• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/toolchains/hndtools-armeabi-2011.09/arm-none-eabi/include/c++/4.6.1/bits/
1// Internal policy header for unordered_set and unordered_map -*- C++ -*-
2
3// Copyright (C) 2010, 2011 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23// <http://www.gnu.org/licenses/>.
24
25/** @file bits/hashtable_policy.h
26 *  This is an internal header file, included by other library headers.
27 *  Do not attempt to use it directly.
28 *  @headername{unordered_map,unordered_set}
29 */
30
31#ifndef _HASHTABLE_POLICY_H
32#define _HASHTABLE_POLICY_H 1
33
34namespace std _GLIBCXX_VISIBILITY(default)
35{
36namespace __detail
37{
38_GLIBCXX_BEGIN_NAMESPACE_VERSION
39
40  // Helper function: return distance(first, last) for forward
41  // iterators, or 0 for input iterators.
42  template<class _Iterator>
43    inline typename std::iterator_traits<_Iterator>::difference_type
44    __distance_fw(_Iterator __first, _Iterator __last,
45		  std::input_iterator_tag)
46    { return 0; }
47
48  template<class _Iterator>
49    inline typename std::iterator_traits<_Iterator>::difference_type
50    __distance_fw(_Iterator __first, _Iterator __last,
51		  std::forward_iterator_tag)
52    { return std::distance(__first, __last); }
53
54  template<class _Iterator>
55    inline typename std::iterator_traits<_Iterator>::difference_type
56    __distance_fw(_Iterator __first, _Iterator __last)
57    {
58      typedef typename std::iterator_traits<_Iterator>::iterator_category _Tag;
59      return __distance_fw(__first, __last, _Tag());
60    }
61
62  // Auxiliary types used for all instantiations of _Hashtable: nodes
63  // and iterators.
64
65  // Nodes, used to wrap elements stored in the hash table.  A policy
66  // template parameter of class template _Hashtable controls whether
67  // nodes also store a hash code. In some cases (e.g. strings) this
68  // may be a performance win.
69  template<typename _Value, bool __cache_hash_code>
70    struct _Hash_node;
71
72  template<typename _Value>
73    struct _Hash_node<_Value, true>
74    {
75      _Value       _M_v;
76      std::size_t  _M_hash_code;
77      _Hash_node*  _M_next;
78
79      template<typename... _Args>
80	_Hash_node(_Args&&... __args)
81	: _M_v(std::forward<_Args>(__args)...),
82	  _M_hash_code(), _M_next() { }
83    };
84
85  template<typename _Value>
86    struct _Hash_node<_Value, false>
87    {
88      _Value       _M_v;
89      _Hash_node*  _M_next;
90
91      template<typename... _Args>
92	_Hash_node(_Args&&... __args)
93	: _M_v(std::forward<_Args>(__args)...),
94	  _M_next() { }
95    };
96
97  // Local iterators, used to iterate within a bucket but not between
98  // buckets.
99  template<typename _Value, bool __cache>
100    struct _Node_iterator_base
101    {
102      _Node_iterator_base(_Hash_node<_Value, __cache>* __p)
103      : _M_cur(__p) { }
104
105      void
106      _M_incr()
107      { _M_cur = _M_cur->_M_next; }
108
109      _Hash_node<_Value, __cache>*  _M_cur;
110    };
111
112  template<typename _Value, bool __cache>
113    inline bool
114    operator==(const _Node_iterator_base<_Value, __cache>& __x,
115	       const _Node_iterator_base<_Value, __cache>& __y)
116    { return __x._M_cur == __y._M_cur; }
117
118  template<typename _Value, bool __cache>
119    inline bool
120    operator!=(const _Node_iterator_base<_Value, __cache>& __x,
121	       const _Node_iterator_base<_Value, __cache>& __y)
122    { return __x._M_cur != __y._M_cur; }
123
124  template<typename _Value, bool __constant_iterators, bool __cache>
125    struct _Node_iterator
