• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/toolchains/hndtools-arm-linux-2.6.36-uclibc-4.5.3/arm-brcm-linux-uclibcgnueabi/include/c++/4.5.3/tr1/
1// Internal policy header for TR1 unordered_set and unordered_map -*- C++ -*-
2
3// Copyright (C) 2010 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23// <http://www.gnu.org/licenses/>.
24
25/** @file tr1/hashtable_policy.h
26 *  This is an internal header file, included by other library headers.
27 *  You should not attempt to use it directly.
28 */
29
30namespace std
31{
32namespace tr1
33{
34namespace __detail
35{
36  // Helper function: return distance(first, last) for forward
37  // iterators, or 0 for input iterators.
38  template<class _Iterator>
39    inline typename std::iterator_traits<_Iterator>::difference_type
40    __distance_fw(_Iterator __first, _Iterator __last,
41		  std::input_iterator_tag)
42    { return 0; }
43
44  template<class _Iterator>
45    inline typename std::iterator_traits<_Iterator>::difference_type
46    __distance_fw(_Iterator __first, _Iterator __last,
47		  std::forward_iterator_tag)
48    { return std::distance(__first, __last); }
49
50  template<class _Iterator>
51    inline typename std::iterator_traits<_Iterator>::difference_type
52    __distance_fw(_Iterator __first, _Iterator __last)
53    {
54      typedef typename std::iterator_traits<_Iterator>::iterator_category _Tag;
55      return __distance_fw(__first, __last, _Tag());
56    }
57
58  // Auxiliary types used for all instantiations of _Hashtable: nodes
59  // and iterators.
60
61  // Nodes, used to wrap elements stored in the hash table.  A policy
62  // template parameter of class template _Hashtable controls whether
63  // nodes also store a hash code. In some cases (e.g. strings) this
64  // may be a performance win.
65  template<typename _Value, bool __cache_hash_code>
66    struct _Hash_node;
67
68  template<typename _Value>
69    struct _Hash_node<_Value, true>
70    {
71      _Value       _M_v;
72      std::size_t  _M_hash_code;
73      _Hash_node*  _M_next;
74    };
75
76  template<typename _Value>
77    struct _Hash_node<_Value, false>
78    {
79      _Value       _M_v;
80      _Hash_node*  _M_next;
81    };
82
83  // Local iterators, used to iterate within a bucket but not between
84  // buckets.
85  template<typename _Value, bool __cache>
86    struct _Node_iterator_base
87    {
88      _Node_iterator_base(_Hash_node<_Value, __cache>* __p)
89      : _M_cur(__p) { }
90
91      void
92      _M_incr()
93      { _M_cur = _M_cur->_M_next; }
94
95      _Hash_node<_Value, __cache>*  _M_cur;
96    };
97
98  template<typename _Value, bool __cache>
99    inline bool
100    operator==(const _Node_iterator_base<_Value, __cache>& __x,
101	       const _Node_iterator_base<_Value, __cache>& __y)
102    { return __x._M_cur == __y._M_cur; }
103
104  template<typename _Value, bool __cache>
105    inline bool
106    operator!=(const _Node_iterator_base<_Value, __cache>& __x,
107	       const _Node_iterator_base<_Value, __cache>& __y)
108    { return __x._M_cur != __y._M_cur; }
109
110  template<typename _Value, bool __constant_iterators, bool __cache>
111    struct _Node_iterator
112    : public _Node_iterator_base<_Value, __cache>
113    {
114      typedef _Value                                   value_type;
115      typedef typename
116      __gnu_cxx::__conditional_type<__constant_iterators,
117				    const _Value*, _Value*>::__type
118                                                       pointer;
119      typedef typename
120      __gnu_cxx::__conditional_type<__constant_iterators,
121				    const _Value&, _Value&>::__type
122                                                       reference;
123      typedef std::ptrdiff_t                           difference_type;
124      typedef std::forward_iterator_tag                iterator_category;
125
126      _Node_iterator()
127      : _Node_iterator_base<_Value, __cache>(0) { }
128
129      explicit
130      _Node_iterator(_Hash_node<_Value, __cache>* __p)
131      : _Node_iterator_base<_Value, __cache>(__p) { }
132
133      reference
134      operator*() const
135      { return this->_M_cur->_M_v; }
136
137      pointer
138      operator->() const
139      { return &this->_M_cur->_M_v; }
140
141      _Node_iterator&
142      operator++()
143      {
144	this->_M_incr();
145	return *this;
146      }
147
148      _Node_iterator
149      operator++(int)
150      {
