• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/toolchains/hndtools-arm-linux-2.6.36-uclibc-4.5.3/arm-linux/include/c++/4.5.3/bits/
1// List implementation -*- C++ -*-
2
3// Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4// Free Software Foundation, Inc.
5//
6// This file is part of the GNU ISO C++ Library.  This library is free
7// software; you can redistribute it and/or modify it under the
8// terms of the GNU General Public License as published by the
9// Free Software Foundation; either version 3, or (at your option)
10// any later version.
11
12// This library is distributed in the hope that it will be useful,
13// but WITHOUT ANY WARRANTY; without even the implied warranty of
14// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15// GNU General Public License for more details.
16
17// Under Section 7 of GPL version 3, you are granted additional
18// permissions described in the GCC Runtime Library Exception, version
19// 3.1, as published by the Free Software Foundation.
20
21// You should have received a copy of the GNU General Public License and
22// a copy of the GCC Runtime Library Exception along with this program;
23// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24// <http://www.gnu.org/licenses/>.
25
26/*
27 *
28 * Copyright (c) 1994
29 * Hewlett-Packard Company
30 *
31 * Permission to use, copy, modify, distribute and sell this software
32 * and its documentation for any purpose is hereby granted without fee,
33 * provided that the above copyright notice appear in all copies and
34 * that both that copyright notice and this permission notice appear
35 * in supporting documentation.  Hewlett-Packard Company makes no
36 * representations about the suitability of this software for any
37 * purpose.  It is provided "as is" without express or implied warranty.
38 *
39 *
40 * Copyright (c) 1996,1997
41 * Silicon Graphics Computer Systems, Inc.
42 *
43 * Permission to use, copy, modify, distribute and sell this software
44 * and its documentation for any purpose is hereby granted without fee,
45 * provided that the above copyright notice appear in all copies and
46 * that both that copyright notice and this permission notice appear
47 * in supporting documentation.  Silicon Graphics makes no
48 * representations about the suitability of this software for any
49 * purpose.  It is provided "as is" without express or implied warranty.
50 */
51
52/** @file stl_list.h
53 *  This is an internal header file, included by other library headers.
54 *  You should not attempt to use it directly.
55 */
56
57#ifndef _STL_LIST_H
58#define _STL_LIST_H 1
59
60#include <bits/concept_check.h>
61#include <initializer_list>
62
63_GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD_D)
64
65  // Supporting structures are split into common and templated types; the
66  // latter publicly inherits from the former in an effort to reduce code
67  // duplication.  This results in some "needless" static_cast'ing later on,
68  // but it's all safe downcasting.
69
70  /// Common part of a node in the %list.
71  struct _List_node_base
72  {
73    _List_node_base* _M_next;
74    _List_node_base* _M_prev;
75
76    static void
77    swap(_List_node_base& __x, _List_node_base& __y) throw ();
78
79    void
80    _M_transfer(_List_node_base * const __first,
81		_List_node_base * const __last) throw ();
82
83    void
84    _M_reverse() throw ();
85
86    void
87    _M_hook(_List_node_base * const __position) throw ();
88
89    void
90    _M_unhook() throw ();
91  };
92
93  /// An actual node in the %list.
94  template<typename _Tp>
95    struct _List_node : public _List_node_base
96    {
97      ///< User's data.
98      _Tp _M_data;
99
100#ifdef __GXX_EXPERIMENTAL_CXX0X__
101      template<typename... _Args>
102        _List_node(_Args&&... __args)
103	: _List_node_base(), _M_data(std::forward<_Args>(__args)...) { }
104#endif
105    };
106
107  /**
108   *  @brief A list::iterator.
109   *
110   *  All the functions are op overloads.
111  */
112  template<typename _Tp>
113    struct _List_iterator
114    {
115      typedef _List_iterator<_Tp>                _Self;
116      typedef _List_node<_Tp>                    _Node;
117
118      typedef ptrdiff_t                          difference_type;
119      typedef std::bidirectional_iterator_tag    iterator_category;
120      typedef _Tp                                value_type;
121      typedef _Tp*                               pointer;
122      typedef _Tp&                               reference;
123
124      _List_iterator()
125      : _M_node() { }
126
127      explicit
128      _List_iterator(_List_node_base* __x)
129      : _M_node(__x) { }
130
131      // Must downcast from List_node_base to _List_node to get to _M_data.
132      reference
133      operator*() const
134      { return static_cast<_Node*>(_M_node)->_M_data; }
135
136      pointer
137      operator->() const
138      { return &static_cast<_Node*>(_M_node)->_M_data; }
139
140      _Self&
141      operator++()
142      {
143	_M_node = _M_node->_M_next;
144	return *this;
145      }
146
147      _Self
148      operator++(int)
149      {
150	_Self __tmp = *this;
151	_M_node = _M_node->_M_next;
152	return __tmp;
153      }
154
155      _Self&
156      operator--()
157      {
158	_M_node = _M_node->_M_prev;
159	return *this;
160      }
161
162      _Self
163      operator--(int)
164      {
165	_Self __tmp = *this;
166	_M_node = _M_node->_M_prev;
167	return __tmp;
168      }
169
170      bool
171      operator==(const _Self& __x) const
172      { return _M_node == __x._M_node; }
173
174      bool
175      operator!=(const _Self& __x) const
176      { return _M_node != __x._M_node; }
177
178      // The only member points to the %list element.
179      _List_node_base* _M_node;
180    };
181
182  /**
183   *  @brief A list::const_iterator.
184   *
185   *  All the functions are op overloads.
186  */
187  template<typename _Tp>
188    struct _List_const_iterator
189    {
190      typedef _List_const_iterator<_Tp>          _Self;
191      typedef const _List_node<_Tp>              _Node;
192      typedef _List_iterator<_Tp>                iterator;
193
194      typedef ptrdiff_t                          difference_type;
195      typedef std::bidirectional_iterator_tag    iterator_category;
196      typedef _Tp                                value_type;
197      typedef const _Tp*                         pointer;
198      typedef const _Tp&                         reference;
199
200      _List_const_iterator()
201      : _M_node() { }
202
203      explicit
204      _List_const_iterator(const _List_node_base* __x)
205      : _M_node(__x) { }
206
207      _List_const_iterator(const iterator& __x)
208      : _M_node(__x._M_node) { }
209
210      // Must downcast from List_node_base to _List_node to get to
211      // _M_data.
