• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/toolchains/hndtools-armeabi-2013.11/arm-none-eabi/include/c++/4.8.1/bits/
1// Internal policy header for unordered_set and unordered_map -*- C++ -*-
2
3// Copyright (C) 2010-2013 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23// <http://www.gnu.org/licenses/>.
24
25/** @file bits/hashtable_policy.h
26 *  This is an internal header file, included by other library headers.
27 *  Do not attempt to use it directly.
28 *  @headername{unordered_map,unordered_set}
29 */
30
31#ifndef _HASHTABLE_POLICY_H
32#define _HASHTABLE_POLICY_H 1
33
34namespace std _GLIBCXX_VISIBILITY(default)
35{
36_GLIBCXX_BEGIN_NAMESPACE_VERSION
37
38  template<typename _Key, typename _Value, typename _Alloc,
39	   typename _ExtractKey, typename _Equal,
40	   typename _H1, typename _H2, typename _Hash,
41	   typename _RehashPolicy, typename _Traits>
42    class _Hashtable;
43
44_GLIBCXX_END_NAMESPACE_VERSION
45
46namespace __detail
47{
48_GLIBCXX_BEGIN_NAMESPACE_VERSION
49
50  /**
51   *  @defgroup hashtable-detail Base and Implementation Classes
52   *  @ingroup unordered_associative_containers
53   *  @{
54   */
55  template<typename _Key, typename _Value,
56	   typename _ExtractKey, typename _Equal,
57	   typename _H1, typename _H2, typename _Hash, typename _Traits>
58    struct _Hashtable_base;
59
60  // Helper function: return distance(first, last) for forward
61  // iterators, or 0 for input iterators.
62  template<class _Iterator>
63    inline typename std::iterator_traits<_Iterator>::difference_type
64    __distance_fw(_Iterator __first, _Iterator __last,
65		  std::input_iterator_tag)
66    { return 0; }
67
68  template<class _Iterator>
69    inline typename std::iterator_traits<_Iterator>::difference_type
70    __distance_fw(_Iterator __first, _Iterator __last,
71		  std::forward_iterator_tag)
72    { return std::distance(__first, __last); }
73
74  template<class _Iterator>
75    inline typename std::iterator_traits<_Iterator>::difference_type
76    __distance_fw(_Iterator __first, _Iterator __last)
77    {
78      typedef typename std::iterator_traits<_Iterator>::iterator_category _Tag;
79      return __distance_fw(__first, __last, _Tag());
80    }
81
82  // Helper type used to detect whether the hash functor is noexcept.
83  template <typename _Key, typename _Hash>
84    struct __is_noexcept_hash : std::integral_constant<bool,
85	noexcept(declval<const _Hash&>()(declval<const _Key&>()))>
86    { };
87
88  struct _Identity
89  {
90    template<typename _Tp>
91      _Tp&&
92      operator()(_Tp&& __x) const
93      { return std::forward<_Tp>(__x); }
94  };
95
96  struct _Select1st
97  {
98    template<typename _Tp>
99      auto
100      operator()(_Tp&& __x) const
101      -> decltype(std::get<0>(std::forward<_Tp>(__x)))
102      { return std::get<0>(std::forward<_Tp>(__x)); }
103  };
104
105  // Auxiliary types used for all instantiations of _Hashtable nodes
106  // and iterators.
107
108  /**
109   *  struct _Hashtable_traits
110   *
111   *  Important traits for hash tables.
112   *
113   *  @tparam _Cache_hash_code  Boolean value. True if the value of
114   *  the hash function is stored along with the value. This is a
115   *  time-space tradeoff.  Storing it may improve lookup speed by
116   *  reducing the number of times we need to call the _Equal
117   *  function.
118   *
119   *  @tparam _Constant_iterators  Boolean value. True if iterator and
120   *  const_iterator are both constant iterator types. This is true
121   *  for unordered_set and unordered_multiset, false for
122   *  unordered_map and unordered_multimap.
123   *
124   *  @tparam _Unique_keys  Boolean value. True if the return value
125   *  of _Hashtable::count(k) is always at most one, false if it may
126   *  be an arbitrary number. This is true for unordered_set and
127   *  unordered_map, false for unordered_multiset and
128   *  unordered_multimap.
129   */
130  template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys>
131    struct _Hashtable_traits
132    {
133      template<bool _Cond>
134	using __bool_constant = integral_constant<bool, _Cond>;
135
136      using __hash_cached = __bool_constant<_Cache_hash_code>;
137      using __constant_iterators = __bool_constant<_Constant_iterators>;
138      using __unique_keys = __bool_constant<_Unique_keys>;
139    };
140
141  /**
142   *  struct _Hash_node_base
143   *
144   *  Nodes, used to wrap elements stored in the hash table.  A policy
145   *  template parameter of class template _Hashtable controls whether
146   *  nodes also store a hash code. In some cases (e.g. strings) this
147   *  may be a performance win.
148   */
149  struct _Hash_node_base
150  {
151    _Hash_node_base* _M_nxt;
152
153    _Hash_node_base() : _M_nxt() { }
154
155    _Hash_node_base(_Hash_node_base* __next) : _M_nxt(__next) { }
156  };
157
158  /**
159   *  Primary template struct _Hash_node.
160   */
161  template<typename _Value, bool _Cache_hash_code>
162    struct _Hash_node;
163
164  /**
165   *  Specialization for nodes with caches, struct _Hash_node.
166   *
167   *  Base class is __detail::_Hash_node_base.
168   */
169  template<typename _Value>
170    struct _Hash_node<_Value, true> : _Hash_node_base
171    {
172      _Value       _M_v;
173      std::size_t  _M_hash_code;
174
175      template<typename... _Args>
176	_Hash_node(_Args&&... __args)
177	: _M_v(std::forward<_Args>(__args)...), _M_hash_code() { }
178
179      _Hash_node*
180      _M_next() const { return static_cast<_Hash_node*>(_M_nxt); }
181    };
182
183  /**
184   *  Specialization for nodes without caches, struct _Hash_node.
185   *
186   *  Base class is __detail::_Hash_node_base.
187   */
188  template<typename _Value>
189    struct _Hash_node<_Value, false> : _Hash_node_base
190    {
191      _Value       _M_v;
192
193      template<typename... _Args>
194	_Hash_node(_Args&&... __args)
195	: _M_v(std::forward<_Args>(__args)...) { }
196
197      _Hash_node*
198      _M_next() const { return static_cast<_Hash_node*>(_M_nxt); }
199    };
200
201  /// Base class for node iterators.
202  template<typename _Value, bool _Cache_hash_code>
203    struct _Node_iterator_base
204    {
205      using __node_type = _Hash_node<_Value, _Cache_hash_code>;
206
207      __node_type*  _M_cur;
208
209      _Node_iterator_base(__node_type* __p)
210      : _M_cur(__p) { }
211
212      void
213      _M_incr()
214      { _M_cur = _M_cur->_M_next(); }
215    };
216
217  template<typename _Value, bool _Cache_hash_code>
218    inline bool
219    operator==(const _Node_iterator_base<_Value, _Cache_hash_code>& __x,
220	       const _Node_iterator_base<_Value, _Cache_hash_code >& __y)
221    { return __x._M_cur == __y._M_cur; }
222
223  template<typename _Value, bool _Cache_hash_code>
224    inline bool
225    operator!=(const _Node_iterator_base<_Value, _Cache_hash_code>& __x,
226	       const _Node_iterator_base<_Value, _Cache_hash_code>& __y)
227    { return __x._M_cur != __y._M_cur; }
228
229  /// Node iterators, used to iterate through all the hashtable.
