• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/toolchains/hndtools-armeabi-2013.11/arm-none-eabi/include/c++/4.8.1/bits/
1// Vector implementation -*- C++ -*-
2
3// Copyright (C) 2001-2013 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23// <http://www.gnu.org/licenses/>.
24
25/*
26 *
27 * Copyright (c) 1994
28 * Hewlett-Packard Company
29 *
30 * Permission to use, copy, modify, distribute and sell this software
31 * and its documentation for any purpose is hereby granted without fee,
32 * provided that the above copyright notice appear in all copies and
33 * that both that copyright notice and this permission notice appear
34 * in supporting documentation.  Hewlett-Packard Company makes no
35 * representations about the suitability of this software for any
36 * purpose.  It is provided "as is" without express or implied warranty.
37 *
38 *
39 * Copyright (c) 1996
40 * Silicon Graphics Computer Systems, Inc.
41 *
42 * Permission to use, copy, modify, distribute and sell this software
43 * and its documentation for any purpose is hereby granted without fee,
44 * provided that the above copyright notice appear in all copies and
45 * that both that copyright notice and this permission notice appear
46 * in supporting documentation.  Silicon Graphics makes no
47 * representations about the suitability of this  software for any
48 * purpose.  It is provided "as is" without express or implied warranty.
49 */
50
51/** @file bits/stl_vector.h
52 *  This is an internal header file, included by other library headers.
53 *  Do not attempt to use it directly. @headername{vector}
54 */
55
56#ifndef _STL_VECTOR_H
57#define _STL_VECTOR_H 1
58
59#include <bits/stl_iterator_base_funcs.h>
60#include <bits/functexcept.h>
61#include <bits/concept_check.h>
62#if __cplusplus >= 201103L
63#include <initializer_list>
64#endif
65
66namespace std _GLIBCXX_VISIBILITY(default)
67{
68_GLIBCXX_BEGIN_NAMESPACE_CONTAINER
69
70  /// See bits/stl_deque.h's _Deque_base for an explanation.
71  template<typename _Tp, typename _Alloc>
72    struct _Vector_base
73    {
74      typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
75        rebind<_Tp>::other _Tp_alloc_type;
76      typedef typename __gnu_cxx::__alloc_traits<_Tp_alloc_type>::pointer
77       	pointer;
78
79      struct _Vector_impl
80      : public _Tp_alloc_type
81      {
82	pointer _M_start;
83	pointer _M_finish;
84	pointer _M_end_of_storage;
85
86	_Vector_impl()
87	: _Tp_alloc_type(), _M_start(0), _M_finish(0), _M_end_of_storage(0)
88	{ }
89
90	_Vector_impl(_Tp_alloc_type const& __a)
91	: _Tp_alloc_type(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
92	{ }
93
94#if __cplusplus >= 201103L
95	_Vector_impl(_Tp_alloc_type&& __a)
96	: _Tp_alloc_type(std::move(__a)),
97	  _M_start(0), _M_finish(0), _M_end_of_storage(0)
98	{ }
99#endif
100
101	void _M_swap_data(_Vector_impl& __x)
102	{
103	  std::swap(_M_start, __x._M_start);
104	  std::swap(_M_finish, __x._M_finish);
105	  std::swap(_M_end_of_storage, __x._M_end_of_storage);
106	}
107      };
108
109    public:
110      typedef _Alloc allocator_type;
111
112      _Tp_alloc_type&
113      _M_get_Tp_allocator() _GLIBCXX_NOEXCEPT
114      { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
115
116      const _Tp_alloc_type&
117      _M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT
118      { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
119
120      allocator_type
121      get_allocator() const _GLIBCXX_NOEXCEPT
122      { return allocator_type(_M_get_Tp_allocator()); }
123
124      _Vector_base()
125      : _M_impl() { }
126
127      _Vector_base(const allocator_type& __a)
128      : _M_impl(__a) { }
129
130      _Vector_base(size_t __n)
131      : _M_impl()
132      { _M_create_storage(__n); }
133
134      _Vector_base(size_t __n, const allocator_type& __a)
135      : _M_impl(__a)
136      { _M_create_storage(__n); }
137
138#if __cplusplus >= 201103L
139      _Vector_base(_Tp_alloc_type&& __a)
140      : _M_impl(std::move(__a)) { }
141
142      _Vector_base(_Vector_base&& __x)
143      : _M_impl(std::move(__x._M_get_Tp_allocator()))
144      { this->_M_impl._M_swap_data(__x._M_impl); }
145
146      _Vector_base(_Vector_base&& __x, const allocator_type& __a)
147      : _M_impl(__a)
148      {
149	if (__x.get_allocator() == __a)
150	  this->_M_impl._M_swap_data(__x._M_impl);
151	else
152	  {
153	    size_t __n = __x._M_impl._M_finish - __x._M_impl._M_start;
154	    _M_create_storage(__n);
155	  }
156      }
157#endif
158
159      ~_Vector_base()
160      { _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage
161		      - this->_M_impl._M_start); }
162
163    public:
164      _Vector_impl _M_impl;
165
166      pointer
167      _M_allocate(size_t __n)
168      { return __n != 0 ? _M_impl.allocate(__n) : 0; }
169
170      void
171      _M_deallocate(pointer __p, size_t __n)
172      {
173	if (__p)
174	  _M_impl.deallocate(__p, __n);
175      }
176
177    private:
178      void
179      _M_create_storage(size_t __n)
180      {
181	this->_M_impl._M_start = this->_M_allocate(__n);
182	this->_M_impl._M_finish = this->_M_impl._M_start;
183	this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
184      }
185    };
186
187
188  /**
189   *  @brief A standard container which offers fixed time access to
190   *  individual elements in any order.
191   *
192   *  @ingroup sequences
193   *
194   *  @tparam _Tp  Type of element.
195   *  @tparam _Alloc  Allocator type, defaults to allocator<_Tp>.
196   *
197   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
198   *  <a href="tables.html#66">reversible container</a>, and a
199   *  <a href="tables.html#67">sequence</a>, including the
200   *  <a href="tables.html#68">optional sequence requirements</a> with the
201   *  %exception of @c push_front and @c pop_front.