126    : public _Node_iterator_base<_Value, __cache>
127    {
128      typedef _Value                                   value_type;
129      typedef typename std::conditional<__constant_iterators,
130					const _Value*, _Value*>::type
131						       pointer;
132      typedef typename std::conditional<__constant_iterators,
133					const _Value&, _Value&>::type
134						       reference;
135      typedef std::ptrdiff_t                           difference_type;
136      typedef std::forward_iterator_tag                iterator_category;
137
138      _Node_iterator()
139      : _Node_iterator_base<_Value, __cache>(0) { }
140
141      explicit
142      _Node_iterator(_Hash_node<_Value, __cache>* __p)
143      : _Node_iterator_base<_Value, __cache>(__p) { }
144
145      reference
146      operator*() const
147      { return this->_M_cur->_M_v; }
148
149      pointer
150      operator->() const
151      { return std::__addressof(this->_M_cur->_M_v); }
152
153      _Node_iterator&
154      operator++()
155      {
156	this->_M_incr();
157	return *this;
158      }
159
160      _Node_iterator
161      operator++(int)
162      {
163	_Node_iterator __tmp(*this);
164	this->_M_incr();
165	return __tmp;
166      }
167    };
168
169  template<typename _Value, bool __constant_iterators, bool __cache>
170    struct _Node_const_iterator
171    : public _Node_iterator_base<_Value, __cache>
172    {
173      typedef _Value                                   value_type;
174      typedef const _Value*                            pointer;
175      typedef const _Value&                            reference;
176      typedef std::ptrdiff_t                           difference_type;
177      typedef std::forward_iterator_tag                iterator_category;
178
179      _Node_const_iterator()
180      : _Node_iterator_base<_Value, __cache>(0) { }
181
182      explicit
183      _Node_const_iterator(_Hash_node<_Value, __cache>* __p)
184      : _Node_iterator_base<_Value, __cache>(__p) { }
185
186      _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
187			   __cache>& __x)
188      : _Node_iterator_base<_Value, __cache>(__x._M_cur) { }
189
190      reference
191      operator*() const
192      { return this->_M_cur->_M_v; }
193
194      pointer
195      operator->() const
196      { return std::__addressof(this->_M_cur->_M_v); }
197
198      _Node_const_iterator&
199      operator++()
200      {
201	this->_M_incr();
202	return *this;
203      }
204
205      _Node_const_iterator
206      operator++(int)
207      {
208	_Node_const_iterator __tmp(*this);
209	this->_M_incr();
210	return __tmp;
211      }
212    };
213
214  template<typename _Value, bool __cache>
215    struct _Hashtable_iterator_base
216    {
217      _Hashtable_iterator_base(_Hash_node<_Value, __cache>* __node,
218			       _Hash_node<_Value, __cache>** __bucket)
219      : _M_cur_node(__node), _M_cur_bucket(__bucket) { }
220
221      void
222      _M_incr()
223      {
224	_M_cur_node = _M_cur_node->_M_next;
225	if (!_M_cur_node)
226	  _M_incr_bucket();
227      }
228
229      void
230      _M_incr_bucket();
231
232      _Hash_node<_Value, __cache>*   _M_cur_node;
233      _Hash_node<_Value, __cache>**  _M_cur_bucket;
234    };
235
236  // Global iterators, used for arbitrary iteration within a hash
237  // table.  Larger and more expensive than local iterators.
238  template<typename _Value, bool __cache>
239    void
240    _Hashtable_iterator_base<_Value, __cache>::
241    _M_incr_bucket()
242    {
243      ++_M_cur_bucket;
244
245      // This loop requires the bucket array to have a non-null sentinel.