230  template<typename _Value, bool __constant_iterators, bool __cache>
231    struct _Node_iterator
232    : public _Node_iterator_base<_Value, __cache>
233    {
234    private:
235      using __base_type = _Node_iterator_base<_Value, __cache>;
236      using __node_type = typename __base_type::__node_type;
237
238    public:
239      typedef _Value                                   value_type;
240      typedef std::ptrdiff_t                           difference_type;
241      typedef std::forward_iterator_tag                iterator_category;
242
243      using pointer = typename std::conditional<__constant_iterators,
244						const _Value*, _Value*>::type;
245
246      using reference = typename std::conditional<__constant_iterators,
247						  const _Value&, _Value&>::type;
248
249      _Node_iterator()
250      : __base_type(0) { }
251
252      explicit
253      _Node_iterator(__node_type* __p)
254      : __base_type(__p) { }
255
256      reference
257      operator*() const
258      { return this->_M_cur->_M_v; }
259
260      pointer
261      operator->() const
262      { return std::__addressof(this->_M_cur->_M_v); }
263
264      _Node_iterator&
265      operator++()
266      {
267	this->_M_incr();
268	return *this;
269      }
270
271      _Node_iterator
272      operator++(int)
273      {
274	_Node_iterator __tmp(*this);
275	this->_M_incr();
276	return __tmp;
277      }
278    };
279
280  /// Node const_iterators, used to iterate through all the hashtable.
281  template<typename _Value, bool __constant_iterators, bool __cache>
282    struct _Node_const_iterator
283    : public _Node_iterator_base<_Value, __cache>
284    {
285    private:
286      using __base_type = _Node_iterator_base<_Value, __cache>;
287      using __node_type = typename __base_type::__node_type;
288
289    public:
290      typedef _Value                                   value_type;
291      typedef std::ptrdiff_t                           difference_type;
292      typedef std::forward_iterator_tag                iterator_category;
293
294      typedef const _Value*                            pointer;
295      typedef const _Value&                            reference;
296
297      _Node_const_iterator()
298      : __base_type(0) { }
299
300      explicit
301      _Node_const_iterator(__node_type* __p)
302      : __base_type(__p) { }
303
304      _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
305			   __cache>& __x)
306      : __base_type(__x._M_cur) { }
307
308      reference
309      operator*() const
310      { return this->_M_cur->_M_v; }
311
312      pointer
313      operator->() const
314      { return std::__addressof(this->_M_cur->_M_v); }
315
316      _Node_const_iterator&
317      operator++()
318      {
319	this->_M_incr();
320	return *this;
321      }
322
323      _Node_const_iterator
324      operator++(int)
325      {
326	_Node_const_iterator __tmp(*this);
327	this->_M_incr();
328	return __tmp;
329      }
330    };
331
332  // Many of class template _Hashtable's template parameters are policy
333  // classes.  These are defaults for the policies.
334
335  /// Default range hashing function: use division to fold a large number
336  /// into the range [0, N).
337  struct _Mod_range_hashing
338  {
339    typedef std::size_t first_argument_type;
340    typedef std::size_t second_argument_type;
341    typedef std::size_t result_type;
342
343    result_type
344    operator()(first_argument_type __num, second_argument_type __den) const
345    { return __num % __den; }
346  };
347
348  /// Default ranged hash function H.  In principle it should be a
349  /// function object composed from objects of type H1 and H2 such that
350  /// h(k, N) = h2(h1(k), N), but that would mean making extra copies of
351  /// h1 and h2.  So instead we'll just use a tag to tell class template
352  /// hashtable to do that composition.
353  struct _Default_ranged_hash { };
354
355  /// Default value for rehash policy.  Bucket size is (usually) the
356  /// smallest prime that keeps the load factor small enough.
357  struct _Prime_rehash_policy
358  {
359    _Prime_rehash_policy(float __z = 1.0)
360    : _M_max_load_factor(__z), _M_next_resize(0) { }
361
362    float
363    max_load_factor() const noexcept
364    { return _M_max_load_factor; }
365
366    // Return a bucket size no smaller than n.
367    std::size_t
368    _M_next_bkt(std::size_t __n) const;
369
370    // Return a bucket count appropriate for n elements
371    std::size_t
372    _M_bkt_for_elements(std::size_t __n) const
373    { return __builtin_ceil(__n / (long double)_M_max_load_factor); }
374
375    // __n_bkt is current bucket count, __n_elt is current element count,
376    // and __n_ins is number of elements to be inserted.  Do we need to
377    // increase bucket count?  If so, return make_pair(true, n), where n
378    // is the new bucket count.  If not, return make_pair(false, 0).
379    std::pair<bool, std::size_t>
380    _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
381		   std::size_t __n_ins) const;
382
383    typedef std::size_t _State;
384
385    _State
386    _M_state() const
387    { return _M_next_resize; }
388
389    void
390    _M_reset(_State __state)
391    { _M_next_resize = __state; }
392
393    enum { _S_n_primes = sizeof(unsigned long) != 8 ? 256 : 256 + 48 };
394
395    static const std::size_t _S_growth_factor = 2;
396
397    float                _M_max_load_factor;
398    mutable std::size_t  _M_next_resize;
399  };
400
401  // Base classes for std::_Hashtable.  We define these base classes
402  // because in some cases we want to do different things depending on
403  // the value of a policy class.  In some cases the policy class
404  // affects which member functions and nested typedefs are defined;
405  // we handle that by specializing base class templates.  Several of
406  // the base class templates need to access other members of class
407  // template _Hashtable, so we use a variant of the "Curiously
408  // Recurring Template Pattern" (CRTP) technique.
409
410  /**
411   *  Primary class template _Map_base.
412   *
413   *  If the hashtable has a value type of the form pair<T1, T2> and a
414   *  key extraction policy (_ExtractKey) that returns the first part
415   *  of the pair, the hashtable gets a mapped_type typedef.  If it
416   *  satisfies those criteria and also has unique keys, then it also
417   *  gets an operator[].
418   */
419  template<typename _Key, typename _Value, typename _Alloc,
420	   typename _ExtractKey, typename _Equal,
421	   typename _H1, typename _H2, typename _Hash,
422	   typename _RehashPolicy, typename _Traits,
423	   bool _Unique_keys = _Traits::__unique_keys::value>
424    struct _Map_base { };
425
426  /// Partial specialization, __unique_keys set to false.
427  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
428	   typename _H1, typename _H2, typename _Hash,
429	   typename _RehashPolicy, typename _Traits>
430    struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
431		     _H1, _H2, _Hash, _RehashPolicy, _Traits, false>
432    {
433      using mapped_type = typename std::tuple_element<1, _Pair>::type;
434    };
435
436  /// Partial specialization, __unique_keys set to true.
