocs++;
1938
1939	  /* We don't get another chance to set this before GC; we've not
1940	     set up any hook that runs before GC.  */
1941	  gregdata->n_bpo_relocs
1942	    = gregdata->n_max_bpo_relocs;
1943	  break;
1944
1945	case R_MMIX_PUSHJ_STUBBABLE:
1946	  mmix_elf_section_data (sec)->pjs.n_pushj_relocs++;
1947	  break;
1948	}
1949    }
1950
1951  /* Allocate per-reloc stub storage and initialize it to the max stub
1952     size.  */
1953  if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0)
1954    {
1955      size_t i;
1956
1957      mmix_elf_section_data (sec)->pjs.stub_size
1958	= bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs
1959		     * sizeof (mmix_elf_section_data (sec)
1960			       ->pjs.stub_size[0]));
1961      if (mmix_elf_section_data (sec)->pjs.stub_size == NULL)
1962	return FALSE;
1963
1964      for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++)
1965	mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE;
1966    }
1967
1968  return TRUE;
1969}
1970
1971/* Look through the relocs for a section during the first phase.  */
1972
1973static bfd_boolean
1974mmix_elf_check_relocs (abfd, info, sec, relocs)
1975     bfd *abfd;
1976     struct bfd_link_info *info;
1977     asection *sec;
1978     const Elf_Internal_Rela *relocs;
1979{
1980  Elf_Internal_Shdr *symtab_hdr;
1981  struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
1982  const Elf_Internal_Rela *rel;
1983  const Elf_Internal_Rela *rel_end;
1984
1985  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1986  sym_hashes = elf_sym_hashes (abfd);
1987  sym_hashes_end = sym_hashes + symtab_hdr->sh_size/sizeof(Elf64_External_Sym);
1988  if (!elf_bad_symtab (abfd))
1989    sym_hashes_end -= symtab_hdr->sh_info;
1990
1991  /* First we sort the relocs so that any register relocs come before
1992     expansion-relocs to the same insn.  FIXME: Not done for mmo.  */
1993  qsort ((PTR) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
1994	 mmix_elf_sort_relocs);
1995
1996  /* Do the common part.  */
1997  if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs))
1998    return FALSE;
1999
2000  if (info->relocatable)
2001    return TRUE;
2002
2003  rel_end = relocs + sec->reloc_count;
2004  for (rel = relocs; rel < rel_end; rel++)
2005    {
2006      struct elf_link_hash_entry *h;
2007      unsigned long r_symndx;
2008
2009      r_symndx = ELF64_R_SYM (rel->r_info);
2010      if (r_symndx < symtab_hdr->sh_info)
2011        h = NULL;
2012      else
2013	{
2014	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2015	  while (h->root.type == bfd_link_hash_indirect
2016		 || h->root.type == bfd_link_hash_warning)
2017	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
2018	}
2019
2020      switch (ELF64_R_TYPE (rel->r_info))
2021	{
2022        /* This relocation describes the C++ object vtable hierarchy.
2023           Reconstruct it for later use during GC.  */
2024        case R_MMIX_GNU_VTINHERIT:
2025          if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2026            return FALSE;
2027          break;
2028
2029        /* This relocation describes which C++ vtable entries are actually
2030           used.  Record for later use during GC.  */
2031        case R_MMIX_GNU_VTENTRY:
2032          if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2033            return FALSE;
2034          break;
2035	}
2036    }
2037
2038  return TRUE;
2039}
2040
2041/* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2042   Copied from elf_link_add_object_symbols.  */
2043
2044bfd_boolean
2045_bfd_mmix_check_all_relocs (abfd, info)
2046     bfd *abfd;
2047     struct bfd_link_info *info;
2048{
2049  asection *o;
2050
2051  for (o = abfd->sections; o != NULL; o = o->next)
2052    {
2053      Elf_Internal_Rela *internal_relocs;
2054      bfd_boolean ok;
2055
2056      if ((o->flags & SEC_RELOC) == 0
2057	  || o->reloc_count == 0
2058	  || ((info->strip == strip_all || info->strip == strip_debugger)
2059	      && (o->flags & SEC_DEBUGGING) != 0)
2060	  || bfd_is_abs_section (o->output_section))
2061	continue;
2062
2063      internal_relocs
2064	= _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL,
2065				     (Elf_Internal_Rela *) NULL,
2066				     info->keep_memory);
2067      if (internal_relocs == NULL)
2068	return FALSE;
2069
2070      ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs);
2071
2072      if (! info->keep_memory)
2073	free (internal_relocs);
2074
2075      if (! ok)
2076	return FALSE;
2077    }
2078
2079  return TRUE;
2080}
2081
2082/* Change symbols relative to the reg contents section to instead be to
2083   the register section, and scale them down to correspond to the register
2084   number.  */
2085
2086static bfd_boolean
2087mmix_elf_link_output_symbol_hook (info, name, sym, input_sec, h)
2088     struct bfd_link_info *info ATTRIBUTE_UNUSED;
2089     const char *name ATTRIBUTE_UNUSED;
2090     Elf_Internal_Sym *sym;
2091     asection *input_sec;
2092     struct elf_link_hash_entry *h ATTRIBUTE_UNUSED;
2093{
2094  if (input_sec != NULL
2095      && input_sec->name != NULL
2096      && ELF_ST_TYPE (sym->st_info) != STT_SECTION
2097      && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0)
2098    {
2099      sym->st_value /= 8;
2100      sym->st_shndx = SHN_REGISTER;
2101    }
2102
2103  return TRUE;
2104}
2105
2106/* We fake a register section that holds values that are register numbers.