202   *
203   *  In some terminology a %vector can be described as a dynamic
204   *  C-style array, it offers fast and efficient access to individual
205   *  elements in any order and saves the user from worrying about
206   *  memory and size allocation.  Subscripting ( @c [] ) access is
207   *  also provided as with C-style arrays.
208  */
209  template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
210    class vector : protected _Vector_base<_Tp, _Alloc>
211    {
212      // Concept requirements.
213      typedef typename _Alloc::value_type                _Alloc_value_type;
214      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
215      __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
216
217      typedef _Vector_base<_Tp, _Alloc>			 _Base;
218      typedef typename _Base::_Tp_alloc_type		 _Tp_alloc_type;
219      typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type>  _Alloc_traits;
220
221    public:
222      typedef _Tp					 value_type;
223      typedef typename _Base::pointer                    pointer;
224      typedef typename _Alloc_traits::const_pointer      const_pointer;
225      typedef typename _Alloc_traits::reference          reference;
226      typedef typename _Alloc_traits::const_reference    const_reference;
227      typedef __gnu_cxx::__normal_iterator<pointer, vector> iterator;
228      typedef __gnu_cxx::__normal_iterator<const_pointer, vector>
229      const_iterator;
230      typedef std::reverse_iterator<const_iterator>  const_reverse_iterator;
231      typedef std::reverse_iterator<iterator>		 reverse_iterator;
232      typedef size_t					 size_type;
233      typedef ptrdiff_t					 difference_type;
234      typedef _Alloc                        		 allocator_type;
235
236    protected:
237      using _Base::_M_allocate;
238      using _Base::_M_deallocate;
239      using _Base::_M_impl;
240      using _Base::_M_get_Tp_allocator;
241
242    public:
243      // [23.2.4.1] construct/copy/destroy
244      // (assign() and get_allocator() are also listed in this section)
245      /**
246       *  @brief  Default constructor creates no elements.
247       */
248      vector()
249      : _Base() { }
250
251      /**
252       *  @brief  Creates a %vector with no elements.
253       *  @param  __a  An allocator object.
254       */
255      explicit
256      vector(const allocator_type& __a)
257      : _Base(__a) { }
258
259#if __cplusplus >= 201103L
260      /**
261       *  @brief  Creates a %vector with default constructed elements.
262       *  @param  __n  The number of elements to initially create.
263       *  @param  __a  An allocator.
264       *
265       *  This constructor fills the %vector with @a __n default
266       *  constructed elements.
267       */
268      explicit
269      vector(size_type __n, const allocator_type& __a = allocator_type())
270      : _Base(__n, __a)
271      { _M_default_initialize(__n); }
272
273      /**
274       *  @brief  Creates a %vector with copies of an exemplar element.
275       *  @param  __n  The number of elements to initially create.
276       *  @param  __value  An element to copy.
277       *  @param  __a  An allocator.
278       *
279       *  This constructor fills the %vector with @a __n copies of @a __value.
280       */
281      vector(size_type __n, const value_type& __value,
282	     const allocator_type& __a = allocator_type())
283      : _Base(__n, __a)
284      { _M_fill_initialize(__n, __value); }
285#else
286      /**
287       *  @brief  Creates a %vector with copies of an exemplar element.
288       *  @param  __n  The number of elements to initially create.
289       *  @param  __value  An element to copy.
290       *  @param  __a  An allocator.
291       *
292       *  This constructor fills the %vector with @a __n copies of @a __value.
293       */
294      explicit
295      vector(size_type __n, const value_type& __value = value_type(),
296	     const allocator_type& __a = allocator_type())
297      : _Base(__n, __a)
298      { _M_fill_initialize(__n, __value); }
299#endif
300
301      /**
302       *  @brief  %Vector copy constructor.
303       *  @param  __x  A %vector of identical element and allocator types.
304       *
305       *  The newly-created %vector uses a copy of the allocation
306       *  object used by @a __x.  All the elements of @a __x are copied,
307       *  but any extra memory in
308       *  @a __x (for fast expansion) will not be copied.
309       */
310      vector(const vector& __x)
311      : _Base(__x.size(),
312        _Alloc_traits::_S_select_on_copy(__x._M_get_Tp_allocator()))
313      { this->_M_impl._M_finish =
314	  std::__uninitialized_copy_a(__x.begin(), __x.end(),
315				      this->_M_impl._M_start,
316				      _M_get_Tp_allocator());
317      }
318
319#if __cplusplus >= 201103L
320      /**
321       *  @brief  %Vector move constructor.
322       *  @param  __x  A %vector of identical element and allocator types.
323       *
324       *  The newly-created %vector contains the exact contents of @a __x.
325       *  The contents of @a __x are a valid, but unspecified %vector.
326       */
327      vector(vector&& __x) noexcept
328      : _Base(std::move(__x)) { }
329
330      /// Copy constructor with alternative allocator
331      vector(const vector& __x, const allocator_type& __a)
332      : _Base(__x.size(), __a)
333      { this->_M_impl._M_finish =
334	  std::__uninitialized_copy_a(__x.begin(), __x.end(),
335				      this->_M_impl._M_start,
336				      _M_get_Tp_allocator());
337      }
338
339      /// Move constructor with alternative allocator
340      vector(vector&& __rv, const allocator_type& __m)
341      : _Base(std::move(__rv), __m)
342      {
343	if (__rv.get_allocator() != __m)
344	  {
345	    this->_M_impl._M_finish =
346	      std::__uninitialized_move_a(__rv.begin(), __rv.end(),
347					  this->_M_impl._M_start,
348					  _M_get_Tp_allocator());
349	    __rv.clear();
350	  }
351      }
352
353      /**
354       *  @brief  Builds a %vector from an initializer list.
355       *  @param  __l  An initializer_list.
356       *  @param  __a  An allocator.
357       *
358       *  Create a %vector consisting of copies of the elements in the
359       *  initializer_list @a __l.
360       *
361       *  This will call the element type's copy constructor N times
362       *  (where N is @a __l.size()) and do no memory reallocation.
