• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/toolchains/hndtools-arm-linux-2.6.36-uclibc-4.5.3/usr/include/
1/* Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
2   This file is part of the GNU C Library.
3
4   The GNU C Library is free software; you can redistribute it and/or
5   modify it under the terms of the GNU Lesser General Public
6   License as published by the Free Software Foundation; either
7   version 2.1 of the License, or (at your option) any later version.
8
9   The GNU C Library is distributed in the hope that it will be useful,
10   but WITHOUT ANY WARRANTY; without even the implied warranty of
11   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12   Lesser General Public License for more details.
13
14   You should have received a copy of the GNU Lesser General Public
15   License along with the GNU C Library; if not, write to the Free
16   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17   02111-1307 USA.  */
18
19/*
20 *	ISO C99 Standard: 7.22 Type-generic math	<tgmath.h>
21 */
22
23#ifndef _TGMATH_H
24#define _TGMATH_H	1
25
26/* Include the needed headers.  */
27#include <math.h>
28#include <complex.h>
29
30
31/* Since `complex' is currently not really implemented in most C compilers
32   and if it is implemented, the implementations differ.  This makes it
33   quite difficult to write a generic implementation of this header.  We
34   do not try this for now and instead concentrate only on GNU CC.  Once
35   we have more information support for other compilers might follow.  */
36
37#if __GNUC_PREREQ (2, 7)
38
39# ifdef __NO_LONG_DOUBLE_MATH
40#  define __tgml(fct) fct
41# else
42#  define __tgml(fct) fct ## l
43# endif
44
45/* This is ugly but unless gcc gets appropriate builtins we have to do
46   something like this.  Don't ask how it works.  */
47
48/* 1 if 'type' is a floating type, 0 if 'type' is an integer type.
49   Allows for _Bool.  Expands to an integer constant expression.  */
50# define __floating_type(type) (((type) 0.25) && ((type) 0.25 - 1))
51
52/* The tgmath real type for T, where E is 0 if T is an integer type and
53   1 for a floating type.  */
54# define __tgmath_real_type_sub(T, E) \
55  __typeof__(*(0 ? (__typeof__ (0 ? (double *) 0 : (void *) (E))) 0	      \
56		 : (__typeof__ (0 ? (T *) 0 : (void *) (!(E)))) 0))
57
58/* The tgmath real type of EXPR.  */
59# define __tgmath_real_type(expr) \
60  __tgmath_real_type_sub(__typeof__(expr), __floating_type(__typeof__(expr)))
61
62
63/* We have two kinds of generic macros: to support functions which are
64   only defined on real valued parameters and those which are defined
65   for complex functions as well.  */
66# define __TGMATH_UNARY_REAL_ONLY(Val, Fct) \
67     (__extension__ ({ __tgmath_real_type (Val) __tgmres;		      \
68		       if (sizeof (Val) == sizeof (double)		      \
69			   || __builtin_classify_type (Val) != 8)	      \
70			 __tgmres = Fct (Val);				      \
71		       else if (sizeof (Val) == sizeof (float))		      \
72			 __tgmres = Fct##f (Val);			      \
73		       else						      \
74			 __tgmres = __tgml(Fct) (Val);			      \
75		       __tgmres; }))
76
77# define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \
78     (__extension__ ({ __tgmath_real_type (Val1) __tgmres;		      \
79		       if (sizeof (Val1) == sizeof (double)		      \
80			   || __builtin_classify_type (Val1) != 8)	      \
81			 __tgmres = Fct (Val1, Val2);			      \
82		       else if (sizeof (Val1) == sizeof (float))	      \
83			 __tgmres = Fct##f (Val1, Val2);		      \
84		       else						      \