2107   Having a SHN_REGISTER and register section translates better to other
2108   formats (e.g. mmo) than for example a STT_REGISTER attribute.
2109   This section faking is based on a construct in elf32-mips.c.  */
2110static asection mmix_elf_reg_section;
2111static asymbol mmix_elf_reg_section_symbol;
2112static asymbol *mmix_elf_reg_section_symbol_ptr;
2113
2114/* Handle the special section numbers that a symbol may use.  */
2115
2116void
2117mmix_elf_symbol_processing (abfd, asym)
2118     bfd *abfd ATTRIBUTE_UNUSED;
2119     asymbol *asym;
2120{
2121  elf_symbol_type *elfsym;
2122
2123  elfsym = (elf_symbol_type *) asym;
2124  switch (elfsym->internal_elf_sym.st_shndx)
2125    {
2126    case SHN_REGISTER:
2127      if (mmix_elf_reg_section.name == NULL)
2128	{
2129	  /* Initialize the register section.  */
2130	  mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME;
2131	  mmix_elf_reg_section.flags = SEC_NO_FLAGS;
2132	  mmix_elf_reg_section.output_section = &mmix_elf_reg_section;
2133	  mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol;
2134	  mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr;
2135	  mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME;
2136	  mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM;
2137	  mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section;
2138	  mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol;
2139	}
2140      asym->section = &mmix_elf_reg_section;
2141      break;
2142
2143    default:
2144      break;
2145    }
2146}
2147
2148/* Given a BFD section, try to locate the corresponding ELF section
2149   index.  */
2150
2151static bfd_boolean
2152mmix_elf_section_from_bfd_section (abfd, sec, retval)
2153     bfd *                 abfd ATTRIBUTE_UNUSED;
2154     asection *            sec;
2155     int *                 retval;
2156{
2157  if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0)
2158    *retval = SHN_REGISTER;
2159  else
2160    return FALSE;
2161
2162  return TRUE;
2163}
2164
2165/* Hook called by the linker routine which adds symbols from an object
2166   file.  We must handle the special SHN_REGISTER section number here.
2167
2168   We also check that we only have *one* each of the section-start
2169   symbols, since otherwise having two with the same value would cause
2170   them to be "merged", but with the contents serialized.  */
2171
2172bfd_boolean
2173mmix_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
2174     bfd *abfd;
2175     struct bfd_link_info *info ATTRIBUTE_UNUSED;
2176     Elf_Internal_Sym *sym;
2177     const char **namep ATTRIBUTE_UNUSED;
2178     flagword *flagsp ATTRIBUTE_UNUSED;
2179     asection **secp;
2180     bfd_vma *valp ATTRIBUTE_UNUSED;
2181{
2182  if (sym->st_shndx == SHN_REGISTER)
2183    {
2184      *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME);
2185      (*secp)->flags |= SEC_LINKER_CREATED;
2186    }
2187  else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.'
2188	   && CONST_STRNEQ (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX))
2189    {
2190      /* See if we have another one.  */
2191      struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash,
2192							    *namep,
2193							    FALSE,
2194							    FALSE,
2195							    FALSE);
2196
2197      if (h != NULL && h->type != bfd_link_hash_undefined)
2198	{
2199	  /* How do we get the asymbol (or really: the filename) from h?
