• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/toolchains/hndtools-armeabi-2013.11/lib/gcc/arm-none-eabi/4.8.1/plugin/include/config/arm/
1/* Definitions of target machine for GNU compiler, for ARM.
2   Copyright (C) 1991-2013 Free Software Foundation, Inc.
3   Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
4   and Martin Simmons (@harleqn.co.uk).
5   More major hacks by Richard Earnshaw (rearnsha@arm.com)
6   Minor hacks by Nick Clifton (nickc@cygnus.com)
7
8   This file is part of GCC.
9
10   GCC is free software; you can redistribute it and/or modify it
11   under the terms of the GNU General Public License as published
12   by the Free Software Foundation; either version 3, or (at your
13   option) any later version.
14
15   GCC is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
18   License for more details.
19
20   You should have received a copy of the GNU General Public License
21   along with GCC; see the file COPYING3.  If not see
22   <http://www.gnu.org/licenses/>.  */
23
24#ifndef GCC_ARM_H
25#define GCC_ARM_H
26
27/* We can't use enum machine_mode inside a generator file because it
28   hasn't been created yet; we shouldn't be using any code that
29   needs the real definition though, so this ought to be safe.  */
30#ifdef GENERATOR_FILE
31#define MACHMODE int
32#else
33#include "insn-modes.h"
34#define MACHMODE enum machine_mode
35#endif
36
37#include "config/vxworks-dummy.h"
38
39/* The architecture define.  */
40extern char arm_arch_name[];
41
42/* Target CPU builtins.  */
43#define TARGET_CPU_CPP_BUILTINS()			\
44  do							\
45    {							\
46	if (TARGET_DSP_MULTIPLY)			\
47	   builtin_define ("__ARM_FEATURE_DSP");	\
48        if (TARGET_ARM_QBIT)				\
49           builtin_define ("__ARM_FEATURE_QBIT");	\
50        if (TARGET_ARM_SAT)				\
51           builtin_define ("__ARM_FEATURE_SAT");	\
52	if (unaligned_access)				\
53	  builtin_define ("__ARM_FEATURE_UNALIGNED");	\
54	if (TARGET_ARM_FEATURE_LDREX)				\
55	  builtin_define_with_int_value (			\
56	    "__ARM_FEATURE_LDREX", TARGET_ARM_FEATURE_LDREX);	\
57	if ((TARGET_ARM_ARCH >= 5 && !TARGET_THUMB)		\
58	     || TARGET_ARM_ARCH_ISA_THUMB >=2)			\
59	  builtin_define ("__ARM_FEATURE_CLZ");			\
60	if (TARGET_INT_SIMD)					\
61	  builtin_define ("__ARM_FEATURE_SIMD32");		\
62								\
63	builtin_define_with_int_value (				\
64	  "__ARM_SIZEOF_MINIMAL_ENUM",				\
65	  flag_short_enums ? 1 : 4);				\
66	builtin_define_with_int_value (				\
67	  "__ARM_SIZEOF_WCHAR_T", WCHAR_TYPE_SIZE);		\
68	if (TARGET_ARM_ARCH_PROFILE)				\
69	  builtin_define_with_int_value (			\
70	    "__ARM_ARCH_PROFILE", TARGET_ARM_ARCH_PROFILE);	\
71								\
72	/* Define __arm__ even when in thumb mode, for	\
73	   consistency with armcc.  */			\
74	builtin_define ("__arm__");			\
75	if (TARGET_ARM_ARCH)				\
76	  builtin_define_with_int_value (		\
77	    "__ARM_ARCH", TARGET_ARM_ARCH);		\
78	if (arm_arch_notm)				\
79	  builtin_define ("__ARM_ARCH_ISA_ARM");	\
80	builtin_define ("__APCS_32__");			\
81	if (TARGET_THUMB)				\
82	  builtin_define ("__thumb__");			\
83	if (TARGET_THUMB2)				\
84	  builtin_define ("__thumb2__");		\
85	if (TARGET_ARM_ARCH_ISA_THUMB)			\
86	  builtin_define_with_int_value (		\
87	    "__ARM_ARCH_ISA_THUMB",			\
88	    TARGET_ARM_ARCH_ISA_THUMB);			\
89							\
90	if (TARGET_BIG_END)				\
91	  {						\
92	    builtin_define ("__ARMEB__");		\
93	    builtin_define ("__ARM_BIG_ENDIAN");	\
94	    if (TARGET_THUMB)				\
95	      builtin_define ("__THUMBEB__");		\
96	    if (TARGET_LITTLE_WORDS)			\
97	      builtin_define ("__ARMWEL__");		\
98	  }						\
99        else						\
100	  {						\
101	    builtin_define ("__ARMEL__");		\
102	    if (TARGET_THUMB)				\
103	      builtin_define ("__THUMBEL__");		\
104	  }						\
105							\
106	if (TARGET_SOFT_FLOAT)				\
107	  builtin_define ("__SOFTFP__");		\
108							\
109	if (TARGET_VFP)					\
110	  builtin_define ("__VFP_FP__");		\
111							\
112	if (TARGET_ARM_FP)				\
113	  builtin_define_with_int_value (		\
114	    "__ARM_FP", TARGET_ARM_FP);			\
115	if (arm_fp16_format == ARM_FP16_FORMAT_IEEE)		\
116	  builtin_define ("__ARM_FP16_FORMAT_IEEE");		\
117	if (arm_fp16_format == ARM_FP16_FORMAT_ALTERNATIVE)	\
118	  builtin_define ("__ARM_FP16_FORMAT_ALTERNATIVE");	\
119        if (TARGET_FMA)					\
120          builtin_define ("__ARM_FEATURE_FMA");		\
121							\
122	if (TARGET_NEON)				\
123	  {						\
124	    builtin_define ("__ARM_NEON__");		\
125	    builtin_define ("__ARM_NEON");		\
126	  }						\
127	if (TARGET_NEON_FP)				\
128	  builtin_define_with_int_value (		\
129	    "__ARM_NEON_FP", TARGET_NEON_FP);		\
130							\
131	/* Add a define for interworking.		\
132	   Needed when building libgcc.a.  */		\
133	if (arm_cpp_interwork)				\
134	  builtin_define ("__THUMB_INTERWORK__");	\
135							\
136	builtin_assert ("cpu=arm");			\
137	builtin_assert ("machine=arm");			\
138							\
139	builtin_define (arm_arch_name);			\
140	if (arm_arch_xscale)				\
141	  builtin_define ("__XSCALE__");		\
142	if (arm_arch_iwmmxt)				\
143          {						\
144	    builtin_define ("__IWMMXT__");		\
145	    builtin_define ("__ARM_WMMX");		\
146	  }						\
147	if (arm_arch_iwmmxt2)				\
148	  builtin_define ("__IWMMXT2__");		\
149	if (TARGET_AAPCS_BASED)				\
150	  {						\
151	    if (arm_pcs_default == ARM_PCS_AAPCS_VFP)	\
152	      builtin_define ("__ARM_PCS_VFP");		\
153	    else if (arm_pcs_default == ARM_PCS_AAPCS)	\
154	      builtin_define ("__ARM_PCS");		\
155	    builtin_define ("__ARM_EABI__");		\
156	  }						\
157	if (TARGET_IDIV)				\
158	  builtin_define ("__ARM_ARCH_EXT_IDIV__");	\
159    } while (0)
160
161#include "config/arm/arm-opts.h"
162
163enum target_cpus
164{
165#define ARM_CORE(NAME, IDENT, ARCH, FLAGS, COSTS) \
166  TARGET_CPU_##IDENT,
167#include "arm-cores.def"
168#undef ARM_CORE
169  TARGET_CPU_generic
170};
171
172/* The processor for which instructions should be scheduled.  */
173extern enum processor_type arm_tune;
174
175typedef enum arm_cond_code
176{
177  ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
178  ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
179}
180arm_cc;
181
182extern arm_cc arm_current_cc;
183
184#define ARM_INVERSE_CONDITION_CODE(X)  ((arm_cc) (((int)X) ^ 1))
185
186extern int arm_target_label;
187extern int arm_ccfsm_state;
188extern GTY(()) rtx arm_target_insn;
189/* The label of the current constant pool.  */
190extern rtx pool_vector_label;
191/* Set to 1 when a return insn is output, this means that the epilogue
192   is not needed.  */
193extern int return_used_this_function;
194/* Callback to output language specific object attributes.  */
195extern void (*arm_lang_output_object_attributes_hook)(void);
196
197/* Just in case configure has failed to define anything.  */
198#ifndef TARGET_CPU_DEFAULT
199#define TARGET_CPU_DEFAULT TARGET_CPU_generic
200#endif
201
202
203#undef  CPP_SPEC
204#define CPP_SPEC "%(subtarget_cpp_spec)					\
205%{mfloat-abi=soft:%{mfloat-abi=hard:					\
206	%e-mfloat-abi=soft and -mfloat-abi=hard may not be used together}} \
207%{mbig-endian:%{mlittle-endian:						\
208	%e-mbig-endian and -mlittle-endian may not be used together}}"
209
210#ifndef CC1_SPEC
211#define CC1_SPEC ""
212#endif
213
214/* This macro defines names of additional specifications to put in the specs
215   that can be used in various specifications like CC1_SPEC.  Its definition
216   is an initializer with a subgrouping for each command option.
217
218   Each subgrouping contains a string constant, that defines the
219   specification name, and a string constant that used by the GCC driver
220   program.
