• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt/router/samba-3.0.25b/docs/htmldocs/Samba3-ByExample/
1<html><head><meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"><title>Chapter�16.�Networking Primer</title><link rel="stylesheet" href="samba.css" type="text/css"><meta name="generator" content="DocBook XSL Stylesheets V1.71.0"><link rel="start" href="index.html" title="Samba-3 by Example"><link rel="up" href="RefSection.html" title="Part�III.�Reference Section"><link rel="prev" href="appendix.html" title="Chapter�15.�A Collection of Useful Tidbits"><link rel="next" href="gpl.html" title="Appendix�A.�GNU General Public License"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Chapter�16.�Networking Primer</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="appendix.html">Prev</a>�</td><th width="60%" align="center">Part�III.�Reference Section</th><td width="20%" align="right">�<a accesskey="n" href="gpl.html">Next</a></td></tr></table><hr></div><div class="chapter" lang="en"><div class="titlepage"><div><div><h2 class="title"><a name="primer"></a>Chapter�16.�Networking Primer</h2></div></div></div><div class="toc"><p><b>Table of Contents</b></p><dl><dt><span class="sect1"><a href="primer.html#id386080">Requirements and Notes</a></span></dt><dt><span class="sect1"><a href="primer.html#id386216">Introduction</a></span></dt><dd><dl><dt><span class="sect2"><a href="primer.html#id386266">Assignment Tasks</a></span></dt></dl></dd><dt><span class="sect1"><a href="primer.html#id386373">Exercises</a></span></dt><dd><dl><dt><span class="sect2"><a href="primer.html#id386486">Single-Machine Broadcast Activity</a></span></dt><dt><span class="sect2"><a href="primer.html#secondmachine">Second Machine Startup Broadcast Interaction</a></span></dt><dt><span class="sect2"><a href="primer.html#id387580">Simple Windows Client Connection Characteristics</a></span></dt><dt><span class="sect2"><a href="primer.html#id388041">Windows 200x/XP Client Interaction with Samba-3</a></span></dt><dt><span class="sect2"><a href="primer.html#id388566">Conclusions to Exercises</a></span></dt></dl></dd><dt><span class="sect1"><a href="primer.html#chap01conc">Dissection and Discussion</a></span></dt><dd><dl><dt><span class="sect2"><a href="primer.html#id388668">Technical Issues</a></span></dt></dl></dd><dt><span class="sect1"><a href="primer.html#chap01qa">Questions and Answers</a></span></dt></dl></div><p>
2	You are about to use the equivalent of a microscope to look at the information
3	that runs through the veins of a Windows network. We do more to observe the information than
4	to interrogate it. When you are done with this primer, you should have a good understanding
5	of the types of information that flow over the network. Do not worry, this is not
6	a biology lesson. We won't lose you in unnecessary detail. Think to yourself, &#8220;<span class="quote">This
7	is easy,</span>&#8221; then tackle each exercise without fear.
8	</p><p>
9	Samba can be configured with a minimum of complexity. Simplicity should be mastered
10	before you get too deeply into complexities. Let's get moving: we have work to do.
11	</p><div class="sect1" lang="en"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="id386080"></a>Requirements and Notes</h2></div></div></div><p>
12	Successful completion of this primer requires two Microsoft Windows 9x/Me Workstations
13	as well as two Microsoft Windows XP Professional Workstations, each equipped with an Ethernet
14	card connected using a hub. Also required is one additional server (either Windows
15	NT4 Server, Windows 2000 Server, or a Samba-3 on UNIX/Linux server) running a network
16	sniffer and analysis application (ethereal is a good choice). All work should be undertaken
17	on a quiet network where there is no other traffic. It is best to use a dedicated hub
18	with only the machines under test connected at the time of the exercises.
19	</p><p><a class="indexterm" name="id386095"></a>
20	Ethereal has become the network protocol analyzer of choice for many network administrators. 
21	You may find more information regarding this tool from the 
22	<a href="http://www.ethereal.com" target="_top">Ethereal</a> Web site. Ethereal installation 
23	files for Windows may be obtained from the Ethereal Web site. Ethereal is provided with 
24	SUSE and Red Hat Linux distributions, as well as with many other Linux distributions. It may 
25	not be installed on your system by default. If it is not installed, you may also need 
26	to install the <code class="literal">libpcap </code> software before you can install or use Ethereal. 
27	Please refer to the instructions for your operating system or to the Ethereal Web site 
28	for information regarding the installation and operation of Ethereal.
29	</p><p>
30	To obtain <code class="literal">ethereal</code> for your system, please visit the Ethereal
31	<a href="http://www.ethereal.com/download.html#binaries" target="_top">download site</a>.
32	</p><div class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3><p>
33	The successful completion of this chapter requires that you capture network traffic
34	using <code class="literal">Ethereal</code>. It is recommended that you use a hub, not an
35	Ethernet switch. It is necessary for the device used to act as a repeater, not as a
36	filter. Ethernet switches may filter out traffic that is not directed at the machine
37	that is used to monitor traffic; this would not allow you to complete the projects.
38	</p></div><p>
39	<a class="indexterm" name="id386154"></a>
40	Do not worry too much if you do not have access to all this equipment; network captures
41	from the exercises are provided on the enclosed CD-ROM. This makes it possible to dive directly
42	into the analytical part of the exercises if you so desire.
43	</p><p><a class="indexterm" name="id386168"></a><a class="indexterm" name="id386179"></a>
44	Please do not be alarmed at the use of a high-powered analysis tool (Ethereal) in this
45	primer.  We expose you only to a minimum of detail necessary to complete 
46	the exercises. If you choose to use any other network sniffer and protocol
47	analysis tool, be advised that it may not allow you to examine the contents of
48	recently added security protocols used by Windows 200x/XP.
49	</p><p>
50	You could just skim through the exercises and try to absorb the key points made. 
51	The exercises provide all the information necessary to convince the die-hard network 
52	engineer. You possibly do not require so much convincing and may just want to move on, 
53	in which case you should at least read <a href="primer.html#chap01conc" title="Dissection and Discussion">???</a>.
54	</p><p>
55	<a href="primer.html#chap01qa" title="Questions and Answers">???</a> also provides useful information
56	that may help you to avoid significantly time-consuming networking problems.
57	</p></div><div class="sect1" lang="en"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="id386216"></a>Introduction</h2></div></div></div><p>
58	The purpose of this chapter is to create familiarity with key aspects of Microsoft Windows
59	network computing. If you want a solid technical grounding, do not gloss over these exercises. 