2200	     h->u.def.section->owner is NULL.  */
2201	  ((*_bfd_error_handler)
2202	   (_("%s: Error: multiple definition of `%s'; start of %s is set in a earlier linked file\n"),
2203	    bfd_get_filename (abfd), *namep,
2204	    *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)));
2205	   bfd_set_error (bfd_error_bad_value);
2206	   return FALSE;
2207	}
2208    }
2209
2210  return TRUE;
2211}
2212
2213/* We consider symbols matching "L.*:[0-9]+" to be local symbols.  */
2214
2215bfd_boolean
2216mmix_elf_is_local_label_name (abfd, name)
2217     bfd *abfd;
2218     const char *name;
2219{
2220  const char *colpos;
2221  int digits;
2222
2223  /* Also include the default local-label definition.  */
2224  if (_bfd_elf_is_local_label_name (abfd, name))
2225    return TRUE;
2226
2227  if (*name != 'L')
2228    return FALSE;
2229
2230  /* If there's no ":", or more than one, it's not a local symbol.  */
2231  colpos = strchr (name, ':');
2232  if (colpos == NULL || strchr (colpos + 1, ':') != NULL)
2233    return FALSE;
2234
2235  /* Check that there are remaining characters and that they are digits.  */
2236  if (colpos[1] == 0)
2237    return FALSE;
2238
2239  digits = strspn (colpos + 1, "0123456789");
2240  return digits != 0 && colpos[1 + digits] == 0;
2241}
2242
2243/* We get rid of the register section here.  */
2244
2245bfd_boolean
2246mmix_elf_final_link (abfd, info)
2247     bfd *abfd;
2248     struct bfd_link_info *info;
2249{
2250  /* We never output a register section, though we create one for
2251     temporary measures.  Check that nobody entered contents into it.  */
2252  asection *reg_section;
2253
2254  reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME);
2255
2256  if (reg_section != NULL)
2257    {
2258      /* FIXME: Pass error state gracefully.  */
2259      if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS)
2260	_bfd_abort (__FILE__, __LINE__, _("Register section has contents\n"));
2261
2262      /* Really remove the section, if it hasn't already been done.  */
2263      if (!bfd_section_removed_from_list (abfd, reg_section))
2264	{
2265	  bfd_section_list_remove (abfd, reg_section);
2266	  --abfd->section_count;
2267	}
2268    }
2269
2270  if (! bfd_elf_final_link (abfd, info))
2271    return FALSE;
2272
2273  /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2274     the regular linker machinery.  We do it here, like other targets with
2275     special sections.  */
2276  if (info->base_file != NULL)
2277    {
2278      asection *greg_section
2279	= bfd_get_section_by_name ((bfd *) info->base_file,
2280				   MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2281      if (!bfd_set_section_contents (abfd,
2282				     greg_section->output_section,
2283				     greg_section->contents,
2284				     (file_ptr) greg_section->output_offset,
2285				     greg_section->size))
2286	return FALSE;
2287    }
2288  return TRUE;
2289}
2290
2291/* We need to include the maximum size of PUSHJ-stubs in the initial
2292   section size.  This is expected to shrink during linker relaxation.  */
2293
2294static void
2295mmix_set_relaxable_size (abfd, sec, ptr)
2296     bfd *abfd ATTRIBUTE_UNUSED;
2297     asection *sec;
2298     void *ptr;
2299{
2300  struct bfd_link_info *info = ptr;
2301
2302  /* Make sure we only do this for section where we know we want this,
2303     otherwise we might end up resetting the size of COMMONs.  */
2304  if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)
2305    return;
2306
2307  sec->rawsize = sec->size;
2308  sec->size += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2309		* MAX_PUSHJ_STUB_SIZE);
2310
2311  /* For use in relocatable link, we start with a max stubs size.  See
2312     mmix_elf_relax_section.  */
2313  if (info->relocatable && sec->output_section)
2314    mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum
2315      += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2316	  * MAX_PUSHJ_STUB_SIZE);
2317}
2318
2319/* Initialize stuff for the linker-generated GREGs to match
2320   R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker.  */
2321
2322bfd_boolean
2323_bfd_mmix_before_linker_allocation (abfd, info)
2324     bfd *abfd ATTRIBUTE_UNUSED;
2325     struct bfd_link_info *info;