212      reference
213      operator*() const
214      { return static_cast<_Node*>(_M_node)->_M_data; }
215
216      pointer
217      operator->() const
218      { return &static_cast<_Node*>(_M_node)->_M_data; }
219
220      _Self&
221      operator++()
222      {
223	_M_node = _M_node->_M_next;
224	return *this;
225      }
226
227      _Self
228      operator++(int)
229      {
230	_Self __tmp = *this;
231	_M_node = _M_node->_M_next;
232	return __tmp;
233      }
234
235      _Self&
236      operator--()
237      {
238	_M_node = _M_node->_M_prev;
239	return *this;
240      }
241
242      _Self
243      operator--(int)
244      {
245	_Self __tmp = *this;
246	_M_node = _M_node->_M_prev;
247	return __tmp;
248      }
249
250      bool
251      operator==(const _Self& __x) const
252      { return _M_node == __x._M_node; }
253
254      bool
255      operator!=(const _Self& __x) const
256      { return _M_node != __x._M_node; }
257
258      // The only member points to the %list element.
259      const _List_node_base* _M_node;
260    };
261
262  template<typename _Val>
263    inline bool
264    operator==(const _List_iterator<_Val>& __x,
265	       const _List_const_iterator<_Val>& __y)
266    { return __x._M_node == __y._M_node; }
267
268  template<typename _Val>
269    inline bool
270    operator!=(const _List_iterator<_Val>& __x,
271               const _List_const_iterator<_Val>& __y)
272    { return __x._M_node != __y._M_node; }
273
274
275  /// See bits/stl_deque.h's _Deque_base for an explanation.
276  template<typename _Tp, typename _Alloc>
277    class _List_base
278    {
279    protected:
280      // NOTA BENE
281      // The stored instance is not actually of "allocator_type"'s
282      // type.  Instead we rebind the type to
283      // Allocator<List_node<Tp>>, which according to [20.1.5]/4
284      // should probably be the same.  List_node<Tp> is not the same
285      // size as Tp (it's two pointers larger), and specializations on
286      // Tp may go unused because List_node<Tp> is being bound
287      // instead.
288      //
289      // We put this to the test in the constructors and in
290      // get_allocator, where we use conversions between
291      // allocator_type and _Node_alloc_type. The conversion is
292      // required by table 32 in [20.1.5].
293      typedef typename _Alloc::template rebind<_List_node<_Tp> >::other
294        _Node_alloc_type;
295
296      typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
297
298      struct _List_impl
299      : public _Node_alloc_type
300      {
301	_List_node_base _M_node;
302
303	_List_impl()
304	: _Node_alloc_type(), _M_node()
305	{ }
306
307	_List_impl(const _Node_alloc_type& __a)
308	: _Node_alloc_type(__a), _M_node()
309	{ }
310      };
311
312      _List_impl _M_impl;
313
314      _List_node<_Tp>*
315      _M_get_node()
316      { return _M_impl._Node_alloc_type::allocate(1); }
317
318      void
319      _M_put_node(_List_node<_Tp>* __p)
320      { _M_impl._Node_alloc_type::deallocate(__p, 1); }
321
322  public:
323      typedef _Alloc allocator_type;
324
325      _Node_alloc_type&
326      _M_get_Node_allocator()
327      { return *static_cast<_Node_alloc_type*>(&this->_M_impl); }
328
329      const _Node_alloc_type&
330      _M_get_Node_allocator() const
331      { return *static_cast<const _Node_alloc_type*>(&this->_M_impl); }
332
333      _Tp_alloc_type
334      _M_get_Tp_allocator() const
335      { return _Tp_alloc_type(_M_get_Node_allocator()); }
336
337      allocator_type
338      get_allocator() const
339      { return allocator_type(_M_get_Node_allocator()); }
340
341      _List_base()
342      : _M_impl()
343      { _M_init(); }
344
345      _List_base(const allocator_type& __a)
346      : _M_impl(__a)
347      { _M_init(); }
348
349#ifdef __GXX_EXPERIMENTAL_CXX0X__
350      _List_base(_List_base&& __x)
351      : _M_impl(__x._M_get_Node_allocator())
352      {
353	_M_init();
354	_List_node_base::swap(this->_M_impl._M_node, __x._M_impl._M_node);
355      }
356#endif
357
358      // This is what actually destroys the list.
359      ~_List_base()
360      { _M_clear(); }
361
362      void
363      _M_clear();
364
365      void
366      _M_init()
367      {
368        this->_M_impl._M_node._M_next = &this->_M_impl._M_node;
369        this->_M_impl._M_node._M_prev = &this->_M_impl._M_node;
370      }
371    };
372
373  /**
374   *  @brief A standard container with linear time access to elements,
375   *  and fixed time insertion/deletion at any point in the sequence.
376   *
377   *  @ingroup sequences
378   *
379   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
380   *  <a href="tables.html#66">reversible container</a>, and a
381   *  <a href="tables.html#67">sequence</a>, including the
382   *  <a href="tables.html#68">optional sequence requirements</a> with the
383   *  %exception of @c at and @c operator[].
384   *
385   *  This is a @e doubly @e linked %list.  Traversal up and down the
386   *  %list requires linear time, but adding and removing elements (or
387   *  @e nodes) is done in constant time, regardless of where the
388   *  change takes place.  Unlike std::vector and std::deque,
389   *  random-access iterators are not provided, so subscripting ( @c
390   *  [] ) access is not allowed.  For algorithms which only need
391   *  sequential access, this lack makes no difference.
392   *
393   *  Also unlike the other standard containers, std::list provides
394   *  specialized algorithms %unique to linked lists, such as
395   *  splicing, sorting, and in-place reversal.
396   *
397   *  A couple points on memory allocation for list<Tp>:
398   *
399   *  First, we never actually allocate a Tp, we allocate
400   *  List_node<Tp>'s and trust [20.1.5]/4 to DTRT.  This is to ensure
401   *  that after elements from %list<X,Alloc1> are spliced into
402   *  %list<X,Alloc2>, destroying the memory of the second %list is a
403   *  valid operation, i.e., Alloc1 giveth and Alloc2 taketh away.