60	The points covered are recurrent issues on the Samba mailing lists. 
61	</p><p><a class="indexterm" name="id386228"></a>
62	You can see from these exercises that Windows networking involves quite a lot of network
63	broadcast traffic. You can look into the contents of some packets, but only to see
64	some particular information that the Windows client sends to a server in the course of
65	establishing a network connection.
66	</p><p>
67	To many people, browsing is everything that happens when one uses Microsoft Internet Explorer.
68	It is only when you start looking at network traffic and noting the protocols
69	and types of information that are used that you can begin to appreciate the complexities of
70	Windows networking and, more importantly, what needs to be configured so that it can work.
71	Detailed information regarding browsing is provided in the recommended
72	preparatory reading.
73	</p><p>
74	Recommended preparatory reading: <span class="emphasis"><em>The Official Samba-3 HOWTO and Reference Guide, Second
75	Edition</em></span> (TOSHARG2) Chapter 9, &#8220;<span class="quote">Network Browsing,</span>&#8221; and Chapter 3,
76	&#8220;<span class="quote">Server Types and Security Modes.</span>&#8221;
77	</p><div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title"><a name="id386266"></a>Assignment Tasks</h3></div></div></div><p><a class="indexterm" name="id386273"></a>
78		You are about to witness how Microsoft Windows computer networking functions. The
79		exercises step through identification of how a client machine establishes a
80		connection to a remote Windows server. You observe how Windows machines find
81		each other (i.e., how browsing works) and how the two key types of user identification
82		(share mode security and user mode security) are affected.
83		</p><p><a class="indexterm" name="id386287"></a>
84		The networking protocols used by MS Windows networking when working with Samba
85		use TCP/IP as the transport protocol. The protocols that are specific to Windows
86		networking are encapsulated in TCP/IP. The network analyzer we use (Ethereal)
87		is able to show you the contents of the TCP/IP packets (or messages).
88		</p><div class="procedure"><a name="chap01tasks"></a><p class="title"><b>Procedure�16.1.�Diagnostic Tasks</b></p><ol type="1"><li><p><a class="indexterm" name="id386318"></a><a class="indexterm" name="id386329"></a><a class="indexterm" name="id386337"></a>
89			Examine network traces to witness SMB broadcasts, host announcements,
90			and name resolution processes.
91			</p></li><li><p>
92			Examine network traces to witness how share mode security functions.
93			</p></li><li><p>
94			Examine network traces to witness the use of user mode security.
95			</p></li><li><p>
96			Review traces of network logons for a Windows 9x/Me client as well as
97			a domain logon for a Windows XP Professional client.
98			</p></li></ol></div></div></div><div class="sect1" lang="en"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="id386373"></a>Exercises</h2></div></div></div><p>
99	<a class="indexterm" name="id386381"></a>
100	You are embarking on a course of discovery. The first part of the exercise requires
101	two MS Windows 9x/Me systems. We called one machine <code class="constant">WINEPRESSME</code> and the
102	other <code class="constant">MILGATE98</code>. Each needs an IP address; we used <code class="literal">10.1.1.10</code>
103	and <code class="literal">10.1.1.11</code>. The test machines need to be networked via a <span class="emphasis"><em>hub</em></span>. A UNIX/Linux
104	machine is required to run <code class="literal">Ethereal</code> to enable the network activity to be captured.
105	It is important that the machine from which network activity is captured must not interfere with
106	the operation of the Windows workstations. It is helpful for this machine to be passive (does not
107	send broadcast information) to the network.
108	</p><p>
109	For these exercises, our test environment consisted of a SUSE 9.2 Professional Linux Workstation running
110	VMWare 4.5. The following VMWare images were prepared:
111	</p><div class="itemizedlist"><ul type="disc"><li><p>Windows 98  name: MILGATE98</p></li><li><p>Windows Me  name: WINEPRESSME</p></li><li><p>Windows XP Professional  name: LightrayXP</p></li><li><p>Samba-3.0.20 running on a SUSE Enterprise Linux 9</p></li></ul></div><p>
112	Choose a workgroup name (MIDEARTH) for each exercise.
113	</p><p>
114	<a class="indexterm" name="id386463"></a>
115	The network captures provided on the CD-ROM included with this book were captured using <code class="constant">Ethereal</code>
116	version <code class="literal">0.10.6</code>. A later version suffices without problems, but an earlier version may not
117	expose all the information needed. Each capture file has been decoded and listed as a trace file. A summary of all
118	packets has also been included. This makes it possible for you to do all the studying you like without the need to
119	perform the time-consuming equipment configuration and test work. This is a good time to point out that the value
120	that can be derived from this book really does warrant your taking sufficient time to practice each exercise with
121	care and attention to detail.
122	</p><div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title"><a name="id386486"></a>Single-Machine Broadcast Activity</h3></div></div></div><p>
123	In this section, we start a single Windows 9x/Me machine, then monitor network activity for 30 minutes.
124	</p><div class="procedure"><a name="id386496"></a><p class="title"><b>Procedure�16.2.�Monitoring Windows 9x Steps</b></p><ol type="1"><li><p>
125		Start the machine from which network activity will be monitored (using <code class="literal">ethereal</code>).
126		Launch <code class="literal">ethereal</code>, click
127			<span class="guimenu">Capture</span> &#8594; <span class="guimenuitem">Start</span>.
128		</p><p>
129		Click the following: 
130		</p><div class="orderedlist"><ol type="1"><li><p>Update list of packets in real time</p></li><li><p>Automatic scrolling in live capture</p></li><li><p>Enable MAC name resolution</p></li><li><p>Enable network name resolution</p></li><li><p>Enable transport name resolution</p></li></ol></div><p>
131		Click <span class="guibutton">OK</span>.
132		</p></li><li><p>
133		Start the Windows 9x/Me machine to be monitored. Let it run for a full 30 minutes. While monitoring,
134		do not press any keyboard keys, do not click any on-screen icons or menus, and do not answer any dialog boxes.
135		</p></li><li><p>
136		At the conclusion of 30 minutes, stop the capture. Save the capture to a file so you can go back to it later.
137		Leave this machine running in preparation for the task in <a href="primer.html#secondmachine" title="Second Machine Startup Broadcast Interaction">???</a>.
138		</p></li><li><p>
139		Analyze the capture. Identify each discrete message type that was captured. Note what transport protocol
140		was used. Identify the timing between messages of identical types.
141		</p></li></ol></div><div class="sect3" lang="en"><div class="titlepage"><div><div><h4 class="title"><a name="id386612"></a>Findings</h4></div></div></div><p>
142		The summary of the first 10 minutes of the packet capture should look like <a href="primer.html#pktcap01" title="Figure�16.1.�Windows Me Broadcasts The First 10 Minutes">???</a>.