2326{
2327  asection *bpo_gregs_section;
2328  bfd *bpo_greg_owner;
2329  struct bpo_greg_section_info *gregdata;
2330  size_t n_gregs;
2331  bfd_vma gregs_size;
2332  size_t i;
2333  size_t *bpo_reloc_indexes;
2334  bfd *ibfd;
2335
2336  /* Set the initial size of sections.  */
2337  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2338    bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info);
2339
2340  /* The bpo_greg_owner bfd is supposed to have been set by
2341     mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2342     If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET.  */
2343  bpo_greg_owner = (bfd *) info->base_file;
2344  if (bpo_greg_owner == NULL)
2345    return TRUE;
2346
2347  bpo_gregs_section
2348    = bfd_get_section_by_name (bpo_greg_owner,
2349			       MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2350
2351  if (bpo_gregs_section == NULL)
2352    return TRUE;
2353
2354  /* We use the target-data handle in the ELF section data.  */
2355  gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2356  if (gregdata == NULL)
2357    return FALSE;
2358
2359  n_gregs = gregdata->n_bpo_relocs;
2360  gregdata->n_allocated_bpo_gregs = n_gregs;
2361
2362  /* When this reaches zero during relaxation, all entries have been
2363     filled in and the size of the linker gregs can be calculated.  */
2364  gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs;
2365
2366  /* Set the zeroth-order estimate for the GREGs size.  */
2367  gregs_size = n_gregs * 8;
2368
2369  if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size))
2370    return FALSE;
2371
2372  /* Allocate and set up the GREG arrays.  They're filled in at relaxation
2373     time.  Note that we must use the max number ever noted for the array,
2374     since the index numbers were created before GC.  */
2375  gregdata->reloc_request
2376    = bfd_zalloc (bpo_greg_owner,
2377		  sizeof (struct bpo_reloc_request)
2378		  * gregdata->n_max_bpo_relocs);
2379
2380  gregdata->bpo_reloc_indexes
2381    = bpo_reloc_indexes
2382    = bfd_alloc (bpo_greg_owner,
2383		 gregdata->n_max_bpo_relocs
2384		 * sizeof (size_t));
2385  if (bpo_reloc_indexes == NULL)
2386    return FALSE;
2387
2388  /* The default order is an identity mapping.  */
2389  for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2390    {
2391      bpo_reloc_indexes[i] = i;
2392      gregdata->reloc_request[i].bpo_reloc_no = i;
2393    }
2394
2395  return TRUE;
2396}
2397
2398/* Fill in contents in the linker allocated gregs.  Everything is
2399   calculated at this point; we just move the contents into place here.  */
2400
2401bfd_boolean
2402_bfd_mmix_after_linker_allocation (abfd, link_info)
2403     bfd *abfd ATTRIBUTE_UNUSED;
2404     struct bfd_link_info *link_info;
2405{
2406  asection *bpo_gregs_section;
2407  bfd *bpo_greg_owner;
2408  struct bpo_greg_section_info *gregdata;
2409  size_t n_gregs;
2410  size_t i, j;
2411  size_t lastreg;
2412  bfd_byte *contents;
2413
2414  /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2415     when the first R_MMIX_BASE_PLUS_OFFSET is seen.  If there is no such
2416     object, there was no R_MMIX_BASE_PLUS_OFFSET.  */
2417  bpo_greg_owner = (bfd *) link_info->base_file;
2418  if (bpo_greg_owner == NULL)
2419    return TRUE;
2420
2421  bpo_gregs_section
2422    = bfd_get_section_by_name (bpo_greg_owner,
2423			       MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2424
2425  /* This can't happen without DSO handling.  When DSOs are handled
2426     without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2427     section.  */
2428  if (bpo_gregs_section == NULL)
2429    return TRUE;
2430
2431  /* We use the target-data handle in the ELF section data.  */
2432
2433  gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2434  if (gregdata == NULL)
2435    return FALSE;
2436
2437  n_gregs = gregdata->n_allocated_bpo_gregs;
2438
2439  bpo_gregs_section->contents
2440    = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->size);
2441  if (contents == NULL)
2442    return FALSE;
2443
2444  /* Sanity check: If these numbers mismatch, some relocation has not been
2445     accounted for and the rest of gregdata is probably inconsistent.