246      while (!*_M_cur_bucket)
247	++_M_cur_bucket;
248      _M_cur_node = *_M_cur_bucket;
249    }
250
251  template<typename _Value, bool __cache>
252    inline bool
253    operator==(const _Hashtable_iterator_base<_Value, __cache>& __x,
254	       const _Hashtable_iterator_base<_Value, __cache>& __y)
255    { return __x._M_cur_node == __y._M_cur_node; }
256
257  template<typename _Value, bool __cache>
258    inline bool
259    operator!=(const _Hashtable_iterator_base<_Value, __cache>& __x,
260	       const _Hashtable_iterator_base<_Value, __cache>& __y)
261    { return __x._M_cur_node != __y._M_cur_node; }
262
263  template<typename _Value, bool __constant_iterators, bool __cache>
264    struct _Hashtable_iterator
265    : public _Hashtable_iterator_base<_Value, __cache>
266    {
267      typedef _Value                                   value_type;
268      typedef typename std::conditional<__constant_iterators,
269					const _Value*, _Value*>::type
270						       pointer;
271      typedef typename std::conditional<__constant_iterators,
272					const _Value&, _Value&>::type
273						       reference;
274      typedef std::ptrdiff_t                           difference_type;
275      typedef std::forward_iterator_tag                iterator_category;
276
277      _Hashtable_iterator()
278      : _Hashtable_iterator_base<_Value, __cache>(0, 0) { }
279
280      _Hashtable_iterator(_Hash_node<_Value, __cache>* __p,
281			  _Hash_node<_Value, __cache>** __b)
282      : _Hashtable_iterator_base<_Value, __cache>(__p, __b) { }
283
284      explicit
285      _Hashtable_iterator(_Hash_node<_Value, __cache>** __b)
286      : _Hashtable_iterator_base<_Value, __cache>(*__b, __b) { }
287
288      reference
289      operator*() const
290      { return this->_M_cur_node->_M_v; }
291
292      pointer
293      operator->() const
294      { return std::__addressof(this->_M_cur_node->_M_v); }
295
296      _Hashtable_iterator&
297      operator++()
298      {
299	this->_M_incr();
300	return *this;
301      }
302
303      _Hashtable_iterator
304      operator++(int)
305      {
306	_Hashtable_iterator __tmp(*this);
307	this->_M_incr();
308	return __tmp;
309      }
310    };
311
312  template<typename _Value, bool __constant_iterators, bool __cache>
313    struct _Hashtable_const_iterator
314    : public _Hashtable_iterator_base<_Value, __cache>
315    {
316      typedef _Value                                   value_type;
317      typedef const _Value*                            pointer;
318      typedef const _Value&                            reference;
319      typedef std::ptrdiff_t                           difference_type;
320      typedef std::forward_iterator_tag                iterator_category;
321
322      _Hashtable_const_iterator()
323      : _Hashtable_iterator_base<_Value, __cache>(0, 0) { }
324
325      _Hashtable_const_iterator(_Hash_node<_Value, __cache>* __p,
326				_Hash_node<_Value, __cache>** __b)
327      : _Hashtable_iterator_base<_Value, __cache>(__p, __b) { }
328
329      explicit
330      _Hashtable_const_iterator(_Hash_node<_Value, __cache>** __b)
331      : _Hashtable_iterator_base<_Value, __cache>(*__b, __b) { }
332
333      _Hashtable_const_iterator(const _Hashtable_iterator<_Value,
334				__constant_iterators, __cache>& __x)
335      : _Hashtable_iterator_base<_Value, __cache>(__x._M_cur_node,
336						  __x._M_cur_bucket) { }
337
338      reference
339      operator*() const
340      { return this->_M_cur_node->_M_v; }
341
342      pointer
343      operator->() const
344      { return std::__addressof(this->_M_cur_node->_M_v); }
345
346      _Hashtable_const_iterator&
347      operator++()
348      {
349	this->_M_incr();
350	return *this;
351      }
352
353      _Hashtable_const_iterator
354      operator++(int)
355      {
356	_Hashtable_const_iterator __tmp(*this);
357	this->_M_incr();
358	return __tmp;
359      }
360    };
361
362
363  // Many of class template _Hashtable's template parameters are policy
364  // classes.  These are defaults for the policies.
365
366  // Default range hashing function: use division to fold a large number
367  // into the range [0, N).
368  struct _Mod_range_hashing
369  {
370    typedef std::size_t first_argument_type;
371    typedef std::size_t second_argument_type;
372    typedef std::size_t result_type;
373
374    result_type
375    operator()(first_argument_type __num, second_argument_type __den) const
376    { return __num % __den; }
377  };
378
379  // Default ranged hash function H.  In principle it should be a
380  // function object composed from objects of type H1 and H2 such that
381  // h(k, N) = h2(h1(k), N), but that would mean making extra copies of
382  // h1 and h2.  So instead we'll just use a tag to tell class template
383  // hashtable to do that composition.
384  struct _Default_ranged_hash { };
385
386  // Default value for rehash policy.  Bucket size is (usually) the
387  // smallest prime that keeps the load factor small enough.