404   *
405   *  Second, a %list conceptually represented as
406   *  @code
407   *    A <---> B <---> C <---> D
408   *  @endcode
409   *  is actually circular; a link exists between A and D.  The %list
410   *  class holds (as its only data member) a private list::iterator
411   *  pointing to @e D, not to @e A!  To get to the head of the %list,
412   *  we start at the tail and move forward by one.  When this member
413   *  iterator's next/previous pointers refer to itself, the %list is
414   *  %empty.
415  */
416  template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
417    class list : protected _List_base<_Tp, _Alloc>
418    {
419      // concept requirements
420      typedef typename _Alloc::value_type                _Alloc_value_type;
421      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
422      __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
423
424      typedef _List_base<_Tp, _Alloc>                    _Base;
425      typedef typename _Base::_Tp_alloc_type		 _Tp_alloc_type;
426
427    public:
428      typedef _Tp                                        value_type;
429      typedef typename _Tp_alloc_type::pointer           pointer;
430      typedef typename _Tp_alloc_type::const_pointer     const_pointer;
431      typedef typename _Tp_alloc_type::reference         reference;
432      typedef typename _Tp_alloc_type::const_reference   const_reference;
433      typedef _List_iterator<_Tp>                        iterator;
434      typedef _List_const_iterator<_Tp>                  const_iterator;
435      typedef std::reverse_iterator<const_iterator>      const_reverse_iterator;
436      typedef std::reverse_iterator<iterator>            reverse_iterator;
437      typedef size_t                                     size_type;
438      typedef ptrdiff_t                                  difference_type;
439      typedef _Alloc                                     allocator_type;
440
441    protected:
442      // Note that pointers-to-_Node's can be ctor-converted to
443      // iterator types.
444      typedef _List_node<_Tp>				 _Node;
445
446      using _Base::_M_impl;
447      using _Base::_M_put_node;
448      using _Base::_M_get_node;
449      using _Base::_M_get_Tp_allocator;
450      using _Base::_M_get_Node_allocator;
451
452      /**
453       *  @param  x  An instance of user data.
454       *
455       *  Allocates space for a new node and constructs a copy of @a x in it.
456       */
457#ifndef __GXX_EXPERIMENTAL_CXX0X__
458      _Node*
459      _M_create_node(const value_type& __x)
460      {
461	_Node* __p = this->_M_get_node();
462	__try
463	  {
464	    _M_get_Tp_allocator().construct(&__p->_M_data, __x);
465	  }
466	__catch(...)
467	  {
468	    _M_put_node(__p);
469	    __throw_exception_again;
470	  }
471	return __p;
472      }
473#else
474      template<typename... _Args>
475        _Node*
476        _M_create_node(_Args&&... __args)
477	{
478	  _Node* __p = this->_M_get_node();
479	  __try
480	    {
481	      _M_get_Node_allocator().construct(__p,
482						std::forward<_Args>(__args)...);
483	    }
484	  __catch(...)
485	    {
486	      _M_put_node(__p);
487	      __throw_exception_again;
488	    }
489	  return __p;
490	}
491#endif
492
493    public:
494      // [23.2.2.1] construct/copy/destroy
495      // (assign() and get_allocator() are also listed in this section)
496      /**
497       *  @brief  Default constructor creates no elements.
498       */
499      list()
500      : _Base() { }
501
502      /**
503       *  @brief  Creates a %list with no elements.
504       *  @param  a  An allocator object.
505       */
506      explicit
507      list(const allocator_type& __a)
508      : _Base(__a) { }
509
510      /**
511       *  @brief  Creates a %list with copies of an exemplar element.
512       *  @param  n  The number of elements to initially create.
513       *  @param  value  An element to copy.
514       *  @param  a  An allocator object.
515       *
516       *  This constructor fills the %list with @a n copies of @a value.
517       */
518      explicit
519      list(size_type __n, const value_type& __value = value_type(),
520	   const allocator_type& __a = allocator_type())
521      : _Base(__a)
522      { _M_fill_initialize(__n, __value); }
523
524      /**
525       *  @brief  %List copy constructor.
526       *  @param  x  A %list of identical element and allocator types.
527       *
528       *  The newly-created %list uses a copy of the allocation object used
529       *  by @a x.
530       */
531      list(const list& __x)
532      : _Base(__x._M_get_Node_allocator())
533      { _M_initialize_dispatch(__x.begin(), __x.end(), __false_type()); }
534
535#ifdef __GXX_EXPERIMENTAL_CXX0X__
536      /**
537       *  @brief  %List move constructor.
538       *  @param  x  A %list of identical element and allocator types.
539       *
540       *  The newly-created %list contains the exact contents of @a x.
541       *  The contents of @a x are a valid, but unspecified %list.
542       */
543      list(list&& __x)
544      : _Base(std::forward<_Base>(__x)) { }
545
546      /**
547       *  @brief  Builds a %list from an initializer_list
548       *  @param  l  An initializer_list of value_type.
549       *  @param  a  An allocator object.
550       *
551       *  Create a %list consisting of copies of the elements in the
552       *  initializer_list @a l.  This is linear in l.size().
553       */
554      list(initializer_list<value_type> __l,
555           const allocator_type& __a = allocator_type())
556      : _Base(__a)
557      { _M_initialize_dispatch(__l.begin(), __l.end(), __false_type()); }
558#endif
559
560      /**
561       *  @brief  Builds a %list from a range.
562       *  @param  first  An input iterator.
563       *  @param  last  An input iterator.
564       *  @param  a  An allocator object.
565       *
566       *  Create a %list consisting of copies of the elements from
567       *  [@a first,@a last).  This is linear in N (where N is
568       *  distance(@a first,@a last)).
569       */
570      template<typename _InputIterator>
571        list(_InputIterator __first, _InputIterator __last,
572	     const allocator_type& __a = allocator_type())
573        : _Base(__a)
574        {
575	  // Check whether it's an integral type.  If so, it's not an iterator.
576	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
577	  _M_initialize_dispatch(__first, __last, _Integral());
578	}
579
580      /**
581       *  No explicit dtor needed as the _Base dtor takes care of
582       *  things.  The _Base dtor only erases the elements, and note
583       *  that if the elements themselves are pointers, the pointed-to
584       *  memory is not touched in any way.  Managing the pointer is
585       *  the user's responsibility.
586       */
587
588      /**
589       *  @brief  %List assignment operator.
590       *  @param  x  A %list of identical element and allocator types.
591       *
592       *  All the elements of @a x are copied, but unlike the copy
593       *  constructor, the allocator object is not copied.