221
222   Do not define this macro if it does not need to do anything.  */
223#define EXTRA_SPECS						\
224  { "subtarget_cpp_spec",	SUBTARGET_CPP_SPEC },           \
225  { "asm_cpu_spec",		ASM_CPU_SPEC },			\
226  SUBTARGET_EXTRA_SPECS
227
228#ifndef SUBTARGET_EXTRA_SPECS
229#define SUBTARGET_EXTRA_SPECS
230#endif
231
232#ifndef SUBTARGET_CPP_SPEC
233#define SUBTARGET_CPP_SPEC      ""
234#endif
235
236/* Run-time Target Specification.  */
237#define TARGET_SOFT_FLOAT		(arm_float_abi == ARM_FLOAT_ABI_SOFT)
238/* Use hardware floating point instructions. */
239#define TARGET_HARD_FLOAT		(arm_float_abi != ARM_FLOAT_ABI_SOFT)
240/* Use hardware floating point calling convention.  */
241#define TARGET_HARD_FLOAT_ABI		(arm_float_abi == ARM_FLOAT_ABI_HARD)
242#define TARGET_VFP		(arm_fpu_desc->model == ARM_FP_MODEL_VFP)
243#define TARGET_IWMMXT			(arm_arch_iwmmxt)
244#define TARGET_IWMMXT2			(arm_arch_iwmmxt2)
245#define TARGET_REALLY_IWMMXT		(TARGET_IWMMXT && TARGET_32BIT)
246#define TARGET_REALLY_IWMMXT2		(TARGET_IWMMXT2 && TARGET_32BIT)
247#define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT)
248#define TARGET_ARM                      (! TARGET_THUMB)
249#define TARGET_EITHER			1 /* (TARGET_ARM | TARGET_THUMB) */
250#define TARGET_BACKTRACE	        (leaf_function_p () \
251				         ? TARGET_TPCS_LEAF_FRAME \
252				         : TARGET_TPCS_FRAME)
253#define TARGET_AAPCS_BASED \
254    (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
255
256#define TARGET_HARD_TP			(target_thread_pointer == TP_CP15)
257#define TARGET_SOFT_TP			(target_thread_pointer == TP_SOFT)
258#define TARGET_GNU2_TLS			(target_tls_dialect == TLS_GNU2)
259
260/* Only 16-bit thumb code.  */
261#define TARGET_THUMB1			(TARGET_THUMB && !arm_arch_thumb2)
262/* Arm or Thumb-2 32-bit code.  */
263#define TARGET_32BIT			(TARGET_ARM || arm_arch_thumb2)
264/* 32-bit Thumb-2 code.  */
265#define TARGET_THUMB2			(TARGET_THUMB && arm_arch_thumb2)
266/* Thumb-1 only.  */
267#define TARGET_THUMB1_ONLY		(TARGET_THUMB1 && !arm_arch_notm)
268
269#define TARGET_LDRD			(arm_arch5e && ARM_DOUBLEWORD_ALIGN \
270                                         && !TARGET_THUMB1)
271
272/* The following two macros concern the ability to execute coprocessor
273   instructions for VFPv3 or NEON.  TARGET_VFP3/TARGET_VFPD32 are currently
274   only ever tested when we know we are generating for VFP hardware; we need
275   to be more careful with TARGET_NEON as noted below.  */
276
277/* FPU is has the full VFPv3/NEON register file of 32 D registers.  */
278#define TARGET_VFPD32 (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_D32)
279
280/* FPU supports VFPv3 instructions.  */
281#define TARGET_VFP3 (TARGET_VFP && arm_fpu_desc->rev >= 3)
282
283/* FPU only supports VFP single-precision instructions.  */
284#define TARGET_VFP_SINGLE (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_SINGLE)
285
286/* FPU supports VFP double-precision instructions.  */
287#define TARGET_VFP_DOUBLE (TARGET_VFP && arm_fpu_desc->regs != VFP_REG_SINGLE)
288
289/* FPU supports half-precision floating-point with NEON element load/store.  */
290#define TARGET_NEON_FP16 \
291  (TARGET_VFP && arm_fpu_desc->neon && arm_fpu_desc->fp16)
292
293/* FPU supports VFP half-precision floating-point.  */
294#define TARGET_FP16 (TARGET_VFP && arm_fpu_desc->fp16)
295
296/* FPU supports fused-multiply-add operations.  */
297#define TARGET_FMA (TARGET_VFP && arm_fpu_desc->rev >= 4)
298
299/* FPU is ARMv8 compatible.  */
300#define TARGET_FPU_ARMV8 (TARGET_VFP && arm_fpu_desc->rev >= 8)
301
302/* FPU supports Crypto extensions.  */
303#define TARGET_CRYPTO (TARGET_VFP && arm_fpu_desc->crypto)
304
305/* FPU supports Neon instructions.  The setting of this macro gets
306   revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT
307   and TARGET_HARD_FLOAT to ensure that NEON instructions are
308   available.  */
309#define TARGET_NEON (TARGET_32BIT && TARGET_HARD_FLOAT \
310		     && TARGET_VFP && arm_fpu_desc->neon)
311
312/* Q-bit is present.  */
313#define TARGET_ARM_QBIT \
314  (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7))
315/* Saturation operation, e.g. SSAT.  */
316#define TARGET_ARM_SAT \
317  (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7))
318/* "DSP" multiply instructions, eg. SMULxy.  */
319#define TARGET_DSP_MULTIPLY \
320  (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7em))
321/* Integer SIMD instructions, and extend-accumulate instructions.  */
322#define TARGET_INT_SIMD \
323  (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7em))
324
325/* Should MOVW/MOVT be used in preference to a constant pool.  */
326#define TARGET_USE_MOVT \
327  (arm_arch_thumb2 && !optimize_size && !current_tune->prefer_constant_pool)
328
329/* We could use unified syntax for arm mode, but for now we just use it
330   for Thumb-2.  */
331#define TARGET_UNIFIED_ASM TARGET_THUMB2
332
333/* Nonzero if this chip provides the DMB instruction.  */
334#define TARGET_HAVE_DMB		(arm_arch6m || arm_arch7)
335
336/* Nonzero if this chip implements a memory barrier via CP15.  */
337#define TARGET_HAVE_DMB_MCR	(arm_arch6 && ! TARGET_HAVE_DMB \
338				 && ! TARGET_THUMB1)
339
340/* Nonzero if this chip implements a memory barrier instruction.  */
341#define TARGET_HAVE_MEMORY_BARRIER (TARGET_HAVE_DMB || TARGET_HAVE_DMB_MCR)
342
343/* Nonzero if this chip supports ldrex and strex */
344#define TARGET_HAVE_LDREX	((arm_arch6 && TARGET_ARM) || arm_arch7)
345
346/* Nonzero if this chip supports ldrex{bh} and strex{bh}.  */
347#define TARGET_HAVE_LDREXBH	((arm_arch6k && TARGET_ARM) || arm_arch7)
348
349/* Nonzero if this chip supports ldrexd and strexd.  */
350#define TARGET_HAVE_LDREXD	(((arm_arch6k && TARGET_ARM) || arm_arch7) \
351				 && arm_arch_notm)
352
353/* Nonzero if integer division instructions supported.  */
354#define TARGET_IDIV		((TARGET_ARM && arm_arch_arm_hwdiv) \
355				 || (TARGET_THUMB2 && arm_arch_thumb_hwdiv))
356
357/* True iff the full BPABI is being used.  If TARGET_BPABI is true,
358   then TARGET_AAPCS_BASED must be true -- but the converse does not
359   hold.  TARGET_BPABI implies the use of the BPABI runtime library,
360   etc., in addition to just the AAPCS calling conventions.  */
361#ifndef TARGET_BPABI
362#define TARGET_BPABI false
363#endif
364
365/* Support for a compile-time default CPU, et cetera.  The rules are:
366   --with-arch is ignored if -march or -mcpu are specified.
367   --with-cpu is ignored if -march or -mcpu are specified, and is overridden
368    by --with-arch.
369   --with-tune is ignored if -mtune or -mcpu are specified (but not affected
370     by -march).
371   --with-float is ignored if -mfloat-abi is specified.
372   --with-fpu is ignored if -mfpu is specified.
373   --with-abi is ignored if -mabi is specified.
374   --with-tls is ignored if -mtls-dialect is specified. */
375#define OPTION_DEFAULT_SPECS \
376  {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
377  {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
378  {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
379  {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }, \
380  {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
381  {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
382  {"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"}, \
383  {"tls", "%{!mtls-dialect=*:-mtls-dialect=%(VALUE)}"},
384
385/* Which floating point model to use.  */
386enum arm_fp_model
387{
388  ARM_FP_MODEL_UNKNOWN,
389  /* VFP floating point model.  */
390  ARM_FP_MODEL_VFP
391};
392
393enum vfp_reg_type
394{
395  VFP_NONE = 0,
396  VFP_REG_D16,
397  VFP_REG_D32,
398  VFP_REG_SINGLE
399};
400
401extern const struct arm_fpu_desc
402{
403  const char *name;
404  enum arm_fp_model model;
405  int rev;
406  enum vfp_reg_type regs;
407  int neon;
408  int fp16;
409  int crypto;
410} *arm_fpu_desc;
411
412/* Which floating point hardware to schedule for.  */
413extern int arm_fpu_attr;
414
415#ifndef TARGET_DEFAULT_FLOAT_ABI
416#define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
417#endif
418
419#define LARGEST_EXPONENT_IS_NORMAL(bits) \
420    ((bits) == 16 && arm_fp16_format == ARM_FP16_FORMAT_ALTERNATIVE)
421
422#ifndef ARM_DEFAULT_ABI
423#define ARM_DEFAULT_ABI ARM_ABI_APCS
424#endif
425
426/* Map each of the micro-architecture variants to their corresponding
427   major architecture revision.  */
428
429enum base_architecture
430{
431  BASE_ARCH_0 = 0,
432  BASE_ARCH_2 = 2,
433  BASE_ARCH_3 = 3,
434  BASE_ARCH_3M = 3,
435  BASE_ARCH_4 = 4,
436  BASE_ARCH_4T = 4,
437  BASE_ARCH_5 = 5,
438  BASE_ARCH_5E = 5,
439  BASE_ARCH_5T = 5,
440  BASE_ARCH_5TE = 5,
441  BASE_ARCH_5TEJ = 5,
442  BASE_ARCH_6 = 6,
443  BASE_ARCH_6J = 6,
444  BASE_ARCH_6ZK = 6,
445  BASE_ARCH_6K = 6,
446  BASE_ARCH_6T2 = 6,
447  BASE_ARCH_6M = 6,
448  BASE_ARCH_6Z = 6,
449  BASE_ARCH_7 = 7,
450  BASE_ARCH_7A = 7,
451  BASE_ARCH_7R = 7,
452  BASE_ARCH_7M = 7,
453  BASE_ARCH_7EM = 7,
454  BASE_ARCH_8A = 8
455};
456
457/* The major revision number of the ARM Architecture implemented by the target.  */
458extern enum base_architecture arm_base_arch;
459
460/* Nonzero if this chip supports the ARM Architecture 3M extensions.  */
461extern int arm_arch3m;
462
463/* Nonzero if this chip supports the ARM Architecture 4 extensions.  */
464extern int arm_arch4;
465
466/* Nonzero if this chip supports the ARM Architecture 4T extensions.  */
467extern int arm_arch4t;
468
469/* Nonzero if this chip supports the ARM Architecture 5 extensions.  */
470extern int arm_arch5;
471
472/* Nonzero if this chip supports the ARM Architecture 5E extensions.  */
473extern int arm_arch5e;
474
475/* Nonzero if this chip supports the ARM Architecture 6 extensions.  */
476extern int arm_arch6;
477
478/* Nonzero if this chip supports the ARM Architecture 6k extensions.  */
479extern int arm_arch6k;
480
481/* Nonzero if instructions present in ARMv6-M can be used.  */
482extern int arm_arch6m;
483
484/* Nonzero if this chip supports the ARM Architecture 7 extensions.  */
485extern int arm_arch7;
486
487/* Nonzero if instructions not present in the 'M' profile can be used.  */
488extern int arm_arch_notm;
489
490/* Nonzero if instructions present in ARMv7E-M can be used.  */
491extern int arm_arch7em;
492
493/* Nonzero if this chip supports the ARM Architecture 8 extensions.  */
494extern int arm_arch8;
495
496/* Nonzero if this chip can benefit from load scheduling.  */
497extern int arm_ld_sched;
498
499/* Nonzero if generating Thumb code, either Thumb-1 or Thumb-2.  */
500extern int thumb_code;
501
502/* Nonzero if generating Thumb-1 code.  */
503extern int thumb1_code;
504
505/* Nonzero if this chip is a StrongARM.  */
506extern int arm_tune_strongarm;
507
508/* Nonzero if this chip supports Intel XScale with Wireless MMX technology.  */
509extern int arm_arch_iwmmxt;
510
511/* Nonzero if this chip supports Intel Wireless MMX2 technology.  */
512extern int arm_arch_iwmmxt2;
513
514/* Nonzero if this chip is an XScale.  */
515extern int arm_arch_xscale;
516
517/* Nonzero if tuning for XScale.  */
518extern int arm_tune_xscale;
519
520/* Nonzero if tuning for stores via the write buffer.  */
521extern int arm_tune_wbuf;
522
523/* Nonzero if tuning for Cortex-A9.  */
524extern int arm_tune_cortex_a9;
525
526/* Nonzero if we should define __THUMB_INTERWORK__ in the
527   preprocessor.
528   XXX This is a bit of a hack, it's intended to help work around
529   problems in GLD which doesn't understand that armv5t code is
530   interworking clean.  */
531extern int arm_cpp_interwork;
532
533/* Nonzero if chip supports Thumb 2.  */
534extern int arm_arch_thumb2;
535
536/* Nonzero if chip supports integer division instruction in ARM mode.  */
537extern int arm_arch_arm_hwdiv;
538
539/* Nonzero if chip supports integer division instruction in Thumb mode.  */
540extern int arm_arch_thumb_hwdiv;
541
542#ifndef TARGET_DEFAULT
543#define TARGET_DEFAULT  (MASK_APCS_FRAME)
544#endif
545
546/* Nonzero if PIC code requires explicit qualifiers to generate
547   PLT and GOT relocs rather than the assembler doing so implicitly.
548   Subtargets can override these if required.  */
549#ifndef NEED_GOT_RELOC
550#define NEED_GOT_RELOC	0
551#endif
552#ifndef NEED_PLT_RELOC
553#define NEED_PLT_RELOC	0
554#endif
555
556/* Nonzero if we need to refer to the GOT with a PC-relative
557   offset.  In other words, generate
558
559   .word	_GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
560
561   rather than
562
563   .word	_GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
564
565   The default is true, which matches NetBSD.  Subtargets can
566   override this if required.  */
567#ifndef GOT_PCREL
568#define GOT_PCREL   1
569#endif
570
571/* Target machine storage Layout.  */
572
573
574/* Define this macro if it is advisable to hold scalars in registers
575   in a wider mode than that declared by the program.  In such cases,
576   the value is constrained to be within the bounds of the declared
577   type, but kept valid in the wider mode.  The signedness of the
578   extension may differ from that of the type.  */
579
580/* It is far faster to zero extend chars than to sign extend them */
581
582#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
583  if (GET_MODE_CLASS (MODE) == MODE_INT		\
584      && GET_MODE_SIZE (MODE) < 4)      	\
585    {						\
586      if (MODE == QImode)			\
587	UNSIGNEDP = 1;				\
588      else if (MODE == HImode)			\
589	UNSIGNEDP = 1;				\
590      (MODE) = SImode;				\
591    }
592
593/* Define this if most significant bit is lowest numbered
594   in instructions that operate on numbered bit-fields.  */
595#define BITS_BIG_ENDIAN  0
596
597/* Define this if most significant byte of a word is the lowest numbered.
598   Most ARM processors are run in little endian mode, so that is the default.
599   If you want to have it run-time selectable, change the definition in a
600   cover file to be TARGET_BIG_ENDIAN.  */
601#define BYTES_BIG_ENDIAN  (TARGET_BIG_END != 0)
602
603/* Define this if most significant word of a multiword number is the lowest
604   numbered.