388  struct _Prime_rehash_policy
389  {
390    _Prime_rehash_policy(float __z = 1.0)
391    : _M_max_load_factor(__z), _M_growth_factor(2.f), _M_next_resize(0) { }
392
393    float
394    max_load_factor() const
395    { return _M_max_load_factor; }
396
397    // Return a bucket size no smaller than n.
398    std::size_t
399    _M_next_bkt(std::size_t __n) const;
400
401    // Return a bucket count appropriate for n elements
402    std::size_t
403    _M_bkt_for_elements(std::size_t __n) const;
404
405    // __n_bkt is current bucket count, __n_elt is current element count,
406    // and __n_ins is number of elements to be inserted.  Do we need to
407    // increase bucket count?  If so, return make_pair(true, n), where n
408    // is the new bucket count.  If not, return make_pair(false, 0).
409    std::pair<bool, std::size_t>
410    _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
411		   std::size_t __n_ins) const;
412
413    enum { _S_n_primes = sizeof(unsigned long) != 8 ? 256 : 256 + 48 };
414
415    float                _M_max_load_factor;
416    float                _M_growth_factor;
417    mutable std::size_t  _M_next_resize;
418  };
419
420  extern const unsigned long __prime_list[];
421
422  // XXX This is a hack.  There's no good reason for any of
423  // _Prime_rehash_policy's member functions to be inline.
424
425  // Return a prime no smaller than n.
426  inline std::size_t
427  _Prime_rehash_policy::
428  _M_next_bkt(std::size_t __n) const
429  {
430    const unsigned long* __p = std::lower_bound(__prime_list, __prime_list
431						+ _S_n_primes, __n);
432    _M_next_resize =
433      static_cast<std::size_t>(__builtin_ceil(*__p * _M_max_load_factor));
434    return *__p;
435  }
436
437  // Return the smallest prime p such that alpha p >= n, where alpha
438  // is the load factor.
439  inline std::size_t
440  _Prime_rehash_policy::
441  _M_bkt_for_elements(std::size_t __n) const
442  {
443    const float __min_bkts = __n / _M_max_load_factor;
444    const unsigned long* __p = std::lower_bound(__prime_list, __prime_list
445						+ _S_n_primes, __min_bkts);
446    _M_next_resize =
447      static_cast<std::size_t>(__builtin_ceil(*__p * _M_max_load_factor));
448    return *__p;
449  }
450
451  // Finds the smallest prime p such that alpha p > __n_elt + __n_ins.
452  // If p > __n_bkt, return make_pair(true, p); otherwise return
453  // make_pair(false, 0).  In principle this isn't very different from
454  // _M_bkt_for_elements.
455
456  // The only tricky part is that we're caching the element count at
457  // which we need to rehash, so we don't have to do a floating-point
458  // multiply for every insertion.
459
460  inline std::pair<bool, std::size_t>
461  _Prime_rehash_policy::
462  _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
463		 std::size_t __n_ins) const
464  {
465    if (__n_elt + __n_ins > _M_next_resize)
466      {
467	float __min_bkts = ((float(__n_ins) + float(__n_elt))
468			    / _M_max_load_factor);
469	if (__min_bkts > __n_bkt)
470	  {
471	    __min_bkts = std::max(__min_bkts, _M_growth_factor * __n_bkt);
472	    const unsigned long* __p =
473	      std::lower_bound(__prime_list, __prime_list + _S_n_primes,
474			       __min_bkts);
475	    _M_next_resize = static_cast<std::size_t>
476	      (__builtin_ceil(*__p * _M_max_load_factor));
477	    return std::make_pair(true, *__p);
478	  }
479	else
480	  {
481	    _M_next_resize = static_cast<std::size_t>
482	      (__builtin_ceil(__n_bkt * _M_max_load_factor));
483	    return std::make_pair(false, 0);
484	  }
485      }
486    else
487      return std::make_pair(false, 0);
488  }
489
490  // Base classes for std::_Hashtable.  We define these base classes
491  // because in some cases we want to do different things depending
492  // on the value of a policy class.  In some cases the policy class
493  // affects which member functions and nested typedefs are defined;
494  // we handle that by specializing base class templates.  Several of
495  // the base class templates need to access other members of class
496  // template _Hashtable, so we use the "curiously recurring template
497  // pattern" for them.