143		A screenshot of a later stage of the same capture is shown in <a href="primer.html#pktcap02" title="Figure�16.2.�Windows Me Later Broadcast Sample">???</a>.
144		</p><div class="figure"><a name="pktcap01"></a><p class="title"><b>Figure�16.1.�Windows Me  Broadcasts  The First 10 Minutes</b></p><div class="figure-contents"><div class="mediaobject"><img src="images/WINREPRESSME-Capture.png" width="216" alt="Windows Me Broadcasts The First 10 Minutes"></div></div></div><br class="figure-break"><div class="figure"><a name="pktcap02"></a><p class="title"><b>Figure�16.2.�Windows Me  Later Broadcast Sample</b></p><div class="figure-contents"><div class="mediaobject"><img src="images/WINREPRESSME-Capture2.png" width="226.8" alt="Windows Me Later Broadcast Sample"></div></div></div><br class="figure-break"><p><a class="indexterm" name="id386725"></a><a class="indexterm" name="id386736"></a>
145		Broadcast messages observed are shown in <a href="primer.html#capsstats01" title="Table�16.1.�Windows Me Startup Broadcast Capture Statistics">???</a>.
146		Actual observations vary a little, but not by much.
147		Early in the startup process, the Windows Me machine broadcasts its name for two reasons:
148		first to ensure that its name would not result in a name clash, and second to establish its
149		presence with the Local Master Browser (LMB).
150		</p><div class="table"><a name="capsstats01"></a><p class="title"><b>Table�16.1.�Windows Me  Startup Broadcast Capture Statistics</b></p><div class="table-contents"><table summary="Windows Me  Startup Broadcast Capture Statistics" border="1"><colgroup><col align="left"><col align="center"><col align="center"><col align="left"></colgroup><thead><tr><th align="left">Message</th><th align="center">Type</th><th align="center">Num</th><th align="left">Notes</th></tr></thead><tbody><tr><td align="left">WINEPRESSME&lt;00&gt;</td><td align="center">Reg</td><td align="center">8</td><td align="left">4 lots of 2, 0.6 sec apart</td></tr><tr><td align="left">WINEPRESSME&lt;03&gt;</td><td align="center">Reg</td><td align="center">8</td><td align="left">4 lots of 2, 0.6 sec apart</td></tr><tr><td align="left">WINEPRESSME&lt;20&gt;</td><td align="center">Reg</td><td align="center">8</td><td align="left">4 lots of 2, 0.75 sec apart</td></tr><tr><td align="left">MIDEARTH&lt;00&gt;</td><td align="center">Reg</td><td align="center">8</td><td align="left">4 lots of 2, 0.75 sec apart</td></tr><tr><td align="left">MIDEARTH&lt;1d&gt;</td><td align="center">Reg</td><td align="center">8</td><td align="left">4 lots of 2, 0.75 sec apart</td></tr><tr><td align="left">MIDEARTH&lt;1e&gt;</td><td align="center">Reg</td><td align="center">8</td><td align="left">4 lots of 2, 0.75 sec apart</td></tr><tr><td align="left">MIDEARTH&lt;1b&gt;</td><td align="center">Qry</td><td align="center">84</td><td align="left">300 sec apart at stable operation</td></tr><tr><td align="left">__MSBROWSE__</td><td align="center">Reg</td><td align="center">8</td><td align="left">Registered after winning election to Browse Master</td></tr><tr><td align="left">JHT&lt;03&gt;</td><td align="center">Reg</td><td align="center">8</td><td align="left">4 x 2. This is the name of the user that logged onto Windows</td></tr><tr><td align="left">Host Announcement WINEPRESSME</td><td align="center">Ann</td><td align="center">2</td><td align="left">Observed at 10 sec</td></tr><tr><td align="left">Domain/Workgroup Announcement MIDEARTH</td><td align="center">Ann</td><td align="center">18</td><td align="left">300 sec apart at stable operation</td></tr><tr><td align="left">Local Master Announcement WINEPRESSME</td><td align="center">Ann</td><td align="center">18</td><td align="left">300 sec apart at stable operation</td></tr><tr><td align="left">Get Backup List Request</td><td align="center">Qry</td><td align="center">12</td><td align="left">6 x 2 early in startup, 0.5 sec apart</td></tr><tr><td align="left">Browser Election Request</td><td align="center">Ann</td><td align="center">10</td><td align="left">5 x 2 early in startup</td></tr><tr><td align="left">Request Announcement WINEPRESSME</td><td align="center">Ann</td><td align="center">4</td><td align="left">Early in startup</td></tr></tbody></table></div></div><br class="table-break"><p><a class="indexterm" name="id387071"></a><a class="indexterm" name="id387079"></a>
151		From the packet trace, it should be noted that no messages were propagated over TCP/IP;
152		all messages employed UDP/IP.  When steady-state operation has been achieved, there is a cycle
153		of various announcements, re-election of a browse master, and name queries. These create
154		the symphony of announcements by which network browsing is made possible.
155		</p><p><a class="indexterm" name="id387093"></a>
156		For detailed information regarding the precise behavior of the CIFS/SMB protocols,
157		refer to the book &#8220;<span class="quote">Implementing CIFS: The Common Internet File System,</span>&#8221;
158		by Christopher Hertel, (Prentice Hall PTR, ISBN: 013047116X).
159		</p></div></div><div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title"><a name="secondmachine"></a>Second Machine Startup Broadcast Interaction</h3></div></div></div><p>
160	At this time, the machine you used to capture the single-system startup trace should still be running.
161	The objective of this task is to identify the interaction of two machines in respect to broadcast activity.
162	</p><div class="procedure"><a name="id387125"></a><p class="title"><b>Procedure�16.3.�Monitoring of Second Machine Activity</b></p><ol type="1"><li><p>
163		On the machine from which network activity will be monitored (using <code class="literal">ethereal</code>),
164		launch <code class="literal">ethereal</code> and click
165			<span class="guimenu">Capture</span> &#8594; <span class="guimenuitem">Start</span>.
166		</p><p>
167		Click: 
168		</p><div class="orderedlist"><ol type="1"><li><p>Update list of packets in real time</p></li><li><p>Automatic scrolling in live capture</p></li><li><p>Enable MAC name resolution</p></li><li><p>Enable network name resolution</p></li><li><p>Enable transport name resolution</p></li></ol></div><p>
169		Click <span class="guibutton">OK</span>.
170		</p></li><li><p>
171		Start the second Windows 9x/Me machine. Let it run for 15 to 20 minutes. While monitoring, do not press
172		any keyboard keys, do not click any on-screen icons or menus, and do not answer any dialog boxes.