437  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
438	   typename _H1, typename _H2, typename _Hash,
439	   typename _RehashPolicy, typename _Traits>
440    struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
441		     _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
442    {
443    private:
444      using __hashtable_base = __detail::_Hashtable_base<_Key, _Pair,
445							 _Select1st,
446							_Equal, _H1, _H2, _Hash,
447							  _Traits>;
448
449      using __hashtable = _Hashtable<_Key, _Pair, _Alloc,
450				     _Select1st, _Equal,
451				     _H1, _H2, _Hash, _RehashPolicy, _Traits>;
452
453      using __hash_code = typename __hashtable_base::__hash_code;
454      using __node_type = typename __hashtable_base::__node_type;
455
456    public:
457      using key_type = typename __hashtable_base::key_type;
458      using iterator = typename __hashtable_base::iterator;
459      using mapped_type = typename std::tuple_element<1, _Pair>::type;
460
461      mapped_type&
462      operator[](const key_type& __k);
463
464      mapped_type&
465      operator[](key_type&& __k);
466
467      // _GLIBCXX_RESOLVE_LIB_DEFECTS
468      // DR 761. unordered_map needs an at() member function.
469      mapped_type&
470      at(const key_type& __k);
471
472      const mapped_type&
473      at(const key_type& __k) const;
474    };
475
476  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
477	   typename _H1, typename _H2, typename _Hash,
478	   typename _RehashPolicy, typename _Traits>
479    typename _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
480		       _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
481		       ::mapped_type&
482    _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
483	      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
484    operator[](const key_type& __k)
485    {
486      __hashtable* __h = static_cast<__hashtable*>(this);
487      __hash_code __code = __h->_M_hash_code(__k);
488      std::size_t __n = __h->_M_bucket_index(__k, __code);
489      __node_type* __p = __h->_M_find_node(__n, __k, __code);
490
491      if (!__p)
492	{
493	  __p = __h->_M_allocate_node(std::piecewise_construct,
494				      std::tuple<const key_type&>(__k),
495				      std::tuple<>());
496	  return __h->_M_insert_unique_node(__n, __code, __p)->second;
497	}
498
499      return (__p->_M_v).second;
500    }
501
502  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
503	   typename _H1, typename _H2, typename _Hash,
504	   typename _RehashPolicy, typename _Traits>
505    typename _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
506		       _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
507		       ::mapped_type&
508    _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
509	      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
510    operator[](key_type&& __k)
511    {
512      __hashtable* __h = static_cast<__hashtable*>(this);
513      __hash_code __code = __h->_M_hash_code(__k);
514      std::size_t __n = __h->_M_bucket_index(__k, __code);
515      __node_type* __p = __h->_M_find_node(__n, __k, __code);
516
517      if (!__p)
518	{
519	  __p = __h->_M_allocate_node(std::piecewise_construct,
520				      std::forward_as_tuple(std::move(__k)),
521				      std::tuple<>());
522	  return __h->_M_insert_unique_node(__n, __code, __p)->second;
523	}
524
525      return (__p->_M_v).second;
526    }
527
528  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
529	   typename _H1, typename _H2, typename _Hash,
530	   typename _RehashPolicy, typename _Traits>
531    typename _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
532		       _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
533		       ::mapped_type&
534    _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
535	      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
536    at(const key_type& __k)
537    {
538      __hashtable* __h = static_cast<__hashtable*>(this);
539      __hash_code __code = __h->_M_hash_code(__k);
540      std::size_t __n = __h->_M_bucket_index(__k, __code);
541      __node_type* __p = __h->_M_find_node(__n, __k, __code);
542
543      if (!__p)
544	__throw_out_of_range(__N("_Map_base::at"));
545      return (__p->_M_v).second;
546    }
547
548  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
549	   typename _H1, typename _H2, typename _Hash,
550	   typename _RehashPolicy, typename _Traits>
551    const typename _Map_base<_Key, _Pair, _Alloc, _Select1st,
552			     _Equal, _H1, _H2, _Hash, _RehashPolicy,
553			     _Traits, true>::mapped_type&
554    _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
555	      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
556    at(const key_type& __k) const
557    {
558      const __hashtable* __h = static_cast<const __hashtable*>(this);
559      __hash_code __code = __h->_M_hash_code(__k);
560      std::size_t __n = __h->_M_bucket_index(__k, __code);
561      __node_type* __p = __h->_M_find_node(__n, __k, __code);
562
563      if (!__p)
564	__throw_out_of_range(__N("_Map_base::at"));
565      return (__p->_M_v).second;
566    }
567
568  /**
569   *  Primary class template _Insert_base.
570   *
571   *  insert member functions appropriate to all _Hashtables.
572   */
573  template<typename _Key, typename _Value, typename _Alloc,
574	   typename _ExtractKey, typename _Equal,
575	   typename _H1, typename _H2, typename _Hash,
576	   typename _RehashPolicy, typename _Traits>
577    struct _Insert_base
578    {
579      using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
580				     _Equal, _H1, _H2, _Hash,
581				     _RehashPolicy, _Traits>;
582
583      using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey,
584					       _Equal, _H1, _H2, _Hash,
585					       _Traits>;
586
587      using value_type = typename __hashtable_base::value_type;
588      using iterator = typename __hashtable_base::iterator;
589      using const_iterator =  typename __hashtable_base::const_iterator;
590      using size_type = typename __hashtable_base::size_type;
591
592      using __unique_keys = typename __hashtable_base::__unique_keys;
593      using __ireturn_type = typename __hashtable_base::__ireturn_type;
594      using __iconv_type = typename __hashtable_base::__iconv_type;
595
596      __hashtable&
597      _M_conjure_hashtable()
598      { return *(static_cast<__hashtable*>(this)); }
599
600      __ireturn_type
601      insert(const value_type& __v)
602      {
603	__hashtable& __h = _M_conjure_hashtable();
604	return __h._M_insert(__v, __unique_keys());
605      }
606
607      iterator
608      insert(const_iterator, const value_type& __v)
609      { return __iconv_type()(insert(__v)); }
610
611      void
612      insert(initializer_list<value_type> __l)
613      { this->insert(__l.begin(), __l.end()); }
614
615      template<typename _InputIterator>
616	void
617	insert(_InputIterator __first, _InputIterator __last);
618    };
619
620  template<typename _Key, typename _Value, typename _Alloc,
621	   typename _ExtractKey, typename _Equal,
622	   typename _H1, typename _H2, typename _Hash,
623	   typename _RehashPolicy, typename _Traits>
624    template<typename _InputIterator>
625      void
626      _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
627		    _RehashPolicy, _Traits>::
628      insert(_InputIterator __first, _InputIterator __last)
629      {
630	using __rehash_type = typename __hashtable::__rehash_type;
631	using __rehash_state = typename __hashtable::__rehash_state;
632	using pair_type = std::pair<bool, std::size_t>;
633
634	size_type __n_elt = __detail::__distance_fw(__first, __last);
635
636	__hashtable& __h = _M_conjure_hashtable();
637	__rehash_type& __rehash = __h._M_rehash_policy;
638	const __rehash_state& __saved_state = __rehash._M_state();
639	pair_type __do_rehash = __rehash._M_need_rehash(__h._M_bucket_count,
640							__h._M_element_count,
641							__n_elt);
642
643	if (__do_rehash.first)
644	  __h._M_rehash(__do_rehash.second, __saved_state);
645
646	for (; __first != __last; ++__first)
647	  __h._M_insert(*__first, __unique_keys());
648      }
649
650  /**
651   *  Primary class template _Insert.
652   *
653   *  Select insert member functions appropriate to _Hashtable policy choices.