151	_Node_iterator __tmp(*this);
152	this->_M_incr();
153	return __tmp;
154      }
155    };
156
157  template<typename _Value, bool __constant_iterators, bool __cache>
158    struct _Node_const_iterator
159    : public _Node_iterator_base<_Value, __cache>
160    {
161      typedef _Value                                   value_type;
162      typedef const _Value*                            pointer;
163      typedef const _Value&                            reference;
164      typedef std::ptrdiff_t                           difference_type;
165      typedef std::forward_iterator_tag                iterator_category;
166
167      _Node_const_iterator()
168      : _Node_iterator_base<_Value, __cache>(0) { }
169
170      explicit
171      _Node_const_iterator(_Hash_node<_Value, __cache>* __p)
172      : _Node_iterator_base<_Value, __cache>(__p) { }
173
174      _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
175			   __cache>& __x)
176      : _Node_iterator_base<_Value, __cache>(__x._M_cur) { }
177
178      reference
179      operator*() const
180      { return this->_M_cur->_M_v; }
181
182      pointer
183      operator->() const
184      { return &this->_M_cur->_M_v; }
185
186      _Node_const_iterator&
187      operator++()
188      {
189	this->_M_incr();
190	return *this;
191      }
192
193      _Node_const_iterator
194      operator++(int)
195      {
196	_Node_const_iterator __tmp(*this);
197	this->_M_incr();
198	return __tmp;
199      }
200    };
201
202  template<typename _Value, bool __cache>
203    struct _Hashtable_iterator_base
204    {
205      _Hashtable_iterator_base(_Hash_node<_Value, __cache>* __node,
206			       _Hash_node<_Value, __cache>** __bucket)
207      : _M_cur_node(__node), _M_cur_bucket(__bucket) { }
208
209      void
210      _M_incr()
211      {
212	_M_cur_node = _M_cur_node->_M_next;
213	if (!_M_cur_node)
214	  _M_incr_bucket();
215      }
216
217      void
218      _M_incr_bucket();
219
220      _Hash_node<_Value, __cache>*   _M_cur_node;
221      _Hash_node<_Value, __cache>**  _M_cur_bucket;
222    };
223
224  // Global iterators, used for arbitrary iteration within a hash
225  // table.  Larger and more expensive than local iterators.
226  template<typename _Value, bool __cache>
227    void
228    _Hashtable_iterator_base<_Value, __cache>::
229    _M_incr_bucket()
230    {
231      ++_M_cur_bucket;
232
233      // This loop requires the bucket array to have a non-null sentinel.
234      while (!*_M_cur_bucket)
235	++_M_cur_bucket;
236      _M_cur_node = *_M_cur_bucket;
237    }
238
239  template<typename _Value, bool __cache>
240    inline bool
241    operator==(const _Hashtable_iterator_base<_Value, __cache>& __x,
242	       const _Hashtable_iterator_base<_Value, __cache>& __y)
243    { return __x._M_cur_node == __y._M_cur_node; }
244
245  template<typename _Value, bool __cache>
246    inline bool
247    operator!=(const _Hashtable_iterator_base<_Value, __cache>& __x,
248	       const _Hashtable_iterator_base<_Value, __cache>& __y)
249    { return __x._M_cur_node != __y._M_cur_node; }
250
251  template<typename _Value, bool __constant_iterators, bool __cache>
252    struct _Hashtable_iterator
253    : public _Hashtable_iterator_base<_Value, __cache>
254    {
255      typedef _Value                                   value_type;
256      typedef typename
257      __gnu_cxx::__conditional_type<__constant_iterators,
258				    const _Value*, _Value*>::__type
259                                                       pointer;
260      typedef typename
261      __gnu_cxx::__conditional_type<__constant_iterators,
262				    const _Value&, _Value&>::__type
263                                                       reference;
264      typedef std::ptrdiff_t                           difference_type;
265      typedef std::forward_iterator_tag                iterator_category;
266
267      _Hashtable_iterator()
268      : _Hashtable_iterator_base<_Value, __cache>(0, 0) { }
269
270      _Hashtable_iterator(_Hash_node<_Value, __cache>* __p,
271			  _Hash_node<_Value, __cache>** __b)
272      : _Hashtable_iterator_base<_Value, __cache>(__p, __b) { }
273
274      explicit
275      _Hashtable_iterator(_Hash_node<_Value, __cache>** __b)
276      : _Hashtable_iterator_base<_Value, __cache>(*__b, __b) { }
277
278      reference
279      operator*() const
280      { return this->_M_cur_node->_M_v; }
281
282      pointer
283      operator->() const
