• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/toolchains/hndtools-arm-linux-2.6.36-uclibc-4.5.3/arm-brcm-linux-uclibcgnueabi/include/c++/4.5.3/bits/
1// Internal policy header for unordered_set and unordered_map -*- C++ -*-
2
3// Copyright (C) 2010 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23// <http://www.gnu.org/licenses/>.
24
25/** @file bits/hashtable_policy.h
26 *  This is an internal header file, included by other library headers.
27 *  You should not attempt to use it directly.
28 */
29
30#ifndef _HASHTABLE_POLICY_H
31#define _HASHTABLE_POLICY_H 1
32
33namespace std
34{
35namespace __detail
36{
37  // Helper function: return distance(first, last) for forward
38  // iterators, or 0 for input iterators.
39  template<class _Iterator>
40    inline typename std::iterator_traits<_Iterator>::difference_type
41    __distance_fw(_Iterator __first, _Iterator __last,
42		  std::input_iterator_tag)
43    { return 0; }
44
45  template<class _Iterator>
46    inline typename std::iterator_traits<_Iterator>::difference_type
47    __distance_fw(_Iterator __first, _Iterator __last,
48		  std::forward_iterator_tag)
49    { return std::distance(__first, __last); }
50
51  template<class _Iterator>
52    inline typename std::iterator_traits<_Iterator>::difference_type
53    __distance_fw(_Iterator __first, _Iterator __last)
54    {
55      typedef typename std::iterator_traits<_Iterator>::iterator_category _Tag;
56      return __distance_fw(__first, __last, _Tag());
57    }
58
59  // Auxiliary types used for all instantiations of _Hashtable: nodes
60  // and iterators.
61
62  // Nodes, used to wrap elements stored in the hash table.  A policy
63  // template parameter of class template _Hashtable controls whether
64  // nodes also store a hash code. In some cases (e.g. strings) this
65  // may be a performance win.
66  template<typename _Value, bool __cache_hash_code>
67    struct _Hash_node;
68
69  template<typename _Value>
70    struct _Hash_node<_Value, true>
71    {
72      _Value       _M_v;
73      std::size_t  _M_hash_code;
74      _Hash_node*  _M_next;
75
76      template<typename... _Args>
77        _Hash_node(_Args&&... __args)
78	: _M_v(std::forward<_Args>(__args)...),
79	  _M_hash_code(), _M_next() { }
80    };
81
82  template<typename _Value>
83    struct _Hash_node<_Value, false>
84    {
85      _Value       _M_v;
86      _Hash_node*  _M_next;
87
88      template<typename... _Args>
89        _Hash_node(_Args&&... __args)
90	: _M_v(std::forward<_Args>(__args)...),
91	  _M_next() { }
92    };
93
94  // Local iterators, used to iterate within a bucket but not between
95  // buckets.
96  template<typename _Value, bool __cache>
97    struct _Node_iterator_base
98    {
99      _Node_iterator_base(_Hash_node<_Value, __cache>* __p)
100      : _M_cur(__p) { }
101
102      void
103      _M_incr()
104      { _M_cur = _M_cur->_M_next; }
105
106      _Hash_node<_Value, __cache>*  _M_cur;
107    };
108
109  template<typename _Value, bool __cache>
110    inline bool
111    operator==(const _Node_iterator_base<_Value, __cache>& __x,
112	       const _Node_iterator_base<_Value, __cache>& __y)
113    { return __x._M_cur == __y._M_cur; }
114
115  template<typename _Value, bool __cache>
116    inline bool
117    operator!=(const _Node_iterator_base<_Value, __cache>& __x,
118	       const _Node_iterator_base<_Value, __cache>& __y)
119    { return __x._M_cur != __y._M_cur; }
120
121  template<typename _Value, bool __constant_iterators, bool __cache>
122    struct _Node_iterator
123    : public _Node_iterator_base<_Value, __cache>
124    {