654   */
655  template<typename _Key, typename _Value, typename _Alloc,
656	   typename _ExtractKey, typename _Equal,
657	   typename _H1, typename _H2, typename _Hash,
658	   typename _RehashPolicy, typename _Traits,
659	   bool _Constant_iterators = _Traits::__constant_iterators::value,
660	   bool _Unique_keys = _Traits::__unique_keys::value>
661    struct _Insert;
662
663  /// Specialization.
664  template<typename _Key, typename _Value, typename _Alloc,
665	   typename _ExtractKey, typename _Equal,
666	   typename _H1, typename _H2, typename _Hash,
667	   typename _RehashPolicy, typename _Traits>
668    struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
669		   _RehashPolicy, _Traits, true, true>
670    : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
671			   _H1, _H2, _Hash, _RehashPolicy, _Traits>
672    {
673      using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
674					_Equal, _H1, _H2, _Hash,
675					_RehashPolicy, _Traits>;
676      using value_type = typename __base_type::value_type;
677      using iterator = typename __base_type::iterator;
678      using const_iterator =  typename __base_type::const_iterator;
679
680      using __unique_keys = typename __base_type::__unique_keys;
681      using __hashtable = typename __base_type::__hashtable;
682
683      using __base_type::insert;
684
685      std::pair<iterator, bool>
686      insert(value_type&& __v)
687      {
688	__hashtable& __h = this->_M_conjure_hashtable();
689	return __h._M_insert(std::move(__v), __unique_keys());
690      }
691
692      iterator
693      insert(const_iterator, value_type&& __v)
694      { return insert(std::move(__v)).first; }
695    };
696
697  /// Specialization.
698  template<typename _Key, typename _Value, typename _Alloc,
699	   typename _ExtractKey, typename _Equal,
700	   typename _H1, typename _H2, typename _Hash,
701	   typename _RehashPolicy, typename _Traits>
702    struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
703		   _RehashPolicy, _Traits, true, false>
704    : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
705			   _H1, _H2, _Hash, _RehashPolicy, _Traits>
706    {
707      using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
708					_Equal, _H1, _H2, _Hash,
709					_RehashPolicy, _Traits>;
710      using value_type = typename __base_type::value_type;
711      using iterator = typename __base_type::iterator;
712      using const_iterator =  typename __base_type::const_iterator;
713
714      using __unique_keys = typename __base_type::__unique_keys;
715      using __hashtable = typename __base_type::__hashtable;
716
717      using __base_type::insert;
718
719      iterator
720      insert(value_type&& __v)
721      {
722	__hashtable& __h = this->_M_conjure_hashtable();
723	return __h._M_insert(std::move(__v), __unique_keys());
724      }
725
726      iterator
727      insert(const_iterator, value_type&& __v)
728      { return insert(std::move(__v)); }
729     };
730
731  /// Specialization.
732  template<typename _Key, typename _Value, typename _Alloc,
733	   typename _ExtractKey, typename _Equal,
734	   typename _H1, typename _H2, typename _Hash,
735	   typename _RehashPolicy, typename _Traits, bool _Unique_keys>
736    struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
737		   _RehashPolicy, _Traits, false, _Unique_keys>
738    : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
739			   _H1, _H2, _Hash, _RehashPolicy, _Traits>
740    {
741      using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
742				       _Equal, _H1, _H2, _Hash,
743				       _RehashPolicy, _Traits>;
744      using value_type = typename __base_type::value_type;
745      using iterator = typename __base_type::iterator;
746      using const_iterator =  typename __base_type::const_iterator;
747
748      using __unique_keys = typename __base_type::__unique_keys;
749      using __hashtable = typename __base_type::__hashtable;
750      using __ireturn_type = typename __base_type::__ireturn_type;
751      using __iconv_type = typename __base_type::__iconv_type;
752
753      using __base_type::insert;
754
755      template<typename _Pair>
756	using __is_cons = std::is_constructible<value_type, _Pair&&>;
757
758      template<typename _Pair>
759	using _IFcons = std::enable_if<__is_cons<_Pair>::value>;
760
761      template<typename _Pair>
762	using _IFconsp = typename _IFcons<_Pair>::type;
763
764      template<typename _Pair, typename = _IFconsp<_Pair>>
765	__ireturn_type
766	insert(_Pair&& __v)
767	{
768	  __hashtable& __h = this->_M_conjure_hashtable();
769	  return __h._M_emplace(__unique_keys(), std::forward<_Pair>(__v));
770	}
771
772      template<typename _Pair, typename = _IFconsp<_Pair>>
773	iterator
774	insert(const_iterator, _Pair&& __v)
775	{ return __iconv_type()(insert(std::forward<_Pair>(__v))); }
776   };
777
778  /**
779   *  Primary class template  _Rehash_base.
780   *
781   *  Give hashtable the max_load_factor functions and reserve iff the
782   *  rehash policy is _Prime_rehash_policy.
783  */
784  template<typename _Key, typename _Value, typename _Alloc,
785	   typename _ExtractKey, typename _Equal,
786	   typename _H1, typename _H2, typename _Hash,
787	   typename _RehashPolicy, typename _Traits>
788    struct _Rehash_base;
789
790  /// Specialization.
791  template<typename _Key, typename _Value, typename _Alloc,
792	   typename _ExtractKey, typename _Equal,
793	   typename _H1, typename _H2, typename _Hash, typename _Traits>
794    struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
795			_H1, _H2, _Hash, _Prime_rehash_policy, _Traits>
796    {
797      using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
798				     _Equal, _H1, _H2, _Hash,
799				     _Prime_rehash_policy, _Traits>;
800
801      float
802      max_load_factor() const noexcept
803      {
804	const __hashtable* __this = static_cast<const __hashtable*>(this);
805	return __this->__rehash_policy().max_load_factor();
806      }
807
808      void
809      max_load_factor(float __z)
810      {
811	__hashtable* __this = static_cast<__hashtable*>(this);
812	__this->__rehash_policy(_Prime_rehash_policy(__z));
813      }
814
815      void
816      reserve(std::size_t __n)
817      {
818	__hashtable* __this = static_cast<__hashtable*>(this);
819	__this->rehash(__builtin_ceil(__n / max_load_factor()));
820      }
821    };
822
823  /**
824   *  Primary class template _Hashtable_ebo_helper.
825   *
826   *  Helper class using EBO when it is not forbidden, type is not
827   *  final, and when it worth it, type is empty.
828   */
829  template<int _Nm, typename _Tp,
830	   bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)>
831    struct _Hashtable_ebo_helper;
832
833  /// Specialization using EBO.
834  template<int _Nm, typename _Tp>
835    struct _Hashtable_ebo_helper<_Nm, _Tp, true>
836    : private _Tp
837    {
838      _Hashtable_ebo_helper() = default;
839
840      _Hashtable_ebo_helper(const _Tp& __tp) : _Tp(__tp)
841      { }
842
843      static const _Tp&
844      _S_cget(const _Hashtable_ebo_helper& __eboh)
845      { return static_cast<const _Tp&>(__eboh); }
846
847      static _Tp&
848      _S_get(_Hashtable_ebo_helper& __eboh)
849      { return static_cast<_Tp&>(__eboh); }
850    };
851
852  /// Specialization not using EBO.