498
499  // class template _Map_base.  If the hashtable has a value type of
500  // the form pair<T1, T2> and a key extraction policy that returns the
501  // first part of the pair, the hashtable gets a mapped_type typedef.
502  // If it satisfies those criteria and also has unique keys, then it
503  // also gets an operator[].
504  template<typename _Key, typename _Value, typename _Ex, bool __unique,
505	   typename _Hashtable>
506    struct _Map_base { };
507
508  template<typename _Key, typename _Pair, typename _Hashtable>
509    struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, false, _Hashtable>
510    {
511      typedef typename _Pair::second_type mapped_type;
512    };
513
514  template<typename _Key, typename _Pair, typename _Hashtable>
515    struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>
516    {
517      typedef typename _Pair::second_type mapped_type;
518
519      mapped_type&
520      operator[](const _Key& __k);
521
522      mapped_type&
523      operator[](_Key&& __k);
524
525      // _GLIBCXX_RESOLVE_LIB_DEFECTS
526      // DR 761. unordered_map needs an at() member function.
527      mapped_type&
528      at(const _Key& __k);
529
530      const mapped_type&
531      at(const _Key& __k) const;
532    };
533
534  template<typename _Key, typename _Pair, typename _Hashtable>
535    typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
536		       true, _Hashtable>::mapped_type&
537    _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
538    operator[](const _Key& __k)
539    {
540      _Hashtable* __h = static_cast<_Hashtable*>(this);
541      typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
542      std::size_t __n = __h->_M_bucket_index(__k, __code,
543					     __h->_M_bucket_count);
544
545      typename _Hashtable::_Node* __p =
546	__h->_M_find_node(__h->_M_buckets[__n], __k, __code);
547      if (!__p)
548	return __h->_M_insert_bucket(std::make_pair(__k, mapped_type()),
549				     __n, __code)->second;
550      return (__p->_M_v).second;
551    }
552
553  template<typename _Key, typename _Pair, typename _Hashtable>
554    typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
555		       true, _Hashtable>::mapped_type&
556    _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
557    operator[](_Key&& __k)
558    {
559      _Hashtable* __h = static_cast<_Hashtable*>(this);
560      typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
561      std::size_t __n = __h->_M_bucket_index(__k, __code,
562					     __h->_M_bucket_count);
563
564      typename _Hashtable::_Node* __p =
565	__h->_M_find_node(__h->_M_buckets[__n], __k, __code);
566      if (!__p)
567	return __h->_M_insert_bucket(std::make_pair(std::move(__k),
568						    mapped_type()),
569				     __n, __code)->second;
570      return (__p->_M_v).second;
571    }
572
573  template<typename _Key, typename _Pair, typename _Hashtable>
574    typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
575		       true, _Hashtable>::mapped_type&
576    _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
577    at(const _Key& __k)
578    {
579      _Hashtable* __h = static_cast<_Hashtable*>(this);
580      typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
581      std::size_t __n = __h->_M_bucket_index(__k, __code,
582					     __h->_M_bucket_count);
583
584      typename _Hashtable::_Node* __p =
585	__h->_M_find_node(__h->_M_buckets[__n], __k, __code);
586      if (!__p)
587	__throw_out_of_range(__N("_Map_base::at"));
588      return (__p->_M_v).second;
589    }
590
591  template<typename _Key, typename _Pair, typename _Hashtable>
592    const typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
593			     true, _Hashtable>::mapped_type&
594    _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
595    at(const _Key& __k) const
596    {
597      const _Hashtable* __h = static_cast<const _Hashtable*>(this);
598      typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
599      std::size_t __n = __h->_M_bucket_index(__k, __code,
600					     __h->_M_bucket_count);
601
602      typename _Hashtable::_Node* __p =
603	__h->_M_find_node(__h->_M_buckets[__n], __k, __code);
604      if (!__p)
605	__throw_out_of_range(__N("_Map_base::at"));
606      return (__p->_M_v).second;
607    }
608
609  // class template _Rehash_base.  Give hashtable the max_load_factor
610  // functions and reserve iff the rehash policy is _Prime_rehash_policy.