594       */
595      list&
596      operator=(const list& __x);
597
598#ifdef __GXX_EXPERIMENTAL_CXX0X__
599      /**
600       *  @brief  %List move assignment operator.
601       *  @param  x  A %list of identical element and allocator types.
602       *
603       *  The contents of @a x are moved into this %list (without copying).
604       *  @a x is a valid, but unspecified %list
605       */
606      list&
607      operator=(list&& __x)
608      {
609	// NB: DR 1204.
610	// NB: DR 675.
611	this->clear();
612	this->swap(__x);
613	return *this;
614      }
615
616      /**
617       *  @brief  %List initializer list assignment operator.
618       *  @param  l  An initializer_list of value_type.
619       *
620       *  Replace the contents of the %list with copies of the elements
621       *  in the initializer_list @a l.  This is linear in l.size().
622       */
623      list&
624      operator=(initializer_list<value_type> __l)
625      {
626	this->assign(__l.begin(), __l.end());
627	return *this;
628      }
629#endif
630
631      /**
632       *  @brief  Assigns a given value to a %list.
633       *  @param  n  Number of elements to be assigned.
634       *  @param  val  Value to be assigned.
635       *
636       *  This function fills a %list with @a n copies of the given
637       *  value.  Note that the assignment completely changes the %list
638       *  and that the resulting %list's size is the same as the number
639       *  of elements assigned.  Old data may be lost.
640       */
641      void
642      assign(size_type __n, const value_type& __val)
643      { _M_fill_assign(__n, __val); }
644
645      /**
646       *  @brief  Assigns a range to a %list.
647       *  @param  first  An input iterator.
648       *  @param  last   An input iterator.
649       *
650       *  This function fills a %list with copies of the elements in the
651       *  range [@a first,@a last).
652       *
653       *  Note that the assignment completely changes the %list and
654       *  that the resulting %list's size is the same as the number of
655       *  elements assigned.  Old data may be lost.
656       */
657      template<typename _InputIterator>
658        void
659        assign(_InputIterator __first, _InputIterator __last)
660        {
661	  // Check whether it's an integral type.  If so, it's not an iterator.
662	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
663	  _M_assign_dispatch(__first, __last, _Integral());
664	}
665
666#ifdef __GXX_EXPERIMENTAL_CXX0X__
667      /**
668       *  @brief  Assigns an initializer_list to a %list.
669       *  @param  l  An initializer_list of value_type.
670       *
671       *  Replace the contents of the %list with copies of the elements
672       *  in the initializer_list @a l.  This is linear in l.size().
673       */
674      void
675      assign(initializer_list<value_type> __l)
676      { this->assign(__l.begin(), __l.end()); }
677#endif
678
679      /// Get a copy of the memory allocation object.
680      allocator_type
681      get_allocator() const
682      { return _Base::get_allocator(); }
683
684      // iterators
685      /**
686       *  Returns a read/write iterator that points to the first element in the
687       *  %list.  Iteration is done in ordinary element order.
688       */
689      iterator
690      begin()
691      { return iterator(this->_M_impl._M_node._M_next); }
692
693      /**
694       *  Returns a read-only (constant) iterator that points to the
695       *  first element in the %list.  Iteration is done in ordinary
696       *  element order.
697       */
698      const_iterator
699      begin() const
700      { return const_iterator(this->_M_impl._M_node._M_next); }
701
702      /**
703       *  Returns a read/write iterator that points one past the last
704       *  element in the %list.  Iteration is done in ordinary element
705       *  order.
706       */
707      iterator
708      end()
709      { return iterator(&this->_M_impl._M_node); }
710
711      /**
712       *  Returns a read-only (constant) iterator that points one past
713       *  the last element in the %list.  Iteration is done in ordinary
714       *  element order.
715       */
716      const_iterator
717      end() const
718      { return const_iterator(&this->_M_impl._M_node); }
719
720      /**
721       *  Returns a read/write reverse iterator that points to the last
722       *  element in the %list.  Iteration is done in reverse element
723       *  order.
724       */
725      reverse_iterator
726      rbegin()
727      { return reverse_iterator(end()); }
728
729      /**
730       *  Returns a read-only (constant) reverse iterator that points to
731       *  the last element in the %list.  Iteration is done in reverse
732       *  element order.
733       */
734      const_reverse_iterator
735      rbegin() const
736      { return const_reverse_iterator(end()); }
737
738      /**
739       *  Returns a read/write reverse iterator that points to one
740       *  before the first element in the %list.  Iteration is done in
741       *  reverse element order.
742       */
743      reverse_iterator
744      rend()
745      { return reverse_iterator(begin()); }
746
747      /**
748       *  Returns a read-only (constant) reverse iterator that points to one
749       *  before the first element in the %list.  Iteration is done in reverse
750       *  element order.
751       */
752      const_reverse_iterator
753      rend() const
754      { return const_reverse_iterator(begin()); }
755
756#ifdef __GXX_EXPERIMENTAL_CXX0X__
757      /**
758       *  Returns a read-only (constant) iterator that points to the
759       *  first element in the %list.  Iteration is done in ordinary
760       *  element order.
761       */
762      const_iterator
763      cbegin() const
764      { return const_iterator(this->_M_impl._M_node._M_next); }
765
766      /**
767       *  Returns a read-only (constant) iterator that points one past
768       *  the last element in the %list.  Iteration is done in ordinary
769       *  element order.
770       */
771      const_iterator
772      cend() const
773      { return const_iterator(&this->_M_impl._M_node); }
774
775      /**
776       *  Returns a read-only (constant) reverse iterator that points to
777       *  the last element in the %list.  Iteration is done in reverse
778       *  element order.
779       */
780      const_reverse_iterator
781      crbegin() const
782      { return const_reverse_iterator(end()); }
783
784      /**
785       *  Returns a read-only (constant) reverse iterator that points to one
786       *  before the first element in the %list.  Iteration is done in reverse
787       *  element order.
788       */
789      const_reverse_iterator
790      crend() const
791      { return const_reverse_iterator(begin()); }
792#endif
793
794      // [23.2.2.2] capacity
795      /**
796       *  Returns true if the %list is empty.  (Thus begin() would equal
797       *  end().)