125      typedef _Value                                   value_type;
126      typedef typename std::conditional<__constant_iterators,
127					const _Value*, _Value*>::type
128                                                       pointer;
129      typedef typename std::conditional<__constant_iterators,
130					const _Value&, _Value&>::type
131                                                       reference;
132      typedef std::ptrdiff_t                           difference_type;
133      typedef std::forward_iterator_tag                iterator_category;
134
135      _Node_iterator()
136      : _Node_iterator_base<_Value, __cache>(0) { }
137
138      explicit
139      _Node_iterator(_Hash_node<_Value, __cache>* __p)
140      : _Node_iterator_base<_Value, __cache>(__p) { }
141
142      reference
143      operator*() const
144      { return this->_M_cur->_M_v; }
145
146      pointer
147      operator->() const
148      { return &this->_M_cur->_M_v; }
149
150      _Node_iterator&
151      operator++()
152      {
153	this->_M_incr();
154	return *this;
155      }
156
157      _Node_iterator
158      operator++(int)
159      {
160	_Node_iterator __tmp(*this);
161	this->_M_incr();
162	return __tmp;
163      }
164    };
165
166  template<typename _Value, bool __constant_iterators, bool __cache>
167    struct _Node_const_iterator
168    : public _Node_iterator_base<_Value, __cache>
169    {
170      typedef _Value                                   value_type;
171      typedef const _Value*                            pointer;
172      typedef const _Value&                            reference;
173      typedef std::ptrdiff_t                           difference_type;
174      typedef std::forward_iterator_tag                iterator_category;
175
176      _Node_const_iterator()
177      : _Node_iterator_base<_Value, __cache>(0) { }
178
179      explicit
180      _Node_const_iterator(_Hash_node<_Value, __cache>* __p)
181      : _Node_iterator_base<_Value, __cache>(__p) { }
182
183      _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
184			   __cache>& __x)
185      : _Node_iterator_base<_Value, __cache>(__x._M_cur) { }
186
187      reference
188      operator*() const
189      { return this->_M_cur->_M_v; }
190
191      pointer
192      operator->() const
193      { return &this->_M_cur->_M_v; }
194
195      _Node_const_iterator&
196      operator++()
197      {
198	this->_M_incr();
199	return *this;
200      }
201
202      _Node_const_iterator
203      operator++(int)
204      {
205	_Node_const_iterator __tmp(*this);
206	this->_M_incr();
207	return __tmp;
208      }
209    };
210
211  template<typename _Value, bool __cache>
212    struct _Hashtable_iterator_base
213    {
214      _Hashtable_iterator_base(_Hash_node<_Value, __cache>* __node,
215			       _Hash_node<_Value, __cache>** __bucket)
216      : _M_cur_node(__node), _M_cur_bucket(__bucket) { }
217
218      void
219      _M_incr()
220      {
221	_M_cur_node = _M_cur_node->_M_next;
222	if (!_M_cur_node)
223	  _M_incr_bucket();
224      }
225
226      void
227      _M_incr_bucket();
228
229      _Hash_node<_Value, __cache>*   _M_cur_node;
230      _Hash_node<_Value, __cache>**  _M_cur_bucket;
231    };
232
233  // Global iterators, used for arbitrary iteration within a hash
234  // table.  Larger and more expensive than local iterators.
235  template<typename _Value, bool __cache>
236    void
237    _Hashtable_iterator_base<_Value, __cache>::
238    _M_incr_bucket()
239    {
240      ++_M_cur_bucket;
241
242      // This loop requires the bucket array to have a non-null sentinel.