363       */
364      vector(initializer_list<value_type> __l,
365	     const allocator_type& __a = allocator_type())
366      : _Base(__a)
367      {
368	_M_range_initialize(__l.begin(), __l.end(),
369			    random_access_iterator_tag());
370      }
371#endif
372
373      /**
374       *  @brief  Builds a %vector from a range.
375       *  @param  __first  An input iterator.
376       *  @param  __last  An input iterator.
377       *  @param  __a  An allocator.
378       *
379       *  Create a %vector consisting of copies of the elements from
380       *  [first,last).
381       *
382       *  If the iterators are forward, bidirectional, or
383       *  random-access, then this will call the elements' copy
384       *  constructor N times (where N is distance(first,last)) and do
385       *  no memory reallocation.  But if only input iterators are
386       *  used, then this will do at most 2N calls to the copy
387       *  constructor, and logN memory reallocations.
388       */
389#if __cplusplus >= 201103L
390      template<typename _InputIterator,
391	       typename = std::_RequireInputIter<_InputIterator>>
392        vector(_InputIterator __first, _InputIterator __last,
393	       const allocator_type& __a = allocator_type())
394	: _Base(__a)
395        { _M_initialize_dispatch(__first, __last, __false_type()); }
396#else
397      template<typename _InputIterator>
398        vector(_InputIterator __first, _InputIterator __last,
399	       const allocator_type& __a = allocator_type())
400	: _Base(__a)
401        {
402	  // Check whether it's an integral type.  If so, it's not an iterator.
403	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
404	  _M_initialize_dispatch(__first, __last, _Integral());
405	}
406#endif
407
408      /**
409       *  The dtor only erases the elements, and note that if the
410       *  elements themselves are pointers, the pointed-to memory is
411       *  not touched in any way.  Managing the pointer is the user's
412       *  responsibility.
413       */
414      ~vector() _GLIBCXX_NOEXCEPT
415      { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
416		      _M_get_Tp_allocator()); }
417
418      /**
419       *  @brief  %Vector assignment operator.
420       *  @param  __x  A %vector of identical element and allocator types.
421       *
422       *  All the elements of @a __x are copied, but any extra memory in
423       *  @a __x (for fast expansion) will not be copied.  Unlike the
424       *  copy constructor, the allocator object is not copied.
425       */
426      vector&
427      operator=(const vector& __x);
428
429#if __cplusplus >= 201103L
430      /**
431       *  @brief  %Vector move assignment operator.
432       *  @param  __x  A %vector of identical element and allocator types.
433       *
434       *  The contents of @a __x are moved into this %vector (without copying,
435       *  if the allocators permit it).
436       *  @a __x is a valid, but unspecified %vector.
437       */
438      vector&
439      operator=(vector&& __x) noexcept(_Alloc_traits::_S_nothrow_move())
440      {
441        constexpr bool __move_storage =
442          _Alloc_traits::_S_propagate_on_move_assign()
443          || _Alloc_traits::_S_always_equal();
444        _M_move_assign(std::move(__x),
445                       integral_constant<bool, __move_storage>());
446	return *this;
447      }
448
449      /**
450       *  @brief  %Vector list assignment operator.
451       *  @param  __l  An initializer_list.
452       *
453       *  This function fills a %vector with copies of the elements in the
454       *  initializer list @a __l.
455       *
456       *  Note that the assignment completely changes the %vector and
457       *  that the resulting %vector's size is the same as the number
458       *  of elements assigned.  Old data may be lost.
459       */
460      vector&
461      operator=(initializer_list<value_type> __l)
462      {
463	this->assign(__l.begin(), __l.end());
464	return *this;
465      }
466#endif
467
468      /**
469       *  @brief  Assigns a given value to a %vector.
470       *  @param  __n  Number of elements to be assigned.
471       *  @param  __val  Value to be assigned.
472       *
473       *  This function fills a %vector with @a __n copies of the given
474       *  value.  Note that the assignment completely changes the
475       *  %vector and that the resulting %vector's size is the same as
476       *  the number of elements assigned.  Old data may be lost.
477       */
478      void
479      assign(size_type __n, const value_type& __val)
480      { _M_fill_assign(__n, __val); }
481
482      /**
483       *  @brief  Assigns a range to a %vector.
484       *  @param  __first  An input iterator.
485       *  @param  __last   An input iterator.
486       *
487       *  This function fills a %vector with copies of the elements in the
488       *  range [__first,__last).
489       *
490       *  Note that the assignment completely changes the %vector and
491       *  that the resulting %vector's size is the same as the number
492       *  of elements assigned.  Old data may be lost.
493       */
494#if __cplusplus >= 201103L
495      template<typename _InputIterator,
496	       typename = std::_RequireInputIter<_InputIterator>>
497        void
498        assign(_InputIterator __first, _InputIterator __last)
499        { _M_assign_dispatch(__first, __last, __false_type()); }
500#else
501      template<typename _InputIterator>
502        void
503        assign(_InputIterator __first, _InputIterator __last)
504        {
505	  // Check whether it's an integral type.  If so, it's not an iterator.
506	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
507	  _M_assign_dispatch(__first, __last, _Integral());
508	}
509#endif
510
511#if __cplusplus >= 201103L
512      /**
513       *  @brief  Assigns an initializer list to a %vector.
514       *  @param  __l  An initializer_list.
515       *
516       *  This function fills a %vector with copies of the elements in the
517       *  initializer list @a __l.
518       *
519       *  Note that the assignment completely changes the %vector and
520       *  that the resulting %vector's size is the same as the number
521       *  of elements assigned.  Old data may be lost.
522       */
523      void
524      assign(initializer_list<value_type> __l)
525      { this->assign(__l.begin(), __l.end()); }
526#endif
527
528      /// Get a copy of the memory allocation object.
529      using _Base::get_allocator;
530
531      // iterators
532      /**
533       *  Returns a read/write iterator that points to the first
534       *  element in the %vector.  Iteration is done in ordinary
535       *  element order.
536       */
537      iterator
538      begin() _GLIBCXX_NOEXCEPT
539      { return iterator(this->_M_impl._M_start); }
540
541      /**
542       *  Returns a read-only (constant) iterator that points to the
543       *  first element in the %vector.  Iteration is done in ordinary
544       *  element order.