284      { return &this->_M_cur_node->_M_v; }
285
286      _Hashtable_iterator&
287      operator++()
288      {
289	this->_M_incr();
290	return *this;
291      }
292
293      _Hashtable_iterator
294      operator++(int)
295      {
296	_Hashtable_iterator __tmp(*this);
297	this->_M_incr();
298	return __tmp;
299      }
300    };
301
302  template<typename _Value, bool __constant_iterators, bool __cache>
303    struct _Hashtable_const_iterator
304    : public _Hashtable_iterator_base<_Value, __cache>
305    {
306      typedef _Value                                   value_type;
307      typedef const _Value*                            pointer;
308      typedef const _Value&                            reference;
309      typedef std::ptrdiff_t                           difference_type;
310      typedef std::forward_iterator_tag                iterator_category;
311
312      _Hashtable_const_iterator()
313      : _Hashtable_iterator_base<_Value, __cache>(0, 0) { }
314
315      _Hashtable_const_iterator(_Hash_node<_Value, __cache>* __p,
316				_Hash_node<_Value, __cache>** __b)
317      : _Hashtable_iterator_base<_Value, __cache>(__p, __b) { }
318
319      explicit
320      _Hashtable_const_iterator(_Hash_node<_Value, __cache>** __b)
321      : _Hashtable_iterator_base<_Value, __cache>(*__b, __b) { }
322
323      _Hashtable_const_iterator(const _Hashtable_iterator<_Value,
324				__constant_iterators, __cache>& __x)
325      : _Hashtable_iterator_base<_Value, __cache>(__x._M_cur_node,
326						  __x._M_cur_bucket) { }
327
328      reference
329      operator*() const
330      { return this->_M_cur_node->_M_v; }
331
332      pointer
333      operator->() const
334      { return &this->_M_cur_node->_M_v; }
335
336      _Hashtable_const_iterator&
337      operator++()
338      {
339	this->_M_incr();
340	return *this;
341      }
342
343      _Hashtable_const_iterator
344      operator++(int)
345      {
346	_Hashtable_const_iterator __tmp(*this);
347	this->_M_incr();
348	return __tmp;
349      }
350    };
351
352
353  // Many of class template _Hashtable's template parameters are policy
354  // classes.  These are defaults for the policies.
355
356  // Default range hashing function: use division to fold a large number
357  // into the range [0, N).
358  struct _Mod_range_hashing
359  {
360    typedef std::size_t first_argument_type;
361    typedef std::size_t second_argument_type;
362    typedef std::size_t result_type;
363
364    result_type
365    operator()(first_argument_type __num, second_argument_type __den) const
366    { return __num % __den; }
367  };
368
369  // Default ranged hash function H.  In principle it should be a
370  // function object composed from objects of type H1 and H2 such that
371  // h(k, N) = h2(h1(k), N), but that would mean making extra copies of
372  // h1 and h2.  So instead we'll just use a tag to tell class template
373  // hashtable to do that composition.
374  struct _Default_ranged_hash { };
375
376  // Default value for rehash policy.  Bucket size is (usually) the
377  // smallest prime that keeps the load factor small enough.
378  struct _Prime_rehash_policy
379  {
380    _Prime_rehash_policy(float __z = 1.0)
381    : _M_max_load_factor(__z), _M_growth_factor(2.f), _M_next_resize(0) { }
382
383    float
384    max_load_factor() const
385    { return _M_max_load_factor; }
386
387    // Return a bucket size no smaller than n.
388    std::size_t
389    _M_next_bkt(std::size_t __n) const;
390
391    // Return a bucket count appropriate for n elements
392    std::size_t
393    _M_bkt_for_elements(std::size_t __n) const;
394
395    // __n_bkt is current bucket count, __n_elt is current element count,
396    // and __n_ins is number of elements to be inserted.  Do we need to
397    // increase bucket count?  If so, return make_pair(true, n), where n
398    // is the new bucket count.  If not, return make_pair(false, 0).
399    std::pair<bool, std::size_t>
400    _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
401		   std::size_t __n_ins) const;
402
403    enum { _S_n_primes = sizeof(unsigned long) != 8 ? 256 : 256 + 48 };
404
405    float                _M_max_load_factor;
406    float                _M_growth_factor;
407    mutable std::size_t  _M_next_resize;
408  };
409
410  extern const unsigned long __prime_list[];
411
412  // XXX This is a hack.  There's no good reason for any of
413  // _Prime_rehash_policy's member functions to be inline.