243      while (!*_M_cur_bucket)
244	++_M_cur_bucket;
245      _M_cur_node = *_M_cur_bucket;
246    }
247
248  template<typename _Value, bool __cache>
249    inline bool
250    operator==(const _Hashtable_iterator_base<_Value, __cache>& __x,
251	       const _Hashtable_iterator_base<_Value, __cache>& __y)
252    { return __x._M_cur_node == __y._M_cur_node; }
253
254  template<typename _Value, bool __cache>
255    inline bool
256    operator!=(const _Hashtable_iterator_base<_Value, __cache>& __x,
257	       const _Hashtable_iterator_base<_Value, __cache>& __y)
258    { return __x._M_cur_node != __y._M_cur_node; }
259
260  template<typename _Value, bool __constant_iterators, bool __cache>
261    struct _Hashtable_iterator
262    : public _Hashtable_iterator_base<_Value, __cache>
263    {
264      typedef _Value                                   value_type;
265      typedef typename std::conditional<__constant_iterators,
266					const _Value*, _Value*>::type
267                                                       pointer;
268      typedef typename std::conditional<__constant_iterators,
269					const _Value&, _Value&>::type
270                                                       reference;
271      typedef std::ptrdiff_t                           difference_type;
272      typedef std::forward_iterator_tag                iterator_category;
273
274      _Hashtable_iterator()
275      : _Hashtable_iterator_base<_Value, __cache>(0, 0) { }
276
277      _Hashtable_iterator(_Hash_node<_Value, __cache>* __p,
278			  _Hash_node<_Value, __cache>** __b)
279      : _Hashtable_iterator_base<_Value, __cache>(__p, __b) { }
280
281      explicit
282      _Hashtable_iterator(_Hash_node<_Value, __cache>** __b)
283      : _Hashtable_iterator_base<_Value, __cache>(*__b, __b) { }
284
285      reference
286      operator*() const
287      { return this->_M_cur_node->_M_v; }
288
289      pointer
290      operator->() const
291      { return &this->_M_cur_node->_M_v; }
292
293      _Hashtable_iterator&
294      operator++()
295      {
296	this->_M_incr();
297	return *this;
298      }
299
300      _Hashtable_iterator
301      operator++(int)
302      {
303	_Hashtable_iterator __tmp(*this);
304	this->_M_incr();
305	return __tmp;
306      }
307    };
308
309  template<typename _Value, bool __constant_iterators, bool __cache>
310    struct _Hashtable_const_iterator
311    : public _Hashtable_iterator_base<_Value, __cache>
312    {
313      typedef _Value                                   value_type;
314      typedef const _Value*                            pointer;
315      typedef const _Value&                            reference;
316      typedef std::ptrdiff_t                           difference_type;
317      typedef std::forward_iterator_tag                iterator_category;
318
319      _Hashtable_const_iterator()
320      : _Hashtable_iterator_base<_Value, __cache>(0, 0) { }
321
322      _Hashtable_const_iterator(_Hash_node<_Value, __cache>* __p,
323				_Hash_node<_Value, __cache>** __b)
324      : _Hashtable_iterator_base<_Value, __cache>(__p, __b) { }
325
326      explicit
327      _Hashtable_const_iterator(_Hash_node<_Value, __cache>** __b)
328      : _Hashtable_iterator_base<_Value, __cache>(*__b, __b) { }
329
330      _Hashtable_const_iterator(const _Hashtable_iterator<_Value,
331				__constant_iterators, __cache>& __x)
332      : _Hashtable_iterator_base<_Value, __cache>(__x._M_cur_node,
333						  __x._M_cur_bucket) { }
334
335      reference
336      operator*() const
337      { return this->_M_cur_node->_M_v; }
338
339      pointer
340      operator->() const
341      { return &this->_M_cur_node->_M_v; }
342
343      _Hashtable_const_iterator&
344      operator++()
345      {
346	this->_M_incr();
347	return *this;
348      }
349
350      _Hashtable_const_iterator
351      operator++(int)
352      {
353	_Hashtable_const_iterator __tmp(*this);
354	this->_M_incr();
355	return __tmp;
356      }
357    };
358
359
360  // Many of class template _Hashtable's template parameters are policy
361  // classes.  These are defaults for the policies.
362
363  // Default range hashing function: use division to fold a large number
364  // into the range [0, N).
365  struct _Mod_range_hashing
366  {
367    typedef std::size_t first_argument_type;
368    typedef std::size_t second_argument_type;
369    typedef std::size_t result_type;
370
371    result_type
372    operator()(first_argument_type __num, second_argument_type __den) const
373    { return __num % __den; }
374  };
375
376  // Default ranged hash function H.  In principle it should be a
377  // function object composed from objects of type H1 and H2 such that
378  // h(k, N) = h2(h1(k), N), but that would mean making extra copies of
379  // h1 and h2.  So instead we'll just use a tag to tell class template
380  // hashtable to do that composition.