798       */
799      bool
800      empty() const
801      { return this->_M_impl._M_node._M_next == &this->_M_impl._M_node; }
802
803      /**  Returns the number of elements in the %list.  */
804      size_type
805      size() const
806      { return std::distance(begin(), end()); }
807
808      /**  Returns the size() of the largest possible %list.  */
809      size_type
810      max_size() const
811      { return _M_get_Node_allocator().max_size(); }
812
813      /**
814       *  @brief Resizes the %list to the specified number of elements.
815       *  @param new_size Number of elements the %list should contain.
816       *  @param x Data with which new elements should be populated.
817       *
818       *  This function will %resize the %list to the specified number
819       *  of elements.  If the number is smaller than the %list's
820       *  current size the %list is truncated, otherwise the %list is
821       *  extended and new elements are populated with given data.
822       */
823      void
824      resize(size_type __new_size, value_type __x = value_type());
825
826      // element access
827      /**
828       *  Returns a read/write reference to the data at the first
829       *  element of the %list.
830       */
831      reference
832      front()
833      { return *begin(); }
834
835      /**
836       *  Returns a read-only (constant) reference to the data at the first
837       *  element of the %list.
838       */
839      const_reference
840      front() const
841      { return *begin(); }
842
843      /**
844       *  Returns a read/write reference to the data at the last element
845       *  of the %list.
846       */
847      reference
848      back()
849      {
850	iterator __tmp = end();
851	--__tmp;
852	return *__tmp;
853      }
854
855      /**
856       *  Returns a read-only (constant) reference to the data at the last
857       *  element of the %list.
858       */
859      const_reference
860      back() const
861      {
862	const_iterator __tmp = end();
863	--__tmp;
864	return *__tmp;
865      }
866
867      // [23.2.2.3] modifiers
868      /**
869       *  @brief  Add data to the front of the %list.
870       *  @param  x  Data to be added.
871       *
872       *  This is a typical stack operation.  The function creates an
873       *  element at the front of the %list and assigns the given data
874       *  to it.  Due to the nature of a %list this operation can be
875       *  done in constant time, and does not invalidate iterators and
876       *  references.
877       */
878      void
879      push_front(const value_type& __x)
880      { this->_M_insert(begin(), __x); }
881
882#ifdef __GXX_EXPERIMENTAL_CXX0X__
883      void
884      push_front(value_type&& __x)
885      { this->_M_insert(begin(), std::move(__x)); }
886
887      template<typename... _Args>
888        void
889        emplace_front(_Args&&... __args)
890        { this->_M_insert(begin(), std::forward<_Args>(__args)...); }
891#endif
892
893      /**
894       *  @brief  Removes first element.
895       *
896       *  This is a typical stack operation.  It shrinks the %list by
897       *  one.  Due to the nature of a %list this operation can be done
898       *  in constant time, and only invalidates iterators/references to
899       *  the element being removed.
900       *
901       *  Note that no data is returned, and if the first element's data
902       *  is needed, it should be retrieved before pop_front() is
903       *  called.
904       */
905      void
906      pop_front()
907      { this->_M_erase(begin()); }
908
909      /**
910       *  @brief  Add data to the end of the %list.
911       *  @param  x  Data to be added.
912       *
913       *  This is a typical stack operation.  The function creates an
914       *  element at the end of the %list and assigns the given data to
915       *  it.  Due to the nature of a %list this operation can be done
916       *  in constant time, and does not invalidate iterators and
917       *  references.
918       */
919      void
920      push_back(const value_type& __x)
921      { this->_M_insert(end(), __x); }
922
923#ifdef __GXX_EXPERIMENTAL_CXX0X__
924      void
925      push_back(value_type&& __x)
926      { this->_M_insert(end(), std::move(__x)); }
927
928      template<typename... _Args>
929        void
930        emplace_back(_Args&&... __args)
931        { this->_M_insert(end(), std::forward<_Args>(__args)...); }
932#endif
933
934      /**
935       *  @brief  Removes last element.
936       *
937       *  This is a typical stack operation.  It shrinks the %list by
938       *  one.  Due to the nature of a %list this operation can be done
939       *  in constant time, and only invalidates iterators/references to
940       *  the element being removed.
941       *
942       *  Note that no data is returned, and if the last element's data
943       *  is needed, it should be retrieved before pop_back() is called.
944       */
945      void
946      pop_back()
947      { this->_M_erase(iterator(this->_M_impl._M_node._M_prev)); }
948
949#ifdef __GXX_EXPERIMENTAL_CXX0X__
950      /**
951       *  @brief  Constructs object in %list before specified iterator.
952       *  @param  position  A const_iterator into the %list.
953       *  @param  args  Arguments.
954       *  @return  An iterator that points to the inserted data.
955       *
956       *  This function will insert an object of type T constructed
957       *  with T(std::forward<Args>(args)...) before the specified
958       *  location.  Due to the nature of a %list this operation can
959       *  be done in constant time, and does not invalidate iterators
960       *  and references.
961       */
962      template<typename... _Args>
963        iterator
964        emplace(iterator __position, _Args&&... __args);
965#endif
966
967      /**
968       *  @brief  Inserts given value into %list before specified iterator.
969       *  @param  position  An iterator into the %list.
970       *  @param  x  Data to be inserted.
971       *  @return  An iterator that points to the inserted data.
972       *
973       *  This function will insert a copy of the given value before
974       *  the specified location.  Due to the nature of a %list this
975       *  operation can be done in constant time, and does not
976       *  invalidate iterators and references.
977       */
978      iterator
979      insert(iterator __position, const value_type& __x);
980
981#ifdef __GXX_EXPERIMENTAL_CXX0X__
982      /**
983       *  @brief  Inserts given rvalue into %list before specified iterator.
984       *  @param  position  An iterator into the %list.
985       *  @param  x  Data to be inserted.
986       *  @return  An iterator that points to the inserted data.
987       *
988       *  This function will insert a copy of the given rvalue before
989       *  the specified location.  Due to the nature of a %list this
990       *  operation can be done in constant time, and does not
991       *  invalidate iterators and references.
992        */
993      iterator
994      insert(iterator __position, value_type&& __x)
995      { return emplace(__position, std::move(__x)); }
996
997      /**
998       *  @brief  Inserts the contents of an initializer_list into %list
999       *          before specified iterator.
1000       *  @param  p  An iterator into the %list.
1001       *  @param  l  An initializer_list of value_type.