173		</p></li><li><p>
174		At the conclusion of the capture time, stop the capture. Be sure to save the captured data so you
175		can examine the network data capture again at a later date should that be necessary.
176		</p></li><li><p>
177		Analyze the capture trace, taking note of the transport protocols used, the types of messages observed,
178		and what interaction took place between the two machines. Leave both machines running for the next task.
179		</p></li></ol></div><div class="sect3" lang="en"><div class="titlepage"><div><div><h4 class="title"><a name="id387234"></a>Findings</h4></div></div></div><p>
180		<a href="primer.html#capsstats02" title="Table�16.2.�Second Machine (Windows 98) Capture Statistics">???</a> summarizes capture statistics observed. As in the previous case,
181		all announcements used UDP/IP broadcasts. Also, as was observed with the last example, the second
182		Windows 9x/Me machine broadcasts its name on startup to ensure that there exists no name clash
183		(i.e., the name is already registered by another machine) on the network segment. Those wishing
184		to explore the inner details of the precise mechanism of how this functions should refer to
185		&#8220;<span class="quote">Implementing CIFS: The Common Internet File System.</span>&#8221;
186		</p><div class="table"><a name="capsstats02"></a><p class="title"><b>Table�16.2.�Second Machine (Windows 98)  Capture Statistics</b></p><div class="table-contents"><table summary="Second Machine (Windows 98)  Capture Statistics" border="1"><colgroup><col align="left"><col align="center"><col align="center"><col align="left"></colgroup><thead><tr><th align="left">Message</th><th align="center">Type</th><th align="center">Num</th><th align="left">Notes</th></tr></thead><tbody><tr><td align="left">MILGATE98&lt;00&gt;</td><td align="center">Reg</td><td align="center">8</td><td align="left">4 lots of 2, 0.6 sec apart</td></tr><tr><td align="left">MILGATE98&lt;03&gt;</td><td align="center">Reg</td><td align="center">8</td><td align="left">4 lots of 2, 0.6 sec apart</td></tr><tr><td align="left">MILGATE98&lt;20&gt;</td><td align="center">Reg</td><td align="center">8</td><td align="left">4 lots of 2, 0.75 sec apart</td></tr><tr><td align="left">MIDEARTH&lt;00&gt;</td><td align="center">Reg</td><td align="center">8</td><td align="left">4 lots of 2, 0.75 sec apart</td></tr><tr><td align="left">MIDEARTH&lt;1d&gt;</td><td align="center">Reg</td><td align="center">8</td><td align="left">4 lots of 2, 0.75 sec apart</td></tr><tr><td align="left">MIDEARTH&lt;1e&gt;</td><td align="center">Reg</td><td align="center">8</td><td align="left">4 lots of 2, 0.75 sec apart</td></tr><tr><td align="left">MIDEARTH&lt;1b&gt;</td><td align="center">Qry</td><td align="center">18</td><td align="left">900 sec apart at stable operation</td></tr><tr><td align="left">JHT&lt;03&gt;</td><td align="center">Reg</td><td align="center">2</td><td align="left">This is the name of the user that logged onto Windows</td></tr><tr><td align="left">Host Announcement MILGATE98</td><td align="center">Ann</td><td align="center">14</td><td align="left">Every 120 sec</td></tr><tr><td align="left">Domain/Workgroup Announcement MIDEARTH</td><td align="center">Ann</td><td align="center">6</td><td align="left">900 sec apart at stable operation</td></tr><tr><td align="left">Local Master Announcement WINEPRESSME</td><td align="center">Ann</td><td align="center">6</td><td align="left">Insufficient detail to determine frequency</td></tr></tbody></table></div></div><br class="table-break"><p>
187	    	<a class="indexterm" name="id387506"></a>
188		<a class="indexterm" name="id387513"></a>
189		<a class="indexterm" name="id387520"></a>
190		Observation of the contents of Host Announcements, Domain/Workgroup Announcements,
191		and Local Master Announcements is instructive. These messages convey a significant
192		level of detail regarding the nature of each machine that is on the network. An example
193		dissection of a Host Announcement is given in <a href="primer.html#hostannounce" title="Figure�16.3.�Typical Windows 9x/Me Host Announcement">???</a>.
194		</p><div class="figure"><a name="hostannounce"></a><p class="title"><b>Figure�16.3.�Typical Windows 9x/Me Host Announcement</b></p><div class="figure-contents"><div class="mediaobject"><img src="images/HostAnnouncment.png" width="221.4" alt="Typical Windows 9x/Me Host Announcement"></div></div></div><br class="figure-break"></div></div><div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title"><a name="id387580"></a>Simple Windows Client Connection Characteristics</h3></div></div></div><p>
195	The purpose of this exercise is to discover how Microsoft Windows clients create (establish)
196	connections with remote servers. The methodology involves analysis of a key aspect of how
197	Windows clients access remote servers: the session setup protocol.
198	</p><div class="procedure"><a name="id387592"></a><p class="title"><b>Procedure�16.4.�Client Connection Exploration Steps</b></p><ol type="1"><li><p>
199		Configure a Windows 9x/Me machine (MILGATE98) with a share called <code class="constant">Stuff</code>.
200		Create a <em class="parameter"><code>Full Access</code></em> control password on this share.
201		</p></li><li><p>
202		Configure another Windows 9x/Me machine (WINEPRESSME) as a client. Make sure that it exports
203		no shared resources.
204		</p></li><li><p>
205		Start both Windows 9x/Me machines and allow them to stabilize for 10 minutes. Log on to both
206		machines using a user name (JHT) of your choice. Wait approximately 2 minutes before proceeding.
207		</p></li><li><p>
208		Start ethereal (or the network sniffer of your choice).
209		</p></li><li><p>
210		From the WINEPRESSME machine, right-click <span class="guimenu">Network Neighborhood</span>, select
211		<span class="guimenuitem">Explore</span>, select 
212		<span class="guimenuitem">My Network Places</span> &#8594; <span class="guimenuitem">Entire Network</span> &#8594; <span class="guimenuitem">MIDEARTH</span> &#8594; <span class="guimenuitem">MILGATE98</span> &#8594; <span class="guimenuitem">Stuff</span>.
213		Enter the password you set for the <code class="constant">Full Control</code> mode for the
214		<code class="constant">Stuff</code> share.