381  struct _Default_ranged_hash { };
382
383  // Default value for rehash policy.  Bucket size is (usually) the
384  // smallest prime that keeps the load factor small enough.
385  struct _Prime_rehash_policy
386  {
387    _Prime_rehash_policy(float __z = 1.0)
388    : _M_max_load_factor(__z), _M_growth_factor(2.f), _M_next_resize(0) { }
389
390    float
391    max_load_factor() const
392    { return _M_max_load_factor; }
393
394    // Return a bucket size no smaller than n.
395    std::size_t
396    _M_next_bkt(std::size_t __n) const;
397
398    // Return a bucket count appropriate for n elements
399    std::size_t
400    _M_bkt_for_elements(std::size_t __n) const;
401
402    // __n_bkt is current bucket count, __n_elt is current element count,
403    // and __n_ins is number of elements to be inserted.  Do we need to
404    // increase bucket count?  If so, return make_pair(true, n), where n
405    // is the new bucket count.  If not, return make_pair(false, 0).
406    std::pair<bool, std::size_t>
407    _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
408		   std::size_t __n_ins) const;
409
410    enum { _S_n_primes = sizeof(unsigned long) != 8 ? 256 : 256 + 48 };
411
412    float                _M_max_load_factor;
413    float                _M_growth_factor;
414    mutable std::size_t  _M_next_resize;
415  };
416
417  extern const unsigned long __prime_list[];
418
419  // XXX This is a hack.  There's no good reason for any of
420  // _Prime_rehash_policy's member functions to be inline.
421
422  // Return a prime no smaller than n.
423  inline std::size_t
424  _Prime_rehash_policy::
425  _M_next_bkt(std::size_t __n) const
426  {
427    const unsigned long* __p = std::lower_bound(__prime_list, __prime_list
428						+ _S_n_primes, __n);
429    _M_next_resize =
430      static_cast<std::size_t>(__builtin_ceil(*__p * _M_max_load_factor));
431    return *__p;
432  }
433
434  // Return the smallest prime p such that alpha p >= n, where alpha
435  // is the load factor.
436  inline std::size_t
437  _Prime_rehash_policy::
438  _M_bkt_for_elements(std::size_t __n) const
439  {
440    const float __min_bkts = __n / _M_max_load_factor;
441    const unsigned long* __p = std::lower_bound(__prime_list, __prime_list
442						+ _S_n_primes, __min_bkts);
443    _M_next_resize =
444      static_cast<std::size_t>(__builtin_ceil(*__p * _M_max_load_factor));
445    return *__p;
446  }
447
448  // Finds the smallest prime p such that alpha p > __n_elt + __n_ins.
449  // If p > __n_bkt, return make_pair(true, p); otherwise return
450  // make_pair(false, 0).  In principle this isn't very different from
451  // _M_bkt_for_elements.
452
453  // The only tricky part is that we're caching the element count at
454  // which we need to rehash, so we don't have to do a floating-point
455  // multiply for every insertion.
456
457  inline std::pair<bool, std::size_t>
458  _Prime_rehash_policy::
459  _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
460		 std::size_t __n_ins) const
461  {
462    if (__n_elt + __n_ins > _M_next_resize)
463      {
464	float __min_bkts = ((float(__n_ins) + float(__n_elt))
465			    / _M_max_load_factor);
466	if (__min_bkts > __n_bkt)
467	  {
468	    __min_bkts = std::max(__min_bkts, _M_growth_factor * __n_bkt);
469	    const unsigned long* __p =
470	      std::lower_bound(__prime_list, __prime_list + _S_n_primes,
471			       __min_bkts);
472	    _M_next_resize = static_cast<std::size_t>
473	      (__builtin_ceil(*__p * _M_max_load_factor));
474	    return std::make_pair(true, *__p);
475	  }
476	else
477	  {
478	    _M_next_resize = static_cast<std::size_t>
479	      (__builtin_ceil(__n_bkt * _M_max_load_factor));
480	    return std::make_pair(false, 0);
481	  }
482      }
483    else
484      return std::make_pair(false, 0);
485  }
486
487  // Base classes for std::_Hashtable.  We define these base classes
488  // because in some cases we want to do different things depending
489  // on the value of a policy class.  In some cases the policy class
490  // affects which member functions and nested typedefs are defined;
491  // we handle that by specializing base class templates.  Several of
492  // the base class templates need to access other members of class
493  // template _Hashtable, so we use the "curiously recurring template
494  // pattern" for them.