545       */
546      const_iterator
547      begin() const _GLIBCXX_NOEXCEPT
548      { return const_iterator(this->_M_impl._M_start); }
549
550      /**
551       *  Returns a read/write iterator that points one past the last
552       *  element in the %vector.  Iteration is done in ordinary
553       *  element order.
554       */
555      iterator
556      end() _GLIBCXX_NOEXCEPT
557      { return iterator(this->_M_impl._M_finish); }
558
559      /**
560       *  Returns a read-only (constant) iterator that points one past
561       *  the last element in the %vector.  Iteration is done in
562       *  ordinary element order.
563       */
564      const_iterator
565      end() const _GLIBCXX_NOEXCEPT
566      { return const_iterator(this->_M_impl._M_finish); }
567
568      /**
569       *  Returns a read/write reverse iterator that points to the
570       *  last element in the %vector.  Iteration is done in reverse
571       *  element order.
572       */
573      reverse_iterator
574      rbegin() _GLIBCXX_NOEXCEPT
575      { return reverse_iterator(end()); }
576
577      /**
578       *  Returns a read-only (constant) reverse iterator that points
579       *  to the last element in the %vector.  Iteration is done in
580       *  reverse element order.
581       */
582      const_reverse_iterator
583      rbegin() const _GLIBCXX_NOEXCEPT
584      { return const_reverse_iterator(end()); }
585
586      /**
587       *  Returns a read/write reverse iterator that points to one
588       *  before the first element in the %vector.  Iteration is done
589       *  in reverse element order.
590       */
591      reverse_iterator
592      rend() _GLIBCXX_NOEXCEPT
593      { return reverse_iterator(begin()); }
594
595      /**
596       *  Returns a read-only (constant) reverse iterator that points
597       *  to one before the first element in the %vector.  Iteration
598       *  is done in reverse element order.
599       */
600      const_reverse_iterator
601      rend() const _GLIBCXX_NOEXCEPT
602      { return const_reverse_iterator(begin()); }
603
604#if __cplusplus >= 201103L
605      /**
606       *  Returns a read-only (constant) iterator that points to the
607       *  first element in the %vector.  Iteration is done in ordinary
608       *  element order.
609       */
610      const_iterator
611      cbegin() const noexcept
612      { return const_iterator(this->_M_impl._M_start); }
613
614      /**
615       *  Returns a read-only (constant) iterator that points one past
616       *  the last element in the %vector.  Iteration is done in
617       *  ordinary element order.
618       */
619      const_iterator
620      cend() const noexcept
621      { return const_iterator(this->_M_impl._M_finish); }
622
623      /**
624       *  Returns a read-only (constant) reverse iterator that points
625       *  to the last element in the %vector.  Iteration is done in
626       *  reverse element order.
627       */
628      const_reverse_iterator
629      crbegin() const noexcept
630      { return const_reverse_iterator(end()); }
631
632      /**
633       *  Returns a read-only (constant) reverse iterator that points
634       *  to one before the first element in the %vector.  Iteration
635       *  is done in reverse element order.
636       */
637      const_reverse_iterator
638      crend() const noexcept
639      { return const_reverse_iterator(begin()); }
640#endif
641
642      // [23.2.4.2] capacity
643      /**  Returns the number of elements in the %vector.  */
644      size_type
645      size() const _GLIBCXX_NOEXCEPT
646      { return size_type(this->_M_impl._M_finish - this->_M_impl._M_start); }
647
648      /**  Returns the size() of the largest possible %vector.  */
649      size_type
650      max_size() const _GLIBCXX_NOEXCEPT
651      { return _Alloc_traits::max_size(_M_get_Tp_allocator()); }
652
653#if __cplusplus >= 201103L
654      /**
655       *  @brief  Resizes the %vector to the specified number of elements.
656       *  @param  __new_size  Number of elements the %vector should contain.
657       *
658       *  This function will %resize the %vector to the specified
659       *  number of elements.  If the number is smaller than the
660       *  %vector's current size the %vector is truncated, otherwise
661       *  default constructed elements are appended.
662       */
663      void
664      resize(size_type __new_size)
665      {
666	if (__new_size > size())
667	  _M_default_append(__new_size - size());
668	else if (__new_size < size())
669	  _M_erase_at_end(this->_M_impl._M_start + __new_size);
670      }
671
672      /**
673       *  @brief  Resizes the %vector to the specified number of elements.
674       *  @param  __new_size  Number of elements the %vector should contain.
675       *  @param  __x  Data with which new elements should be populated.
676       *
677       *  This function will %resize the %vector to the specified
678       *  number of elements.  If the number is smaller than the
679       *  %vector's current size the %vector is truncated, otherwise
680       *  the %vector is extended and new elements are populated with
681       *  given data.
682       */
683      void
684      resize(size_type __new_size, const value_type& __x)
685      {
686	if (__new_size > size())
687	  insert(end(), __new_size - size(), __x);
688	else if (__new_size < size())
689	  _M_erase_at_end(this->_M_impl._M_start + __new_size);
690      }
691#else
692      /**
693       *  @brief  Resizes the %vector to the specified number of elements.
694       *  @param  __new_size  Number of elements the %vector should contain.
695       *  @param  __x  Data with which new elements should be populated.
696       *
697       *  This function will %resize the %vector to the specified
698       *  number of elements.  If the number is smaller than the
699       *  %vector's current size the %vector is truncated, otherwise
700       *  the %vector is extended and new elements are populated with
701       *  given data.
702       */
703      void
704      resize(size_type __new_size, value_type __x = value_type())
705      {
706	if (__new_size > size())
707	  insert(end(), __new_size - size(), __x);
708	else if (__new_size < size())
709	  _M_erase_at_end(this->_M_impl._M_start + __new_size);
710      }
711#endif
712
713#if __cplusplus >= 201103L
714      /**  A non-binding request to reduce capacity() to size().  */
715      void
716      shrink_to_fit()
717      { _M_shrink_to_fit(); }
718#endif
719
720      /**
721       *  Returns the total number of elements that the %vector can
722       *  hold before needing to allocate more memory.
723       */
724      size_type
725      capacity() const _GLIBCXX_NOEXCEPT
726      { return size_type(this->_M_impl._M_end_of_storage
727			 - this->_M_impl._M_start); }
728
729      /**
730       *  Returns true if the %vector is empty.  (Thus begin() would
731       *  equal end().)