605   This is always false, even when in big-endian mode.  */
606#define WORDS_BIG_ENDIAN  (BYTES_BIG_ENDIAN && ! TARGET_LITTLE_WORDS)
607
608#define UNITS_PER_WORD	4
609
610/* True if natural alignment is used for doubleword types.  */
611#define ARM_DOUBLEWORD_ALIGN	TARGET_AAPCS_BASED
612
613#define DOUBLEWORD_ALIGNMENT 64
614
615#define PARM_BOUNDARY  	32
616
617#define STACK_BOUNDARY  (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
618
619#define PREFERRED_STACK_BOUNDARY \
620    (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
621
622#define FUNCTION_BOUNDARY  ((TARGET_THUMB && optimize_size) ? 16 : 32)
623
624/* The lowest bit is used to indicate Thumb-mode functions, so the
625   vbit must go into the delta field of pointers to member
626   functions.  */
627#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
628
629#define EMPTY_FIELD_BOUNDARY  32
630
631#define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
632
633/* XXX Blah -- this macro is used directly by libobjc.  Since it
634   supports no vector modes, cut out the complexity and fall back
635   on BIGGEST_FIELD_ALIGNMENT.  */
636#ifdef IN_TARGET_LIBS
637#define BIGGEST_FIELD_ALIGNMENT 64
638#endif
639
640/* Make strings word-aligned so strcpy from constants will be faster.  */
641#define CONSTANT_ALIGNMENT_FACTOR (TARGET_THUMB || ! arm_tune_xscale ? 1 : 2)
642
643#define CONSTANT_ALIGNMENT(EXP, ALIGN)				\
644   ((TREE_CODE (EXP) == STRING_CST				\
645     && !optimize_size						\
646     && (ALIGN) < BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR)	\
647    ? BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR : (ALIGN))
648
649/* Align definitions of arrays, unions and structures so that
650   initializations and copies can be made more efficient.  This is not
651   ABI-changing, so it only affects places where we can see the
652   definition. Increasing the alignment tends to introduce padding,
653   so don't do this when optimizing for size/conserving stack space. */
654#define ARM_EXPAND_ALIGNMENT(COND, EXP, ALIGN)				\
655  (((COND) && ((ALIGN) < BITS_PER_WORD)					\
656    && (TREE_CODE (EXP) == ARRAY_TYPE					\
657	|| TREE_CODE (EXP) == UNION_TYPE				\
658	|| TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
659
660/* Align global data. */
661#define DATA_ALIGNMENT(EXP, ALIGN)			\
662  ARM_EXPAND_ALIGNMENT(!optimize_size, EXP, ALIGN)
663
664/* Similarly, make sure that objects on the stack are sensibly aligned.  */
665#define LOCAL_ALIGNMENT(EXP, ALIGN)				\
666  ARM_EXPAND_ALIGNMENT(!flag_conserve_stack, EXP, ALIGN)
667
668/* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
669   value set in previous versions of this toolchain was 8, which produces more
670   compact structures.  The command line option -mstructure_size_boundary=<n>
671   can be used to change this value.  For compatibility with the ARM SDK
672   however the value should be left at 32.  ARM SDT Reference Manual (ARM DUI
673   0020D) page 2-20 says "Structures are aligned on word boundaries".
674   The AAPCS specifies a value of 8.  */
675#define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
676
677/* This is the value used to initialize arm_structure_size_boundary.  If a
678   particular arm target wants to change the default value it should change
679   the definition of this macro, not STRUCTURE_SIZE_BOUNDARY.  See netbsd.h
680   for an example of this.  */
681#ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
682#define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
683#endif
684
685/* Nonzero if move instructions will actually fail to work
686   when given unaligned data.  */
687#define STRICT_ALIGNMENT 1
688
689/* wchar_t is unsigned under the AAPCS.  */
690#ifndef WCHAR_TYPE
691#define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
692
693#define WCHAR_TYPE_SIZE BITS_PER_WORD
694#endif
695
696/* Sized for fixed-point types.  */
697
698#define SHORT_FRACT_TYPE_SIZE 8
699#define FRACT_TYPE_SIZE 16
700#define LONG_FRACT_TYPE_SIZE 32
701#define LONG_LONG_FRACT_TYPE_SIZE 64
702
703#define SHORT_ACCUM_TYPE_SIZE 16
704#define ACCUM_TYPE_SIZE 32
705#define LONG_ACCUM_TYPE_SIZE 64
706#define LONG_LONG_ACCUM_TYPE_SIZE 64
707
708#define MAX_FIXED_MODE_SIZE 64
709
710#ifndef SIZE_TYPE
711#define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
712#endif
713
714#ifndef PTRDIFF_TYPE
715#define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
716#endif
717
718/* AAPCS requires that structure alignment is affected by bitfields.  */
719#ifndef PCC_BITFIELD_TYPE_MATTERS
720#define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
721#endif
722
723
724/* Standard register usage.  */
725
726/* Register allocation in ARM Procedure Call Standard
727   (S - saved over call).
728
729	r0	   *	argument word/integer result
730	r1-r3		argument word
731
732	r4-r8	     S	register variable
733	r9	     S	(rfp) register variable (real frame pointer)
734
735	r10  	   F S	(sl) stack limit (used by -mapcs-stack-check)
736	r11 	   F S	(fp) argument pointer
737	r12		(ip) temp workspace
738	r13  	   F S	(sp) lower end of current stack frame
739	r14		(lr) link address/workspace
740	r15	   F	(pc) program counter
741
742	cc		This is NOT a real register, but is used internally
743	                to represent things that use or set the condition
744			codes.
745	sfp             This isn't either.  It is used during rtl generation
746	                since the offset between the frame pointer and the
747			auto's isn't known until after register allocation.
748	afp		Nor this, we only need this because of non-local
749	                goto.  Without it fp appears to be used and the
750			elimination code won't get rid of sfp.  It tracks
751			fp exactly at all times.
752
753   *: See TARGET_CONDITIONAL_REGISTER_USAGE  */
754
755/*	s0-s15		VFP scratch (aka d0-d7).
756	s16-s31	      S	VFP variable (aka d8-d15).
757	vfpcc		Not a real register.  Represents the VFP condition
758			code flags.  */
759
760/* The stack backtrace structure is as follows:
761  fp points to here:  |  save code pointer  |      [fp]
762                      |  return link value  |      [fp, #-4]
763                      |  return sp value    |      [fp, #-8]
764                      |  return fp value    |      [fp, #-12]
765                     [|  saved r10 value    |]
766                     [|  saved r9 value     |]
767                     [|  saved r8 value     |]
768                     [|  saved r7 value     |]
769                     [|  saved r6 value     |]
770                     [|  saved r5 value     |]
771                     [|  saved r4 value     |]
772                     [|  saved r3 value     |]
773                     [|  saved r2 value     |]
774                     [|  saved r1 value     |]
775                     [|  saved r0 value     |]
776  r0-r3 are not normally saved in a C function.  */
777
778/* 1 for registers that have pervasive standard uses
779   and are not available for the register allocator.  */
780#define FIXED_REGISTERS 	\
781{				\
782  /* Core regs.  */		\
783  0,0,0,0,0,0,0,0,		\
784  0,0,0,0,0,1,0,1,		\
785  /* VFP regs.  */		\
786  1,1,1,1,1,1,1,1,		\
787  1,1,1,1,1,1,1,1,		\
788  1,1,1,1,1,1,1,1,		\
789  1,1,1,1,1,1,1,1,		\
790  1,1,1,1,1,1,1,1,		\
791  1,1,1,1,1,1,1,1,		\
792  1,1,1,1,1,1,1,1,		\
793  1,1,1,1,1,1,1,1,		\
794  /* IWMMXT regs.  */		\
795  1,1,1,1,1,1,1,1,		\
796  1,1,1,1,1,1,1,1,		\
797  1,1,1,1,			\
798  /* Specials.  */		\
799  1,1,1,1			\
800}
801
802/* 1 for registers not available across function calls.
803   These must include the FIXED_REGISTERS and also any
804   registers that can be used without being saved.
805   The latter must include the registers where values are returned
806   and the register where structure-value addresses are passed.
807   Aside from that, you can include as many other registers as you like.
808   The CC is not preserved over function calls on the ARM 6, so it is
809   easier to assume this for all.  SFP is preserved, since FP is.  */
810#define CALL_USED_REGISTERS	\
811{				\
812  /* Core regs.  */		\
813  1,1,1,1,0,0,0,0,		\
814  0,0,0,0,1,1,1,1,		\
815  /* VFP Regs.  */		\
816  1,1,1,1,1,1,1,1,		\
817  1,1,1,1,1,1,1,1,		\
818  1,1,1,1,1,1,1,1,		\
819  1,1,1,1,1,1,1,1,		\
820  1,1,1,1,1,1,1,1,		\
821  1,1,1,1,1,1,1,1,		\
822  1,1,1,1,1,1,1,1,		\
823  1,1,1,1,1,1,1,1,		\
824  /* IWMMXT regs.  */		\
825  1,1,1,1,1,1,1,1,		\
826  1,1,1,1,1,1,1,1,		\
827  1,1,1,1,			\
828  /* Specials.  */		\
829  1,1,1,1			\
830}
831
832#ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
833#define SUBTARGET_CONDITIONAL_REGISTER_USAGE
834#endif
835
836/* These are a couple of extensions to the formats accepted
837   by asm_fprintf:
838     %@ prints out ASM_COMMENT_START
839     %r prints out REGISTER_PREFIX reg_names[arg]  */
840#define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P)		\
841  case '@':						\
842    fputs (ASM_COMMENT_START, FILE);			\
843    break;						\
844							\
845  case 'r':						\
846    fputs (REGISTER_PREFIX, FILE);			\
847    fputs (reg_names [va_arg (ARGS, int)], FILE);	\
848    break;
849
850/* Round X up to the nearest word.  */
851#define ROUND_UP_WORD(X) (((X) + 3) & ~3)
852
853/* Convert fron bytes to ints.  */
854#define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
855
856/* The number of (integer) registers required to hold a quantity of type MODE.
857   Also used for VFP registers.  */
858#define ARM_NUM_REGS(MODE)				\
859  ARM_NUM_INTS (GET_MODE_SIZE (MODE))
860
861/* The number of (integer) registers required to hold a quantity of TYPE MODE.  */
862#define ARM_NUM_REGS2(MODE, TYPE)                   \
863  ARM_NUM_INTS ((MODE) == BLKmode ? 		\
864  int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
865
866/* The number of (integer) argument register available.  */
867#define NUM_ARG_REGS		4
868
869/* And similarly for the VFP.  */
870#define NUM_VFP_ARG_REGS	16
871
872/* Return the register number of the N'th (integer) argument.  */
873#define ARG_REGISTER(N) 	(N - 1)
874
875/* Specify the registers used for certain standard purposes.
876   The values of these macros are register numbers.  */
877
878/* The number of the last argument register.  */
879#define LAST_ARG_REGNUM 	ARG_REGISTER (NUM_ARG_REGS)
880
881/* The numbers of the Thumb register ranges.  */
882#define FIRST_LO_REGNUM  	0
883#define LAST_LO_REGNUM  	7
884#define FIRST_HI_REGNUM		8
885#define LAST_HI_REGNUM		11
886
887/* Overridden by config/arm/bpabi.h.  */
888#ifndef ARM_UNWIND_INFO
889#define ARM_UNWIND_INFO  0
890#endif
891
892/* Use r0 and r1 to pass exception handling information.  */
893#define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
894
895/* The register that holds the return address in exception handlers.  */
896#define ARM_EH_STACKADJ_REGNUM	2
897#define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
898
899#ifndef ARM_TARGET2_DWARF_FORMAT
900#define ARM_TARGET2_DWARF_FORMAT DW_EH_PE_pcrel
901
902/* ttype entries (the only interesting data references used)
903   use TARGET2 relocations.  */
904#define ASM_PREFERRED_EH_DATA_FORMAT(code, data) \
905  (((code) == 0 && (data) == 1 && ARM_UNWIND_INFO) ? ARM_TARGET2_DWARF_FORMAT \
906			       : DW_EH_PE_absptr)
907#endif
908
909/* The native (Norcroft) Pascal compiler for the ARM passes the static chain
910   as an invisible last argument (possible since varargs don't exist in
911   Pascal), so the following is not true.  */
912#define STATIC_CHAIN_REGNUM	12
913
914/* Define this to be where the real frame pointer is if it is not possible to
915   work out the offset between the frame pointer and the automatic variables
916   until after register allocation has taken place.  FRAME_POINTER_REGNUM
917   should point to a special register that we will make sure is eliminated.
918
919   For the Thumb we have another problem.  The TPCS defines the frame pointer
920   as r11, and GCC believes that it is always possible to use the frame pointer
921   as base register for addressing purposes.  (See comments in
922   find_reloads_address()).  But - the Thumb does not allow high registers,
923   including r11, to be used as base address registers.  Hence our problem.