414
415  // Return a prime no smaller than n.
416  inline std::size_t
417  _Prime_rehash_policy::
418  _M_next_bkt(std::size_t __n) const
419  {
420    const unsigned long* __p = std::lower_bound(__prime_list, __prime_list
421						+ _S_n_primes, __n);
422    _M_next_resize =
423      static_cast<std::size_t>(__builtin_ceil(*__p * _M_max_load_factor));
424    return *__p;
425  }
426
427  // Return the smallest prime p such that alpha p >= n, where alpha
428  // is the load factor.
429  inline std::size_t
430  _Prime_rehash_policy::
431  _M_bkt_for_elements(std::size_t __n) const
432  {
433    const float __min_bkts = __n / _M_max_load_factor;
434    const unsigned long* __p = std::lower_bound(__prime_list, __prime_list
435						+ _S_n_primes, __min_bkts);
436    _M_next_resize =
437      static_cast<std::size_t>(__builtin_ceil(*__p * _M_max_load_factor));
438    return *__p;
439  }
440
441  // Finds the smallest prime p such that alpha p > __n_elt + __n_ins.
442  // If p > __n_bkt, return make_pair(true, p); otherwise return
443  // make_pair(false, 0).  In principle this isn't very different from
444  // _M_bkt_for_elements.
445
446  // The only tricky part is that we're caching the element count at
447  // which we need to rehash, so we don't have to do a floating-point
448  // multiply for every insertion.
449
450  inline std::pair<bool, std::size_t>
451  _Prime_rehash_policy::
452  _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
453		 std::size_t __n_ins) const
454  {
455    if (__n_elt + __n_ins > _M_next_resize)
456      {
457	float __min_bkts = ((float(__n_ins) + float(__n_elt))
458			    / _M_max_load_factor);
459	if (__min_bkts > __n_bkt)
460	  {
461	    __min_bkts = std::max(__min_bkts, _M_growth_factor * __n_bkt);
462	    const unsigned long* __p =
463	      std::lower_bound(__prime_list, __prime_list + _S_n_primes,
464			       __min_bkts);
465	    _M_next_resize = static_cast<std::size_t>
466	      (__builtin_ceil(*__p * _M_max_load_factor));
467	    return std::make_pair(true, *__p);
468	  }
469	else
470	  {
471	    _M_next_resize = static_cast<std::size_t>
472	      (__builtin_ceil(__n_bkt * _M_max_load_factor));
473	    return std::make_pair(false, 0);
474	  }
475      }
476    else
477      return std::make_pair(false, 0);
478  }
479
480  // Base classes for std::tr1::_Hashtable.  We define these base
481  // classes because in some cases we want to do different things
482  // depending on the value of a policy class.  In some cases the
483  // policy class affects which member functions and nested typedefs
484  // are defined; we handle that by specializing base class templates.
485  // Several of the base class templates need to access other members
486  // of class template _Hashtable, so we use the "curiously recurring
487  // template pattern" for them.
488
489  // class template _Map_base.  If the hashtable has a value type of the
490  // form pair<T1, T2> and a key extraction policy that returns the
491  // first part of the pair, the hashtable gets a mapped_type typedef.
492  // If it satisfies those criteria and also has unique keys, then it
493  // also gets an operator[].
494  template<typename _Key, typename _Value, typename _Ex, bool __unique,
495	   typename _Hashtable>
496    struct _Map_base { };
497
498  template<typename _Key, typename _Pair, typename _Hashtable>
499    struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, false, _Hashtable>
500    {
501      typedef typename _Pair::second_type mapped_type;
502    };
503
504  template<typename _Key, typename _Pair, typename _Hashtable>
505    struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>
506    {
507      typedef typename _Pair::second_type mapped_type;
508
509      mapped_type&
510      operator[](const _Key& __k);
511    };
512
513  template<typename _Key, typename _Pair, typename _Hashtable>
514    typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
515		       true, _Hashtable>::mapped_type&
516    _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
517    operator[](const _Key& __k)
518    {
519      _Hashtable* __h = static_cast<_Hashtable*>(this);
520      typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
521      std::size_t __n = __h->_M_bucket_index(__k, __code,
522					     __h->_M_bucket_count);
523
524      typename _Hashtable::_Node* __p =
525	__h->_M_find_node(__h->_M_buckets[__n], __k, __code);
526      if (!__p)
527	return __h->_M_insert_bucket(std::make_pair(__k, mapped_type()),
528				     __n, __code)->second;
529      return (__p->_M_v).second;
530    }
531
532  // class template _Rehash_base.  Give hashtable the max_load_factor
533  // functions iff the rehash policy is _Prime_rehash_policy.