732       */
733      bool
734      empty() const _GLIBCXX_NOEXCEPT
735      { return begin() == end(); }
736
737      /**
738       *  @brief  Attempt to preallocate enough memory for specified number of
739       *          elements.
740       *  @param  __n  Number of elements required.
741       *  @throw  std::length_error  If @a n exceeds @c max_size().
742       *
743       *  This function attempts to reserve enough memory for the
744       *  %vector to hold the specified number of elements.  If the
745       *  number requested is more than max_size(), length_error is
746       *  thrown.
747       *
748       *  The advantage of this function is that if optimal code is a
749       *  necessity and the user can determine the number of elements
750       *  that will be required, the user can reserve the memory in
751       *  %advance, and thus prevent a possible reallocation of memory
752       *  and copying of %vector data.
753       */
754      void
755      reserve(size_type __n);
756
757      // element access
758      /**
759       *  @brief  Subscript access to the data contained in the %vector.
760       *  @param __n The index of the element for which data should be
761       *  accessed.
762       *  @return  Read/write reference to data.
763       *
764       *  This operator allows for easy, array-style, data access.
765       *  Note that data access with this operator is unchecked and
766       *  out_of_range lookups are not defined. (For checked lookups
767       *  see at().)
768       */
769      reference
770      operator[](size_type __n)
771      { return *(this->_M_impl._M_start + __n); }
772
773      /**
774       *  @brief  Subscript access to the data contained in the %vector.
775       *  @param __n The index of the element for which data should be
776       *  accessed.
777       *  @return  Read-only (constant) reference to data.
778       *
779       *  This operator allows for easy, array-style, data access.
780       *  Note that data access with this operator is unchecked and
781       *  out_of_range lookups are not defined. (For checked lookups
782       *  see at().)
783       */
784      const_reference
785      operator[](size_type __n) const
786      { return *(this->_M_impl._M_start + __n); }
787
788    protected:
789      /// Safety check used only from at().
790      void
791      _M_range_check(size_type __n) const
792      {
793	if (__n >= this->size())
794	  __throw_out_of_range(__N("vector::_M_range_check"));
795      }
796
797    public:
798      /**
799       *  @brief  Provides access to the data contained in the %vector.
800       *  @param __n The index of the element for which data should be
801       *  accessed.
802       *  @return  Read/write reference to data.
803       *  @throw  std::out_of_range  If @a __n is an invalid index.
804       *
805       *  This function provides for safer data access.  The parameter
806       *  is first checked that it is in the range of the vector.  The
807       *  function throws out_of_range if the check fails.
808       */
809      reference
810      at(size_type __n)
811      {
812	_M_range_check(__n);
813	return (*this)[__n];
814      }
815
816      /**
817       *  @brief  Provides access to the data contained in the %vector.
818       *  @param __n The index of the element for which data should be
819       *  accessed.
820       *  @return  Read-only (constant) reference to data.
821       *  @throw  std::out_of_range  If @a __n is an invalid index.
822       *
823       *  This function provides for safer data access.  The parameter
824       *  is first checked that it is in the range of the vector.  The
825       *  function throws out_of_range if the check fails.
826       */
827      const_reference
828      at(size_type __n) const
829      {
830	_M_range_check(__n);
831	return (*this)[__n];
832      }
833
834      /**
835       *  Returns a read/write reference to the data at the first
836       *  element of the %vector.
837       */
838      reference
839      front()
840      { return *begin(); }
841
842      /**
843       *  Returns a read-only (constant) reference to the data at the first
844       *  element of the %vector.
845       */
846      const_reference
847      front() const
848      { return *begin(); }
849
850      /**
851       *  Returns a read/write reference to the data at the last
852       *  element of the %vector.
853       */
854      reference
855      back()
856      { return *(end() - 1); }
857
858      /**
859       *  Returns a read-only (constant) reference to the data at the
860       *  last element of the %vector.
861       */
862      const_reference
863      back() const
864      { return *(end() - 1); }
865
866      // _GLIBCXX_RESOLVE_LIB_DEFECTS
867      // DR 464. Suggestion for new member functions in standard containers.
868      // data access
869      /**
870       *   Returns a pointer such that [data(), data() + size()) is a valid
871       *   range.  For a non-empty %vector, data() == &front().
872       */
873#if __cplusplus >= 201103L
874      _Tp*
875#else
876      pointer
877#endif
878      data() _GLIBCXX_NOEXCEPT
879      { return std::__addressof(front()); }
880
881#if __cplusplus >= 201103L
882      const _Tp*
883#else
884      const_pointer
885#endif
886      data() const _GLIBCXX_NOEXCEPT
887      { return std::__addressof(front()); }
888
889      // [23.2.4.3] modifiers
890      /**
891       *  @brief  Add data to the end of the %vector.
892       *  @param  __x  Data to be added.
893       *
894       *  This is a typical stack operation.  The function creates an
895       *  element at the end of the %vector and assigns the given data
896       *  to it.  Due to the nature of a %vector this operation can be
897       *  done in constant time if the %vector has preallocated space
898       *  available.
899       */
900      void
901      push_back(const value_type& __x)
902      {
903	if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
904	  {
905	    _Alloc_traits::construct(this->_M_impl, this->_M_impl._M_finish,
906	                             __x);
907	    ++this->_M_impl._M_finish;
908	  }
909	else
910#if __cplusplus >= 201103L
911	  _M_emplace_back_aux(__x);
912#else
913	  _M_insert_aux(end(), __x);
914#endif
915      }
916
917#if __cplusplus >= 201103L
918      void
919      push_back(value_type&& __x)
920      { emplace_back(std::move(__x)); }
921
922      template<typename... _Args>
923        void
924        emplace_back(_Args&&... __args);
925#endif
926
927      /**
928       *  @brief  Removes last element.
929       *
930       *  This is a typical stack operation. It shrinks the %vector by one.
931       *
932       *  Note that no data is returned, and if the last element's
933       *  data is needed, it should be retrieved before pop_back() is
934       *  called.