495
496  // class template _Map_base.  If the hashtable has a value type of
497  // the form pair<T1, T2> and a key extraction policy that returns the
498  // first part of the pair, the hashtable gets a mapped_type typedef.
499  // If it satisfies those criteria and also has unique keys, then it
500  // also gets an operator[].
501  template<typename _Key, typename _Value, typename _Ex, bool __unique,
502	   typename _Hashtable>
503    struct _Map_base { };
504
505  template<typename _Key, typename _Pair, typename _Hashtable>
506    struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, false, _Hashtable>
507    {
508      typedef typename _Pair::second_type mapped_type;
509    };
510
511  template<typename _Key, typename _Pair, typename _Hashtable>
512    struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>
513    {
514      typedef typename _Pair::second_type mapped_type;
515
516      mapped_type&
517      operator[](const _Key& __k);
518
519      // _GLIBCXX_RESOLVE_LIB_DEFECTS
520      // DR 761. unordered_map needs an at() member function.
521      mapped_type&
522      at(const _Key& __k);
523
524      const mapped_type&
525      at(const _Key& __k) const;
526    };
527
528  template<typename _Key, typename _Pair, typename _Hashtable>
529    typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
530		       true, _Hashtable>::mapped_type&
531    _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
532    operator[](const _Key& __k)
533    {
534      _Hashtable* __h = static_cast<_Hashtable*>(this);
535      typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
536      std::size_t __n = __h->_M_bucket_index(__k, __code,
537					     __h->_M_bucket_count);
538
539      typename _Hashtable::_Node* __p =
540	__h->_M_find_node(__h->_M_buckets[__n], __k, __code);
541      if (!__p)
542	return __h->_M_insert_bucket(std::make_pair(__k, mapped_type()),
543				     __n, __code)->second;
544      return (__p->_M_v).second;
545    }
546
547  template<typename _Key, typename _Pair, typename _Hashtable>
548    typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
549		       true, _Hashtable>::mapped_type&
550    _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
551    at(const _Key& __k)
552    {
553      _Hashtable* __h = static_cast<_Hashtable*>(this);
554      typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
555      std::size_t __n = __h->_M_bucket_index(__k, __code,
556					     __h->_M_bucket_count);
557
558      typename _Hashtable::_Node* __p =
559	__h->_M_find_node(__h->_M_buckets[__n], __k, __code);
560      if (!__p)
561	__throw_out_of_range(__N("_Map_base::at"));
562      return (__p->_M_v).second;
563    }
564
565  template<typename _Key, typename _Pair, typename _Hashtable>
566    const typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
567			     true, _Hashtable>::mapped_type&
568    _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
569    at(const _Key& __k) const
570    {
571      const _Hashtable* __h = static_cast<const _Hashtable*>(this);
572      typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
573      std::size_t __n = __h->_M_bucket_index(__k, __code,
574					     __h->_M_bucket_count);
575
576      typename _Hashtable::_Node* __p =
577	__h->_M_find_node(__h->_M_buckets[__n], __k, __code);
578      if (!__p)
579	__throw_out_of_range(__N("_Map_base::at"));
580      return (__p->_M_v).second;
581    }
582
583  // class template _Rehash_base.  Give hashtable the max_load_factor
584  // functions and reserve iff the rehash policy is _Prime_rehash_policy.