924
925   The solution used here, and in the old thumb port is to use r7 instead of
926   r11 as the hard frame pointer and to have special code to generate
927   backtrace structures on the stack (if required to do so via a command line
928   option) using r11.  This is the only 'user visible' use of r11 as a frame
929   pointer.  */
930#define ARM_HARD_FRAME_POINTER_REGNUM	11
931#define THUMB_HARD_FRAME_POINTER_REGNUM	 7
932
933#define HARD_FRAME_POINTER_REGNUM		\
934  (TARGET_ARM					\
935   ? ARM_HARD_FRAME_POINTER_REGNUM		\
936   : THUMB_HARD_FRAME_POINTER_REGNUM)
937
938#define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
939#define HARD_FRAME_POINTER_IS_ARG_POINTER 0
940
941#define FP_REGNUM	                HARD_FRAME_POINTER_REGNUM
942
943/* Register to use for pushing function arguments.  */
944#define STACK_POINTER_REGNUM	SP_REGNUM
945
946#define FIRST_IWMMXT_REGNUM	(LAST_HI_VFP_REGNUM + 1)
947#define LAST_IWMMXT_REGNUM	(FIRST_IWMMXT_REGNUM + 15)
948#define FIRST_IWMMXT_GR_REGNUM	(LAST_IWMMXT_REGNUM + 1)
949#define LAST_IWMMXT_GR_REGNUM	(FIRST_IWMMXT_GR_REGNUM + 3)
950
951#define IS_IWMMXT_REGNUM(REGNUM) \
952  (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
953#define IS_IWMMXT_GR_REGNUM(REGNUM) \
954  (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
955
956/* Base register for access to local variables of the function.  */
957#define FRAME_POINTER_REGNUM	102
958
959/* Base register for access to arguments of the function.  */
960#define ARG_POINTER_REGNUM	103
961
962#define FIRST_VFP_REGNUM	16
963#define D7_VFP_REGNUM		(FIRST_VFP_REGNUM + 15)
964#define LAST_VFP_REGNUM	\
965  (TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM)
966
967#define IS_VFP_REGNUM(REGNUM) \
968  (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
969
970/* VFP registers are split into two types: those defined by VFP versions < 3
971   have D registers overlaid on consecutive pairs of S registers. VFP version 3
972   defines 16 new D registers (d16-d31) which, for simplicity and correctness
973   in various parts of the backend, we implement as "fake" single-precision
974   registers (which would be S32-S63, but cannot be used in that way).  The
975   following macros define these ranges of registers.  */
976#define LAST_LO_VFP_REGNUM	(FIRST_VFP_REGNUM + 31)
977#define FIRST_HI_VFP_REGNUM	(LAST_LO_VFP_REGNUM + 1)
978#define LAST_HI_VFP_REGNUM	(FIRST_HI_VFP_REGNUM + 31)
979
980#define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \
981  ((REGNUM) <= LAST_LO_VFP_REGNUM)
982
983/* DFmode values are only valid in even register pairs.  */
984#define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \
985  ((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0)
986
987/* Neon Quad values must start at a multiple of four registers.  */
988#define NEON_REGNO_OK_FOR_QUAD(REGNUM) \
989  ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0)
990
991/* Neon structures of vectors must be in even register pairs and there
992   must be enough registers available.  Because of various patterns
993   requiring quad registers, we require them to start at a multiple of
994   four.  */
995#define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \
996  ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \
997   && (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1))
998
999/* The number of hard registers is 16 ARM + 1 CC + 1 SFP + 1 AFP.  */
1000/* Intel Wireless MMX Technology registers add 16 + 4 more.  */
1001/* VFP (VFP3) adds 32 (64) + 1 VFPCC.  */
1002#define FIRST_PSEUDO_REGISTER   104
1003
1004#define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
1005
1006/* Value should be nonzero if functions must have frame pointers.
1007   Zero means the frame pointer need not be set up (and parms may be accessed
1008   via the stack pointer) in functions that seem suitable.
1009   If we have to have a frame pointer we might as well make use of it.
1010   APCS says that the frame pointer does not need to be pushed in leaf
1011   functions, or simple tail call functions.  */
1012
1013#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1014#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1015#endif
1016
1017/* Return number of consecutive hard regs needed starting at reg REGNO
1018   to hold something of mode MODE.
1019   This is ordinarily the length in words of a value of mode MODE
1020   but can be less for certain modes in special long registers.
1021
1022   On the ARM core regs are UNITS_PER_WORD bits wide.  */
1023#define HARD_REGNO_NREGS(REGNO, MODE)  	\
1024  ((TARGET_32BIT			\
1025    && REGNO > PC_REGNUM		\
1026    && REGNO != FRAME_POINTER_REGNUM	\
1027    && REGNO != ARG_POINTER_REGNUM)	\
1028    && !IS_VFP_REGNUM (REGNO)		\
1029   ? 1 : ARM_NUM_REGS (MODE))
1030
1031/* Return true if REGNO is suitable for holding a quantity of type MODE.  */
1032#define HARD_REGNO_MODE_OK(REGNO, MODE)					\
1033  arm_hard_regno_mode_ok ((REGNO), (MODE))
1034
1035#define MODES_TIEABLE_P(MODE1, MODE2) arm_modes_tieable_p (MODE1, MODE2)
1036
1037#define VALID_IWMMXT_REG_MODE(MODE) \
1038 (arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
1039
1040/* Modes valid for Neon D registers.  */
1041#define VALID_NEON_DREG_MODE(MODE) \
1042  ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
1043   || (MODE) == V2SFmode || (MODE) == DImode)
1044
1045/* Modes valid for Neon Q registers.  */
1046#define VALID_NEON_QREG_MODE(MODE) \
1047  ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
1048   || (MODE) == V4SFmode || (MODE) == V2DImode)
1049
1050/* Structure modes valid for Neon registers.  */
1051#define VALID_NEON_STRUCT_MODE(MODE) \
1052  ((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \
1053   || (MODE) == CImode || (MODE) == XImode)
1054
1055/* The register numbers in sequence, for passing to arm_gen_load_multiple.  */
1056extern int arm_regs_in_sequence[];
1057
1058/* The order in which register should be allocated.  It is good to use ip
1059   since no saving is required (though calls clobber it) and it never contains
1060   function parameters.  It is quite good to use lr since other calls may
1061   clobber it anyway.  Allocate r0 through r3 in reverse order since r3 is
1062   least likely to contain a function parameter; in addition results are
1063   returned in r0.
1064   For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7),
1065   then D8-D15.  The reason for doing this is to attempt to reduce register
1066   pressure when both single- and double-precision registers are used in a
1067   function.  */
1068
1069#define VREG(X)  (FIRST_VFP_REGNUM + (X))
1070#define WREG(X)  (FIRST_IWMMXT_REGNUM + (X))
1071#define WGREG(X) (FIRST_IWMMXT_GR_REGNUM + (X))
1072
1073#define REG_ALLOC_ORDER				\
1074{						\
1075  /* General registers.  */			\
1076  3,  2,  1,  0,  12, 14,  4,  5,		\
1077  6,  7,  8,  9,  10, 11,			\
1078  /* High VFP registers.  */			\
1079  VREG(32), VREG(33), VREG(34), VREG(35),	\
1080  VREG(36), VREG(37), VREG(38), VREG(39),	\
1081  VREG(40), VREG(41), VREG(42), VREG(43),	\
1082  VREG(44), VREG(45), VREG(46), VREG(47),	\
1083  VREG(48), VREG(49), VREG(50), VREG(51),	\
1084  VREG(52), VREG(53), VREG(54), VREG(55),	\
1085  VREG(56), VREG(57), VREG(58), VREG(59),	\
1086  VREG(60), VREG(61), VREG(62), VREG(63),	\
1087  /* VFP argument registers.  */		\
1088  VREG(15), VREG(14), VREG(13), VREG(12),	\
1089  VREG(11), VREG(10), VREG(9),  VREG(8),	\
1090  VREG(7),  VREG(6),  VREG(5),  VREG(4),	\
1091  VREG(3),  VREG(2),  VREG(1),  VREG(0),	\
1092  /* VFP call-saved registers.  */		\
1093  VREG(16), VREG(17), VREG(18), VREG(19),	\
1094  VREG(20), VREG(21), VREG(22), VREG(23),	\
1095  VREG(24), VREG(25), VREG(26), VREG(27),	\
1096  VREG(28), VREG(29), VREG(30), VREG(31),	\
1097  /* IWMMX registers.  */			\
1098  WREG(0),  WREG(1),  WREG(2),  WREG(3),	\
1099  WREG(4),  WREG(5),  WREG(6),  WREG(7),	\
1100  WREG(8),  WREG(9),  WREG(10), WREG(11),	\
1101  WREG(12), WREG(13), WREG(14), WREG(15),	\
1102  WGREG(0), WGREG(1), WGREG(2), WGREG(3),	\
1103  /* Registers not for general use.  */		\
1104  CC_REGNUM, VFPCC_REGNUM,			\
1105  FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM,	\
1106  SP_REGNUM, PC_REGNUM 				\
1107}
1108
1109/* Use different register alloc ordering for Thumb.  */
1110#define ADJUST_REG_ALLOC_ORDER arm_order_regs_for_local_alloc ()
1111
1112/* Tell IRA to use the order we define rather than messing it up with its
1113   own cost calculations.  */
1114#define HONOR_REG_ALLOC_ORDER
1115
1116/* Interrupt functions can only use registers that have already been
1117   saved by the prologue, even if they would normally be
1118   call-clobbered.  */
1119#define HARD_REGNO_RENAME_OK(SRC, DST)					\
1120	(! IS_INTERRUPT (cfun->machine->func_type) ||			\
1121	 df_regs_ever_live_p (DST))
1122
1123/* Register and constant classes.  */
1124
1125/* Register classes.  */
1126enum reg_class
1127{
1128  NO_REGS,
1129  LO_REGS,
1130  STACK_REG,
1131  BASE_REGS,
1132  HI_REGS,
1133  GENERAL_REGS,
1134  CORE_REGS,
1135  VFP_D0_D7_REGS,
1136  VFP_LO_REGS,
1137  VFP_HI_REGS,
1138  VFP_REGS,
1139  IWMMXT_REGS,
1140  IWMMXT_GR_REGS,
1141  CC_REG,
1142  VFPCC_REG,
1143  SFP_REG,
1144  AFP_REG,
1145  ALL_REGS,
1146  LIM_REG_CLASSES
1147};
1148
1149#define N_REG_CLASSES  (int) LIM_REG_CLASSES
1150
1151/* Give names of register classes as strings for dump file.  */
1152#define REG_CLASS_NAMES  \
1153{			\
1154  "NO_REGS",		\
1155  "LO_REGS",		\
1156  "STACK_REG",		\
1157  "BASE_REGS",		\
1158  "HI_REGS",		\
1159  "GENERAL_REGS",	\
1160  "CORE_REGS",		\
1161  "VFP_D0_D7_REGS",	\
1162  "VFP_LO_REGS",	\
1163  "VFP_HI_REGS",	\
1164  "VFP_REGS",		\
1165  "IWMMXT_REGS",	\
1166  "IWMMXT_GR_REGS",	\
1167  "CC_REG",		\
1168  "VFPCC_REG",		\
1169  "SFP_REG",		\
1170  "AFP_REG",		\
1171  "ALL_REGS"		\
1172}
1173
1174/* Define which registers fit in which classes.
1175   This is an initializer for a vector of HARD_REG_SET
1176   of length N_REG_CLASSES.  */
1177#define REG_CLASS_CONTENTS						\
1178{									\
1179  { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS  */	\
1180  { 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */	\
1181  { 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */	\
1182  { 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */	\
1183  { 0x00005F00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */	\
1184  { 0x00005FFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
1185  { 0x00007FFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */	\
1186  { 0xFFFF0000, 0x00000000, 0x00000000, 0x00000000 }, /* VFP_D0_D7_REGS  */ \
1187  { 0xFFFF0000, 0x0000FFFF, 0x00000000, 0x00000000 }, /* VFP_LO_REGS  */ \
1188  { 0x00000000, 0xFFFF0000, 0x0000FFFF, 0x00000000 }, /* VFP_HI_REGS  */ \
1189  { 0xFFFF0000, 0xFFFFFFFF, 0x0000FFFF, 0x00000000 }, /* VFP_REGS  */	\
1190  { 0x00000000, 0x00000000, 0xFFFF0000, 0x00000000 }, /* IWMMXT_REGS */	\
1191  { 0x00000000, 0x00000000, 0x00000000, 0x0000000F }, /* IWMMXT_GR_REGS */ \
1192  { 0x00000000, 0x00000000, 0x00000000, 0x00000010 }, /* CC_REG */	\
1193  { 0x00000000, 0x00000000, 0x00000000, 0x00000020 }, /* VFPCC_REG */	\
1194  { 0x00000000, 0x00000000, 0x00000000, 0x00000040 }, /* SFP_REG */	\
1195  { 0x00000000, 0x00000000, 0x00000000, 0x00000080 }, /* AFP_REG */	\
1196  { 0xFFFF7FFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000 }  /* ALL_REGS */	\
1197}
1198
1199/* Any of the VFP register classes.  */
1200#define IS_VFP_CLASS(X) \
1201  ((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \
1202   || (X) == VFP_HI_REGS || (X) == VFP_REGS)
1203
1204/* The same information, inverted:
1205   Return the class number of the smallest class containing
1206   reg number REGNO.  This could be a conditional expression
1207   or could index an array.  */
1208#define REGNO_REG_CLASS(REGNO)  arm_regno_class (REGNO)