1002       *
1003       *  This function will insert copies of the data in the
1004       *  initializer_list @a l into the %list before the location
1005       *  specified by @a p.
1006       *
1007       *  This operation is linear in the number of elements inserted and
1008       *  does not invalidate iterators and references.
1009       */
1010      void
1011      insert(iterator __p, initializer_list<value_type> __l)
1012      { this->insert(__p, __l.begin(), __l.end()); }
1013#endif
1014
1015      /**
1016       *  @brief  Inserts a number of copies of given data into the %list.
1017       *  @param  position  An iterator into the %list.
1018       *  @param  n  Number of elements to be inserted.
1019       *  @param  x  Data to be inserted.
1020       *
1021       *  This function will insert a specified number of copies of the
1022       *  given data before the location specified by @a position.
1023       *
1024       *  This operation is linear in the number of elements inserted and
1025       *  does not invalidate iterators and references.
1026       */
1027      void
1028      insert(iterator __position, size_type __n, const value_type& __x)
1029      {
1030	list __tmp(__n, __x, _M_get_Node_allocator());
1031	splice(__position, __tmp);
1032      }
1033
1034      /**
1035       *  @brief  Inserts a range into the %list.
1036       *  @param  position  An iterator into the %list.
1037       *  @param  first  An input iterator.
1038       *  @param  last   An input iterator.
1039       *
1040       *  This function will insert copies of the data in the range [@a
1041       *  first,@a last) into the %list before the location specified by
1042       *  @a position.
1043       *
1044       *  This operation is linear in the number of elements inserted and
1045       *  does not invalidate iterators and references.
1046       */
1047      template<typename _InputIterator>
1048        void
1049        insert(iterator __position, _InputIterator __first,
1050	       _InputIterator __last)
1051        {
1052	  list __tmp(__first, __last, _M_get_Node_allocator());
1053	  splice(__position, __tmp);
1054	}
1055
1056      /**
1057       *  @brief  Remove element at given position.
1058       *  @param  position  Iterator pointing to element to be erased.
1059       *  @return  An iterator pointing to the next element (or end()).
1060       *
1061       *  This function will erase the element at the given position and thus
1062       *  shorten the %list by one.
1063       *
1064       *  Due to the nature of a %list this operation can be done in
1065       *  constant time, and only invalidates iterators/references to
1066       *  the element being removed.  The user is also cautioned that
1067       *  this function only erases the element, and that if the element
1068       *  is itself a pointer, the pointed-to memory is not touched in
1069       *  any way.  Managing the pointer is the user's responsibility.
1070       */
1071      iterator
1072      erase(iterator __position);
1073
1074      /**
1075       *  @brief  Remove a range of elements.
1076       *  @param  first  Iterator pointing to the first element to be erased.
1077       *  @param  last  Iterator pointing to one past the last element to be
1078       *                erased.
1079       *  @return  An iterator pointing to the element pointed to by @a last
1080       *           prior to erasing (or end()).
1081       *
1082       *  This function will erase the elements in the range @a
1083       *  [first,last) and shorten the %list accordingly.
1084       *
1085       *  This operation is linear time in the size of the range and only
1086       *  invalidates iterators/references to the element being removed.
1087       *  The user is also cautioned that this function only erases the
1088       *  elements, and that if the elements themselves are pointers, the
1089       *  pointed-to memory is not touched in any way.  Managing the pointer
1090       *  is the user's responsibility.
1091       */
1092      iterator
1093      erase(iterator __first, iterator __last)
1094      {
1095	while (__first != __last)
1096	  __first = erase(__first);
1097	return __last;
1098      }
1099
1100      /**
1101       *  @brief  Swaps data with another %list.
1102       *  @param  x  A %list of the same element and allocator types.
1103       *
1104       *  This exchanges the elements between two lists in constant
1105       *  time.  Note that the global std::swap() function is
1106       *  specialized such that std::swap(l1,l2) will feed to this
1107       *  function.
1108       */
1109      void
1110      swap(list& __x)
1111      {
1112	_List_node_base::swap(this->_M_impl._M_node, __x._M_impl._M_node);
1113
1114	// _GLIBCXX_RESOLVE_LIB_DEFECTS
1115	// 431. Swapping containers with unequal allocators.
1116	std::__alloc_swap<typename _Base::_Node_alloc_type>::
1117	  _S_do_it(_M_get_Node_allocator(), __x._M_get_Node_allocator());
1118      }
1119
1120      /**
1121       *  Erases all the elements.  Note that this function only erases
1122       *  the elements, and that if the elements themselves are
1123       *  pointers, the pointed-to memory is not touched in any way.
1124       *  Managing the pointer is the user's responsibility.
1125       */
1126      void
1127      clear()
1128      {
1129        _Base::_M_clear();
1130        _Base::_M_init();
1131      }
1132
1133      // [23.2.2.4] list operations
1134      /**
1135       *  @brief  Insert contents of another %list.
1136       *  @param  position  Iterator referencing the element to insert before.
1137       *  @param  x  Source list.
1138       *
1139       *  The elements of @a x are inserted in constant time in front of
1140       *  the element referenced by @a position.  @a x becomes an empty
1141       *  list.
1142       *
1143       *  Requires this != @a x.
1144       */
1145      void
1146#ifdef __GXX_EXPERIMENTAL_CXX0X__
1147      splice(iterator __position, list&& __x)
1148#else
1149      splice(iterator __position, list& __x)
1150#endif
1151      {
1152	if (!__x.empty())
1153	  {
1154	    _M_check_equal_allocators(__x);
1155
1156	    this->_M_transfer(__position, __x.begin(), __x.end());
1157	  }
1158      }
1159
1160#ifdef __GXX_EXPERIMENTAL_CXX0X__
1161      void
1162      splice(iterator __position, list& __x)
1163      { splice(__position, std::move(__x)); }
1164#endif
1165
1166      /**
1167       *  @brief  Insert element from another %list.
1168       *  @param  position  Iterator referencing the element to insert before.
1169       *  @param  x  Source list.
1170       *  @param  i  Iterator referencing the element to move.
1171       *
1172       *  Removes the element in list @a x referenced by @a i and
1173       *  inserts it into the current list before @a position.