853  template<int _Nm, typename _Tp>
854    struct _Hashtable_ebo_helper<_Nm, _Tp, false>
855    {
856      _Hashtable_ebo_helper() = default;
857
858      _Hashtable_ebo_helper(const _Tp& __tp) : _M_tp(__tp)
859      { }
860
861      static const _Tp&
862      _S_cget(const _Hashtable_ebo_helper& __eboh)
863      { return __eboh._M_tp; }
864
865      static _Tp&
866      _S_get(_Hashtable_ebo_helper& __eboh)
867      { return __eboh._M_tp; }
868
869    private:
870      _Tp _M_tp;
871    };
872
873  /**
874   *  Primary class template _Local_iterator_base.
875   *
876   *  Base class for local iterators, used to iterate within a bucket
877   *  but not between buckets.
878   */
879  template<typename _Key, typename _Value, typename _ExtractKey,
880	   typename _H1, typename _H2, typename _Hash,
881	   bool __cache_hash_code>
882    struct _Local_iterator_base;
883
884  /**
885   *  Primary class template _Hash_code_base.
886   *
887   *  Encapsulates two policy issues that aren't quite orthogonal.
888   *   (1) the difference between using a ranged hash function and using
889   *       the combination of a hash function and a range-hashing function.
890   *       In the former case we don't have such things as hash codes, so
891   *       we have a dummy type as placeholder.
892   *   (2) Whether or not we cache hash codes.  Caching hash codes is
893   *       meaningless if we have a ranged hash function.
894   *
895   *  We also put the key extraction objects here, for convenience.
896   *  Each specialization derives from one or more of the template
897   *  parameters to benefit from Ebo. This is important as this type
898   *  is inherited in some cases by the _Local_iterator_base type used
899   *  to implement local_iterator and const_local_iterator. As with
900   *  any iterator type we prefer to make it as small as possible.
901   *
902   *  Primary template is unused except as a hook for specializations.
903   */
904  template<typename _Key, typename _Value, typename _ExtractKey,
905	   typename _H1, typename _H2, typename _Hash,
906	   bool __cache_hash_code>
907    struct _Hash_code_base;
908
909  /// Specialization: ranged hash function, no caching hash codes.  H1
910  /// and H2 are provided but ignored.  We define a dummy hash code type.
911  template<typename _Key, typename _Value, typename _ExtractKey,
912	   typename _H1, typename _H2, typename _Hash>
913    struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, false>
914    : private _Hashtable_ebo_helper<0, _ExtractKey>,
915      private _Hashtable_ebo_helper<1, _Hash>
916    {
917    private:
918      using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>;
919      using __ebo_hash = _Hashtable_ebo_helper<1, _Hash>;
920
921    protected:
922      typedef void* 					__hash_code;
923      typedef _Hash_node<_Value, false>			__node_type;
924
925      // We need the default constructor for the local iterators.
926      _Hash_code_base() = default;
927
928      _Hash_code_base(const _ExtractKey& __ex, const _H1&, const _H2&,
929		      const _Hash& __h)
930      : __ebo_extract_key(__ex), __ebo_hash(__h) { }
931
932      __hash_code
933      _M_hash_code(const _Key& __key) const
934      { return 0; }
935
936      std::size_t
937      _M_bucket_index(const _Key& __k, __hash_code, std::size_t __n) const
938      { return _M_ranged_hash()(__k, __n); }
939
940      std::size_t
941      _M_bucket_index(const __node_type* __p, std::size_t __n) const
942      { return _M_ranged_hash()(_M_extract()(__p->_M_v), __n); }
943
944      void
945      _M_store_code(__node_type*, __hash_code) const
946      { }
947
948      void
949      _M_copy_code(__node_type*, const __node_type*) const
950      { }
951
952      void
953      _M_swap(_Hash_code_base& __x)
954      {
955	std::swap(_M_extract(), __x._M_extract());
956	std::swap(_M_ranged_hash(), __x._M_ranged_hash());
957      }
958
959      const _ExtractKey&
960      _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
961
962      _ExtractKey&
963      _M_extract() { return __ebo_extract_key::_S_get(*this); }
964
965      const _Hash&
966      _M_ranged_hash() const { return __ebo_hash::_S_cget(*this); }
967
968      _Hash&
969      _M_ranged_hash() { return __ebo_hash::_S_get(*this); }
970    };
971
972  // No specialization for ranged hash function while caching hash codes.
973  // That combination is meaningless, and trying to do it is an error.
974
975  /// Specialization: ranged hash function, cache hash codes.  This
976  /// combination is meaningless, so we provide only a declaration
977  /// and no definition.
978  template<typename _Key, typename _Value, typename _ExtractKey,
979	   typename _H1, typename _H2, typename _Hash>
980    struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, true>;
981
982  /// Specialization: hash function and range-hashing function, no
983  /// caching of hash codes.
984  /// Provides typedef and accessor required by C++ 11.
985  template<typename _Key, typename _Value, typename _ExtractKey,
986	   typename _H1, typename _H2>
987    struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
988			   _Default_ranged_hash, false>
989    : private _Hashtable_ebo_helper<0, _ExtractKey>,
990      private _Hashtable_ebo_helper<1, _H1>,
991      private _Hashtable_ebo_helper<2, _H2>
992    {
993    private:
994      using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>;
995      using __ebo_h1 = _Hashtable_ebo_helper<1, _H1>;
996      using __ebo_h2 = _Hashtable_ebo_helper<2, _H2>;
997
998    public:
999      typedef _H1 					hasher;
1000
1001      hasher
1002      hash_function() const
1003      { return _M_h1(); }
1004
1005    protected:
1006      typedef std::size_t 				__hash_code;
1007      typedef _Hash_node<_Value, false>			__node_type;
1008
1009      // We need the default constructor for the local iterators.
1010      _Hash_code_base() = default;
1011
1012      _Hash_code_base(const _ExtractKey& __ex,
1013		      const _H1& __h1, const _H2& __h2,
1014		      const _Default_ranged_hash&)
1015      : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { }
1016
1017      __hash_code
1018      _M_hash_code(const _Key& __k) const
1019      { return _M_h1()(__k); }
1020
1021      std::size_t
1022      _M_bucket_index(const _Key&, __hash_code __c, std::size_t __n) const
1023      { return _M_h2()(__c, __n); }
1024
1025      std::size_t
1026      _M_bucket_index(const __node_type* __p,
1027		      std::size_t __n) const
1028      { return _M_h2()(_M_h1()(_M_extract()(__p->_M_v)), __n); }
1029
1030      void
1031      _M_store_code(__node_type*, __hash_code) const
1032      { }
1033
1034      void
1035      _M_copy_code(__node_type*, const __node_type*) const
1036      { }
1037
1038      void
1039      _M_swap(_Hash_code_base& __x)
1040      {
1041	std::swap(_M_extract(), __x._M_extract());
1042	std::swap(_M_h1(), __x._M_h1());
1043	std::swap(_M_h2(), __x._M_h2());
1044      }
1045
1046      const _ExtractKey&
1047      _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
1048
1049      _ExtractKey&
1050      _M_extract() { return __ebo_extract_key::_S_get(*this); }
1051
1052      const _H1&
1053      _M_h1() const { return __ebo_h1::_S_cget(*this); }
1054
1055      _H1&
1056      _M_h1() { return __ebo_h1::_S_get(*this); }
1057
1058      const _H2&
1059      _M_h2() const { return __ebo_h2::_S_cget(*this); }
1060
1061      _H2&
1062      _M_h2() { return __ebo_h2::_S_get(*this); }
1063    };
1064
1065  /// Specialization: hash function and range-hashing function,
1066  /// caching hash codes.  H is provided but ignored.  Provides
1067  /// typedef and accessor required by C++ 11.