611  template<typename _RehashPolicy, typename _Hashtable>
612    struct _Rehash_base { };
613
614  template<typename _Hashtable>
615    struct _Rehash_base<_Prime_rehash_policy, _Hashtable>
616    {
617      float
618      max_load_factor() const
619      {
620	const _Hashtable* __this = static_cast<const _Hashtable*>(this);
621	return __this->__rehash_policy().max_load_factor();
622      }
623
624      void
625      max_load_factor(float __z)
626      {
627	_Hashtable* __this = static_cast<_Hashtable*>(this);
628	__this->__rehash_policy(_Prime_rehash_policy(__z));
629      }
630
631      void
632      reserve(std::size_t __n)
633      {
634	_Hashtable* __this = static_cast<_Hashtable*>(this);
635	__this->rehash(__builtin_ceil(__n / max_load_factor()));
636      }
637    };
638
639  // Class template _Hash_code_base.  Encapsulates two policy issues that
640  // aren't quite orthogonal.
641  //   (1) the difference between using a ranged hash function and using
642  //       the combination of a hash function and a range-hashing function.
643  //       In the former case we don't have such things as hash codes, so
644  //       we have a dummy type as placeholder.
645  //   (2) Whether or not we cache hash codes.  Caching hash codes is
646  //       meaningless if we have a ranged hash function.
647  // We also put the key extraction and equality comparison function
648  // objects here, for convenience.
649
650  // Primary template: unused except as a hook for specializations.
651  template<typename _Key, typename _Value,
652	   typename _ExtractKey, typename _Equal,
653	   typename _H1, typename _H2, typename _Hash,
654	   bool __cache_hash_code>
655    struct _Hash_code_base;
656
657  // Specialization: ranged hash function, no caching hash codes.  H1
658  // and H2 are provided but ignored.  We define a dummy hash code type.
659  template<typename _Key, typename _Value,
660	   typename _ExtractKey, typename _Equal,
661	   typename _H1, typename _H2, typename _Hash>
662    struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
663			   _Hash, false>
664    {
665    protected:
666      _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
667		      const _H1&, const _H2&, const _Hash& __h)
668      : _M_extract(__ex), _M_eq(__eq), _M_ranged_hash(__h) { }
669
670      typedef void* _Hash_code_type;
671
672      _Hash_code_type
673      _M_hash_code(const _Key& __key) const
674      { return 0; }
675
676      std::size_t
677      _M_bucket_index(const _Key& __k, _Hash_code_type,
678		      std::size_t __n) const
679      { return _M_ranged_hash(__k, __n); }
680
681      std::size_t
682      _M_bucket_index(const _Hash_node<_Value, false>* __p,
683		      std::size_t __n) const
684      { return _M_ranged_hash(_M_extract(__p->_M_v), __n); }
685
686      bool
687      _M_compare(const _Key& __k, _Hash_code_type,
688		 _Hash_node<_Value, false>* __n) const
689      { return _M_eq(__k, _M_extract(__n->_M_v)); }
690
691      void
692      _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
693      { }
694
695      void
696      _M_copy_code(_Hash_node<_Value, false>*,
697		   const _Hash_node<_Value, false>*) const
698      { }
699
700      void
701      _M_swap(_Hash_code_base& __x)
702      {
703	std::swap(_M_extract, __x._M_extract);
704	std::swap(_M_eq, __x._M_eq);
705	std::swap(_M_ranged_hash, __x._M_ranged_hash);
706      }
707
708    protected:
709      _ExtractKey  _M_extract;
710      _Equal       _M_eq;
711      _Hash        _M_ranged_hash;
712    };
713
714
715  // No specialization for ranged hash function while caching hash codes.
716  // That combination is meaningless, and trying to do it is an error.
717
718
719  // Specialization: ranged hash function, cache hash codes.  This
720  // combination is meaningless, so we provide only a declaration
721  // and no definition.
722  template<typename _Key, typename _Value,
723	   typename _ExtractKey, typename _Equal,
724	   typename _H1, typename _H2, typename _Hash>
725    struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
726			   _Hash, true>;
727
728  // Specialization: hash function and range-hashing function, no
729  // caching of hash codes.  H is provided but ignored.  Provides
730  // typedef and accessor required by TR1.