534  template<typename _RehashPolicy, typename _Hashtable>
535    struct _Rehash_base { };
536
537  template<typename _Hashtable>
538    struct _Rehash_base<_Prime_rehash_policy, _Hashtable>
539    {
540      float
541      max_load_factor() const
542      {
543	const _Hashtable* __this = static_cast<const _Hashtable*>(this);
544	return __this->__rehash_policy().max_load_factor();
545      }
546
547      void
548      max_load_factor(float __z)
549      {
550	_Hashtable* __this = static_cast<_Hashtable*>(this);
551	__this->__rehash_policy(_Prime_rehash_policy(__z));
552      }
553    };
554
555  // Class template _Hash_code_base.  Encapsulates two policy issues that
556  // aren't quite orthogonal.
557  //   (1) the difference between using a ranged hash function and using
558  //       the combination of a hash function and a range-hashing function.
559  //       In the former case we don't have such things as hash codes, so
560  //       we have a dummy type as placeholder.
561  //   (2) Whether or not we cache hash codes.  Caching hash codes is
562  //       meaningless if we have a ranged hash function.
563  // We also put the key extraction and equality comparison function
564  // objects here, for convenience.
565
566  // Primary template: unused except as a hook for specializations.
567  template<typename _Key, typename _Value,
568	   typename _ExtractKey, typename _Equal,
569	   typename _H1, typename _H2, typename _Hash,
570	   bool __cache_hash_code>
571    struct _Hash_code_base;
572
573  // Specialization: ranged hash function, no caching hash codes.  H1
574  // and H2 are provided but ignored.  We define a dummy hash code type.
575  template<typename _Key, typename _Value,
576	   typename _ExtractKey, typename _Equal,
577	   typename _H1, typename _H2, typename _Hash>
578    struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
579			   _Hash, false>
580    {
581    protected:
582      _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
583		      const _H1&, const _H2&, const _Hash& __h)
584      : _M_extract(__ex), _M_eq(__eq), _M_ranged_hash(__h) { }
585
586      typedef void* _Hash_code_type;
587
588      _Hash_code_type
589      _M_hash_code(const _Key& __key) const
590      { return 0; }
591
592      std::size_t
593      _M_bucket_index(const _Key& __k, _Hash_code_type,
594		      std::size_t __n) const
595      { return _M_ranged_hash(__k, __n); }
596
597      std::size_t
598      _M_bucket_index(const _Hash_node<_Value, false>* __p,
599		      std::size_t __n) const
600      { return _M_ranged_hash(_M_extract(__p->_M_v), __n); }
601
602      bool
603      _M_compare(const _Key& __k, _Hash_code_type,
604		 _Hash_node<_Value, false>* __n) const
605      { return _M_eq(__k, _M_extract(__n->_M_v)); }
606
607      void
608      _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
609      { }
610
611      void
612      _M_copy_code(_Hash_node<_Value, false>*,
613		   const _Hash_node<_Value, false>*) const
614      { }
615
616      void
617      _M_swap(_Hash_code_base& __x)
618      {
619	std::swap(_M_extract, __x._M_extract);
620	std::swap(_M_eq, __x._M_eq);
621	std::swap(_M_ranged_hash, __x._M_ranged_hash);
622      }
623
624    protected:
625      _ExtractKey  _M_extract;
626      _Equal       _M_eq;
627      _Hash        _M_ranged_hash;
628    };
629
630
631  // No specialization for ranged hash function while caching hash codes.
632  // That combination is meaningless, and trying to do it is an error.
633
634
635  // Specialization: ranged hash function, cache hash codes.  This
636  // combination is meaningless, so we provide only a declaration
637  // and no definition.
638  template<typename _Key, typename _Value,
639	   typename _ExtractKey, typename _Equal,
640	   typename _H1, typename _H2, typename _Hash>
641    struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
642			   _Hash, true>;
643
644  // Specialization: hash function and range-hashing function, no
645  // caching of hash codes.  H is provided but ignored.  Provides
646  // typedef and accessor required by TR1.