85			 __tgmres = __tgml(Fct) (Val1, Val2);		      \
86		       __tgmres; }))
87
88# define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \
89     (__extension__ ({ __tgmath_real_type ((Val1) + (Val2)) __tgmres;	      \
90		       if ((sizeof (Val1) > sizeof (double)		      \
91			    || sizeof (Val2) > sizeof (double))		      \
92			   && __builtin_classify_type ((Val1) + (Val2)) == 8) \
93			 __tgmres = __tgml(Fct) (Val1, Val2);		      \
94		       else if (sizeof (Val1) == sizeof (double)	      \
95				|| sizeof (Val2) == sizeof (double)	      \
96				|| __builtin_classify_type (Val1) != 8	      \
97				|| __builtin_classify_type (Val2) != 8)	      \
98			 __tgmres = Fct (Val1, Val2);			      \
99		       else						      \
100			 __tgmres = Fct##f (Val1, Val2);		      \
101		       __tgmres; }))
102
103# define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \
104     (__extension__ ({ __tgmath_real_type ((Val1) + (Val2)) __tgmres;	      \
105		       if ((sizeof (Val1) > sizeof (double)		      \
106			    || sizeof (Val2) > sizeof (double))		      \
107			   && __builtin_classify_type ((Val1) + (Val2)) == 8) \
108			 __tgmres = __tgml(Fct) (Val1, Val2, Val3);	      \
109		       else if (sizeof (Val1) == sizeof (double)	      \
110				|| sizeof (Val2) == sizeof (double)	      \
111				|| __builtin_classify_type (Val1) != 8	      \
112				|| __builtin_classify_type (Val2) != 8)	      \
113			 __tgmres = Fct (Val1, Val2, Val3);		      \
114		       else						      \
115			 __tgmres = Fct##f (Val1, Val2, Val3);		      \
116		       __tgmres; }))
117
118# define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \
119     (__extension__ ({ __tgmath_real_type ((Val1) + (Val2) + (Val3)) __tgmres;\
120		       if ((sizeof (Val1) > sizeof (double)		      \
121			    || sizeof (Val2) > sizeof (double)		      \
122			    || sizeof (Val3) > sizeof (double))		      \
123			   && __builtin_classify_type ((Val1) + (Val2)	      \
124						       + (Val3)) == 8)	      \
125			 __tgmres = __tgml(Fct) (Val1, Val2, Val3);	      \
126		       else if (sizeof (Val1) == sizeof (double)	      \
127				|| sizeof (Val2) == sizeof (double)	      \
128				|| sizeof (Val3) == sizeof (double)	      \
129				|| __builtin_classify_type (Val1) != 8	      \
130				|| __builtin_classify_type (Val2) != 8	      \
131				|| __builtin_classify_type (Val3) != 8)	      \
132			 __tgmres = Fct (Val1, Val2, Val3);		      \
133		       else						      \
134			 __tgmres = Fct##f (Val1, Val2, Val3);		      \
135		       __tgmres; }))
136
137/* XXX This definition has to be changed as soon as the compiler understands
138   the imaginary keyword.  */
139# define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \
140     (__extension__ ({ __tgmath_real_type (Val) __tgmres;		      \
141		       if (sizeof (__real__ (Val)) > sizeof (double)	      \
142			   && __builtin_classify_type (__real__ (Val)) == 8)  \
143			 {						      \
144			   if (sizeof (__real__ (Val)) == sizeof (Val))	      \
145			     __tgmres = __tgml(Fct) (Val);		      \
146			   else						      \
147			     __tgmres = __tgml(Cfct) (Val);		      \
148			 }						      \
149		       else if (sizeof (__real__ (Val)) == sizeof (double)    \
150				|| __builtin_classify_type (__real__ (Val))   \
151				   != 8)				      \
152			 {						      \
153			   if (sizeof (__real__ (Val)) == sizeof (Val))	      \
154			     __tgmres = Fct (Val);			      \
155			   else						      \
156			     __tgmres = Cfct (Val);			      \
157			 }						      \
158		       else						      \
159			 {						      \