2446     It's a bug, but it's more helpful to identify it than segfaulting
2447     below.  */
2448  if (gregdata->n_remaining_bpo_relocs_this_relaxation_round
2449      != gregdata->n_bpo_relocs)
2450    {
2451      (*_bfd_error_handler)
2452	(_("Internal inconsistency: remaining %u != max %u.\n\
2453  Please report this bug."),
2454	 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2455	 gregdata->n_bpo_relocs);
2456      return FALSE;
2457    }
2458
2459  for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++)
2460    if (gregdata->reloc_request[i].regindex != lastreg)
2461      {
2462	bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value,
2463		    contents + j * 8);
2464	lastreg = gregdata->reloc_request[i].regindex;
2465	j++;
2466      }
2467
2468  return TRUE;
2469}
2470
2471/* Sort valid relocs to come before non-valid relocs, then on increasing
2472   value.  */
2473
2474static int
2475bpo_reloc_request_sort_fn (p1, p2)
2476     const PTR p1;
2477     const PTR p2;
2478{
2479  const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1;
2480  const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2;
2481
2482  /* Primary function is validity; non-valid relocs sorted after valid
2483     ones.  */
2484  if (r1->valid != r2->valid)
2485    return r2->valid - r1->valid;
2486
2487  /* Then sort on value.  Don't simplify and return just the difference of
2488     the values: the upper bits of the 64-bit value would be truncated on
2489     a host with 32-bit ints.  */
2490  if (r1->value != r2->value)
2491    return r1->value > r2->value ? 1 : -1;
2492
2493  /* As a last re-sort, use the relocation number, so we get a stable
2494     sort.  The *addresses* aren't stable since items are swapped during
2495     sorting.  It depends on the qsort implementation if this actually
2496     happens.  */
2497  return r1->bpo_reloc_no > r2->bpo_reloc_no
2498    ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0);
2499}
2500
2501/* For debug use only.  Dumps the global register allocations resulting
2502   from base-plus-offset relocs.  */
2503
2504void
2505mmix_dump_bpo_gregs (link_info, pf)
2506     struct bfd_link_info *link_info;
2507     bfd_error_handler_type pf;
2508{
2509  bfd *bpo_greg_owner;
2510  asection *bpo_gregs_section;
2511  struct bpo_greg_section_info *gregdata;
2512  unsigned int i;
2513
2514  if (link_info == NULL || link_info->base_file == NULL)
2515    return;
2516
2517  bpo_greg_owner = (bfd *) link_info->base_file;
2518
2519  bpo_gregs_section
2520    = bfd_get_section_by_name (bpo_greg_owner,
2521			       MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2522
2523  if (bpo_gregs_section == NULL)
2524    return;
2525
2526  gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2527  if (gregdata == NULL)
2528    return;
2529
2530  if (pf == NULL)
2531    pf = _bfd_error_handler;
2532
2533  /* These format strings are not translated.  They are for debug purposes
2534     only and never displayed to an end user.  Should they escape, we
2535     surely want them in original.  */
2536  (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2537 n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs,
2538     gregdata->n_max_bpo_relocs,
2539     gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2540     gregdata->n_allocated_bpo_gregs);
2541
2542  if (gregdata->reloc_request)
2543    for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2544      (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx  r: %3u o: %3u\n",
2545	     i,
2546	     (gregdata->bpo_reloc_indexes != NULL
2547	      ? gregdata->bpo_reloc_indexes[i] : (size_t) -1),
2548	     gregdata->reloc_request[i].bpo_reloc_no,
2549	     gregdata->reloc_request[i].valid,
2550
2551	     (unsigned long) (gregdata->reloc_request[i].value >> 32),
2552	     (unsigned long) gregdata->reloc_request[i].value,
2553	     gregdata->reloc_request[i].regindex,
2554	     gregdata->reloc_request[i].offset);
2555}
2556
2557/* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2558   when the last such reloc is done, an index-array is sorted according to
2559   the values and iterated over to produce register numbers (indexed by 0
2560   from the first allocated register number) and offsets for use in real
2561   relocation.