1068  template<typename _Key, typename _Value, typename _ExtractKey,
1069	   typename _H1, typename _H2>
1070    struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
1071			   _Default_ranged_hash, true>
1072    : private _Hashtable_ebo_helper<0, _ExtractKey>,
1073      private _Hashtable_ebo_helper<1, _H1>,
1074      private _Hashtable_ebo_helper<2, _H2>
1075    {
1076    private:
1077      // Gives access to _M_h2() to the local iterator implementation.
1078      friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2,
1079					 _Default_ranged_hash, true>;
1080
1081      using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>;
1082      using __ebo_h1 = _Hashtable_ebo_helper<1, _H1>;
1083      using __ebo_h2 = _Hashtable_ebo_helper<2, _H2>;
1084
1085    public:
1086      typedef _H1 					hasher;
1087
1088      hasher
1089      hash_function() const
1090      { return _M_h1(); }
1091
1092    protected:
1093      typedef std::size_t 				__hash_code;
1094      typedef _Hash_node<_Value, true>			__node_type;
1095
1096      _Hash_code_base(const _ExtractKey& __ex,
1097		      const _H1& __h1, const _H2& __h2,
1098		      const _Default_ranged_hash&)
1099      : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { }
1100
1101      __hash_code
1102      _M_hash_code(const _Key& __k) const
1103      { return _M_h1()(__k); }
1104
1105      std::size_t
1106      _M_bucket_index(const _Key&, __hash_code __c,
1107		      std::size_t __n) const
1108      { return _M_h2()(__c, __n); }
1109
1110      std::size_t
1111      _M_bucket_index(const __node_type* __p, std::size_t __n) const
1112      { return _M_h2()(__p->_M_hash_code, __n); }
1113
1114      void
1115      _M_store_code(__node_type* __n, __hash_code __c) const
1116      { __n->_M_hash_code = __c; }
1117
1118      void
1119      _M_copy_code(__node_type* __to, const __node_type* __from) const
1120      { __to->_M_hash_code = __from->_M_hash_code; }
1121
1122      void
1123      _M_swap(_Hash_code_base& __x)
1124      {
1125	std::swap(_M_extract(), __x._M_extract());
1126	std::swap(_M_h1(), __x._M_h1());
1127	std::swap(_M_h2(), __x._M_h2());
1128      }
1129
1130      const _ExtractKey&
1131      _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
1132
1133      _ExtractKey&
1134      _M_extract() { return __ebo_extract_key::_S_get(*this); }
1135
1136      const _H1&
1137      _M_h1() const { return __ebo_h1::_S_cget(*this); }
1138
1139      _H1&
1140      _M_h1() { return __ebo_h1::_S_get(*this); }
1141
1142      const _H2&
1143      _M_h2() const { return __ebo_h2::_S_cget(*this); }
1144
1145      _H2&
1146      _M_h2() { return __ebo_h2::_S_get(*this); }
1147    };
1148
1149  /**
1150   *  Primary class template _Equal_helper.
1151   *
1152   */
1153  template <typename _Key, typename _Value, typename _ExtractKey,
1154	    typename _Equal, typename _HashCodeType,
1155	    bool __cache_hash_code>
1156  struct _Equal_helper;
1157
1158  /// Specialization.
1159  template<typename _Key, typename _Value, typename _ExtractKey,
1160	   typename _Equal, typename _HashCodeType>
1161  struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, true>
1162  {
1163    static bool
1164    _S_equals(const _Equal& __eq, const _ExtractKey& __extract,
1165	      const _Key& __k, _HashCodeType __c, _Hash_node<_Value, true>* __n)
1166    { return __c == __n->_M_hash_code && __eq(__k, __extract(__n->_M_v)); }
1167  };
1168
1169  /// Specialization.
1170  template<typename _Key, typename _Value, typename _ExtractKey,
1171	   typename _Equal, typename _HashCodeType>
1172  struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, false>
1173  {
1174    static bool
1175    _S_equals(const _Equal& __eq, const _ExtractKey& __extract,
1176	      const _Key& __k, _HashCodeType, _Hash_node<_Value, false>* __n)
1177    { return __eq(__k, __extract(__n->_M_v)); }
1178  };
1179
1180
1181  /// Specialization.
1182  template<typename _Key, typename _Value, typename _ExtractKey,
1183	   typename _H1, typename _H2, typename _Hash>
1184    struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1185				_H1, _H2, _Hash, true>
1186    : private _Hashtable_ebo_helper<0, _H2>
1187    {
1188    protected:
1189      using __base_type = _Hashtable_ebo_helper<0, _H2>;
1190      using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1191					       _H1, _H2, _Hash, true>;
1192
1193    public:
1194      _Local_iterator_base() = default;
1195      _Local_iterator_base(const __hash_code_base& __base,
1196			   _Hash_node<_Value, true>* __p,
1197			   std::size_t __bkt, std::size_t __bkt_count)
1198      : __base_type(__base._M_h2()),
1199	_M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { }
1200
1201      void
1202      _M_incr()
1203      {
1204	_M_cur = _M_cur->_M_next();
1205	if (_M_cur)
1206	  {
1207	    std::size_t __bkt
1208	      = __base_type::_S_get(*this)(_M_cur->_M_hash_code,
1209					   _M_bucket_count);
1210	    if (__bkt != _M_bucket)
1211	      _M_cur = nullptr;
1212	  }
1213      }
1214
1215      _Hash_node<_Value, true>*  _M_cur;
1216      std::size_t _M_bucket;
1217      std::size_t _M_bucket_count;
1218    };
1219
1220  /// Specialization.