1209
1210/* In VFPv1, VFP registers could only be accessed in the mode they
1211   were set, so subregs would be invalid there.  However, we don't
1212   support VFPv1 at the moment, and the restriction was lifted in
1213   VFPv2.
1214   In big-endian mode, modes greater than word size (i.e. DFmode) are stored in
1215   VFP registers in little-endian order.  We can't describe that accurately to
1216   GCC, so avoid taking subregs of such values.  */
1217#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)	\
1218  (TARGET_VFP && TARGET_BIG_END				\
1219   && (GET_MODE_SIZE (FROM) > UNITS_PER_WORD		\
1220       || GET_MODE_SIZE (TO) > UNITS_PER_WORD)		\
1221   && reg_classes_intersect_p (VFP_REGS, (CLASS)))
1222
1223/* The class value for index registers, and the one for base regs.  */
1224#define INDEX_REG_CLASS  (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS)
1225#define BASE_REG_CLASS   (TARGET_THUMB1 ? LO_REGS : CORE_REGS)
1226
1227/* For the Thumb the high registers cannot be used as base registers
1228   when addressing quantities in QI or HI mode; if we don't know the
1229   mode, then we must be conservative.  */
1230#define MODE_BASE_REG_CLASS(MODE)					\
1231    (TARGET_ARM || (TARGET_THUMB2 && !optimize_size) ? CORE_REGS :      \
1232     (((MODE) == SImode) ? BASE_REGS : LO_REGS))
1233
1234/* For Thumb we can not support SP+reg addressing, so we return LO_REGS
1235   instead of BASE_REGS.  */
1236#define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
1237
1238/* When this hook returns true for MODE, the compiler allows
1239   registers explicitly used in the rtl to be used as spill registers
1240   but prevents the compiler from extending the lifetime of these
1241   registers.  */
1242#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
1243  arm_small_register_classes_for_mode_p
1244
1245/* Must leave BASE_REGS reloads alone */
1246#define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1247  ((CLASS) != LO_REGS && (CLASS) != BASE_REGS				\
1248   ? ((true_regnum (X) == -1 ? LO_REGS					\
1249       : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS	\
1250       : NO_REGS)) 							\
1251   : NO_REGS)
1252
1253#define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1254  ((CLASS) != LO_REGS && (CLASS) != BASE_REGS				\
1255   ? ((true_regnum (X) == -1 ? LO_REGS					\
1256       : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS	\
1257       : NO_REGS)) 							\
1258   : NO_REGS)
1259
1260/* Return the register class of a scratch register needed to copy IN into
1261   or out of a register in CLASS in MODE.  If it can be done directly,
1262   NO_REGS is returned.  */
1263#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1264  /* Restrict which direct reloads are allowed for VFP/iWMMXt regs.  */ \
1265  ((TARGET_VFP && TARGET_HARD_FLOAT				\
1266    && IS_VFP_CLASS (CLASS))					\
1267   ? coproc_secondary_reload_class (MODE, X, FALSE)		\
1268   : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS)			\
1269   ? coproc_secondary_reload_class (MODE, X, TRUE)		\
1270   : TARGET_32BIT						\
1271   ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1272    ? GENERAL_REGS : NO_REGS)					\
1273   : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1274
1275/* If we need to load shorts byte-at-a-time, then we need a scratch.  */
1276#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1277  /* Restrict which direct reloads are allowed for VFP/iWMMXt regs.  */ \
1278  ((TARGET_VFP && TARGET_HARD_FLOAT				\
1279    && IS_VFP_CLASS (CLASS))					\
1280    ? coproc_secondary_reload_class (MODE, X, FALSE) :		\
1281    (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ?			\
1282    coproc_secondary_reload_class (MODE, X, TRUE) :		\
1283   (TARGET_32BIT ?						\
1284    (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS)	\
1285     && CONSTANT_P (X))						\
1286    ? GENERAL_REGS :						\
1287    (((MODE) == HImode && ! arm_arch4				\
1288      && (MEM_P (X)					\
1289	  || ((REG_P (X) || GET_CODE (X) == SUBREG)	\
1290	      && true_regnum (X) == -1)))			\
1291     ? GENERAL_REGS : NO_REGS)					\
1292    : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
1293
1294/* Try a machine-dependent way of reloading an illegitimate address
1295   operand.  If we find one, push the reload and jump to WIN.  This
1296   macro is used in only one place: `find_reloads_address' in reload.c.
1297
1298   For the ARM, we wish to handle large displacements off a base
1299   register by splitting the addend across a MOV and the mem insn.
1300   This can cut the number of reloads needed.  */
1301#define ARM_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND, WIN)	   \
1302  do									   \
1303    {									   \
1304      if (arm_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND))	   \
1305	goto WIN;							   \
1306    }									   \
1307  while (0)
1308
1309/* XXX If an HImode FP+large_offset address is converted to an HImode
1310   SP+large_offset address, then reload won't know how to fix it.  It sees
1311   only that SP isn't valid for HImode, and so reloads the SP into an index
1312   register, but the resulting address is still invalid because the offset
1313   is too big.  We fix it here instead by reloading the entire address.  */
1314/* We could probably achieve better results by defining PROMOTE_MODE to help
1315   cope with the variances between the Thumb's signed and unsigned byte and
1316   halfword load instructions.  */
1317/* ??? This should be safe for thumb2, but we may be able to do better.  */
1318#define THUMB_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_L, WIN)     \
1319do {									      \
1320  rtx new_x = thumb_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND_L); \
1321  if (new_x)								      \
1322    {									      \
1323      X = new_x;							      \
1324      goto WIN;								      \
1325    }									      \
1326} while (0)
1327
1328#define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_LEVELS, WIN)   \
1329  if (TARGET_ARM)							   \
1330    ARM_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN); \
1331  else									   \
1332    THUMB_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN)
1333
1334/* Return the maximum number of consecutive registers
1335   needed to represent mode MODE in a register of class CLASS.
1336   ARM regs are UNITS_PER_WORD bits.
1337   FIXME: Is this true for iWMMX?  */
1338#define CLASS_MAX_NREGS(CLASS, MODE)  \
1339  (ARM_NUM_REGS (MODE))
1340
1341/* If defined, gives a class of registers that cannot be used as the
1342   operand of a SUBREG that changes the mode of the object illegally.  */
1343
1344/* Stack layout; function entry, exit and calling.  */
1345
1346/* Define this if pushing a word on the stack
1347   makes the stack pointer a smaller address.  */
1348#define STACK_GROWS_DOWNWARD  1
1349
1350/* Define this to nonzero if the nominal address of the stack frame
1351   is at the high-address end of the local variables;
1352   that is, each additional local variable allocated
1353   goes at a more negative offset in the frame.  */
1354#define FRAME_GROWS_DOWNWARD 1
1355
1356/* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
1357   When present, it is one word in size, and sits at the top of the frame,
1358   between the soft frame pointer and either r7 or r11.
1359
1360   We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
1361   and only then if some outgoing arguments are passed on the stack.  It would
1362   be tempting to also check whether the stack arguments are passed by indirect
1363   calls, but there seems to be no reason in principle why a post-reload pass
1364   couldn't convert a direct call into an indirect one.  */
1365#define CALLER_INTERWORKING_SLOT_SIZE			\
1366  (TARGET_CALLER_INTERWORKING				\
1367   && crtl->outgoing_args_size != 0		\
1368   ? UNITS_PER_WORD : 0)
1369
1370/* Offset within stack frame to start allocating local variables at.
1371   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1372   first local allocated.  Otherwise, it is the offset to the BEGINNING
1373   of the first local allocated.  */
1374#define STARTING_FRAME_OFFSET  0
1375
1376/* If we generate an insn to push BYTES bytes,
1377   this says how many the stack pointer really advances by.  */
1378/* The push insns do not do this rounding implicitly.
1379   So don't define this.  */
1380/* #define PUSH_ROUNDING(NPUSHED)  ROUND_UP_WORD (NPUSHED) */
1381
1382/* Define this if the maximum size of all the outgoing args is to be
1383   accumulated and pushed during the prologue.  The amount can be
1384   found in the variable crtl->outgoing_args_size.  */
1385#define ACCUMULATE_OUTGOING_ARGS 1
1386
1387/* Offset of first parameter from the argument pointer register value.  */
1388#define FIRST_PARM_OFFSET(FNDECL)  (TARGET_ARM ? 4 : 0)
1389
1390/* Amount of memory needed for an untyped call to save all possible return
1391   registers.  */
1392#define APPLY_RESULT_SIZE arm_apply_result_size()
1393
1394/* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1395   values must be in memory.  On the ARM, they need only do so if larger
1396   than a word, or if they contain elements offset from zero in the struct.  */
1397#define DEFAULT_PCC_STRUCT_RETURN 0
1398
1399/* These bits describe the different types of function supported
1400   by the ARM backend.  They are exclusive.  i.e. a function cannot be both a
1401   normal function and an interworked function, for example.  Knowing the
1402   type of a function is important for determining its prologue and
1403   epilogue sequences.
1404   Note value 7 is currently unassigned.  Also note that the interrupt
1405   function types all have bit 2 set, so that they can be tested for easily.
1406   Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1407   machine_function structure is initialized (to zero) func_type will
1408   default to unknown.  This will force the first use of arm_current_func_type
1409   to call arm_compute_func_type.  */
1410#define ARM_FT_UNKNOWN		 0 /* Type has not yet been determined.  */
1411#define ARM_FT_NORMAL		 1 /* Your normal, straightforward function.  */
1412#define ARM_FT_INTERWORKED	 2 /* A function that supports interworking.  */
1413#define ARM_FT_ISR		 4 /* An interrupt service routine.  */
1414#define ARM_FT_FIQ		 5 /* A fast interrupt service routine.  */
1415#define ARM_FT_EXCEPTION	 6 /* An ARM exception handler (subcase of ISR).  */
1416
1417#define ARM_FT_TYPE_MASK	((1 << 3) - 1)
1418
1419/* In addition functions can have several type modifiers,
1420   outlined by these bit masks:  */
1421#define ARM_FT_INTERRUPT	(1 << 2) /* Note overlap with FT_ISR and above.  */
1422#define ARM_FT_NAKED		(1 << 3) /* No prologue or epilogue.  */
1423#define ARM_FT_VOLATILE		(1 << 4) /* Does not return.  */
1424#define ARM_FT_NESTED		(1 << 5) /* Embedded inside another func.  */
1425#define ARM_FT_STACKALIGN	(1 << 6) /* Called with misaligned stack.  */
1426
1427/* Some macros to test these flags.  */
1428#define ARM_FUNC_TYPE(t)	(t & ARM_FT_TYPE_MASK)
1429#define IS_INTERRUPT(t)		(t & ARM_FT_INTERRUPT)
1430#define IS_VOLATILE(t)     	(t & ARM_FT_VOLATILE)
1431#define IS_NAKED(t)        	(t & ARM_FT_NAKED)
1432#define IS_NESTED(t)       	(t & ARM_FT_NESTED)
1433#define IS_STACKALIGN(t)       	(t & ARM_FT_STACKALIGN)
1434
1435
1436/* Structure used to hold the function stack frame layout.  Offsets are
1437   relative to the stack pointer on function entry.  Positive offsets are
1438   in the direction of stack growth.
1439   Only soft_frame is used in thumb mode.  */
1440
1441typedef struct GTY(()) arm_stack_offsets
1442{
1443  int saved_args;	/* ARG_POINTER_REGNUM.  */
1444  int frame;		/* ARM_HARD_FRAME_POINTER_REGNUM.  */
1445  int saved_regs;
1446  int soft_frame;	/* FRAME_POINTER_REGNUM.  */
1447  int locals_base;	/* THUMB_HARD_FRAME_POINTER_REGNUM.  */
1448  int outgoing_args;	/* STACK_POINTER_REGNUM.  */
1449  unsigned int saved_regs_mask;
1450}
1451arm_stack_offsets;
1452
1453#ifndef GENERATOR_FILE
1454/* A C structure for machine-specific, per-function data.