1174       */
1175      void
1176#ifdef __GXX_EXPERIMENTAL_CXX0X__
1177      splice(iterator __position, list&& __x, iterator __i)
1178#else
1179      splice(iterator __position, list& __x, iterator __i)
1180#endif
1181      {
1182	iterator __j = __i;
1183	++__j;
1184	if (__position == __i || __position == __j)
1185	  return;
1186
1187	if (this != &__x)
1188	  _M_check_equal_allocators(__x);
1189
1190	this->_M_transfer(__position, __i, __j);
1191      }
1192
1193#ifdef __GXX_EXPERIMENTAL_CXX0X__
1194      void
1195      splice(iterator __position, list& __x, iterator __i)
1196      { splice(__position, std::move(__x), __i); }
1197#endif
1198
1199      /**
1200       *  @brief  Insert range from another %list.
1201       *  @param  position  Iterator referencing the element to insert before.
1202       *  @param  x  Source list.
1203       *  @param  first  Iterator referencing the start of range in x.
1204       *  @param  last  Iterator referencing the end of range in x.
1205       *
1206       *  Removes elements in the range [first,last) and inserts them
1207       *  before @a position in constant time.
1208       *
1209       *  Undefined if @a position is in [first,last).
1210       */
1211      void
1212#ifdef __GXX_EXPERIMENTAL_CXX0X__
1213      splice(iterator __position, list&& __x, iterator __first,
1214	     iterator __last)
1215#else
1216      splice(iterator __position, list& __x, iterator __first,
1217	     iterator __last)
1218#endif
1219      {
1220	if (__first != __last)
1221	  {
1222	    if (this != &__x)
1223	      _M_check_equal_allocators(__x);
1224
1225	    this->_M_transfer(__position, __first, __last);
1226	  }
1227      }
1228
1229#ifdef __GXX_EXPERIMENTAL_CXX0X__
1230      void
1231      splice(iterator __position, list& __x, iterator __first, iterator __last)
1232      { splice(__position, std::move(__x), __first, __last); }
1233#endif
1234
1235      /**
1236       *  @brief  Remove all elements equal to value.
1237       *  @param  value  The value to remove.
1238       *
1239       *  Removes every element in the list equal to @a value.
1240       *  Remaining elements stay in list order.  Note that this
1241       *  function only erases the elements, and that if the elements
1242       *  themselves are pointers, the pointed-to memory is not
1243       *  touched in any way.  Managing the pointer is the user's
1244       *  responsibility.
1245       */
1246      void
1247      remove(const _Tp& __value);
1248
1249      /**
1250       *  @brief  Remove all elements satisfying a predicate.
1251       *  @param  Predicate  Unary predicate function or object.
1252       *
1253       *  Removes every element in the list for which the predicate
1254       *  returns true.  Remaining elements stay in list order.  Note
1255       *  that this function only erases the elements, and that if the
1256       *  elements themselves are pointers, the pointed-to memory is
1257       *  not touched in any way.  Managing the pointer is the user's
1258       *  responsibility.
1259       */
1260      template<typename _Predicate>
1261        void
1262        remove_if(_Predicate);
1263
1264      /**
1265       *  @brief  Remove consecutive duplicate elements.
1266       *
1267       *  For each consecutive set of elements with the same value,
1268       *  remove all but the first one.  Remaining elements stay in
1269       *  list order.  Note that this function only erases the
1270       *  elements, and that if the elements themselves are pointers,
1271       *  the pointed-to memory is not touched in any way.  Managing
1272       *  the pointer is the user's responsibility.
1273       */
1274      void
1275      unique();
1276
1277      /**
1278       *  @brief  Remove consecutive elements satisfying a predicate.
1279       *  @param  BinaryPredicate  Binary predicate function or object.
1280       *
1281       *  For each consecutive set of elements [first,last) that
1282       *  satisfy predicate(first,i) where i is an iterator in
1283       *  [first,last), remove all but the first one.  Remaining
1284       *  elements stay in list order.  Note that this function only
1285       *  erases the elements, and that if the elements themselves are
1286       *  pointers, the pointed-to memory is not touched in any way.
1287       *  Managing the pointer is the user's responsibility.
1288       */
1289      template<typename _BinaryPredicate>
1290        void
1291        unique(_BinaryPredicate);
1292
1293      /**
1294       *  @brief  Merge sorted lists.
1295       *  @param  x  Sorted list to merge.
1296       *
1297       *  Assumes that both @a x and this list are sorted according to
1298       *  operator<().  Merges elements of @a x into this list in
1299       *  sorted order, leaving @a x empty when complete.  Elements in
1300       *  this list precede elements in @a x that are equal.
1301       */
1302#ifdef __GXX_EXPERIMENTAL_CXX0X__
1303      void
1304      merge(list&& __x);
1305
1306      void
1307      merge(list& __x)
1308      { merge(std::move(__x)); }
1309#else
1310      void
1311      merge(list& __x);
1312#endif
1313
1314      /**
1315       *  @brief  Merge sorted lists according to comparison function.
1316       *  @param  x  Sorted list to merge.
1317       *  @param StrictWeakOrdering Comparison function defining
1318       *  sort order.
1319       *
1320       *  Assumes that both @a x and this list are sorted according to
1321       *  StrictWeakOrdering.  Merges elements of @a x into this list
1322       *  in sorted order, leaving @a x empty when complete.  Elements
1323       *  in this list precede elements in @a x that are equivalent
1324       *  according to StrictWeakOrdering().
1325       */
1326#ifdef __GXX_EXPERIMENTAL_CXX0X__
1327      template<typename _StrictWeakOrdering>
1328        void
1329        merge(list&&, _StrictWeakOrdering);
1330
1331      template<typename _StrictWeakOrdering>
1332        void
1333        merge(list& __x, _StrictWeakOrdering __comp)
1334        { merge(std::move(__x), __comp); }
1335#else
1336      template<typename _StrictWeakOrdering>
1337        void
1338        merge(list&, _StrictWeakOrdering);
1339#endif
1340
1341      /**
1342       *  @brief  Reverse the elements in list.
1343       *
1344       *  Reverse the order of elements in the list in linear time.
1345       */
1346      void
1347      reverse()
1348      { this->_M_impl._M_node._M_reverse(); }
1349
1350      /**
1351       *  @brief  Sort the elements.
1352       *
1353       *  Sorts the elements of this list in NlogN time.  Equivalent
1354       *  elements remain in list order.
1355       */
1356      void
1357      sort();
1358
1359      /**
1360       *  @brief  Sort the elements according to comparison function.