1221  template<typename _Key, typename _Value, typename _ExtractKey,
1222	   typename _H1, typename _H2, typename _Hash>
1223    struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1224				_H1, _H2, _Hash, false>
1225    : private _Hash_code_base<_Key, _Value, _ExtractKey,
1226			      _H1, _H2, _Hash, false>
1227    {
1228    protected:
1229      using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1230					       _H1, _H2, _Hash, false>;
1231
1232    public:
1233      _Local_iterator_base() = default;
1234      _Local_iterator_base(const __hash_code_base& __base,
1235			   _Hash_node<_Value, false>* __p,
1236			   std::size_t __bkt, std::size_t __bkt_count)
1237	: __hash_code_base(__base),
1238	  _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { }
1239
1240      void
1241      _M_incr()
1242      {
1243	_M_cur = _M_cur->_M_next();
1244	if (_M_cur)
1245	  {
1246	    std::size_t __bkt = this->_M_bucket_index(_M_cur, _M_bucket_count);
1247	    if (__bkt != _M_bucket)
1248	      _M_cur = nullptr;
1249	  }
1250      }
1251
1252      _Hash_node<_Value, false>*  _M_cur;
1253      std::size_t _M_bucket;
1254      std::size_t _M_bucket_count;
1255    };
1256
1257  template<typename _Key, typename _Value, typename _ExtractKey,
1258	   typename _H1, typename _H2, typename _Hash, bool __cache>
1259    inline bool
1260    operator==(const _Local_iterator_base<_Key, _Value, _ExtractKey,
1261					  _H1, _H2, _Hash, __cache>& __x,
1262	       const _Local_iterator_base<_Key, _Value, _ExtractKey,
1263					  _H1, _H2, _Hash, __cache>& __y)
1264    { return __x._M_cur == __y._M_cur; }
1265
1266  template<typename _Key, typename _Value, typename _ExtractKey,
1267	   typename _H1, typename _H2, typename _Hash, bool __cache>
1268    inline bool
1269    operator!=(const _Local_iterator_base<_Key, _Value, _ExtractKey,
1270					  _H1, _H2, _Hash, __cache>& __x,
1271	       const _Local_iterator_base<_Key, _Value, _ExtractKey,
1272					  _H1, _H2, _Hash, __cache>& __y)
1273    { return __x._M_cur != __y._M_cur; }
1274
1275  /// local iterators
1276  template<typename _Key, typename _Value, typename _ExtractKey,
1277	   typename _H1, typename _H2, typename _Hash,
1278	   bool __constant_iterators, bool __cache>
1279    struct _Local_iterator
1280    : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1281				  _H1, _H2, _Hash, __cache>
1282    {
1283    private:
1284      using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1285					       _H1, _H2, _Hash, __cache>;
1286      using __hash_code_base = typename __base_type::__hash_code_base;
1287    public:
1288      typedef _Value                                   value_type;
1289      typedef typename std::conditional<__constant_iterators,
1290					const _Value*, _Value*>::type
1291						       pointer;
1292      typedef typename std::conditional<__constant_iterators,
1293					const _Value&, _Value&>::type
1294						       reference;
1295      typedef std::ptrdiff_t                           difference_type;
1296      typedef std::forward_iterator_tag                iterator_category;
1297
1298      _Local_iterator() = default;
1299
1300      _Local_iterator(const __hash_code_base& __base,
1301		      _Hash_node<_Value, __cache>* __p,
1302		      std::size_t __bkt, std::size_t __bkt_count)
1303	: __base_type(__base, __p, __bkt, __bkt_count)
1304      { }
1305
1306      reference
1307      operator*() const
1308      { return this->_M_cur->_M_v; }
1309
1310      pointer
1311      operator->() const
1312      { return std::__addressof(this->_M_cur->_M_v); }
1313
1314      _Local_iterator&
1315      operator++()
1316      {
1317	this->_M_incr();
1318	return *this;
1319      }
1320
1321      _Local_iterator
1322      operator++(int)
1323      {
1324	_Local_iterator __tmp(*this);
1325	this->_M_incr();
1326	return __tmp;
1327      }
1328    };
1329
1330  /// local const_iterators
1331  template<typename _Key, typename _Value, typename _ExtractKey,
1332	   typename _H1, typename _H2, typename _Hash,
1333	   bool __constant_iterators, bool __cache>
1334    struct _Local_const_iterator
1335    : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1336				  _H1, _H2, _Hash, __cache>
1337    {
1338    private:
1339      using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1340					       _H1, _H2, _Hash, __cache>;
1341      using __hash_code_base = typename __base_type::__hash_code_base;
1342
1343    public:
1344      typedef _Value                                   value_type;
1345      typedef const _Value*                            pointer;
1346      typedef const _Value&                            reference;
1347      typedef std::ptrdiff_t                           difference_type;
1348      typedef std::forward_iterator_tag                iterator_category;
1349
1350      _Local_const_iterator() = default;
1351
1352      _Local_const_iterator(const __hash_code_base& __base,
1353			    _Hash_node<_Value, __cache>* __p,
1354			    std::size_t __bkt, std::size_t __bkt_count)
1355	: __base_type(__base, __p, __bkt, __bkt_count)
1356      { }
1357
1358      _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey,
1359						  _H1, _H2, _Hash,
1360						  __constant_iterators,
1361						  __cache>& __x)
1362	: __base_type(__x)
1363      { }
1364
1365      reference
1366      operator*() const
1367      { return this->_M_cur->_M_v; }
1368
1369      pointer
1370      operator->() const
1371      { return std::__addressof(this->_M_cur->_M_v); }
1372
1373      _Local_const_iterator&
1374      operator++()
1375      {
1376	this->_M_incr();
1377	return *this;
1378      }
1379
1380      _Local_const_iterator
1381      operator++(int)
1382      {
1383	_Local_const_iterator __tmp(*this);
1384	this->_M_incr();
1385	return __tmp;
1386      }
1387    };
1388
1389  /**
1390   *  Primary class template _Hashtable_base.
1391   *
1392   *  Helper class adding management of _Equal functor to
1393   *  _Hash_code_base type.
1394   *
1395   *  Base class templates are:
1396   *    - __detail::_Hash_code_base
1397   *    - __detail::_Hashtable_ebo_helper
1398   */
1399  template<typename _Key, typename _Value,
1400	   typename _ExtractKey, typename _Equal,
1401	   typename _H1, typename _H2, typename _Hash, typename _Traits>
1402  struct _Hashtable_base
1403  : public _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash,
1404			   _Traits::__hash_cached::value>,
1405    private _Hashtable_ebo_helper<0, _Equal>
1406  {
1407  public:
1408    typedef _Key                                    key_type;
1409    typedef _Value                                  value_type;
1410    typedef _Equal                                  key_equal;
1411    typedef std::size_t                             size_type;
1412    typedef std::ptrdiff_t                          difference_type;
1413
1414    using __traits_type = _Traits;
1415    using __hash_cached = typename __traits_type::__hash_cached;
1416    using __constant_iterators = typename __traits_type::__constant_iterators;
1417    using __unique_keys = typename __traits_type::__unique_keys;
1418
1419    using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1420					     _H1, _H2, _Hash,
1421					     __hash_cached::value>;
1422
1423    using __hash_code = typename __hash_code_base::__hash_code;
1424    using __node_type = typename __hash_code_base::__node_type;
1425
1426    using iterator = __detail::_Node_iterator<value_type,
1427					      __constant_iterators::value,
1428					      __hash_cached::value>;
1429
1430    using const_iterator = __detail::_Node_const_iterator<value_type,
1431						   __constant_iterators::value,
1432						   __hash_cached::value>;
1433
1434    using local_iterator = __detail::_Local_iterator<key_type, value_type,
1435						  _ExtractKey, _H1, _H2, _Hash,
1436						  __constant_iterators::value,
1437						     __hash_cached::value>;
1438
1439    using const_local_iterator = __detail::_Local_const_iterator<key_type,
1440								 value_type,
1441					_ExtractKey, _H1, _H2, _Hash,
1442					__constant_iterators::value,
1443					__hash_cached::value>;
1444
1445    using __ireturn_type = typename std::conditional<__unique_keys::value,
1446						     std::pair<iterator, bool>,
1447						     iterator>::type;
1448
1449    using __iconv_type = typename  std::conditional<__unique_keys::value,
1450						    _Select1st, _Identity
1451						    >::type;
1452  private:
1453    using _EqualEBO = _Hashtable_ebo_helper<0, _Equal>;
1454    using _EqualHelper =  _Equal_helper<_Key, _Value, _ExtractKey, _Equal,
1455					__hash_code, __hash_cached::value>;
1456
1457  protected:
1458    using __node_base = __detail::_Hash_node_base;
1459    using __bucket_type = __node_base*;
1460
1461    _Hashtable_base(const _ExtractKey& __ex, const _H1& __h1, const _H2& __h2,
1462		    const _Hash& __hash, const _Equal& __eq)
1463    : __hash_code_base(__ex, __h1, __h2, __hash), _EqualEBO(__eq)
1464    { }
1465
1466    bool
1467    _M_equals(const _Key& __k, __hash_code __c, __node_type* __n) const
1468    {
1469      return _EqualHelper::_S_equals(_M_eq(), this->_M_extract(),
1470				     __k, __c, __n);
1471    }
1472
1473    void
1474    _M_swap(_Hashtable_base& __x)
1475    {
1476      __hash_code_base::_M_swap(__x);
1477      std::swap(_M_eq(), __x._M_eq());
1478    }
1479
1480    const _Equal&
1481    _M_eq() const { return _EqualEBO::_S_cget(*this); }
1482
1483    _Equal&
1484    _M_eq() { return _EqualEBO::_S_get(*this); }
1485  };
1486
1487  /**
1488   *  struct _Equality_base.