1455   This is added to the cfun structure.  */
1456typedef struct GTY(()) machine_function
1457{
1458  /* Additional stack adjustment in __builtin_eh_throw.  */
1459  rtx eh_epilogue_sp_ofs;
1460  /* Records if LR has to be saved for far jumps.  */
1461  int far_jump_used;
1462  /* Records if ARG_POINTER was ever live.  */
1463  int arg_pointer_live;
1464  /* Records if the save of LR has been eliminated.  */
1465  int lr_save_eliminated;
1466  /* The size of the stack frame.  Only valid after reload.  */
1467  arm_stack_offsets stack_offsets;
1468  /* Records the type of the current function.  */
1469  unsigned long func_type;
1470  /* Record if the function has a variable argument list.  */
1471  int uses_anonymous_args;
1472  /* Records if sibcalls are blocked because an argument
1473     register is needed to preserve stack alignment.  */
1474  int sibcall_blocked;
1475  /* The PIC register for this function.  This might be a pseudo.  */
1476  rtx pic_reg;
1477  /* Labels for per-function Thumb call-via stubs.  One per potential calling
1478     register.  We can never call via LR or PC.  We can call via SP if a
1479     trampoline happens to be on the top of the stack.  */
1480  rtx call_via[14];
1481  /* Set to 1 when a return insn is output, this means that the epilogue
1482     is not needed.  */
1483  int return_used_this_function;
1484  /* When outputting Thumb-1 code, record the last insn that provides
1485     information about condition codes, and the comparison operands.  */
1486  rtx thumb1_cc_insn;
1487  rtx thumb1_cc_op0;
1488  rtx thumb1_cc_op1;
1489  /* Also record the CC mode that is supported.  */
1490  enum machine_mode thumb1_cc_mode;
1491}
1492machine_function;
1493#endif
1494
1495/* As in the machine_function, a global set of call-via labels, for code
1496   that is in text_section.  */
1497extern GTY(()) rtx thumb_call_via_label[14];
1498
1499/* The number of potential ways of assigning to a co-processor.  */
1500#define ARM_NUM_COPROC_SLOTS 1
1501
1502/* Enumeration of procedure calling standard variants.  We don't really
1503   support all of these yet.  */
1504enum arm_pcs
1505{
1506  ARM_PCS_AAPCS,	/* Base standard AAPCS.  */
1507  ARM_PCS_AAPCS_VFP,	/* Use VFP registers for floating point values.  */
1508  ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors.  */
1509  /* This must be the last AAPCS variant.  */
1510  ARM_PCS_AAPCS_LOCAL,	/* Private call within this compilation unit.  */
1511  ARM_PCS_ATPCS,	/* ATPCS.  */
1512  ARM_PCS_APCS,		/* APCS (legacy Linux etc).  */
1513  ARM_PCS_UNKNOWN
1514};
1515
1516/* Default procedure calling standard of current compilation unit. */
1517extern enum arm_pcs arm_pcs_default;
1518
1519/* A C type for declaring a variable that is used as the first argument of
1520   `FUNCTION_ARG' and other related values.  */
1521typedef struct
1522{
1523  /* This is the number of registers of arguments scanned so far.  */
1524  int nregs;
1525  /* This is the number of iWMMXt register arguments scanned so far.  */
1526  int iwmmxt_nregs;
1527  int named_count;
1528  int nargs;
1529  /* Which procedure call variant to use for this call.  */
1530  enum arm_pcs pcs_variant;
1531
1532  /* AAPCS related state tracking.  */
1533  int aapcs_arg_processed;  /* No need to lay out this argument again.  */
1534  int aapcs_cprc_slot;      /* Index of co-processor rules to handle
1535			       this argument, or -1 if using core
1536			       registers.  */
1537  int aapcs_ncrn;
1538  int aapcs_next_ncrn;
1539  rtx aapcs_reg;	    /* Register assigned to this argument.  */
1540  int aapcs_partial;	    /* How many bytes are passed in regs (if
1541			       split between core regs and stack.
1542			       Zero otherwise.  */
1543  int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS];
1544  int can_split;	    /* Argument can be split between core regs
1545			       and the stack.  */
1546  /* Private data for tracking VFP register allocation */
1547  unsigned aapcs_vfp_regs_free;
1548  unsigned aapcs_vfp_reg_alloc;
1549  int aapcs_vfp_rcount;
1550  MACHMODE aapcs_vfp_rmode;
1551} CUMULATIVE_ARGS;
1552
1553#define FUNCTION_ARG_PADDING(MODE, TYPE) \
1554  (arm_pad_arg_upward (MODE, TYPE) ? upward : downward)
1555
1556#define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1557  (arm_pad_reg_upward (MODE, TYPE, FIRST) ? upward : downward)
1558
1559/* For AAPCS, padding should never be below the argument. For other ABIs,
1560 * mimic the default.  */
1561#define PAD_VARARGS_DOWN \
1562  ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
1563
1564/* Initialize a variable CUM of type CUMULATIVE_ARGS
1565   for a call to a function whose data type is FNTYPE.
1566   For a library call, FNTYPE is 0.
1567   On the ARM, the offset starts at 0.  */
1568#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1569  arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1570
1571/* 1 if N is a possible register number for function argument passing.
1572   On the ARM, r0-r3 are used to pass args.  */
1573#define FUNCTION_ARG_REGNO_P(REGNO)					\
1574   (IN_RANGE ((REGNO), 0, 3)						\
1575    || (TARGET_AAPCS_BASED && TARGET_VFP && TARGET_HARD_FLOAT		\
1576	&& IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15))	\
1577    || (TARGET_IWMMXT_ABI						\
1578	&& IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
1579
1580
1581/* If your target environment doesn't prefix user functions with an
1582   underscore, you may wish to re-define this to prevent any conflicts.  */
1583#ifndef ARM_MCOUNT_NAME
1584#define ARM_MCOUNT_NAME "*mcount"
1585#endif
1586
1587/* Call the function profiler with a given profile label.  The Acorn
1588   compiler puts this BEFORE the prolog but gcc puts it afterwards.
1589   On the ARM the full profile code will look like:
1590	.data
1591	LP1
1592		.word	0
1593	.text
1594		mov	ip, lr
1595		bl	mcount
1596		.word	LP1
1597
1598   profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
1599   will output the .text section.
1600
1601   The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1602   ``prof'' doesn't seem to mind about this!
1603
1604   Note - this version of the code is designed to work in both ARM and
1605   Thumb modes.  */
1606#ifndef ARM_FUNCTION_PROFILER
1607#define ARM_FUNCTION_PROFILER(STREAM, LABELNO)  	\
1608{							\
1609  char temp[20];					\
1610  rtx sym;						\
1611							\
1612  asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t",		\
1613	   IP_REGNUM, LR_REGNUM);			\
1614  assemble_name (STREAM, ARM_MCOUNT_NAME);		\
1615  fputc ('\n', STREAM);					\
1616  ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO);	\
1617  sym = gen_rtx_SYMBOL_REF (Pmode, temp);		\
1618  assemble_aligned_integer (UNITS_PER_WORD, sym);	\
1619}
1620#endif
1621
1622#ifdef THUMB_FUNCTION_PROFILER
1623#define FUNCTION_PROFILER(STREAM, LABELNO)		\
1624  if (TARGET_ARM)					\
1625    ARM_FUNCTION_PROFILER (STREAM, LABELNO)		\
1626  else							\
1627    THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1628#else
1629#define FUNCTION_PROFILER(STREAM, LABELNO)		\
1630    ARM_FUNCTION_PROFILER (STREAM, LABELNO)
1631#endif
1632
1633/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1634   the stack pointer does not matter.  The value is tested only in
1635   functions that have frame pointers.
1636   No definition is equivalent to always zero.
1637
1638   On the ARM, the function epilogue recovers the stack pointer from the
1639   frame.  */
1640#define EXIT_IGNORE_STACK 1
1641
1642#define EPILOGUE_USES(REGNO) ((REGNO) == LR_REGNUM)
1643
1644/* Determine if the epilogue should be output as RTL.
1645   You should override this if you define FUNCTION_EXTRA_EPILOGUE.  */
1646#define USE_RETURN_INSN(ISCOND)				\
1647  (TARGET_32BIT ? use_return_insn (ISCOND, NULL) : 0)
1648
1649/* Definitions for register eliminations.
1650
1651   This is an array of structures.  Each structure initializes one pair
1652   of eliminable registers.  The "from" register number is given first,
1653   followed by "to".  Eliminations of the same "from" register are listed
1654   in order of preference.
1655
1656   We have two registers that can be eliminated on the ARM.  First, the
1657   arg pointer register can often be eliminated in favor of the stack
1658   pointer register.  Secondly, the pseudo frame pointer register can always
1659   be eliminated; it is replaced with either the stack or the real frame
1660   pointer.  Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1661   because the definition of HARD_FRAME_POINTER_REGNUM is not a constant.  */
1662
1663#define ELIMINABLE_REGS						\
1664{{ ARG_POINTER_REGNUM,        STACK_POINTER_REGNUM            },\
1665 { ARG_POINTER_REGNUM,        FRAME_POINTER_REGNUM            },\
1666 { ARG_POINTER_REGNUM,        ARM_HARD_FRAME_POINTER_REGNUM   },\
1667 { ARG_POINTER_REGNUM,        THUMB_HARD_FRAME_POINTER_REGNUM },\
1668 { FRAME_POINTER_REGNUM,      STACK_POINTER_REGNUM            },\
1669 { FRAME_POINTER_REGNUM,      ARM_HARD_FRAME_POINTER_REGNUM   },\
1670 { FRAME_POINTER_REGNUM,      THUMB_HARD_FRAME_POINTER_REGNUM }}
1671
1672/* Define the offset between two registers, one to be eliminated, and the
1673   other its replacement, at the start of a routine.  */
1674#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
1675  if (TARGET_ARM)							\
1676    (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO);	\
1677  else									\
1678    (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
1679
1680/* Special case handling of the location of arguments passed on the stack.  */
1681#define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1682
1683/* Initialize data used by insn expanders.  This is called from insn_emit,
1684   once for every function before code is generated.  */
1685#define INIT_EXPANDERS  arm_init_expanders ()
1686
1687/* Length in units of the trampoline for entering a nested function.  */
1688#define TRAMPOLINE_SIZE  (TARGET_32BIT ? 16 : 20)
1689
1690/* Alignment required for a trampoline in bits.  */
1691#define TRAMPOLINE_ALIGNMENT  32
1692
1693/* Addressing modes, and classification of registers for them.  */
1694#define HAVE_POST_INCREMENT   1
1695#define HAVE_PRE_INCREMENT    TARGET_32BIT
1696#define HAVE_POST_DECREMENT   TARGET_32BIT
1697#define HAVE_PRE_DECREMENT    TARGET_32BIT
1698#define HAVE_PRE_MODIFY_DISP  TARGET_32BIT
1699#define HAVE_POST_MODIFY_DISP TARGET_32BIT
1700#define HAVE_PRE_MODIFY_REG   TARGET_32BIT
1701#define HAVE_POST_MODIFY_REG  TARGET_32BIT
1702
1703enum arm_auto_incmodes
1704  {
1705    ARM_POST_INC,
1706    ARM_PRE_INC,
1707    ARM_POST_DEC,
1708    ARM_PRE_DEC
1709  };
1710
1711#define ARM_AUTOINC_VALID_FOR_MODE_P(mode, code) \
1712  (TARGET_32BIT && arm_autoinc_modes_ok_p (mode, code))
1713#define USE_LOAD_POST_INCREMENT(mode) \
1714  ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_INC)
1715#define USE_LOAD_PRE_INCREMENT(mode)  \
1716  ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_INC)
1717#define USE_LOAD_POST_DECREMENT(mode) \
1718  ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_DEC)
1719#define USE_LOAD_PRE_DECREMENT(mode)  \
1720  ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_DEC)
1721
1722#define USE_STORE_PRE_DECREMENT(mode) USE_LOAD_PRE_DECREMENT(mode)
1723#define USE_STORE_PRE_INCREMENT(mode) USE_LOAD_PRE_INCREMENT(mode)
1724#define USE_STORE_POST_DECREMENT(mode) USE_LOAD_POST_DECREMENT(mode)
1725#define USE_STORE_POST_INCREMENT(mode) USE_LOAD_POST_INCREMENT(mode)
1726
1727/* Macros to check register numbers against specific register classes.  */
1728
1729/* These assume that REGNO is a hard or pseudo reg number.
1730   They give nonzero only if REGNO is a hard reg of the suitable class
1731   or a pseudo reg currently allocated to a suitable hard reg.
1732   Since they use reg_renumber, they are safe only once reg_renumber
1733   has been allocated, which happens in reginfo.c during register
1734   allocation.  */
1735#define TEST_REGNO(R, TEST, VALUE) \
1736  ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
1737
1738/* Don't allow the pc to be used.  */
1739#define ARM_REGNO_OK_FOR_BASE_P(REGNO)			\
1740  (TEST_REGNO (REGNO, <, PC_REGNUM)			\
1741   || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM)	\
1742   || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1743
1744#define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE)		\
1745  (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM)			\
1746   || (GET_MODE_SIZE (MODE) >= 4				\
1747       && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1748
1749#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE)		\
1750  (TARGET_THUMB1					\
1751   ? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE)	\
1752   : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1753
1754/* Nonzero if X can be the base register in a reg+reg addressing mode.
1755   For Thumb, we can not use SP + reg, so reject SP.  */
1756#define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE)	\
1757  REGNO_MODE_OK_FOR_BASE_P (X, QImode)
1758
1759/* For ARM code, we don't care about the mode, but for Thumb, the index
1760   must be suitable for use in a QImode load.  */
1761#define REGNO_OK_FOR_INDEX_P(REGNO)	\
1762  (REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \
1763   && !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))
1764
1765/* Maximum number of registers that can appear in a valid memory address.