2562
2563   PUSHJ stub accounting is also done here.
2564
2565   Symbol- and reloc-reading infrastructure copied from elf-m10200.c.  */
2566
2567static bfd_boolean
2568mmix_elf_relax_section (abfd, sec, link_info, again)
2569     bfd *abfd;
2570     asection *sec;
2571     struct bfd_link_info *link_info;
2572     bfd_boolean *again;
2573{
2574  Elf_Internal_Shdr *symtab_hdr;
2575  Elf_Internal_Rela *internal_relocs;
2576  Elf_Internal_Rela *irel, *irelend;
2577  asection *bpo_gregs_section = NULL;
2578  struct bpo_greg_section_info *gregdata;
2579  struct bpo_reloc_section_info *bpodata
2580    = mmix_elf_section_data (sec)->bpo.reloc;
2581  /* The initialization is to quiet compiler warnings.  The value is to
2582     spot a missing actual initialization.  */
2583  size_t bpono = (size_t) -1;
2584  size_t pjsno = 0;
2585  bfd *bpo_greg_owner;
2586  Elf_Internal_Sym *isymbuf = NULL;
2587  bfd_size_type size = sec->rawsize ? sec->rawsize : sec->size;
2588
2589  mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0;
2590
2591  /* Assume nothing changes.  */
2592  *again = FALSE;
2593
2594  /* We don't have to do anything if this section does not have relocs, or
2595     if this is not a code section.  */
2596  if ((sec->flags & SEC_RELOC) == 0
2597      || sec->reloc_count == 0
2598      || (sec->flags & SEC_CODE) == 0
2599      || (sec->flags & SEC_LINKER_CREATED) != 0
2600      /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
2601         then nothing to do.  */
2602      || (bpodata == NULL
2603	  && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0))
2604    return TRUE;
2605
2606  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2607
2608  bpo_greg_owner = (bfd *) link_info->base_file;
2609
2610  if (bpodata != NULL)
2611    {
2612      bpo_gregs_section = bpodata->bpo_greg_section;
2613      gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2614      bpono = bpodata->first_base_plus_offset_reloc;
2615    }
2616  else
2617    gregdata = NULL;
2618
2619  /* Get a copy of the native relocations.  */
2620  internal_relocs
2621    = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL,
2622				 (Elf_Internal_Rela *) NULL,
2623				 link_info->keep_memory);
2624  if (internal_relocs == NULL)
2625    goto error_return;
2626
2627  /* Walk through them looking for relaxing opportunities.  */
2628  irelend = internal_relocs + sec->reloc_count;
2629  for (irel = internal_relocs; irel < irelend; irel++)
2630    {
2631      bfd_vma symval;
2632      struct elf_link_hash_entry *h = NULL;
2633
2634      /* We only process two relocs.  */
2635      if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET
2636	  && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE)
2637	continue;
2638
2639      /* We process relocs in a distinctly different way when this is a
2640	 relocatable link (for one, we don't look at symbols), so we avoid
2641	 mixing its code with that for the "normal" relaxation.  */
2642      if (link_info->relocatable)
2643	{
2644	  /* The only transformation in a relocatable link is to generate
2645	     a full stub at the location of the stub calculated for the
2646	     input section, if the relocated stub location, the end of the
2647	     output section plus earlier stubs, cannot be reached.  Thus
2648	     relocatable linking can only lead to worse code, but it still
2649	     works.  */
2650	  if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE)
2651	    {
2652	      /* If we can reach the end of the output-section and beyond
2653		 any current stubs, then we don't need a stub for this
2654		 reloc.  The relaxed order of output stub allocation may
2655		 not exactly match the straightforward order, so we always
2656		 assume presence of output stubs, which will allow
2657		 relaxation only on relocations indifferent to the
2658		 presence of output stub allocations for other relocations
2659		 and thus the order of output stub allocation.  */
2660	      if (bfd_check_overflow (complain_overflow_signed,
2661				      19,
2662				      0,
2663				      bfd_arch_bits_per_address (abfd),
2664				      /* Output-stub location.  */
2665				      sec->output_section->rawsize
2666				      + (mmix_elf_section_data (sec
2667							       ->output_section)
2668					 ->pjs.stubs_size_sum)
2669				      /* Location of this PUSHJ reloc.  */
2670				      - (sec->output_offset + irel->r_offset)
2671				      /* Don't count *this* stub twice.  */
2672				      - (mmix_elf_section_data (sec)
2673					 ->pjs.stub_size[pjsno]
2674					 + MAX_PUSHJ_STUB_SIZE))
2675		  == bfd_reloc_ok)
2676		mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2677
2678	      mmix_elf_section_data (sec)->pjs.stubs_size_sum
2679		+= mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2680
2681	      pjsno++;
2682	    }
2683
2684	  continue;
2685	}
2686
2687      /* Get the value of the symbol referred to by the reloc.  */
2688      if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2689	{
2690	  /* A local symbol.  */
2691	  Elf_Internal_Sym *isym;
2692	  asection *sym_sec;
2693
2694	  /* Read this BFD's local symbols if we haven't already.  */
2695	  if (isymbuf == NULL)
2696	    {
2697	      isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2698	      if (isymbuf == NULL)
2699		isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2700						symtab_hdr->sh_info, 0,
2701						NULL, NULL, NULL);
2702	      if (isymbuf == 0)
2703		goto error_return;
2704	    }
2705
2706	  isym = isymbuf + ELF64_R_SYM (irel->r_info);
2707	  if (isym->st_shndx == SHN_UNDEF)
2708	    sym_sec = bfd_und_section_ptr;
2709	  else if (isym->st_shndx == SHN_ABS)
2710	    sym_sec = bfd_abs_section_ptr;
2711	  else if (isym->st_shndx == SHN_COMMON)
2712	    sym_sec = bfd_com_section_ptr;
2713	  else
2714	    sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2715	  symval = (isym->st_value
2716		    + sym_sec->output_section->vma
2717		    + sym_sec->output_offset);
2718	}
2719      else
2720	{
2721	  unsigned long indx;
2722
2723	  /* An external symbol.  */
2724	  indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2725	  h = elf_sym_hashes (abfd)[indx];
2726	  BFD_ASSERT (h != NULL);
2727	  if (h->root.type != bfd_link_hash_defined
2728	      && h->root.type != bfd_link_hash_defweak)
2729	    {
2730	      /* This appears to be a reference to an undefined symbol.  Just
2731		 ignore it--it will be caught by the regular reloc processing.