160			   if (sizeof (__real__ (Val)) == sizeof (Val))	      \
161			     __tgmres = Fct##f (Val);			      \
162			   else						      \
163			     __tgmres = Cfct##f (Val);			      \
164			 }						      \
165		       __tgmres; }))
166
167/* XXX This definition has to be changed as soon as the compiler understands
168   the imaginary keyword.  */
169# define __TGMATH_UNARY_IMAG_ONLY(Val, Fct) \
170     (__extension__ ({ __tgmath_real_type (Val) __tgmres;		      \
171		       if (sizeof (Val) == sizeof (__complex__ double)	      \
172			   || __builtin_classify_type (__real__ (Val)) != 8)  \
173			 __tgmres = Fct (Val);				      \
174		       else if (sizeof (Val) == sizeof (__complex__ float))   \
175			 __tgmres = Fct##f (Val);			      \
176		       else						      \
177			 __tgmres = __tgml(Fct) (Val);			      \
178		       __tgmres; }))
179
180/* XXX This definition has to be changed as soon as the compiler understands
181   the imaginary keyword.  */
182# define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \
183     (__extension__ ({ __tgmath_real_type ((Val1) + (Val2)) __tgmres;	      \
184		       if ((sizeof (__real__ (Val1)) > sizeof (double)	      \
185			    || sizeof (__real__ (Val2)) > sizeof (double))    \
186			   && __builtin_classify_type (__real__ (Val1)	      \
187						       + __real__ (Val2))     \
188			      == 8)					      \
189			 {						      \
190			   if (sizeof (__real__ (Val1)) == sizeof (Val1)      \
191			       && sizeof (__real__ (Val2)) == sizeof (Val2))  \
192			     __tgmres = __tgml(Fct) (Val1, Val2);	      \
193			   else						      \
194			     __tgmres = __tgml(Cfct) (Val1, Val2);	      \
195			 }						      \
196		       else if (sizeof (__real__ (Val1)) == sizeof (double)   \
197				|| sizeof (__real__ (Val2)) == sizeof(double) \
198				|| (__builtin_classify_type (__real__ (Val1)) \
199				    != 8)				      \
200				|| (__builtin_classify_type (__real__ (Val2)) \
201				    != 8))				      \
202			 {						      \
203			   if (sizeof (__real__ (Val1)) == sizeof (Val1)      \
204			       && sizeof (__real__ (Val2)) == sizeof (Val2))  \
205			     __tgmres = Fct (Val1, Val2);		      \
206			   else						      \
207			     __tgmres = Cfct (Val1, Val2);		      \
208			 }						      \
209		       else						      \
210			 {						      \
211			   if (sizeof (__real__ (Val1)) == sizeof (Val1)      \
212			       && sizeof (__real__ (Val2)) == sizeof (Val2))  \
213			     __tgmres = Fct##f (Val1, Val2);		      \
214			   else						      \
215			     __tgmres = Cfct##f (Val1, Val2);		      \
216			 }						      \
217		       __tgmres; }))
218#else
219# error "Unsupported compiler; you cannot use <tgmath.h>"
220#endif
221
222
223/* Unary functions defined for real and complex values.  */
224
225
226/* Trigonometric functions.  */
227
228/* Arc cosine of X.  */
229#define acos(Val) __TGMATH_UNARY_REAL_IMAG (Val, acos, cacos)
230/* Arc sine of X.  */
231#define asin(Val) __TGMATH_UNARY_REAL_IMAG (Val, asin, casin)
232/* Arc tangent of X.  */
233#define atan(Val) __TGMATH_UNARY_REAL_IMAG (Val, atan, catan)
234/* Arc tangent of Y/X.  */
235#define atan2(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, atan2)
236
237/* Cosine of X.  */
238#define cos(Val) __TGMATH_UNARY_REAL_IMAG (Val, cos, ccos)
239/* Sine of X.  */
240#define sin(Val) __TGMATH_UNARY_REAL_IMAG (Val, sin, csin)
241/* Tangent of X.  */
242#define tan(Val) __TGMATH_UNARY_REAL_IMAG (Val, tan, ctan)
243
244
245/* Hyperbolic functions.  */
246
247/* Hyperbolic arc cosine of X.  */