1766   Shifts in addresses can't be by a register.  */
1767#define MAX_REGS_PER_ADDRESS 2
1768
1769/* Recognize any constant value that is a valid address.  */
1770/* XXX We can address any constant, eventually...  */
1771/* ??? Should the TARGET_ARM here also apply to thumb2?  */
1772#define CONSTANT_ADDRESS_P(X)  			\
1773  (GET_CODE (X) == SYMBOL_REF 			\
1774   && (CONSTANT_POOL_ADDRESS_P (X)		\
1775       || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
1776
1777/* True if SYMBOL + OFFSET constants must refer to something within
1778   SYMBOL's section.  */
1779#define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0
1780
1781/* Nonzero if all target requires all absolute relocations be R_ARM_ABS32.  */
1782#ifndef TARGET_DEFAULT_WORD_RELOCATIONS
1783#define TARGET_DEFAULT_WORD_RELOCATIONS 0
1784#endif
1785
1786#ifndef SUBTARGET_NAME_ENCODING_LENGTHS
1787#define SUBTARGET_NAME_ENCODING_LENGTHS
1788#endif
1789
1790/* This is a C fragment for the inside of a switch statement.
1791   Each case label should return the number of characters to
1792   be stripped from the start of a function's name, if that
1793   name starts with the indicated character.  */
1794#define ARM_NAME_ENCODING_LENGTHS		\
1795  case '*':  return 1;				\
1796  SUBTARGET_NAME_ENCODING_LENGTHS
1797
1798/* This is how to output a reference to a user-level label named NAME.
1799   `assemble_name' uses this.  */
1800#undef  ASM_OUTPUT_LABELREF
1801#define ASM_OUTPUT_LABELREF(FILE, NAME)		\
1802   arm_asm_output_labelref (FILE, NAME)
1803
1804/* Output IT instructions for conditionally executed Thumb-2 instructions.  */
1805#define ASM_OUTPUT_OPCODE(STREAM, PTR)	\
1806  if (TARGET_THUMB2)			\
1807    thumb2_asm_output_opcode (STREAM);
1808
1809/* The EABI specifies that constructors should go in .init_array.
1810   Other targets use .ctors for compatibility.  */
1811#ifndef ARM_EABI_CTORS_SECTION_OP
1812#define ARM_EABI_CTORS_SECTION_OP \
1813  "\t.section\t.init_array,\"aw\",%init_array"
1814#endif
1815#ifndef ARM_EABI_DTORS_SECTION_OP
1816#define ARM_EABI_DTORS_SECTION_OP \
1817  "\t.section\t.fini_array,\"aw\",%fini_array"
1818#endif
1819#define ARM_CTORS_SECTION_OP \
1820  "\t.section\t.ctors,\"aw\",%progbits"
1821#define ARM_DTORS_SECTION_OP \
1822  "\t.section\t.dtors,\"aw\",%progbits"
1823
1824/* Define CTORS_SECTION_ASM_OP.  */
1825#undef CTORS_SECTION_ASM_OP
1826#undef DTORS_SECTION_ASM_OP
1827#ifndef IN_LIBGCC2
1828# define CTORS_SECTION_ASM_OP \
1829   (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
1830# define DTORS_SECTION_ASM_OP \
1831   (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
1832#else /* !defined (IN_LIBGCC2) */
1833/* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
1834   so we cannot use the definition above.  */
1835# ifdef __ARM_EABI__
1836/* The .ctors section is not part of the EABI, so we do not define
1837   CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
1838   from trying to use it.  We do define it when doing normal
1839   compilation, as .init_array can be used instead of .ctors.  */
1840/* There is no need to emit begin or end markers when using
1841   init_array; the dynamic linker will compute the size of the
1842   array itself based on special symbols created by the static
1843   linker.  However, we do need to arrange to set up
1844   exception-handling here.  */
1845#   define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
1846#   define CTOR_LIST_END /* empty */
1847#   define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
1848#   define DTOR_LIST_END /* empty */
1849# else /* !defined (__ARM_EABI__) */
1850#   define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
1851#   define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
1852# endif /* !defined (__ARM_EABI__) */
1853#endif /* !defined (IN_LIBCC2) */
1854
1855/* True if the operating system can merge entities with vague linkage
1856   (e.g., symbols in COMDAT group) during dynamic linking.  */
1857#ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
1858#define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
1859#endif
1860
1861#define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
1862
1863/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1864   and check its validity for a certain class.
1865   We have two alternate definitions for each of them.
1866   The usual definition accepts all pseudo regs; the other rejects
1867   them unless they have been allocated suitable hard regs.
1868   The symbol REG_OK_STRICT causes the latter definition to be used.
1869   Thumb-2 has the same restrictions as arm.  */
1870#ifndef REG_OK_STRICT
1871
1872#define ARM_REG_OK_FOR_BASE_P(X)		\
1873  (REGNO (X) <= LAST_ARM_REGNUM			\
1874   || REGNO (X) >= FIRST_PSEUDO_REGISTER	\
1875   || REGNO (X) == FRAME_POINTER_REGNUM		\
1876   || REGNO (X) == ARG_POINTER_REGNUM)
1877
1878#define ARM_REG_OK_FOR_INDEX_P(X)		\
1879  ((REGNO (X) <= LAST_ARM_REGNUM		\
1880    && REGNO (X) != STACK_POINTER_REGNUM)	\
1881   || REGNO (X) >= FIRST_PSEUDO_REGISTER	\
1882   || REGNO (X) == FRAME_POINTER_REGNUM		\
1883   || REGNO (X) == ARG_POINTER_REGNUM)
1884
1885#define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE)	\
1886  (REGNO (X) <= LAST_LO_REGNUM			\
1887   || REGNO (X) >= FIRST_PSEUDO_REGISTER	\
1888   || (GET_MODE_SIZE (MODE) >= 4		\
1889       && (REGNO (X) == STACK_POINTER_REGNUM	\
1890	   || (X) == hard_frame_pointer_rtx	\
1891	   || (X) == arg_pointer_rtx)))
1892
1893#define REG_STRICT_P 0
1894
1895#else /* REG_OK_STRICT */
1896
1897#define ARM_REG_OK_FOR_BASE_P(X) 		\
1898  ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
1899
1900#define ARM_REG_OK_FOR_INDEX_P(X) 		\
1901  ARM_REGNO_OK_FOR_INDEX_P (REGNO (X))
1902
1903#define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE)	\
1904  THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
1905
1906#define REG_STRICT_P 1
1907
1908#endif /* REG_OK_STRICT */
1909
1910/* Now define some helpers in terms of the above.  */
1911
1912#define REG_MODE_OK_FOR_BASE_P(X, MODE)		\
1913  (TARGET_THUMB1				\
1914   ? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE)	\
1915   : ARM_REG_OK_FOR_BASE_P (X))
1916
1917/* For 16-bit Thumb, a valid index register is anything that can be used in
1918   a byte load instruction.  */
1919#define THUMB1_REG_OK_FOR_INDEX_P(X) \
1920  THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode)
1921
1922/* Nonzero if X is a hard reg that can be used as an index
1923   or if it is a pseudo reg.  On the Thumb, the stack pointer
1924   is not suitable.  */
1925#define REG_OK_FOR_INDEX_P(X)			\
1926  (TARGET_THUMB1				\
1927   ? THUMB1_REG_OK_FOR_INDEX_P (X)		\
1928   : ARM_REG_OK_FOR_INDEX_P (X))
1929
1930/* Nonzero if X can be the base register in a reg+reg addressing mode.
1931   For Thumb, we can not use SP + reg, so reject SP.  */
1932#define REG_MODE_OK_FOR_REG_BASE_P(X, MODE)	\
1933  REG_OK_FOR_INDEX_P (X)
1934
1935#define ARM_BASE_REGISTER_RTX_P(X)  \
1936  (REG_P (X) && ARM_REG_OK_FOR_BASE_P (X))
1937
1938#define ARM_INDEX_REGISTER_RTX_P(X)  \
1939  (REG_P (X) && ARM_REG_OK_FOR_INDEX_P (X))
1940
1941/* Specify the machine mode that this machine uses
1942   for the index in the tablejump instruction.  */
1943#define CASE_VECTOR_MODE Pmode
1944
1945#define CASE_VECTOR_PC_RELATIVE (TARGET_THUMB2				\
1946				 || (TARGET_THUMB1			\
1947				     && (optimize_size || flag_pic)))
1948
1949#define CASE_VECTOR_SHORTEN_MODE(min, max, body)			\
1950  (TARGET_THUMB1							\
1951   ? (min >= 0 && max < 512						\
1952      ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode)	\
1953      : min >= -256 && max < 256					\
1954      ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode)	\
1955      : min >= 0 && max < 8192						\
1956      ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode)	\
1957      : min >= -4096 && max < 4096					\
1958      ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode)	\
1959      : SImode)								\
1960   : ((min < 0 || max >= 0x20000 || !TARGET_THUMB2) ? SImode		\
1961      : (max >= 0x200) ? HImode						\
1962      : QImode))
1963
1964/* signed 'char' is most compatible, but RISC OS wants it unsigned.
1965   unsigned is probably best, but may break some code.  */
1966#ifndef DEFAULT_SIGNED_CHAR
1967#define DEFAULT_SIGNED_CHAR  0
1968#endif
1969
1970/* Max number of bytes we can move from memory to memory
1971   in one reasonably fast instruction.  */
1972#define MOVE_MAX 4
1973
1974#undef  MOVE_RATIO
1975#define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2)
1976
1977/* Define if operations between registers always perform the operation
1978   on the full register even if a narrower mode is specified.  */
1979#define WORD_REGISTER_OPERATIONS
1980
1981/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1982   will either zero-extend or sign-extend.  The value of this macro should
1983   be the code that says which one of the two operations is implicitly
1984   done, UNKNOWN if none.  */
1985#define LOAD_EXTEND_OP(MODE)						\
1986  (TARGET_THUMB ? ZERO_EXTEND :						\
1987   ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND			\
1988    : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
1989
1990/* Nonzero if access to memory by bytes is slow and undesirable.  */
1991#define SLOW_BYTE_ACCESS 0
1992
1993#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
1994
1995/* Immediate shift counts are truncated by the output routines (or was it
1996   the assembler?).  Shift counts in a register are truncated by ARM.  Note
1997   that the native compiler puts too large (> 32) immediate shift counts
1998   into a register and shifts by the register, letting the ARM decide what
1999   to do instead of doing that itself.  */
2000/* This is all wrong.  Defining SHIFT_COUNT_TRUNCATED tells combine that
2001   code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
2002   On the arm, Y in a register is used modulo 256 for the shift. Only for
2003   rotates is modulo 32 used.  */
2004/* #define SHIFT_COUNT_TRUNCATED 1 */
2005
2006/* All integers have the same format so truncation is easy.  */
2007#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC)  1
2008
2009/* Calling from registers is a massive pain.  */
2010#define NO_FUNCTION_CSE 1
2011
2012/* The machine modes of pointers and functions */
2013#define Pmode  SImode
2014#define FUNCTION_MODE  Pmode
2015
2016#define ARM_FRAME_RTX(X)					\
2017  (   (X) == frame_pointer_rtx || (X) == stack_pointer_rtx	\
2018   || (X) == arg_pointer_rtx)
2019
2020/* Try to generate sequences that don't involve branches, we can then use
2021   conditional instructions.  */
2022#define BRANCH_COST(speed_p, predictable_p) \
2023  (current_tune->branch_cost (speed_p, predictable_p))
2024
2025/* False if short circuit operation is preferred.  */
2026#define LOGICAL_OP_NON_SHORT_CIRCUIT				\
2027  ((optimize_size)						\
2028   ? (TARGET_THUMB ? false : true)				\
2029   : (current_tune->logical_op_non_short_circuit[TARGET_ARM]))
2030
2031
2032/* Position Independent Code.  */
2033/* We decide which register to use based on the compilation options and
2034   the assembler in use; this is more general than the APCS restriction of
2035   using sb (r9) all the time.  */
2036extern unsigned arm_pic_register;
2037
2038/* The register number of the register used to address a table of static
2039   data addresses in memory.  */
2040#define PIC_OFFSET_TABLE_REGNUM arm_pic_register
2041
2042/* We can't directly access anything that contains a symbol,
2043   nor can we indirect via the constant pool.  One exception is
2044   UNSPEC_TLS, which is always PIC.  */
2045#define LEGITIMATE_PIC_OPERAND_P(X)					\
2046	(!(symbol_mentioned_p (X)					\
2047	   || label_mentioned_p (X)					\
2048	   || (GET_CODE (X) == SYMBOL_REF				\
2049	       && CONSTANT_POOL_ADDRESS_P (X)				\
2050	       && (symbol_mentioned_p (get_pool_constant (X))		\
2051		   || label_mentioned_p (get_pool_constant (X)))))	\
2052	 || tls_mentioned_p (X))
2053
2054/* We need to know when we are making a constant pool; this determines
2055   whether data needs to be in the GOT or can be referenced via a GOT
2056   offset.  */
2057extern int making_const_table;
2058
2059/* Handle pragmas for compatibility with Intel's compilers.  */
2060/* Also abuse this to register additional C specific EABI attributes.  */
2061#define REGISTER_TARGET_PRAGMAS() do {					\
2062  c_register_pragma (0, "long_calls", arm_pr_long_calls);		\
2063  c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls);		\
2064  c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off);	\
2065  arm_lang_object_attributes_init(); \
2066} while (0)
2067
2068/* Condition code information.  */
2069/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2070   return the mode to be used for the comparison.  */
2071
2072#define SELECT_CC_MODE(OP, X, Y)  arm_select_cc_mode (OP, X, Y)
2073
2074#define REVERSIBLE_CC_MODE(MODE) 1
2075
2076#define REVERSE_CONDITION(CODE,MODE) \
2077  (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
2078   ? reverse_condition_maybe_unordered (code) \
2079   : reverse_condition (code))
2080
2081/* The arm5 clz instruction returns 32.  */
2082#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)  ((VALUE) = 32, 1)
2083#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)  ((VALUE) = 32, 1)
2084
2085#define CC_STATUS_INIT \
2086  do { cfun->machine->thumb1_cc_insn = NULL_RTX; } while (0)
2087
2088#undef  ASM_APP_OFF
2089#define ASM_APP_OFF (TARGET_THUMB1 ? "\t.code\t16\n" : \
2090		     TARGET_THUMB2 ? "\t.thumb\n" : "")
2091
2092/* Output a push or a pop instruction (only used when profiling).