731  template<typename _Key, typename _Value,
732	   typename _ExtractKey, typename _Equal,
733	   typename _H1, typename _H2>
734    struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
735			   _Default_ranged_hash, false>
736    {
737      typedef _H1 hasher;
738
739      hasher
740      hash_function() const
741      { return _M_h1; }
742
743    protected:
744      _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
745		      const _H1& __h1, const _H2& __h2,
746		      const _Default_ranged_hash&)
747      : _M_extract(__ex), _M_eq(__eq), _M_h1(__h1), _M_h2(__h2) { }
748
749      typedef std::size_t _Hash_code_type;
750
751      _Hash_code_type
752      _M_hash_code(const _Key& __k) const
753      { return _M_h1(__k); }
754
755      std::size_t
756      _M_bucket_index(const _Key&, _Hash_code_type __c,
757		      std::size_t __n) const
758      { return _M_h2(__c, __n); }
759
760      std::size_t
761      _M_bucket_index(const _Hash_node<_Value, false>* __p,
762		      std::size_t __n) const
763      { return _M_h2(_M_h1(_M_extract(__p->_M_v)), __n); }
764
765      bool
766      _M_compare(const _Key& __k, _Hash_code_type,
767		 _Hash_node<_Value, false>* __n) const
768      { return _M_eq(__k, _M_extract(__n->_M_v)); }
769
770      void
771      _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
772      { }
773
774      void
775      _M_copy_code(_Hash_node<_Value, false>*,
776		   const _Hash_node<_Value, false>*) const
777      { }
778
779      void
780      _M_swap(_Hash_code_base& __x)
781      {
782	std::swap(_M_extract, __x._M_extract);
783	std::swap(_M_eq, __x._M_eq);
784	std::swap(_M_h1, __x._M_h1);
785	std::swap(_M_h2, __x._M_h2);
786      }
787
788    protected:
789      _ExtractKey  _M_extract;
790      _Equal       _M_eq;
791      _H1          _M_h1;
792      _H2          _M_h2;
793    };
794
795  // Specialization: hash function and range-hashing function,
796  // caching hash codes.  H is provided but ignored.  Provides
797  // typedef and accessor required by TR1.
798  template<typename _Key, typename _Value,
799	   typename _ExtractKey, typename _Equal,
800	   typename _H1, typename _H2>
801    struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
802			   _Default_ranged_hash, true>
803    {
804      typedef _H1 hasher;
805
806      hasher
807      hash_function() const
808      { return _M_h1; }
809
810    protected:
811      _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
812		      const _H1& __h1, const _H2& __h2,
813		      const _Default_ranged_hash&)
814      : _M_extract(__ex), _M_eq(__eq), _M_h1(__h1), _M_h2(__h2) { }
815
816      typedef std::size_t _Hash_code_type;
817
818      _Hash_code_type
819      _M_hash_code(const _Key& __k) const
820      { return _M_h1(__k); }
821
822      std::size_t
823      _M_bucket_index(const _Key&, _Hash_code_type __c,
824		      std::size_t __n) const
825      { return _M_h2(__c, __n); }
826
827      std::size_t
828      _M_bucket_index(const _Hash_node<_Value, true>* __p,
829		      std::size_t __n) const
830      { return _M_h2(__p->_M_hash_code, __n); }
831
832      bool
833      _M_compare(const _Key& __k, _Hash_code_type __c,
834		 _Hash_node<_Value, true>* __n) const
835      { return __c == __n->_M_hash_code && _M_eq(__k, _M_extract(__n->_M_v)); }
836
837      void
838      _M_store_code(_Hash_node<_Value, true>* __n, _Hash_code_type __c) const
839      { __n->_M_hash_code = __c; }
840
841      void
842      _M_copy_code(_Hash_node<_Value, true>* __to,
843		   const _Hash_node<_Value, true>* __from) const
844      { __to->_M_hash_code = __from->_M_hash_code; }
845
846      void
847      _M_swap(_Hash_code_base& __x)
848      {
849	std::swap(_M_extract, __x._M_extract);
850	std::swap(_M_eq, __x._M_eq);
851	std::swap(_M_h1, __x._M_h1);
852	std::swap(_M_h2, __x._M_h2);
853      }
854
855    protected:
856      _ExtractKey  _M_extract;
857      _Equal       _M_eq;
858      _H1          _M_h1;
859      _H2          _M_h2;
860    };
861
862
863  // Class template _Equality_base.  This is for implementing equality
864  // comparison for unordered containers, per N3068, by John Lakos and
865  // Pablo Halpern.  Algorithmically, we follow closely the reference
866  // implementations therein.