2732		 We need to keep BPO reloc accounting consistent, though
2733		 else we'll abort instead of emitting an error message.  */
2734	      if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET
2735		  && gregdata != NULL)
2736		{
2737		  gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2738		  bpono++;
2739		}
2740	      continue;
2741	    }
2742
2743	  symval = (h->root.u.def.value
2744		    + h->root.u.def.section->output_section->vma
2745		    + h->root.u.def.section->output_offset);
2746	}
2747
2748      if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE)
2749	{
2750	  bfd_vma value = symval + irel->r_addend;
2751	  bfd_vma dot
2752	    = (sec->output_section->vma
2753	       + sec->output_offset
2754	       + irel->r_offset);
2755	  bfd_vma stubaddr
2756	    = (sec->output_section->vma
2757	       + sec->output_offset
2758	       + size
2759	       + mmix_elf_section_data (sec)->pjs.stubs_size_sum);
2760
2761	  if ((value & 3) == 0
2762	      && bfd_check_overflow (complain_overflow_signed,
2763				     19,
2764				     0,
2765				     bfd_arch_bits_per_address (abfd),
2766				     value - dot
2767				     - (value > dot
2768					? mmix_elf_section_data (sec)
2769					->pjs.stub_size[pjsno]
2770					: 0))
2771	      == bfd_reloc_ok)
2772	    /* If the reloc fits, no stub is needed.  */
2773	    mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2774	  else
2775	    /* Maybe we can get away with just a JMP insn?  */
2776	    if ((value & 3) == 0
2777		&& bfd_check_overflow (complain_overflow_signed,
2778				       27,
2779				       0,
2780				       bfd_arch_bits_per_address (abfd),
2781				       value - stubaddr
2782				       - (value > dot
2783					  ? mmix_elf_section_data (sec)
2784					  ->pjs.stub_size[pjsno] - 4
2785					  : 0))
2786		== bfd_reloc_ok)
2787	      /* Yep, account for a stub consisting of a single JMP insn.  */
2788	      mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4;
2789	  else
2790	    /* Nope, go for the full insn stub.  It doesn't seem useful to
2791	       emit the intermediate sizes; those will only be useful for
2792	       a >64M program assuming contiguous code.  */
2793	    mmix_elf_section_data (sec)->pjs.stub_size[pjsno]
2794	      = MAX_PUSHJ_STUB_SIZE;
2795
2796	  mmix_elf_section_data (sec)->pjs.stubs_size_sum
2797	    += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2798	  pjsno++;
2799	  continue;
2800	}
2801
2802      /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc.  */
2803
2804      gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value
2805	= symval + irel->r_addend;
2806      gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE;
2807      gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2808    }
2809
2810  /* Check if that was the last BPO-reloc.  If so, sort the values and
2811     calculate how many registers we need to cover them.  Set the size of
2812     the linker gregs, and if the number of registers changed, indicate
2813     that we need to relax some more because we have more work to do.  */
2814  if (gregdata != NULL
2815      && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0)
2816    {
2817      size_t i;
2818      bfd_vma prev_base;
2819      size_t regindex;
2820
2821      /* First, reset the remaining relocs for the next round.  */
2822      gregdata->n_remaining_bpo_relocs_this_relaxation_round
2823	= gregdata->n_bpo_relocs;
2824
2825      qsort ((PTR) gregdata->reloc_request,
2826	     gregdata->n_max_bpo_relocs,
2827	     sizeof (struct bpo_reloc_request),
2828	     bpo_reloc_request_sort_fn);
2829
2830      /* Recalculate indexes.  When we find a change (however unlikely
2831	 after the initial iteration), we know we need to relax again,
2832	 since items in the GREG-array are sorted by increasing value and
2833	 stored in the relaxation phase.  */
2834      for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2835	if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2836	    != i)
2837	  {
2838	    gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2839	      = i;
2840	    *again = TRUE;
2841	  }
2842
2843      /* Allocate register numbers (indexing from 0).  Stop at the first