215		</p></li><li><p>
216		When the share called <code class="constant">Stuff</code> is being displayed, stop the capture.
217		Save the captured data in case it is needed for later analysis.
218		</p></li><li><p>
219		<a class="indexterm" name="id387716"></a>
220		From the top of the packets captured, scan down to locate the first packet that has
221		interpreted as <code class="constant">Session Setup AndX, User: anonymous; Tree Connect AndX, 
222		Path: \\MILGATE98\IPC$</code>.
223		</p></li><li><p><a class="indexterm" name="id387733"></a><a class="indexterm" name="id387741"></a>
224		In the dissection (analysis) panel, expand the <code class="constant">SMB, Session Setup AndX Request,
225		and Tree Connect AndX Request</code>. Examine both operations. Identify the name of
226		the user Account and what password was used. The Account name should be empty.
227		This is a <code class="constant">NULL</code> session setup packet.
228		</p></li><li><p>
229		Return to the packet capture sequence. There will be a number of packets that have been
230		decoded of the type <code class="constant">Session Setup AndX</code>. Locate the last such packet
231		that was targeted at the <code class="constant">\\MILGATE98\IPC$</code> service.
232		</p></li><li><p>
233		<a class="indexterm" name="id387782"></a>
234		<a class="indexterm" name="id387788"></a>
235		Dissect this packet as per the previous one. This packet should have a password length
236		of 24 (characters) and should have a password field, the contents of which is a
237		long hexadecimal number. Observe the name in the Account field. This is a User Mode
238		session setup packet.
239		</p></li></ol></div><div class="sect3" lang="en"><div class="titlepage"><div><div><h4 class="title"><a name="id387800"></a>Findings and Comments</h4></div></div></div><p>
240		<a class="indexterm" name="id387808"></a>
241		The <code class="constant">IPC$</code> share serves a vital purpose<sup>[<a name="id387819" href="#ftn.id387819">15</a>]</sup> 
242		in SMB/CIFS-based networking.  A Windows client connects to this resource to obtain the list of 
243		resources that are available on the server. The server responds with the shares and print queues that
244		are available. In most but not all cases, the connection is made with a <code class="constant">NULL</code>
245		username and a <code class="constant">NULL</code> password.
246		</p><p>
247		<a class="indexterm" name="id387836"></a>
248		The two packets examined are material evidence of how Windows clients may
249		interoperate with Samba. Samba requires every connection setup to be authenticated using
250		valid UNIX account credentials (UID/GID). This means that even a <code class="constant">NULL</code>
251		session setup can be established only by automatically mapping it to a valid UNIX
252		account.
253		</p><p>
254	    <a class="indexterm" name="id387853"></a><a class="indexterm" name="id387859"></a>
255	    <a class="indexterm" name="id387868"></a>
256		Samba has a special name for the <code class="constant">NULL</code>, or empty, user account:
257		it calls it the <a class="indexterm" name="id387879"></a>guest account. The
258		default value of this parameter is <code class="constant">nobody</code>; however, this can be
259		changed to map the function of the guest account to any other UNIX identity. Some
260		UNIX administrators prefer to map this account to the system default anonymous
261		FTP account. A sample NULL Session Setup AndX packet dissection is shown in
262		<a href="primer.html#nullconnect" title="Figure�16.4.�Typical Windows 9x/Me NULL SessionSetUp AndX Request">???</a>.
263		</p><div class="figure"><a name="nullconnect"></a><p class="title"><b>Figure�16.4.�Typical Windows 9x/Me NULL SessionSetUp AndX Request</b></p><div class="figure-contents"><div class="mediaobject"><img src="images/NullConnect.png" width="221.4" alt="Typical Windows 9x/Me NULL SessionSetUp AndX Request"></div></div></div><br class="figure-break"><p>
264	    	<a class="indexterm" name="id387943"></a>
265		<a class="indexterm" name="id387950"></a>
266		<a class="indexterm" name="id387956"></a>
267		When a UNIX/Linux system does not have a <code class="constant">nobody</code> user account
268		(<code class="filename">/etc/passwd</code>), the operation of the <code class="constant">NULL</code>
269		account cannot validate and thus connections that utilize the guest account
270		fail. This breaks all ability to browse the Samba server and is a common
271		problem reported on the Samba mailing list. A sample User Mode session setup AndX
272		is shown in <a href="primer.html#userconnect" title="Figure�16.5.�Typical Windows 9x/Me User SessionSetUp AndX Request">???</a>.
273		</p><div class="figure"><a name="userconnect"></a><p class="title"><b>Figure�16.5.�Typical Windows 9x/Me User SessionSetUp AndX Request</b></p><div class="figure-contents"><div class="mediaobject"><img src="images/UserConnect.png" width="221.4" alt="Typical Windows 9x/Me User SessionSetUp AndX Request"></div></div></div><br class="figure-break"><p>
274		<a class="indexterm" name="id388029"></a>
275		The User Mode connection packet contains the account name and the domain name.
276		The password is provided in Microsoft encrypted form, and its length is shown
277		as 24 characters. This is the length of Microsoft encrypted passwords.
278		</p></div></div><div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title"><a name="id388041"></a>Windows 200x/XP Client Interaction with Samba-3</h3></div></div></div><p>
279	By now you may be asking, &#8220;<span class="quote">Why did you choose to work with Windows 9x/Me?</span>&#8221;
280	</p><p>
281	First, we want to demonstrate the simple case. This book is not intended to be a detailed treatise
282	on the Windows networking protocols, but rather to provide prescriptive guidance for deployment of Samba.
283	Second, by starting out with the simple protocol, it can be demonstrated that the more complex case mostly
284	follows the same principles.
285	</p><p>
286	The following exercise demonstrates the case that even MS Windows XP Professional with up-to-date service
287	updates also uses the <code class="constant">NULL</code> account, as well as user accounts. Simply follow the procedure
288	to complete this exercise.
289	</p><p>
290	To complete this exercise, you need a Windows XP Professional client that has been configured as
291	a domain member of either a Samba-controlled domain or a Windows NT4 or 200x Active Directory domain.
292	Here we do not provide details for how to configure this, as full coverage is provided earlier in this book.
293	</p><div class="procedure"><a name="id388076"></a><p class="title"><b>Procedure�16.5.�Steps to Explore Windows XP Pro Connection Set-up</b></p><ol type="1"><li><p>
294		Start your domain controller. Also, start the ethereal monitoring machine, launch ethereal,
295		and then wait for the next step to complete.
296		</p></li><li><p>
297		Start the Windows XP Client and wait 5 minutes before proceeding.
298		</p></li><li><p>
299		On the machine from which network activity will be monitored (using <code class="literal">ethereal</code>),
300                launch <code class="literal">ethereal</code> and click
301                        <span class="guimenu">Capture</span> &#8594; <span class="guimenuitem">Start</span>.