1361       *
1362       *  Sorts the elements of this list in NlogN time.  Equivalent
1363       *  elements remain in list order.
1364       */
1365      template<typename _StrictWeakOrdering>
1366        void
1367        sort(_StrictWeakOrdering);
1368
1369    protected:
1370      // Internal constructor functions follow.
1371
1372      // Called by the range constructor to implement [23.1.1]/9
1373
1374      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1375      // 438. Ambiguity in the "do the right thing" clause
1376      template<typename _Integer>
1377        void
1378        _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
1379        { _M_fill_initialize(static_cast<size_type>(__n), __x); }
1380
1381      // Called by the range constructor to implement [23.1.1]/9
1382      template<typename _InputIterator>
1383        void
1384        _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1385			       __false_type)
1386        {
1387	  for (; __first != __last; ++__first)
1388	    push_back(*__first);
1389	}
1390
1391      // Called by list(n,v,a), and the range constructor when it turns out
1392      // to be the same thing.
1393      void
1394      _M_fill_initialize(size_type __n, const value_type& __x)
1395      {
1396	for (; __n > 0; --__n)
1397	  push_back(__x);
1398      }
1399
1400
1401      // Internal assign functions follow.
1402
1403      // Called by the range assign to implement [23.1.1]/9
1404
1405      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1406      // 438. Ambiguity in the "do the right thing" clause
1407      template<typename _Integer>
1408        void
1409        _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1410        { _M_fill_assign(__n, __val); }
1411
1412      // Called by the range assign to implement [23.1.1]/9
1413      template<typename _InputIterator>
1414        void
1415        _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1416			   __false_type);
1417
1418      // Called by assign(n,t), and the range assign when it turns out
1419      // to be the same thing.
1420      void
1421      _M_fill_assign(size_type __n, const value_type& __val);
1422
1423
1424      // Moves the elements from [first,last) before position.
1425      void
1426      _M_transfer(iterator __position, iterator __first, iterator __last)
1427      { __position._M_node->_M_transfer(__first._M_node, __last._M_node); }
1428
1429      // Inserts new element at position given and with value given.
1430#ifndef __GXX_EXPERIMENTAL_CXX0X__
1431      void
1432      _M_insert(iterator __position, const value_type& __x)
1433      {
1434        _Node* __tmp = _M_create_node(__x);
1435        __tmp->_M_hook(__position._M_node);
1436      }
1437#else
1438     template<typename... _Args>
1439       void
1440       _M_insert(iterator __position, _Args&&... __args)
1441       {
1442	 _Node* __tmp = _M_create_node(std::forward<_Args>(__args)...);
1443	 __tmp->_M_hook(__position._M_node);
1444       }
1445#endif
1446
1447      // Erases element at position given.
1448      void
1449      _M_erase(iterator __position)
1450      {
1451        __position._M_node->_M_unhook();
1452        _Node* __n = static_cast<_Node*>(__position._M_node);
1453#ifdef __GXX_EXPERIMENTAL_CXX0X__
1454        _M_get_Node_allocator().destroy(__n);
1455#else
1456	_M_get_Tp_allocator().destroy(&__n->_M_data);
1457#endif
1458        _M_put_node(__n);
1459      }
1460
1461      // To implement the splice (and merge) bits of N1599.
1462      void
1463      _M_check_equal_allocators(list& __x)
1464      {
1465	if (std::__alloc_neq<typename _Base::_Node_alloc_type>::
1466	    _S_do_it(_M_get_Node_allocator(), __x._M_get_Node_allocator()))
1467	  __throw_runtime_error(__N("list::_M_check_equal_allocators"));
1468      }
1469    };
1470
1471  /**
1472   *  @brief  List equality comparison.
1473   *  @param  x  A %list.
1474   *  @param  y  A %list of the same type as @a x.
1475   *  @return  True iff the size and elements of the lists are equal.
1476   *
1477   *  This is an equivalence relation.  It is linear in the size of
1478   *  the lists.  Lists are considered equivalent if their sizes are
1479   *  equal, and if corresponding elements compare equal.
1480  */
1481  template<typename _Tp, typename _Alloc>
1482    inline bool
1483    operator==(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1484    {
1485      typedef typename list<_Tp, _Alloc>::const_iterator const_iterator;
1486      const_iterator __end1 = __x.end();
1487      const_iterator __end2 = __y.end();
1488
1489      const_iterator __i1 = __x.begin();
1490      const_iterator __i2 = __y.begin();
1491      while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2)
1492	{
1493	  ++__i1;
1494	  ++__i2;
1495	}
1496      return __i1 == __end1 && __i2 == __end2;
1497    }
1498
1499  /**
1500   *  @brief  List ordering relation.
1501   *  @param  x  A %list.
1502   *  @param  y  A %list of the same type as @a x.
1503   *  @return  True iff @a x is lexicographically less than @a y.
1504   *
1505   *  This is a total ordering relation.  It is linear in the size of the
1506   *  lists.  The elements must be comparable with @c <.
1507   *
1508   *  See std::lexicographical_compare() for how the determination is made.
1509  */
1510  template<typename _Tp, typename _Alloc>
1511    inline bool
1512    operator<(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1513    { return std::lexicographical_compare(__x.begin(), __x.end(),
1514					  __y.begin(), __y.end()); }
1515
1516  /// Based on operator==
1517  template<typename _Tp, typename _Alloc>
1518    inline bool
1519    operator!=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1520    { return !(__x == __y); }
1521
1522  /// Based on operator<
1523  template<typename _Tp, typename _Alloc>
1524    inline bool
1525    operator>(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1526    { return __y < __x; }
1527
1528  /// Based on operator<
1529  template<typename _Tp, typename _Alloc>
1530    inline bool
1531    operator<=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1532    { return !(__y < __x); }
1533
1534  /// Based on operator<
1535  template<typename _Tp, typename _Alloc>
1536    inline bool
1537    operator>=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1538    { return !(__x < __y); }
1539
1540  /// See std::list::swap().
1541  template<typename _Tp, typename _Alloc>
1542    inline void
1543    swap(list<_Tp, _Alloc>& __x, list<_Tp, _Alloc>& __y)
1544    { __x.swap(__y); }
1545
1546_GLIBCXX_END_NESTED_NAMESPACE
1547
1548#endif /* _STL_LIST_H */
1549