935       */
936      void
937      pop_back()
938      {
939	--this->_M_impl._M_finish;
940	_Alloc_traits::destroy(this->_M_impl, this->_M_impl._M_finish);
941      }
942
943#if __cplusplus >= 201103L
944      /**
945       *  @brief  Inserts an object in %vector before specified iterator.
946       *  @param  __position  An iterator into the %vector.
947       *  @param  __args  Arguments.
948       *  @return  An iterator that points to the inserted data.
949       *
950       *  This function will insert an object of type T constructed
951       *  with T(std::forward<Args>(args)...) before the specified location.
952       *  Note that this kind of operation could be expensive for a %vector
953       *  and if it is frequently used the user should consider using
954       *  std::list.
955       */
956      template<typename... _Args>
957        iterator
958        emplace(iterator __position, _Args&&... __args);
959#endif
960
961      /**
962       *  @brief  Inserts given value into %vector before specified iterator.
963       *  @param  __position  An iterator into the %vector.
964       *  @param  __x  Data to be inserted.
965       *  @return  An iterator that points to the inserted data.
966       *
967       *  This function will insert a copy of the given value before
968       *  the specified location.  Note that this kind of operation
969       *  could be expensive for a %vector and if it is frequently
970       *  used the user should consider using std::list.
971       */
972      iterator
973      insert(iterator __position, const value_type& __x);
974
975#if __cplusplus >= 201103L
976      /**
977       *  @brief  Inserts given rvalue into %vector before specified iterator.
978       *  @param  __position  An iterator into the %vector.
979       *  @param  __x  Data to be inserted.
980       *  @return  An iterator that points to the inserted data.
981       *
982       *  This function will insert a copy of the given rvalue before
983       *  the specified location.  Note that this kind of operation
984       *  could be expensive for a %vector and if it is frequently
985       *  used the user should consider using std::list.
986       */
987      iterator
988      insert(iterator __position, value_type&& __x)
989      { return emplace(__position, std::move(__x)); }
990
991      /**
992       *  @brief  Inserts an initializer_list into the %vector.
993       *  @param  __position  An iterator into the %vector.
994       *  @param  __l  An initializer_list.
995       *
996       *  This function will insert copies of the data in the
997       *  initializer_list @a l into the %vector before the location
998       *  specified by @a position.
999       *
1000       *  Note that this kind of operation could be expensive for a
1001       *  %vector and if it is frequently used the user should
1002       *  consider using std::list.
1003       */
1004      void
1005      insert(iterator __position, initializer_list<value_type> __l)
1006      { this->insert(__position, __l.begin(), __l.end()); }
1007#endif
1008
1009      /**
1010       *  @brief  Inserts a number of copies of given data into the %vector.
1011       *  @param  __position  An iterator into the %vector.
1012       *  @param  __n  Number of elements to be inserted.
1013       *  @param  __x  Data to be inserted.
1014       *
1015       *  This function will insert a specified number of copies of
1016       *  the given data before the location specified by @a position.
1017       *
1018       *  Note that this kind of operation could be expensive for a
1019       *  %vector and if it is frequently used the user should
1020       *  consider using std::list.
1021       */
1022      void
1023      insert(iterator __position, size_type __n, const value_type& __x)
1024      { _M_fill_insert(__position, __n, __x); }
1025
1026      /**
1027       *  @brief  Inserts a range into the %vector.
1028       *  @param  __position  An iterator into the %vector.
1029       *  @param  __first  An input iterator.
1030       *  @param  __last   An input iterator.
1031       *
1032       *  This function will insert copies of the data in the range
1033       *  [__first,__last) into the %vector before the location specified
1034       *  by @a pos.
1035       *
1036       *  Note that this kind of operation could be expensive for a
1037       *  %vector and if it is frequently used the user should
1038       *  consider using std::list.
1039       */
1040#if __cplusplus >= 201103L
1041      template<typename _InputIterator,
1042	       typename = std::_RequireInputIter<_InputIterator>>
1043        void
1044        insert(iterator __position, _InputIterator __first,
1045	       _InputIterator __last)
1046        { _M_insert_dispatch(__position, __first, __last, __false_type()); }
1047#else
1048      template<typename _InputIterator>
1049        void
1050        insert(iterator __position, _InputIterator __first,
1051	       _InputIterator __last)
1052        {
1053	  // Check whether it's an integral type.  If so, it's not an iterator.
1054	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1055	  _M_insert_dispatch(__position, __first, __last, _Integral());
1056	}
1057#endif
1058
1059      /**
1060       *  @brief  Remove element at given position.
1061       *  @param  __position  Iterator pointing to element to be erased.
1062       *  @return  An iterator pointing to the next element (or end()).
1063       *
1064       *  This function will erase the element at the given position and thus
1065       *  shorten the %vector by one.
1066       *
1067       *  Note This operation could be expensive and if it is
1068       *  frequently used the user should consider using std::list.
1069       *  The user is also cautioned that this function only erases
1070       *  the element, and that if the element is itself a pointer,
1071       *  the pointed-to memory is not touched in any way.  Managing
1072       *  the pointer is the user's responsibility.
1073       */
1074      iterator
1075      erase(iterator __position);
1076
1077      /**
1078       *  @brief  Remove a range of elements.
1079       *  @param  __first  Iterator pointing to the first element to be erased.
1080       *  @param  __last  Iterator pointing to one past the last element to be
1081       *                  erased.
1082       *  @return  An iterator pointing to the element pointed to by @a __last
1083       *           prior to erasing (or end()).
1084       *
1085       *  This function will erase the elements in the range
1086       *  [__first,__last) and shorten the %vector accordingly.
1087       *
1088       *  Note This operation could be expensive and if it is
1089       *  frequently used the user should consider using std::list.
1090       *  The user is also cautioned that this function only erases
1091       *  the elements, and that if the elements themselves are
1092       *  pointers, the pointed-to memory is not touched in any way.
1093       *  Managing the pointer is the user's responsibility.
1094       */
1095      iterator
1096      erase(iterator __first, iterator __last);
1097
1098      /**
1099       *  @brief  Swaps data with another %vector.
1100       *  @param  __x  A %vector of the same element and allocator types.
1101       *
1102       *  This exchanges the elements between two vectors in constant time.