302                </p><p>
303                Click:
304                </p><div class="orderedlist"><ol type="1"><li><p>Update list of packets in real time</p></li><li><p>Automatic scrolling in live capture</p></li><li><p>Enable MAC name resolution</p></li><li><p>Enable network name resolution</p></li><li><p>Enable transport name resolution</p></li></ol></div><p>
305                Click <span class="guibutton">OK</span>.
306		</p></li><li><p>
307		On the Windows XP Professional client, press <span class="guimenu">Ctrl-Alt-Delete</span> to bring 
308		up the domain logon screen. Log in using valid credentials for a domain user account.
309		</p></li><li><p>
310		Now proceed to connect to the domain controller as follows:
311		<span class="guimenu">Start</span> &#8594; <span class="guimenuitem">(right-click) My Network Places</span> &#8594; <span class="guimenuitem">Explore</span> &#8594; <span class="guimenuitem">{Left Panel} [+] Entire Network</span> &#8594; <span class="guimenuitem">{Left Panel} [+] Microsoft Windows Network</span> &#8594; <span class="guimenuitem">{Left Panel} [+] Midearth</span> &#8594; <span class="guimenuitem">{Left Panel} [+] Frodo</span> &#8594; <span class="guimenuitem">{Left Panel} [+] data</span>. Close the explorer window.
312		</p><p>
313		In this step, our domain name is <code class="constant">Midearth</code>, the domain controller is called
314		<code class="constant">Frodo</code>, and we have connected to a share called <code class="constant">data</code>.
315		</p></li><li><p>
316		Stop the capture on the <code class="literal">ethereal</code> monitoring machine. Be sure to save the captured data
317		to a file so that you can refer to it again later.
318		</p></li><li><p>
319		If desired, the Windows XP Professional client and the domain controller are no longer needed for exercises
320		in this chapter.
321		</p></li><li><p>
322		<a class="indexterm" name="id388290"></a>
323                <a class="indexterm" name="id388296"></a>
324                From the top of the packets captured, scan down to locate the first packet that has
325                interpreted as <code class="constant">Session Setup AndX Request, NTLMSSP_AUTH</code>.
326                </p></li><li><p>
327		<a class="indexterm" name="id388315"></a>
328		<a class="indexterm" name="id388322"></a>
329		<a class="indexterm" name="id388328"></a>
330                In the dissection (analysis) panel, expand the <code class="constant">SMB, Session Setup AndX Request</code>.
331		Expand the packet decode information, beginning at the <code class="constant">Security Blob:</code>
332		entry. Expand the <code class="constant">GSS-API -&gt; SPNEGO -&gt; netTokenTarg -&gt; responseToken -&gt; NTLMSSP</code>
333		keys.  This should reveal that this is a <code class="constant">NULL</code> session setup packet.
334		The <code class="constant">User name: NULL</code> so indicates. An example decode is shown in
335		<a href="primer.html#XPCap01" title="Figure�16.6.�Typical Windows XP NULL Session Setup AndX Request">???</a>.
336                </p></li><li><p>
337                Return to the packet capture sequence. There will be a number of packets that have been
338                decoded of the type <code class="constant">Session Setup AndX Request</code>. Click the last such packet that
339		has been decoded as <code class="constant">Session Setup AndX Request, NTLMSSP_AUTH</code>.
340                </p></li><li><p>
341		<a class="indexterm" name="id388386"></a>
342                In the dissection (analysis) panel, expand the <code class="constant">SMB, Session Setup AndX Request</code>.
343                Expand the packet decode information, beginning at the <code class="constant">Security Blob:</code>
344                entry. Expand the <code class="constant">GSS-API -&gt; SPNEGO -&gt; netTokenTarg -&gt; responseToken -&gt; NTLMSSP</code>
345                keys.  This should reveal that this is a <code class="constant">User Mode</code> session setup packet.
346                The <code class="constant">User name: jht</code> so indicates. An example decode is shown in
347                <a href="primer.html#XPCap02" title="Figure�16.7.�Typical Windows XP User Session Setup AndX Request">???</a>. In this case the user name was <code class="constant">jht</code>. This packet
348		decode includes the <code class="constant">Lan Manager Response:</code> and the <code class="constant">NTLM Response:</code>.
349		The values of these two parameters are the Microsoft encrypted password hashes: respectively, the LanMan
350		password and then the NT (case-preserving) password hash.
351                </p></li><li><p>
352                <a class="indexterm" name="id388440"></a>
353                <a class="indexterm" name="id388447"></a>
354                The passwords are 24-character hexadecimal numbers. This packet confirms that this is a User Mode
355		session setup packet.
356                </p></li></ol></div><div class="figure"><a name="XPCap01"></a><p class="title"><b>Figure�16.6.�Typical Windows XP NULL Session Setup AndX Request</b></p><div class="figure-contents"><div class="mediaobject"><img src="images/WindowsXP-NullConnection.png" width="270" alt="Typical Windows XP NULL Session Setup AndX Request"></div></div></div><br class="figure-break"><div class="figure"><a name="XPCap02"></a><p class="title"><b>Figure�16.7.�Typical Windows XP User Session Setup AndX Request</b></p><div class="figure-contents"><div class="mediaobject"><img src="images/WindowsXP-UserConnection.png" width="270" alt="Typical Windows XP User Session Setup AndX Request"></div></div></div><br class="figure-break"><div class="sect3" lang="en"><div class="titlepage"><div><div><h4 class="title"><a name="id388539"></a>Discussion</h4></div></div></div><p><a class="indexterm" name="id388546"></a>
357		This exercise demonstrates that, while the specific protocol for the Session Setup AndX is handled
358		in a more sophisticated manner by recent MS Windows clients, the underlying rules or principles
359		remain the same. Thus it is demonstrated  that MS Windows XP Professional clients still use a 
360		<code class="constant">NULL-Session</code> connection to query and locate resources on an advanced network
361		technology server (one using Windows NT4/200x or Samba). It also demonstrates that an authenticated
362		connection must be made before resources can be used.
363		</p></div></div><div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title"><a name="id388566"></a>Conclusions to Exercises</h3></div></div></div><p>
364	In summary, the following points have been established in this chapter:
365	</p><div class="itemizedlist"><ul type="disc"><li><p>
366		When NetBIOS over TCP/IP protocols are enabled, MS Windows networking employs broadcast-oriented messaging protocols to provide knowledge of network services.
367		</p></li><li><p>
368		Network browsing protocols query information stored on browse masters that manage
369		information provided by NetBIOS Name Registrations and by way of ongoing host 
370		announcements and workgroup announcements.
371		</p></li><li><p>
372		All Samba servers must be configured with a mechanism for mapping the <code class="constant">NULL-Session</code>
373		to a valid but nonprivileged UNIX system account.