647  template<typename _Key, typename _Value,
648	   typename _ExtractKey, typename _Equal,
649	   typename _H1, typename _H2>
650    struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
651			   _Default_ranged_hash, false>
652    {
653      typedef _H1 hasher;
654
655      hasher
656      hash_function() const
657      { return _M_h1; }
658
659    protected:
660      _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
661		      const _H1& __h1, const _H2& __h2,
662		      const _Default_ranged_hash&)
663      : _M_extract(__ex), _M_eq(__eq), _M_h1(__h1), _M_h2(__h2) { }
664
665      typedef std::size_t _Hash_code_type;
666
667      _Hash_code_type
668      _M_hash_code(const _Key& __k) const
669      { return _M_h1(__k); }
670
671      std::size_t
672      _M_bucket_index(const _Key&, _Hash_code_type __c,
673		      std::size_t __n) const
674      { return _M_h2(__c, __n); }
675
676      std::size_t
677      _M_bucket_index(const _Hash_node<_Value, false>* __p,
678		      std::size_t __n) const
679      { return _M_h2(_M_h1(_M_extract(__p->_M_v)), __n); }
680
681      bool
682      _M_compare(const _Key& __k, _Hash_code_type,
683		 _Hash_node<_Value, false>* __n) const
684      { return _M_eq(__k, _M_extract(__n->_M_v)); }
685
686      void
687      _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
688      { }
689
690      void
691      _M_copy_code(_Hash_node<_Value, false>*,
692		   const _Hash_node<_Value, false>*) const
693      { }
694
695      void
696      _M_swap(_Hash_code_base& __x)
697      {
698	std::swap(_M_extract, __x._M_extract);
699	std::swap(_M_eq, __x._M_eq);
700	std::swap(_M_h1, __x._M_h1);
701	std::swap(_M_h2, __x._M_h2);
702      }
703
704    protected:
705      _ExtractKey  _M_extract;
706      _Equal       _M_eq;
707      _H1          _M_h1;
708      _H2          _M_h2;
709    };
710
711  // Specialization: hash function and range-hashing function,
712  // caching hash codes.  H is provided but ignored.  Provides
713  // typedef and accessor required by TR1.
714  template<typename _Key, typename _Value,
715	   typename _ExtractKey, typename _Equal,
716	   typename _H1, typename _H2>
717    struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
718			   _Default_ranged_hash, true>
719    {
720      typedef _H1 hasher;
721
722      hasher
723      hash_function() const
724      { return _M_h1; }
725
726    protected:
727      _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
728		      const _H1& __h1, const _H2& __h2,
729		      const _Default_ranged_hash&)
730      : _M_extract(__ex), _M_eq(__eq), _M_h1(__h1), _M_h2(__h2) { }
731
732      typedef std::size_t _Hash_code_type;
733
734      _Hash_code_type
735      _M_hash_code(const _Key& __k) const
736      { return _M_h1(__k); }
737
738      std::size_t
739      _M_bucket_index(const _Key&, _Hash_code_type __c,
740		      std::size_t __n) const
741      { return _M_h2(__c, __n); }
742
743      std::size_t
744      _M_bucket_index(const _Hash_node<_Value, true>* __p,
745		      std::size_t __n) const
746      { return _M_h2(__p->_M_hash_code, __n); }
747
748      bool
749      _M_compare(const _Key& __k, _Hash_code_type __c,
750		 _Hash_node<_Value, true>* __n) const
751      { return __c == __n->_M_hash_code && _M_eq(__k, _M_extract(__n->_M_v)); }
752
753      void
754      _M_store_code(_Hash_node<_Value, true>* __n, _Hash_code_type __c) const
755      { __n->_M_hash_code = __c; }
756
757      void
758      _M_copy_code(_Hash_node<_Value, true>* __to,
759		   const _Hash_node<_Value, true>* __from) const
760      { __to->_M_hash_code = __from->_M_hash_code; }
761
762      void
763      _M_swap(_Hash_code_base& __x)
764      {
765	std::swap(_M_extract, __x._M_extract);
766	std::swap(_M_eq, __x._M_eq);
767	std::swap(_M_h1, __x._M_h1);
768	std::swap(_M_h2, __x._M_h2);
769      }
770
771    protected:
772      _ExtractKey  _M_extract;
773      _Equal       _M_eq;
774      _H1          _M_h1;
775      _H2          _M_h2;
776    };
777} // namespace __detail
778}
779}
780