1103       *  (Three pointers, so it should be quite fast.)
1104       *  Note that the global std::swap() function is specialized such that
1105       *  std::swap(v1,v2) will feed to this function.
1106       */
1107      void
1108      swap(vector& __x)
1109#if __cplusplus >= 201103L
1110			noexcept(_Alloc_traits::_S_nothrow_swap())
1111#endif
1112      {
1113	this->_M_impl._M_swap_data(__x._M_impl);
1114	_Alloc_traits::_S_on_swap(_M_get_Tp_allocator(),
1115	                          __x._M_get_Tp_allocator());
1116      }
1117
1118      /**
1119       *  Erases all the elements.  Note that this function only erases the
1120       *  elements, and that if the elements themselves are pointers, the
1121       *  pointed-to memory is not touched in any way.  Managing the pointer is
1122       *  the user's responsibility.
1123       */
1124      void
1125      clear() _GLIBCXX_NOEXCEPT
1126      { _M_erase_at_end(this->_M_impl._M_start); }
1127
1128    protected:
1129      /**
1130       *  Memory expansion handler.  Uses the member allocation function to
1131       *  obtain @a n bytes of memory, and then copies [first,last) into it.
1132       */
1133      template<typename _ForwardIterator>
1134        pointer
1135        _M_allocate_and_copy(size_type __n,
1136			     _ForwardIterator __first, _ForwardIterator __last)
1137        {
1138	  pointer __result = this->_M_allocate(__n);
1139	  __try
1140	    {
1141	      std::__uninitialized_copy_a(__first, __last, __result,
1142					  _M_get_Tp_allocator());
1143	      return __result;
1144	    }
1145	  __catch(...)
1146	    {
1147	      _M_deallocate(__result, __n);
1148	      __throw_exception_again;
1149	    }
1150	}
1151
1152
1153      // Internal constructor functions follow.
1154
1155      // Called by the range constructor to implement [23.1.1]/9
1156
1157      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1158      // 438. Ambiguity in the "do the right thing" clause
1159      template<typename _Integer>
1160        void
1161        _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
1162        {
1163	  this->_M_impl._M_start = _M_allocate(static_cast<size_type>(__n));
1164	  this->_M_impl._M_end_of_storage =
1165	    this->_M_impl._M_start + static_cast<size_type>(__n);
1166	  _M_fill_initialize(static_cast<size_type>(__n), __value);
1167	}
1168
1169      // Called by the range constructor to implement [23.1.1]/9
1170      template<typename _InputIterator>
1171        void
1172        _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1173			       __false_type)
1174        {
1175	  typedef typename std::iterator_traits<_InputIterator>::
1176	    iterator_category _IterCategory;
1177	  _M_range_initialize(__first, __last, _IterCategory());
1178	}
1179
1180      // Called by the second initialize_dispatch above
1181      template<typename _InputIterator>
1182        void
1183        _M_range_initialize(_InputIterator __first,
1184			    _InputIterator __last, std::input_iterator_tag)
1185        {
1186	  for (; __first != __last; ++__first)
1187#if __cplusplus >= 201103L
1188	    emplace_back(*__first);
1189#else
1190	    push_back(*__first);
1191#endif
1192	}
1193
1194      // Called by the second initialize_dispatch above
1195      template<typename _ForwardIterator>
1196        void
1197        _M_range_initialize(_ForwardIterator __first,
1198			    _ForwardIterator __last, std::forward_iterator_tag)
1199        {
1200	  const size_type __n = std::distance(__first, __last);
1201	  this->_M_impl._M_start = this->_M_allocate(__n);
1202	  this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
1203	  this->_M_impl._M_finish =
1204	    std::__uninitialized_copy_a(__first, __last,
1205					this->_M_impl._M_start,
1206					_M_get_Tp_allocator());
1207	}
1208
1209      // Called by the first initialize_dispatch above and by the
1210      // vector(n,value,a) constructor.
1211      void
1212      _M_fill_initialize(size_type __n, const value_type& __value)
1213      {
1214	std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
1215				      _M_get_Tp_allocator());
1216	this->_M_impl._M_finish = this->_M_impl._M_end_of_storage;
1217      }
1218
1219#if __cplusplus >= 201103L
1220      // Called by the vector(n) constructor.
1221      void
1222      _M_default_initialize(size_type __n)
1223      {
1224	std::__uninitialized_default_n_a(this->_M_impl._M_start, __n,
1225					 _M_get_Tp_allocator());
1226	this->_M_impl._M_finish = this->_M_impl._M_end_of_storage;
1227      }
1228#endif
1229
1230      // Internal assign functions follow.  The *_aux functions do the actual
1231      // assignment work for the range versions.
1232
1233      // Called by the range assign to implement [23.1.1]/9
1234
1235      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1236      // 438. Ambiguity in the "do the right thing" clause
1237      template<typename _Integer>
1238        void
1239        _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1240        { _M_fill_assign(__n, __val); }
1241
1242      // Called by the range assign to implement [23.1.1]/9
1243      template<typename _InputIterator>
1244        void
1245        _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1246			   __false_type)
1247        {
1248	  typedef typename std::iterator_traits<_InputIterator>::
1249	    iterator_category _IterCategory;
1250	  _M_assign_aux(__first, __last, _IterCategory());
1251	}
1252
1253      // Called by the second assign_dispatch above
1254      template<typename _InputIterator>
1255        void
1256        _M_assign_aux(_InputIterator __first, _InputIterator __last,
1257		      std::input_iterator_tag);
1258
1259      // Called by the second assign_dispatch above
1260      template<typename _ForwardIterator>
1261        void
1262        _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
1263		      std::forward_iterator_tag);
1264
1265      // Called by assign(n,t), and the range assign when it turns out
1266      // to be the same thing.
1267      void
1268      _M_fill_assign(size_type __n, const value_type& __val);
1269
1270
1271      // Internal insert functions follow.