2093   We can't push STATIC_CHAIN_REGNUM (r12) directly with Thumb-1.  We know
2094   that ASM_OUTPUT_REG_PUSH will be matched with ASM_OUTPUT_REG_POP, and
2095   that r7 isn't used by the function profiler, so we can use it as a
2096   scratch reg.  WARNING: This isn't safe in the general case!  It may be
2097   sensitive to future changes in final.c:profile_function.  */
2098#define ASM_OUTPUT_REG_PUSH(STREAM, REGNO)		\
2099  do							\
2100    {							\
2101      if (TARGET_ARM)					\
2102	asm_fprintf (STREAM,"\tstmfd\t%r!,{%r}\n",	\
2103		     STACK_POINTER_REGNUM, REGNO);	\
2104      else if (TARGET_THUMB1				\
2105	       && (REGNO) == STATIC_CHAIN_REGNUM)	\
2106	{						\
2107	  asm_fprintf (STREAM, "\tpush\t{r7}\n");	\
2108	  asm_fprintf (STREAM, "\tmov\tr7, %r\n", REGNO);\
2109	  asm_fprintf (STREAM, "\tpush\t{r7}\n");	\
2110	}						\
2111      else						\
2112	asm_fprintf (STREAM, "\tpush {%r}\n", REGNO);	\
2113    } while (0)
2114
2115
2116/* See comment for ASM_OUTPUT_REG_PUSH concerning Thumb-1 issue.  */
2117#define ASM_OUTPUT_REG_POP(STREAM, REGNO)		\
2118  do							\
2119    {							\
2120      if (TARGET_ARM)					\
2121	asm_fprintf (STREAM, "\tldmfd\t%r!,{%r}\n",	\
2122		     STACK_POINTER_REGNUM, REGNO);	\
2123      else if (TARGET_THUMB1				\
2124	       && (REGNO) == STATIC_CHAIN_REGNUM)	\
2125	{						\
2126	  asm_fprintf (STREAM, "\tpop\t{r7}\n");	\
2127	  asm_fprintf (STREAM, "\tmov\t%r, r7\n", REGNO);\
2128	  asm_fprintf (STREAM, "\tpop\t{r7}\n");	\
2129	}						\
2130      else						\
2131	asm_fprintf (STREAM, "\tpop {%r}\n", REGNO);	\
2132    } while (0)
2133
2134#define ADDR_VEC_ALIGN(JUMPTABLE)	\
2135  ((TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode) ? 2 : 0)
2136
2137/* Alignment for case labels comes from ADDR_VEC_ALIGN; avoid the
2138   default alignment from elfos.h.  */
2139#undef ASM_OUTPUT_BEFORE_CASE_LABEL
2140#define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE, PREFIX, NUM, TABLE) /* Empty.  */
2141
2142/* Make sure subsequent insns are aligned after a TBB.  */
2143#define ASM_OUTPUT_CASE_END(FILE, NUM, JUMPTABLE)	\
2144  do							\
2145    {							\
2146      if (GET_MODE (PATTERN (JUMPTABLE)) == QImode)	\
2147	ASM_OUTPUT_ALIGN (FILE, 1);			\
2148    }							\
2149  while (0)
2150
2151#define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) 	\
2152  do							\
2153    {							\
2154      if (TARGET_THUMB) 				\
2155        {						\
2156          if (is_called_in_ARM_mode (DECL)		\
2157	      || (TARGET_THUMB1 && !TARGET_THUMB1_ONLY	\
2158		  && cfun->is_thunk))	\
2159            fprintf (STREAM, "\t.code 32\n") ;		\
2160          else if (TARGET_THUMB1)			\
2161           fprintf (STREAM, "\t.code\t16\n\t.thumb_func\n") ;	\
2162          else						\
2163           fprintf (STREAM, "\t.thumb\n\t.thumb_func\n") ;	\
2164        }						\
2165      if (TARGET_POKE_FUNCTION_NAME)			\
2166        arm_poke_function_name (STREAM, (const char *) NAME);	\
2167    }							\
2168  while (0)
2169
2170/* For aliases of functions we use .thumb_set instead.  */
2171#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2)		\
2172  do						   		\
2173    {								\
2174      const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2175      const char *const LABEL2 = IDENTIFIER_POINTER (DECL2);	\
2176								\
2177      if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL)	\
2178	{							\
2179	  fprintf (FILE, "\t.thumb_set ");			\
2180	  assemble_name (FILE, LABEL1);			   	\
2181	  fprintf (FILE, ",");			   		\
2182	  assemble_name (FILE, LABEL2);		   		\
2183	  fprintf (FILE, "\n");					\
2184	}							\
2185      else							\
2186	ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2);			\
2187    }								\
2188  while (0)
2189
2190#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2191/* To support -falign-* switches we need to use .p2align so
2192   that alignment directives in code sections will be padded
2193   with no-op instructions, rather than zeroes.  */
2194#define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP)		\
2195  if ((LOG) != 0)						\
2196    {								\
2197      if ((MAX_SKIP) == 0)					\
2198        fprintf ((FILE), "\t.p2align %d\n", (int) (LOG));	\
2199      else							\
2200        fprintf ((FILE), "\t.p2align %d,,%d\n",			\
2201                 (int) (LOG), (int) (MAX_SKIP));		\
2202    }
2203#endif
2204
2205/* Add two bytes to the length of conditionally executed Thumb-2
2206   instructions for the IT instruction.  */
2207#define ADJUST_INSN_LENGTH(insn, length) \
2208  if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \
2209    length += 2;
2210
2211/* Only perform branch elimination (by making instructions conditional) if
2212   we're optimizing.  For Thumb-2 check if any IT instructions need
2213   outputting.  */
2214#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)	\
2215  if (TARGET_ARM && optimize)				\
2216    arm_final_prescan_insn (INSN);			\
2217  else if (TARGET_THUMB2)				\
2218    thumb2_final_prescan_insn (INSN);			\
2219  else if (TARGET_THUMB1)				\
2220    thumb1_final_prescan_insn (INSN)
2221
2222#define ARM_SIGN_EXTEND(x)  ((HOST_WIDE_INT)			\
2223  (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x)	\
2224   : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2225      ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2226       ? ((~ (unsigned HOST_WIDE_INT) 0)			\
2227	  & ~ (unsigned HOST_WIDE_INT) 0xffffffff)		\
2228       : 0))))
2229
2230/* A C expression whose value is RTL representing the value of the return
2231   address for the frame COUNT steps up from the current frame.  */
2232
2233#define RETURN_ADDR_RTX(COUNT, FRAME) \
2234  arm_return_addr (COUNT, FRAME)
2235
2236/* Mask of the bits in the PC that contain the real return address
2237   when running in 26-bit mode.  */
2238#define RETURN_ADDR_MASK26 (0x03fffffc)
2239
2240/* Pick up the return address upon entry to a procedure. Used for
2241   dwarf2 unwind information.  This also enables the table driven
2242   mechanism.  */
2243#define INCOMING_RETURN_ADDR_RTX	gen_rtx_REG (Pmode, LR_REGNUM)
2244#define DWARF_FRAME_RETURN_COLUMN	DWARF_FRAME_REGNUM (LR_REGNUM)
2245
2246/* Used to mask out junk bits from the return address, such as
2247   processor state, interrupt status, condition codes and the like.  */
2248#define MASK_RETURN_ADDR \
2249  /* If we are generating code for an ARM2/ARM3 machine or for an ARM6	\
2250     in 26 bit mode, the condition codes must be masked out of the	\
2251     return address.  This does not apply to ARM6 and later processors	\
2252     when running in 32 bit mode.  */					\
2253  ((arm_arch4 || TARGET_THUMB)						\
2254   ? (gen_int_mode ((unsigned long)0xffffffff, Pmode))			\
2255   : arm_gen_return_addr_mask ())
2256
2257
2258/* Do not emit .note.GNU-stack by default.  */
2259#ifndef NEED_INDICATE_EXEC_STACK
2260#define NEED_INDICATE_EXEC_STACK	0
2261#endif
2262
2263#define TARGET_ARM_ARCH	\
2264  (arm_base_arch)	\
2265
2266#define TARGET_ARM_V6M (!arm_arch_notm && !arm_arch_thumb2)
2267#define TARGET_ARM_V7M (!arm_arch_notm && arm_arch_thumb2)
2268
2269/* The highest Thumb instruction set version supported by the chip.  */
2270#define TARGET_ARM_ARCH_ISA_THUMB 		\
2271  (arm_arch_thumb2 ? 2				\
2272	           : ((TARGET_ARM_ARCH >= 5 || arm_arch4t) ? 1 : 0))
2273
2274/* Expands to an upper-case char of the target's architectural
2275   profile.  */
2276#define TARGET_ARM_ARCH_PROFILE				\
2277  (!arm_arch_notm					\
2278    ? 'M'						\
2279    : (arm_arch7					\
2280      ? (strlen (arm_arch_name) >=3			\
2281	? (arm_arch_name[strlen (arm_arch_name) - 3])	\
2282      	: 0)						\
2283      : 0))
2284
2285/* Bit-field indicating what size LDREX/STREX loads/stores are available.
2286   Bit 0 for bytes, up to bit 3 for double-words.  */
2287#define TARGET_ARM_FEATURE_LDREX				\
2288  ((TARGET_HAVE_LDREX ? 4 : 0)					\
2289   | (TARGET_HAVE_LDREXBH ? 3 : 0)				\
2290   | (TARGET_HAVE_LDREXD ? 8 : 0))
2291
2292/* Set as a bit mask indicating the available widths of hardware floating
2293   point types.  Where bit 1 indicates 16-bit support, bit 2 indicates
2294   32-bit support, bit 3 indicates 64-bit support.  */
2295#define TARGET_ARM_FP			\
2296  (TARGET_VFP_SINGLE ? 4		\
2297  		     : (TARGET_VFP_DOUBLE ? (TARGET_FP16 ? 14 : 12) : 0))
2298
2299
2300/* Set as a bit mask indicating the available widths of floating point
2301   types for hardware NEON floating point.  This is the same as
2302   TARGET_ARM_FP without the 64-bit bit set.  */
2303#ifdef TARGET_NEON
2304#define TARGET_NEON_FP		\
2305  (TARGET_ARM_FP & (0xff ^ 0x08))
2306#endif
2307
2308/* The maximum number of parallel loads or stores we support in an ldm/stm
2309   instruction.  */
2310#define MAX_LDM_STM_OPS 4
2311
2312#define ASM_CPU_SPEC \
2313   " %{mcpu=generic-*:-march=%*;"				\
2314   "   :%{mcpu=*:-mcpu=%*} %{march=*:-march=%*}}"
2315
2316/* -mcpu=native handling only makes sense with compiler running on
2317   an ARM chip.  */
2318#if defined(__arm__)
2319extern const char *host_detect_local_cpu (int argc, const char **argv);
2320# define EXTRA_SPEC_FUNCTIONS						\
2321  { "local_cpu_detect", host_detect_local_cpu },
2322
2323# define MCPU_MTUNE_NATIVE_SPECS					\
2324   " %{march=native:%<march=native %:local_cpu_detect(arch)}"		\
2325   " %{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)}"		\
2326   " %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
2327#else
2328# define MCPU_MTUNE_NATIVE_SPECS ""
2329#endif
2330
2331#define DRIVER_SELF_SPECS MCPU_MTUNE_NATIVE_SPECS
2332
2333#endif /* ! GCC_ARM_H */
2334