374		</p></li><li><p>
375		The use of Microsoft encrypted passwords is built right into the fabric of Windows
376		networking operations. Such passwords cannot be provided from the UNIX <code class="filename">/etc/passwd</code>
377		database and thus must be stored elsewhere on the UNIX system in a manner that Samba can
378		use. Samba-2.x permitted such encrypted passwords to be stored in the <code class="constant">smbpasswd</code>
379		file or in an LDAP database. Samba-3 permits use of multiple <em class="parameter"><code>passdb backend</code></em>
380		databases in concurrent deployment. Refer to <span class="emphasis"><em>TOSHARG2</em></span>, Chapter 10, &#8220;<span class="quote">Account Information Databases.</span>&#8221;
381		</p></li></ul></div></div></div><div class="sect1" lang="en"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="chap01conc"></a>Dissection and Discussion</h2></div></div></div><p>
382	<a class="indexterm" name="id388644"></a>
383	The exercises demonstrate the use of the <code class="constant">guest</code> account, the way that
384	MS Windows clients and servers resolve computer names to a TCP/IP address, and how connections
385	between a client and a server are established.
386	</p><p>
387	Those wishing background information regarding NetBIOS name types should refer to
388	the Microsoft knowledgebase article
389	<a href="http://support.microsoft.com/support/kb/articles/Q102/78/8.asp" target="_top">Q102878.</a>
390	</p><div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title"><a name="id388668"></a>Technical Issues</h3></div></div></div><p>
391		<a class="indexterm" name="id388676"></a>
392		Network browsing involves SMB broadcast announcements, SMB enumeration requests,
393		connections to the <code class="constant">IPC$</code> share, share enumerations, and SMB connection
394		setup processes. The use of anonymous connections to a Samba server involve the use of
395		the <em class="parameter"><code>guest account</code></em> that must map to a valid UNIX UID.
396		</p></div></div><div class="sect1" lang="en"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="chap01qa"></a>Questions and Answers</h2></div></div></div><p>
397	The questions and answers given in this section are designed to highlight important aspects of Microsoft
398	Windows networking.
399	</p><div class="qandaset"><dl><dt> <a href="primer.html#id388717">
400		What is the significance of the MIDEARTH&lt;1b&gt; type query?
401		</a></dt><dt> <a href="primer.html#id388760">
402		What is the significance of the MIDEARTH&lt;1d&gt; type name registration?
403		</a></dt><dt> <a href="primer.html#id388826">
404		What is the role and significance of the &lt;01&gt;&lt;02&gt;__MSBROWSE__&lt;02&gt;&lt;01&gt;
405		name registration?
406                </a></dt><dt> <a href="primer.html#id388854">
407		What is the significance of the MIDEARTH&lt;1e&gt; type name registration?
408		</a></dt><dt> <a href="primer.html#id388881">
409		
410		What is the significance of the guest account in smb.conf?
411		</a></dt><dt> <a href="primer.html#id388948">
412		Is it possible to reduce network broadcast activity with Samba-3?
413		</a></dt><dt> <a href="primer.html#id389046">
414		Can I just use plain-text passwords with Samba?
415		</a></dt><dt> <a href="primer.html#id389122">
416		What parameter in the smb.conf file is used to enable the use of encrypted passwords?
417		</a></dt><dt> <a href="primer.html#id389161">
418		Is it necessary to specify encrypt passwords = Yes
419		when Samba-3 is configured as a domain member?
420		</a></dt><dt> <a href="primer.html#id389185">
421		Is it necessary to specify a guest account when Samba-3 is configured
422		as a domain member server?
423		</a></dt></dl><table border="0" summary="Q and A Set"><col align="left" width="1%"><tbody><tr class="question"><td align="left" valign="top"><a name="id388717"></a><a name="id388720"></a></td><td align="left" valign="top"><p>
424		What is the significance of the MIDEARTH&lt;1b&gt; type query?
425		</p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
426		<a class="indexterm" name="id388731"></a>
427		<a class="indexterm" name="id388740"></a>
428		This is a broadcast announcement by which the Windows machine is attempting to
429		locate a Domain Master Browser (DMB) in the event that it might exist on the network.
430		Refer to <span class="emphasis"><em>TOSHARG2,</em></span> Chapter 9, Section 9.7, &#8220;<span class="quote">Technical Overview of Browsing,</span>&#8221;
431		for details regarding the function of the DMB and its role in network browsing.
432		</p></td></tr><tr class="question"><td align="left" valign="top"><a name="id388760"></a><a name="id388762"></a></td><td align="left" valign="top"><p>
433		What is the significance of the MIDEARTH&lt;1d&gt; type name registration?
434		</p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
435		<a class="indexterm" name="id388773"></a>
436		<a class="indexterm" name="id388782"></a>
437		This name registration records the machine IP addresses of the LMBs.
438		Network clients can query this name type to obtain a list of browser servers from the
439		master browser.
440		</p><p>
441		The LMB is responsible for monitoring all host announcements on the local network and for
442		collating the information contained within them. Using this information, it can provide answers to other Windows
443		network clients that request information such as:
444		</p><div class="itemizedlist"><ul type="disc"><li><p>
445			The list of machines known to the LMB (i.e., the browse list)
446			</p></li><li><p>
447			The IP addresses of all domain controllers known for the domain
448			</p></li><li><p>
449			The IP addresses of LMBs
450			</p></li><li><p>
451			The IP address of the DMB (if one exists)
452			</p></li><li><p>
453			The IP address of the LMB on the local segment
454			</p></li></ul></div></td></tr><tr class="question"><td align="left" valign="top"><a name="id388826"></a><a name="id388829"></a></td><td align="left" valign="top"><p>
455		What is the role and significance of the &lt;01&gt;&lt;02&gt;__MSBROWSE__&lt;02&gt;&lt;01&gt;
456		name registration?
457                </p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
458		<a class="indexterm" name="id388842"></a>
459		This name is registered by the browse master to broadcast and receive domain announcements.
460		Its scope is limited to the local network segment, or subnet. By querying this name type,
461		master browsers on networks that have multiple domains can find the names of master browsers
462		for each domain.
463		</p></td></tr><tr class="question"><td align="left" valign="top"><a name="id388854"></a><a name="id388856"></a></td><td align="left" valign="top"><p>
464		What is the significance of the MIDEARTH&lt;1e&gt; type name registration?
465		</p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
466		<a class="indexterm" name="id388868"></a>
467		This name is registered by all browse masters in a domain or workgroup. The registration
468		name type is known as the Browser Election Service. Master browsers register themselves
469		with this name type so that DMBs can locate them to perform cross-subnet
470		browse list updates. This name type is also used to initiate elections for Master Browsers.