1272
1273      // Called by the range insert to implement [23.1.1]/9
1274
1275      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1276      // 438. Ambiguity in the "do the right thing" clause
1277      template<typename _Integer>
1278        void
1279        _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
1280			   __true_type)
1281        { _M_fill_insert(__pos, __n, __val); }
1282
1283      // Called by the range insert to implement [23.1.1]/9
1284      template<typename _InputIterator>
1285        void
1286        _M_insert_dispatch(iterator __pos, _InputIterator __first,
1287			   _InputIterator __last, __false_type)
1288        {
1289	  typedef typename std::iterator_traits<_InputIterator>::
1290	    iterator_category _IterCategory;
1291	  _M_range_insert(__pos, __first, __last, _IterCategory());
1292	}
1293
1294      // Called by the second insert_dispatch above
1295      template<typename _InputIterator>
1296        void
1297        _M_range_insert(iterator __pos, _InputIterator __first,
1298			_InputIterator __last, std::input_iterator_tag);
1299
1300      // Called by the second insert_dispatch above
1301      template<typename _ForwardIterator>
1302        void
1303        _M_range_insert(iterator __pos, _ForwardIterator __first,
1304			_ForwardIterator __last, std::forward_iterator_tag);
1305
1306      // Called by insert(p,n,x), and the range insert when it turns out to be
1307      // the same thing.
1308      void
1309      _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
1310
1311#if __cplusplus >= 201103L
1312      // Called by resize(n).
1313      void
1314      _M_default_append(size_type __n);
1315
1316      bool
1317      _M_shrink_to_fit();
1318#endif
1319
1320      // Called by insert(p,x)
1321#if __cplusplus < 201103L
1322      void
1323      _M_insert_aux(iterator __position, const value_type& __x);
1324#else
1325      template<typename... _Args>
1326        void
1327        _M_insert_aux(iterator __position, _Args&&... __args);
1328
1329      template<typename... _Args>
1330        void
1331        _M_emplace_back_aux(_Args&&... __args);
1332#endif
1333
1334      // Called by the latter.
1335      size_type
1336      _M_check_len(size_type __n, const char* __s) const
1337      {
1338	if (max_size() - size() < __n)
1339	  __throw_length_error(__N(__s));
1340
1341	const size_type __len = size() + std::max(size(), __n);
1342	return (__len < size() || __len > max_size()) ? max_size() : __len;
1343      }
1344
1345      // Internal erase functions follow.
1346
1347      // Called by erase(q1,q2), clear(), resize(), _M_fill_assign,
1348      // _M_assign_aux.
1349      void
1350      _M_erase_at_end(pointer __pos)
1351      {
1352	std::_Destroy(__pos, this->_M_impl._M_finish, _M_get_Tp_allocator());
1353	this->_M_impl._M_finish = __pos;
1354      }
1355
1356#if __cplusplus >= 201103L
1357    private:
1358      // Constant-time move assignment when source object's memory can be
1359      // moved, either because the source's allocator will move too
1360      // or because the allocators are equal.
1361      void
1362      _M_move_assign(vector&& __x, std::true_type) noexcept
1363      {
1364	const vector __tmp(std::move(*this));
1365	this->_M_impl._M_swap_data(__x._M_impl);
1366	if (_Alloc_traits::_S_propagate_on_move_assign())
1367	  std::__alloc_on_move(_M_get_Tp_allocator(),
1368			       __x._M_get_Tp_allocator());
1369      }
1370
1371      // Do move assignment when it might not be possible to move source
1372      // object's memory, resulting in a linear-time operation.
1373      void
1374      _M_move_assign(vector&& __x, std::false_type)
1375      {
1376	if (__x._M_get_Tp_allocator() == this->_M_get_Tp_allocator())
1377	  _M_move_assign(std::move(__x), std::true_type());
1378	else
1379	  {
1380	    // The rvalue's allocator cannot be moved and is not equal,
1381	    // so we need to individually move each element.
1382	    this->assign(std::__make_move_if_noexcept_iterator(__x.begin()),
1383			 std::__make_move_if_noexcept_iterator(__x.end()));
1384	    __x.clear();
1385	  }
1386      }
1387#endif
1388    };
1389
1390
1391  /**
1392   *  @brief  Vector equality comparison.
1393   *  @param  __x  A %vector.
1394   *  @param  __y  A %vector of the same type as @a __x.
1395   *  @return  True iff the size and elements of the vectors are equal.
1396   *
1397   *  This is an equivalence relation.  It is linear in the size of the
1398   *  vectors.  Vectors are considered equivalent if their sizes are equal,
1399   *  and if corresponding elements compare equal.
1400  */
1401  template<typename _Tp, typename _Alloc>
1402    inline bool
1403    operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1404    { return (__x.size() == __y.size()
1405	      && std::equal(__x.begin(), __x.end(), __y.begin())); }
1406
1407  /**
1408   *  @brief  Vector ordering relation.
1409   *  @param  __x  A %vector.
1410   *  @param  __y  A %vector of the same type as @a __x.
1411   *  @return  True iff @a __x is lexicographically less than @a __y.
1412   *
1413   *  This is a total ordering relation.  It is linear in the size of the
1414   *  vectors.  The elements must be comparable with @c <.
1415   *
1416   *  See std::lexicographical_compare() for how the determination is made.
1417  */
1418  template<typename _Tp, typename _Alloc>
1419    inline bool
1420    operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1421    { return std::lexicographical_compare(__x.begin(), __x.end(),
1422					  __y.begin(), __y.end()); }
1423
1424  /// Based on operator==
1425  template<typename _Tp, typename _Alloc>
1426    inline bool
1427    operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1428    { return !(__x == __y); }
1429
1430  /// Based on operator<
1431  template<typename _Tp, typename _Alloc>
1432    inline bool
1433    operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1434    { return __y < __x; }
1435
1436  /// Based on operator<
1437  template<typename _Tp, typename _Alloc>
1438    inline bool
1439    operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1440    { return !(__y < __x); }
1441
1442  /// Based on operator<
1443  template<typename _Tp, typename _Alloc>
1444    inline bool
1445    operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1446    { return !(__x < __y); }
1447
1448  /// See std::vector::swap().
1449  template<typename _Tp, typename _Alloc>
1450    inline void
1451    swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
1452    { __x.swap(__y); }
1453
1454_GLIBCXX_END_NAMESPACE_CONTAINER
1455} // namespace std
1456
1457#endif /* _STL_VECTOR_H */
1458