248#define acosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, acosh, cacosh)
249/* Hyperbolic arc sine of X.  */
250#define asinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, asinh, casinh)
251/* Hyperbolic arc tangent of X.  */
252#define atanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, atanh, catanh)
253
254/* Hyperbolic cosine of X.  */
255#define cosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, cosh, ccosh)
256/* Hyperbolic sine of X.  */
257#define sinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, sinh, csinh)
258/* Hyperbolic tangent of X.  */
259#define tanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, tanh, ctanh)
260
261
262/* Exponential and logarithmic functions.  */
263
264/* Exponential function of X.  */
265#define exp(Val) __TGMATH_UNARY_REAL_IMAG (Val, exp, cexp)
266
267/* Break VALUE into a normalized fraction and an integral power of 2.  */
268#define frexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, frexp)
269
270/* X times (two to the EXP power).  */
271#define ldexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, ldexp)
272
273/* Natural logarithm of X.  */
274#define log(Val) __TGMATH_UNARY_REAL_IMAG (Val, log, clog)
275
276/* Base-ten logarithm of X.  */
277#ifdef __USE_GNU
278# define log10(Val) __TGMATH_UNARY_REAL_IMAG (Val, log10, __clog10)
279#else
280# define log10(Val) __TGMATH_UNARY_REAL_ONLY (Val, log10)
281#endif
282
283/* Return exp(X) - 1.  */
284#define expm1(Val) __TGMATH_UNARY_REAL_ONLY (Val, expm1)
285
286/* Return log(1 + X).  */
287#define log1p(Val) __TGMATH_UNARY_REAL_ONLY (Val, log1p)
288
289/* Return the base 2 signed integral exponent of X.  */
290#define logb(Val) __TGMATH_UNARY_REAL_ONLY (Val, logb)
291
292/* Compute base-2 exponential of X.  */
293#define exp2(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp2)
294
295/* Compute base-2 logarithm of X.  */
296#define log2(Val) __TGMATH_UNARY_REAL_ONLY (Val, log2)
297
298
299/* Power functions.  */
300
301/* Return X to the Y power.  */
302#define pow(Val1, Val2) __TGMATH_BINARY_REAL_IMAG (Val1, Val2, pow, cpow)
303
304/* Return the square root of X.  */
305#define sqrt(Val) __TGMATH_UNARY_REAL_IMAG (Val, sqrt, csqrt)
306
307/* Return `sqrt(X*X + Y*Y)'.  */
308#define hypot(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, hypot)
309
310/* Return the cube root of X.  */
311#define cbrt(Val) __TGMATH_UNARY_REAL_ONLY (Val, cbrt)
312
313
314/* Nearest integer, absolute value, and remainder functions.  */
315
316/* Smallest integral value not less than X.  */
317#define ceil(Val) __TGMATH_UNARY_REAL_ONLY (Val, ceil)
318
319/* Absolute value of X.  */
320#define fabs(Val) __TGMATH_UNARY_REAL_IMAG (Val, fabs, cabs)
321
322/* Largest integer not greater than X.  */
323#define floor(Val) __TGMATH_UNARY_REAL_ONLY (Val, floor)
324
325/* Floating-point modulo remainder of X/Y.  */
326#define fmod(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmod)
327
328/* Round X to integral valuein floating-point format using current
329   rounding direction, but do not raise inexact exception.  */
330#define nearbyint(Val) __TGMATH_UNARY_REAL_ONLY (Val, nearbyint)
331
332/* Round X to nearest integral value, rounding halfway cases away from
333   zero.  */
334#define round(Val) __TGMATH_UNARY_REAL_ONLY (Val, round)
335
336/* Round X to the integral value in floating-point format nearest but
337   not larger in magnitude.  */
338#define trunc(Val) __TGMATH_UNARY_REAL_ONLY (Val, trunc)
339
340/* Compute remainder of X and Y and put in *QUO a value with sign of x/y