471		</p></td></tr><tr class="question"><td align="left" valign="top"><a name="id388881"></a><a name="id388883"></a></td><td align="left" valign="top"><p>
472		<a class="indexterm" name="id388888"></a>
473		What is the significance of the <em class="parameter"><code>guest account</code></em> in smb.conf?
474		</p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
475		This parameter specifies the default UNIX account to which MS Windows networking
476		NULL session connections are mapped. The default name for the UNIX account used for
477		this mapping is called <code class="constant">nobody</code>. If the UNIX/Linux system that
478		is hosting Samba does not have a <code class="constant">nobody</code> account and an alternate
479		mapping has not been specified, network browsing will not work at all.
480		</p><p>
481		It should be noted that the <em class="parameter"><code>guest account</code></em> is essential to
482		Samba operation. Either the operating system must have an account called <code class="constant">nobody</code>
483		or there must be an entry in the <code class="filename">smb.conf</code> file with a valid UNIX account, such as
484		<a class="indexterm" name="id388938"></a>guest account = ftp.
485		</p></td></tr><tr class="question"><td align="left" valign="top"><a name="id388948"></a><a name="id388950"></a></td><td align="left" valign="top"><p>
486		Is it possible to reduce network broadcast activity with Samba-3?
487		</p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
488		<a class="indexterm" name="id388962"></a>
489		<a class="indexterm" name="id388968"></a>
490		Yes, there are two ways to do this. The first involves use of WINS (See <span class="emphasis"><em>TOSHARG2</em></span>, Chapter 9, 
491		Section 9.5, &#8220;<span class="quote">WINS  The Windows Inter-networking Name Server</span>&#8221;); the
492		alternate method involves disabling the use of NetBIOS over TCP/IP. This second method requires
493		a correctly configured DNS server (see <span class="emphasis"><em>TOSHARG2</em></span>, Chapter 9, Section 9.3, &#8220;<span class="quote">Discussion</span>&#8221;).
494		</p><p>
495		<a class="indexterm" name="id388998"></a>
496		<a class="indexterm" name="id389005"></a>
497		<a class="indexterm" name="id389014"></a>
498		The use of WINS reduces network broadcast traffic. The reduction is greatest when all network 
499		clients are configured to operate in <em class="parameter"><code>Hybrid Mode</code></em>. This can be effected through 
500		use of DHCP to set the NetBIOS node type to type 8 for all network clients. Additionally, it is 
501		beneficial to configure Samba to use <a class="indexterm" name="id389030"></a>name resolve order = wins host cast.
502		</p><div class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3><p>
503		Use of SMB without NetBIOS is possible only on Windows 200x/XP Professional clients and servers, as
504		well as with Samba-3.
505		</p></div></td></tr><tr class="question"><td align="left" valign="top"><a name="id389046"></a><a name="id389048"></a></td><td align="left" valign="top"><p>
506		Can I just use plain-text passwords with Samba?
507		</p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
508		Yes, you can configure Samba to use plain-text passwords, though this does create a few problems.
509		</p><p>
510		First, the use of <code class="filename">/etc/passwd</code>-based plain-text passwords requires that registry
511		modifications be made on all MS Windows client machines to enable plain-text passwords support. This
512		significantly diminishes the security of MS Windows client operation. Many network administrators
513		are bitterly opposed to doing this.
514		</p><p>
515		Second, Microsoft has not maintained plain-text password support since the default setting was made
516		disabling this. When network connections are dropped by the client, it is not possible to re-establish
517		the connection automatically. Users need to log off and then log on again. Plain-text password support
518		may interfere with recent enhancements that are part of the Microsoft move toward a more secure computing
519		environment. 
520		</p><p>
521		Samba-3 supports Microsoft encrypted passwords. Be advised not to reintroduce plain-text password handling. 
522		Just create user accounts by running <code class="literal">smbpasswd -a 'username'</code>
523		</p><p>
524		It is not possible to add a user to the <em class="parameter"><code>passdb backend</code></em> database unless there is
525		a UNIX system account for that user. On systems that run <code class="literal">winbindd</code> to access the Samba
526		PDC/BDC to provide Windows user and group accounts, the <em class="parameter"><code>idmap uid, idmap gid</code></em> ranges
527		set in the <code class="filename">smb.conf</code> file provide the local UID/GIDs needed for local identity management purposes.
528		</p></td></tr><tr class="question"><td align="left" valign="top"><a name="id389122"></a><a name="id389124"></a></td><td align="left" valign="top"><p>
529		What parameter in the <code class="filename">smb.conf</code> file is used to enable the use of encrypted passwords?
530		</p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
531		The parameter in the <code class="filename">smb.conf</code> file that controls this behavior is known as <em class="parameter"><code>encrypt
532		passwords</code></em>. The default setting for this in Samba-3 is <code class="constant">Yes (Enabled)</code>.
533		</p></td></tr><tr class="question"><td align="left" valign="top"><a name="id389161"></a><a name="id389163"></a></td><td align="left" valign="top"><p>
534		Is it necessary to specify <a class="indexterm" name="id389168"></a>encrypt passwords = Yes
535		when Samba-3 is configured as a domain member?
536		</p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
537		No. This is the default behavior.
538		</p></td></tr><tr class="question"><td align="left" valign="top"><a name="id389185"></a><a name="id389188"></a></td><td align="left" valign="top"><p>
539		Is it necessary to specify a <em class="parameter"><code>guest account</code></em> when Samba-3 is configured
540		as a domain member server?
541		</p></td></tr><tr class="answer"><td align="left" valign="top"></td><td align="left" valign="top"><p>
542		Yes. This is a local function on the server. The default setting is to use the UNIX account
543		<code class="constant">nobody</code>. If this account does not exist on the UNIX server, then it is
544		necessary to provide a <a class="indexterm" name="id389210"></a>guest account = an_account,
545		where <code class="constant">an_account</code> is a valid local UNIX user account.
546		</p></td></tr></tbody></table></div></div><div class="footnotes"><br><hr width="100" align="left"><div class="footnote"><p><sup>[<a name="ftn.id387819" href="#id387819">15</a>] </sup>TOSHARG2, Sect 4.5.1</p></div></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="appendix.html">Prev</a>�</td><td width="20%" align="center"><a accesskey="u" href="RefSection.html">Up</a></td><td width="40%" align="right">�<a accesskey="n" href="gpl.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Chapter�15.�A Collection of Useful Tidbits�</td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top">�Appendix�A.�GNU General Public License</td></tr></table></div></body></html>
547