2844	 non-valid reloc.  */
2845      for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value;
2846	   i < gregdata->n_bpo_relocs;
2847	   i++)
2848	{
2849	  if (gregdata->reloc_request[i].value > prev_base + 255)
2850	    {
2851	      regindex++;
2852	      prev_base = gregdata->reloc_request[i].value;
2853	    }
2854	  gregdata->reloc_request[i].regindex = regindex;
2855	  gregdata->reloc_request[i].offset
2856	    = gregdata->reloc_request[i].value - prev_base;
2857	}
2858
2859      /* If it's not the same as the last time, we need to relax again,
2860	 because the size of the section has changed.  I'm not sure we
2861	 actually need to do any adjustments since the shrinking happens
2862	 at the start of this section, but better safe than sorry.  */
2863      if (gregdata->n_allocated_bpo_gregs != regindex + 1)
2864	{
2865	  gregdata->n_allocated_bpo_gregs = regindex + 1;
2866	  *again = TRUE;
2867	}
2868
2869      bpo_gregs_section->size = (regindex + 1) * 8;
2870    }
2871
2872  if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2873    {
2874      if (! link_info->keep_memory)
2875	free (isymbuf);
2876      else
2877	{
2878	  /* Cache the symbols for elf_link_input_bfd.  */
2879	  symtab_hdr->contents = (unsigned char *) isymbuf;
2880	}
2881    }
2882
2883  if (internal_relocs != NULL
2884      && elf_section_data (sec)->relocs != internal_relocs)
2885    free (internal_relocs);
2886
2887  if (sec->size < size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2888    abort ();
2889
2890  if (sec->size > size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2891    {
2892      sec->size = size + mmix_elf_section_data (sec)->pjs.stubs_size_sum;
2893      *again = TRUE;
2894    }
2895
2896  return TRUE;
2897
2898 error_return:
2899  if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2900    free (isymbuf);
2901  if (internal_relocs != NULL
2902      && elf_section_data (sec)->relocs != internal_relocs)
2903    free (internal_relocs);
2904  return FALSE;
2905}
2906
2907#define ELF_ARCH		bfd_arch_mmix
2908#define ELF_MACHINE_CODE 	EM_MMIX
2909
2910/* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2911   However, that's too much for something somewhere in the linker part of
2912   BFD; perhaps the start-address has to be a non-zero multiple of this
2913   number, or larger than this number.  The symptom is that the linker
2914   complains: "warning: allocated section `.text' not in segment".  We
2915   settle for 64k; the page-size used in examples is 8k.
2916   #define ELF_MAXPAGESIZE 0x10000
2917
2918   Unfortunately, this causes excessive padding in the supposedly small
2919   for-education programs that are the expected usage (where people would
2920   inspect output).  We stick to 256 bytes just to have *some* default
2921   alignment.  */
2922#define ELF_MAXPAGESIZE 0x100
2923
2924#define TARGET_BIG_SYM		bfd_elf64_mmix_vec
2925#define TARGET_BIG_NAME		"elf64-mmix"
2926
2927#define elf_info_to_howto_rel		NULL
2928#define elf_info_to_howto		mmix_info_to_howto_rela
2929#define elf_backend_relocate_section	mmix_elf_relocate_section
2930#define elf_backend_gc_mark_hook	mmix_elf_gc_mark_hook
2931#define elf_backend_gc_sweep_hook	mmix_elf_gc_sweep_hook
2932
2933#define elf_backend_link_output_symbol_hook \
2934	mmix_elf_link_output_symbol_hook
2935#define elf_backend_add_symbol_hook	mmix_elf_add_symbol_hook
2936
2937#define elf_backend_check_relocs	mmix_elf_check_relocs
2938#define elf_backend_symbol_processing	mmix_elf_symbol_processing
2939#define elf_backend_omit_section_dynsym \
2940  ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
2941
2942#define bfd_elf64_bfd_is_local_label_name \
2943	mmix_elf_is_local_label_name
2944
2945#define elf_backend_may_use_rel_p	0
2946#define elf_backend_may_use_rela_p	1
2947#define elf_backend_default_use_rela_p	1
2948
2949#define elf_backend_can_gc_sections	1
2950#define elf_backend_section_from_bfd_section \
2951	mmix_elf_section_from_bfd_section
2952
2953#define bfd_elf64_new_section_hook	mmix_elf_new_section_hook
2954#define bfd_elf64_bfd_final_link	mmix_elf_final_link
2955#define bfd_elf64_bfd_relax_section	mmix_elf_relax_section
2956
2957#include "elf64-target.h"
2958