585  template<typename _RehashPolicy, typename _Hashtable>
586    struct _Rehash_base { };
587
588  template<typename _Hashtable>
589    struct _Rehash_base<_Prime_rehash_policy, _Hashtable>
590    {
591      float
592      max_load_factor() const
593      {
594	const _Hashtable* __this = static_cast<const _Hashtable*>(this);
595	return __this->__rehash_policy().max_load_factor();
596      }
597
598      void
599      max_load_factor(float __z)
600      {
601	_Hashtable* __this = static_cast<_Hashtable*>(this);
602	__this->__rehash_policy(_Prime_rehash_policy(__z));
603      }
604
605      void
606      reserve(std::size_t __n)
607      {
608	_Hashtable* __this = static_cast<_Hashtable*>(this);
609	__this->rehash(__builtin_ceil(__n / max_load_factor()));
610      }
611    };
612
613  // Class template _Hash_code_base.  Encapsulates two policy issues that
614  // aren't quite orthogonal.
615  //   (1) the difference between using a ranged hash function and using
616  //       the combination of a hash function and a range-hashing function.
617  //       In the former case we don't have such things as hash codes, so
618  //       we have a dummy type as placeholder.
619  //   (2) Whether or not we cache hash codes.  Caching hash codes is
620  //       meaningless if we have a ranged hash function.
621  // We also put the key extraction and equality comparison function
622  // objects here, for convenience.
623
624  // Primary template: unused except as a hook for specializations.
625  template<typename _Key, typename _Value,
626	   typename _ExtractKey, typename _Equal,
627	   typename _H1, typename _H2, typename _Hash,
628	   bool __cache_hash_code>
629    struct _Hash_code_base;
630
631  // Specialization: ranged hash function, no caching hash codes.  H1
632  // and H2 are provided but ignored.  We define a dummy hash code type.
633  template<typename _Key, typename _Value,
634	   typename _ExtractKey, typename _Equal,
635	   typename _H1, typename _H2, typename _Hash>
636    struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
637			   _Hash, false>
638    {
639    protected:
640      _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
641		      const _H1&, const _H2&, const _Hash& __h)
642      : _M_extract(__ex), _M_eq(__eq), _M_ranged_hash(__h) { }
643
644      typedef void* _Hash_code_type;
645
646      _Hash_code_type
647      _M_hash_code(const _Key& __key) const
648      { return 0; }
649
650      std::size_t
651      _M_bucket_index(const _Key& __k, _Hash_code_type,
652		      std::size_t __n) const
653      { return _M_ranged_hash(__k, __n); }
654
655      std::size_t
656      _M_bucket_index(const _Hash_node<_Value, false>* __p,
657		      std::size_t __n) const
658      { return _M_ranged_hash(_M_extract(__p->_M_v), __n); }
659
660      bool
661      _M_compare(const _Key& __k, _Hash_code_type,
662		 _Hash_node<_Value, false>* __n) const
663      { return _M_eq(__k, _M_extract(__n->_M_v)); }
664
665      void
666      _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
667      { }
668
669      void
670      _M_copy_code(_Hash_node<_Value, false>*,
671		   const _Hash_node<_Value, false>*) const
672      { }
673
674      void
675      _M_swap(_Hash_code_base& __x)
676      {
677	std::swap(_M_extract, __x._M_extract);
678	std::swap(_M_eq, __x._M_eq);
679	std::swap(_M_ranged_hash, __x._M_ranged_hash);
680      }
681
682    protected:
683      _ExtractKey  _M_extract;
684      _Equal       _M_eq;
685      _Hash        _M_ranged_hash;
686    };
687
688
689  // No specialization for ranged hash function while caching hash codes.
690  // That combination is meaningless, and trying to do it is an error.
691
692
693  // Specialization: ranged hash function, cache hash codes.  This
694  // combination is meaningless, so we provide only a declaration
695  // and no definition.
696  template<typename _Key, typename _Value,
697	   typename _ExtractKey, typename _Equal,
698	   typename _H1, typename _H2, typename _Hash>
699    struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
700			   _Hash, true>;
701
702  // Specialization: hash function and range-hashing function, no
703  // caching of hash codes.  H is provided but ignored.  Provides
704  // typedef and accessor required by TR1.