867  template<typename _ExtractKey, bool __unique_keys,
868	   typename _Hashtable>
869    struct _Equality_base;
870
871  template<typename _ExtractKey, typename _Hashtable>
872    struct _Equality_base<_ExtractKey, true, _Hashtable>
873    {
874      bool _M_equal(const _Hashtable&) const;
875    };
876
877  template<typename _ExtractKey, typename _Hashtable>
878    bool
879    _Equality_base<_ExtractKey, true, _Hashtable>::
880    _M_equal(const _Hashtable& __other) const
881    {
882      const _Hashtable* __this = static_cast<const _Hashtable*>(this);
883
884      if (__this->size() != __other.size())
885	return false;
886
887      for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx)
888	{
889	  const auto __ity = __other.find(_ExtractKey()(*__itx));
890	  if (__ity == __other.end() || *__ity != *__itx)
891	    return false;
892	}
893      return true;
894    }
895
896  template<typename _ExtractKey, typename _Hashtable>
897    struct _Equality_base<_ExtractKey, false, _Hashtable>
898    {
899      bool _M_equal(const _Hashtable&) const;
900
901    private:
902      template<typename _Uiterator>
903	static bool
904	_S_is_permutation(_Uiterator, _Uiterator, _Uiterator);
905    };
906
907  // See std::is_permutation in N3068.
908  template<typename _ExtractKey, typename _Hashtable>
909    template<typename _Uiterator>
910      bool
911      _Equality_base<_ExtractKey, false, _Hashtable>::
912      _S_is_permutation(_Uiterator __first1, _Uiterator __last1,
913			_Uiterator __first2)
914      {
915	for (; __first1 != __last1; ++__first1, ++__first2)
916	  if (!(*__first1 == *__first2))
917	    break;
918
919	if (__first1 == __last1)
920	  return true;
921
922	_Uiterator __last2 = __first2;
923	std::advance(__last2, std::distance(__first1, __last1));
924
925	for (_Uiterator __it1 = __first1; __it1 != __last1; ++__it1)
926	  {
927	    _Uiterator __tmp =  __first1;
928	    while (__tmp != __it1 && !(*__tmp == *__it1))
929	      ++__tmp;
930
931	    // We've seen this one before.
932	    if (__tmp != __it1)
933	      continue;
934
935	    std::ptrdiff_t __n2 = 0;
936	    for (__tmp = __first2; __tmp != __last2; ++__tmp)
937	      if (*__tmp == *__it1)
938		++__n2;
939
940	    if (!__n2)
941	      return false;
942
943	    std::ptrdiff_t __n1 = 0;
944	    for (__tmp = __it1; __tmp != __last1; ++__tmp)
945	      if (*__tmp == *__it1)
946		++__n1;
947
948	    if (__n1 != __n2)
949	      return false;
950	  }
951	return true;
952      }
953
954  template<typename _ExtractKey, typename _Hashtable>
955    bool
956    _Equality_base<_ExtractKey, false, _Hashtable>::
957    _M_equal(const _Hashtable& __other) const
958    {
959      const _Hashtable* __this = static_cast<const _Hashtable*>(this);
960
961      if (__this->size() != __other.size())
962	return false;
963
964      for (auto __itx = __this->begin(); __itx != __this->end();)
965	{
966	  const auto __xrange = __this->equal_range(_ExtractKey()(*__itx));
967	  const auto __yrange = __other.equal_range(_ExtractKey()(*__itx));
968
969	  if (std::distance(__xrange.first, __xrange.second)
970	      != std::distance(__yrange.first, __yrange.second))
971	    return false;
972
973	  if (!_S_is_permutation(__xrange.first,
974				 __xrange.second,
975				 __yrange.first))
976	    return false;
977
978	  __itx = __xrange.second;
979	}
980      return true;
981    }
982
983_GLIBCXX_END_NAMESPACE_VERSION
984} // namespace __detail
985} // namespace std
986
987#endif // _HASHTABLE_POLICY_H
988