341   and magnitude congruent `mod 2^n' to the magnitude of the integral
342   quotient x/y, with n >= 3.  */
343#define remquo(Val1, Val2, Val3) \
344     __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY (Val1, Val2, Val3, remquo)
345
346/* Round X to nearest integral value according to current rounding
347   direction.  */
348#define lrint(Val) __TGMATH_UNARY_REAL_ONLY (Val, lrint)
349#define llrint(Val) __TGMATH_UNARY_REAL_ONLY (Val, llrint)
350
351/* Round X to nearest integral value, rounding halfway cases away from
352   zero.  */
353#define lround(Val) __TGMATH_UNARY_REAL_ONLY (Val, lround)
354#define llround(Val) __TGMATH_UNARY_REAL_ONLY (Val, llround)
355
356
357/* Return X with its signed changed to Y's.  */
358#define copysign(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, copysign)
359
360/* Error and gamma functions.  */
361#define erf(Val) __TGMATH_UNARY_REAL_ONLY (Val, erf)
362#define erfc(Val) __TGMATH_UNARY_REAL_ONLY (Val, erfc)
363#define tgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, tgamma)
364#define lgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, lgamma)
365
366
367/* Return the integer nearest X in the direction of the
368   prevailing rounding mode.  */
369#define rint(Val) __TGMATH_UNARY_REAL_ONLY (Val, rint)
370
371/* Return X + epsilon if X < Y, X - epsilon if X > Y.  */
372#define nextafter(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, nextafter)
373#define nexttoward(Val1, Val2) \
374     __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, nexttoward)
375
376/* Return the remainder of integer divison X / Y with infinite precision.  */
377#define remainder(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, remainder)
378
379#if defined __UCLIBC_SUSV3_LEGACY__
380/* Return X times (2 to the Nth power).  */
381#if defined __USE_MISC || defined __USE_XOPEN_EXTENDED
382# define scalb(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, scalb)
383#endif
384
385/* Return X times (2 to the Nth power).  */
386#define scalbn(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbn)
387
388/* Return X times (2 to the Nth power).  */
389#define scalbln(Val1, Val2) \
390     __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbln)
391#endif /* UCLIBC_SUSV3_LEGACY */
392
393/* Return the binary exponent of X, which must be nonzero.  */
394#define ilogb(Val) __TGMATH_UNARY_REAL_ONLY (Val, ilogb)
395
396
397/* Return positive difference between X and Y.  */
398#define fdim(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fdim)
399
400/* Return maximum numeric value from X and Y.  */
401#define fmax(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmax)
402
403/* Return minimum numeric value from X and Y.  */
404#define fmin(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmin)
405
406
407/* Multiply-add function computed as a ternary operation.  */
408#define fma(Val1, Val2, Val3) \
409     __TGMATH_TERNARY_REAL_ONLY (Val1, Val2, Val3, fma)
410
411
412/* Absolute value, conjugates, and projection.  */
413
414/* Argument value of Z.  */
415#define carg(Val) __TGMATH_UNARY_IMAG_ONLY (Val, carg)
416
417/* Complex conjugate of Z.  */
418#define conj(Val) __TGMATH_UNARY_IMAG_ONLY (Val, conj)
419
420/* Projection of Z onto the Riemann sphere.  */
421#define cproj(Val) __TGMATH_UNARY_IMAG_ONLY (Val, cproj)
422
423
424/* Decomposing complex values.  */
425
426/* Imaginary part of Z.  */
427#define cimag(Val) __TGMATH_UNARY_IMAG_ONLY (Val, cimag)
428
429/* Real part of Z.  */
430#define creal(Val) __TGMATH_UNARY_IMAG_ONLY (Val, creal)
431
432#endif /* tgmath.h */
433