705  template<typename _Key, typename _Value,
706	   typename _ExtractKey, typename _Equal,
707	   typename _H1, typename _H2>
708    struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
709			   _Default_ranged_hash, false>
710    {
711      typedef _H1 hasher;
712
713      hasher
714      hash_function() const
715      { return _M_h1; }
716
717    protected:
718      _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
719		      const _H1& __h1, const _H2& __h2,
720		      const _Default_ranged_hash&)
721      : _M_extract(__ex), _M_eq(__eq), _M_h1(__h1), _M_h2(__h2) { }
722
723      typedef std::size_t _Hash_code_type;
724
725      _Hash_code_type
726      _M_hash_code(const _Key& __k) const
727      { return _M_h1(__k); }
728
729      std::size_t
730      _M_bucket_index(const _Key&, _Hash_code_type __c,
731		      std::size_t __n) const
732      { return _M_h2(__c, __n); }
733
734      std::size_t
735      _M_bucket_index(const _Hash_node<_Value, false>* __p,
736		      std::size_t __n) const
737      { return _M_h2(_M_h1(_M_extract(__p->_M_v)), __n); }
738
739      bool
740      _M_compare(const _Key& __k, _Hash_code_type,
741		 _Hash_node<_Value, false>* __n) const
742      { return _M_eq(__k, _M_extract(__n->_M_v)); }
743
744      void
745      _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
746      { }
747
748      void
749      _M_copy_code(_Hash_node<_Value, false>*,
750		   const _Hash_node<_Value, false>*) const
751      { }
752
753      void
754      _M_swap(_Hash_code_base& __x)
755      {
756	std::swap(_M_extract, __x._M_extract);
757	std::swap(_M_eq, __x._M_eq);
758	std::swap(_M_h1, __x._M_h1);
759	std::swap(_M_h2, __x._M_h2);
760      }
761
762    protected:
763      _ExtractKey  _M_extract;
764      _Equal       _M_eq;
765      _H1          _M_h1;
766      _H2          _M_h2;
767    };
768
769  // Specialization: hash function and range-hashing function,
770  // caching hash codes.  H is provided but ignored.  Provides
771  // typedef and accessor required by TR1.
772  template<typename _Key, typename _Value,
773	   typename _ExtractKey, typename _Equal,
774	   typename _H1, typename _H2>
775    struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
776			   _Default_ranged_hash, true>
777    {
778      typedef _H1 hasher;
779
780      hasher
781      hash_function() const
782      { return _M_h1; }
783
784    protected:
785      _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
786		      const _H1& __h1, const _H2& __h2,
787		      const _Default_ranged_hash&)
788      : _M_extract(__ex), _M_eq(__eq), _M_h1(__h1), _M_h2(__h2) { }
789
790      typedef std::size_t _Hash_code_type;
791
792      _Hash_code_type
793      _M_hash_code(const _Key& __k) const
794      { return _M_h1(__k); }
795
796      std::size_t
797      _M_bucket_index(const _Key&, _Hash_code_type __c,
798		      std::size_t __n) const
799      { return _M_h2(__c, __n); }
800
801      std::size_t
802      _M_bucket_index(const _Hash_node<_Value, true>* __p,
803		      std::size_t __n) const
804      { return _M_h2(__p->_M_hash_code, __n); }
805
806      bool
807      _M_compare(const _Key& __k, _Hash_code_type __c,
808		 _Hash_node<_Value, true>* __n) const
809      { return __c == __n->_M_hash_code && _M_eq(__k, _M_extract(__n->_M_v)); }
810
811      void
812      _M_store_code(_Hash_node<_Value, true>* __n, _Hash_code_type __c) const
813      { __n->_M_hash_code = __c; }
814
815      void
816      _M_copy_code(_Hash_node<_Value, true>* __to,
817		   const _Hash_node<_Value, true>* __from) const
818      { __to->_M_hash_code = __from->_M_hash_code; }
819
820      void
821      _M_swap(_Hash_code_base& __x)
822      {
823	std::swap(_M_extract, __x._M_extract);
824	std::swap(_M_eq, __x._M_eq);
825	std::swap(_M_h1, __x._M_h1);
826	std::swap(_M_h2, __x._M_h2);
827      }
828
829    protected:
830      _ExtractKey  _M_extract;
831      _Equal       _M_eq;
832      _H1          _M_h1;
833      _H2          _M_h2;
834    };
835
836
837  // Class template _Equality_base.  This is for implementing equality
838  // comparison for unordered containers, per N3068, by John Lakos and
839  // Pablo Halpern.  Algorithmically, we follow closely the reference
840  // implementations therein.