1489   *
1490   *  Common types and functions for class _Equality.
1491   */
1492  struct _Equality_base
1493  {
1494  protected:
1495    template<typename _Uiterator>
1496      static bool
1497      _S_is_permutation(_Uiterator, _Uiterator, _Uiterator);
1498  };
1499
1500  // See std::is_permutation in N3068.
1501  template<typename _Uiterator>
1502    bool
1503    _Equality_base::
1504    _S_is_permutation(_Uiterator __first1, _Uiterator __last1,
1505		      _Uiterator __first2)
1506    {
1507      for (; __first1 != __last1; ++__first1, ++__first2)
1508	if (!(*__first1 == *__first2))
1509	  break;
1510
1511      if (__first1 == __last1)
1512	return true;
1513
1514      _Uiterator __last2 = __first2;
1515      std::advance(__last2, std::distance(__first1, __last1));
1516
1517      for (_Uiterator __it1 = __first1; __it1 != __last1; ++__it1)
1518	{
1519	  _Uiterator __tmp =  __first1;
1520	  while (__tmp != __it1 && !bool(*__tmp == *__it1))
1521	    ++__tmp;
1522
1523	  // We've seen this one before.
1524	  if (__tmp != __it1)
1525	    continue;
1526
1527	  std::ptrdiff_t __n2 = 0;
1528	  for (__tmp = __first2; __tmp != __last2; ++__tmp)
1529	    if (*__tmp == *__it1)
1530	      ++__n2;
1531
1532	  if (!__n2)
1533	    return false;
1534
1535	  std::ptrdiff_t __n1 = 0;
1536	  for (__tmp = __it1; __tmp != __last1; ++__tmp)
1537	    if (*__tmp == *__it1)
1538	      ++__n1;
1539
1540	  if (__n1 != __n2)
1541	    return false;
1542	}
1543      return true;
1544    }
1545
1546  /**
1547   *  Primary class template  _Equality.
1548   *
1549   *  This is for implementing equality comparison for unordered
1550   *  containers, per N3068, by John Lakos and Pablo Halpern.
1551   *  Algorithmically, we follow closely the reference implementations
1552   *  therein.
1553   */
1554  template<typename _Key, typename _Value, typename _Alloc,
1555	   typename _ExtractKey, typename _Equal,
1556	   typename _H1, typename _H2, typename _Hash,
1557	   typename _RehashPolicy, typename _Traits,
1558	   bool _Unique_keys = _Traits::__unique_keys::value>
1559    struct _Equality;
1560
1561  /// Specialization.
1562  template<typename _Key, typename _Value, typename _Alloc,
1563	   typename _ExtractKey, typename _Equal,
1564	   typename _H1, typename _H2, typename _Hash,
1565	   typename _RehashPolicy, typename _Traits>
1566    struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1567		     _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
1568    {
1569      using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1570				     _H1, _H2, _Hash, _RehashPolicy, _Traits>;
1571
1572      bool
1573      _M_equal(const __hashtable&) const;
1574    };
1575
1576  template<typename _Key, typename _Value, typename _Alloc,
1577	   typename _ExtractKey, typename _Equal,
1578	   typename _H1, typename _H2, typename _Hash,
1579	   typename _RehashPolicy, typename _Traits>
1580    bool
1581    _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1582	      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
1583    _M_equal(const __hashtable& __other) const
1584    {
1585      const __hashtable* __this = static_cast<const __hashtable*>(this);
1586
1587      if (__this->size() != __other.size())
1588	return false;
1589
1590      for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx)
1591	{
1592	  const auto __ity = __other.find(_ExtractKey()(*__itx));
1593	  if (__ity == __other.end() || !bool(*__ity == *__itx))
1594	    return false;
1595	}
1596      return true;
1597    }
1598
1599  /// Specialization.
1600  template<typename _Key, typename _Value, typename _Alloc,
1601	   typename _ExtractKey, typename _Equal,
1602	   typename _H1, typename _H2, typename _Hash,
1603	   typename _RehashPolicy, typename _Traits>
1604    struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1605		     _H1, _H2, _Hash, _RehashPolicy, _Traits, false>
1606    : public _Equality_base
1607    {
1608      using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1609				     _H1, _H2, _Hash, _RehashPolicy, _Traits>;
1610
1611      bool
1612      _M_equal(const __hashtable&) const;
1613    };
1614
1615  template<typename _Key, typename _Value, typename _Alloc,
1616	   typename _ExtractKey, typename _Equal,
1617	   typename _H1, typename _H2, typename _Hash,
1618	   typename _RehashPolicy, typename _Traits>
1619    bool
1620    _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1621	      _H1, _H2, _Hash, _RehashPolicy, _Traits, false>::
1622    _M_equal(const __hashtable& __other) const
1623    {
1624      const __hashtable* __this = static_cast<const __hashtable*>(this);
1625
1626      if (__this->size() != __other.size())
1627	return false;
1628
1629      for (auto __itx = __this->begin(); __itx != __this->end();)
1630	{
1631	  const auto __xrange = __this->equal_range(_ExtractKey()(*__itx));
1632	  const auto __yrange = __other.equal_range(_ExtractKey()(*__itx));
1633
1634	  if (std::distance(__xrange.first, __xrange.second)
1635	      != std::distance(__yrange.first, __yrange.second))
1636	    return false;
1637
1638	  if (!_S_is_permutation(__xrange.first, __xrange.second,
1639				 __yrange.first))
1640	    return false;
1641
1642	  __itx = __xrange.second;
1643	}
1644      return true;
1645    }
1646
1647  /**
1648   * This type is to combine a _Hash_node_base instance with an allocator
1649   * instance through inheritance to benefit from EBO when possible.
1650   */
1651  template<typename _NodeAlloc>
1652    struct _Before_begin : public _NodeAlloc
1653    {
1654      _Hash_node_base _M_node;
1655
1656      _Before_begin(const _Before_begin&) = default;
1657      _Before_begin(_Before_begin&&) = default;
1658
1659      template<typename _Alloc>
1660	_Before_begin(_Alloc&& __a)
1661	  : _NodeAlloc(std::forward<_Alloc>(__a))
1662	{ }
1663    };
1664
1665 //@} hashtable-detail
1666_GLIBCXX_END_NAMESPACE_VERSION
1667} // namespace __detail
1668} // namespace std
1669
1670#endif // _HASHTABLE_POLICY_H
1671