841  template<typename _ExtractKey, bool __unique_keys,
842	   typename _Hashtable>
843    struct _Equality_base;
844
845  template<typename _ExtractKey, typename _Hashtable>
846    struct _Equality_base<_ExtractKey, true, _Hashtable>
847    {
848      bool _M_equal(const _Hashtable&) const;
849    };
850
851  template<typename _ExtractKey, typename _Hashtable>
852    bool
853    _Equality_base<_ExtractKey, true, _Hashtable>::
854    _M_equal(const _Hashtable& __other) const
855    {
856      const _Hashtable* __this = static_cast<const _Hashtable*>(this);
857
858      if (__this->size() != __other.size())
859	return false;
860
861      for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx)
862	{
863	  const auto __ity = __other.find(_ExtractKey()(*__itx));
864	  if (__ity == __other.end() || *__ity != *__itx)
865	    return false;
866	}
867      return true;
868    }
869
870  template<typename _ExtractKey, typename _Hashtable>
871    struct _Equality_base<_ExtractKey, false, _Hashtable>
872    {
873      bool _M_equal(const _Hashtable&) const;
874
875    private:
876      template<typename _Uiterator>
877        static bool
878        _S_is_permutation(_Uiterator, _Uiterator, _Uiterator);
879    };
880
881  // See std::is_permutation in N3068.
882  template<typename _ExtractKey, typename _Hashtable>
883    template<typename _Uiterator>
884      bool
885      _Equality_base<_ExtractKey, false, _Hashtable>::
886      _S_is_permutation(_Uiterator __first1, _Uiterator __last1,
887			_Uiterator __first2)
888      {
889	for (; __first1 != __last1; ++__first1, ++__first2)
890	  if (!(*__first1 == *__first2))
891	    break;
892
893	if (__first1 == __last1)
894	  return true;
895
896	_Uiterator __last2 = __first2;
897	std::advance(__last2, std::distance(__first1, __last1));
898
899	for (_Uiterator __it1 = __first1; __it1 != __last1; ++__it1)
900	  {
901	    _Uiterator __tmp =  __first1;
902	    while (__tmp != __it1 && !(*__tmp == *__it1))
903	      ++__tmp;
904
905	    // We've seen this one before.
906	    if (__tmp != __it1)
907	      continue;
908
909	    std::ptrdiff_t __n2 = 0;
910	    for (__tmp = __first2; __tmp != __last2; ++__tmp)
911	      if (*__tmp == *__it1)
912		++__n2;
913
914	    if (!__n2)
915	      return false;
916
917	    std::ptrdiff_t __n1 = 0;
918	    for (__tmp = __it1; __tmp != __last1; ++__tmp)
919	      if (*__tmp == *__it1)
920		++__n1;
921
922	    if (__n1 != __n2)
923	      return false;
924	  }
925	return true;
926      }
927
928  template<typename _ExtractKey, typename _Hashtable>
929    bool
930    _Equality_base<_ExtractKey, false, _Hashtable>::
931    _M_equal(const _Hashtable& __other) const
932    {
933      const _Hashtable* __this = static_cast<const _Hashtable*>(this);
934
935      if (__this->size() != __other.size())
936	return false;
937
938      for (auto __itx = __this->begin(); __itx != __this->end();)
939	{
940	  const auto __xrange = __this->equal_range(_ExtractKey()(*__itx));
941	  const auto __yrange = __other.equal_range(_ExtractKey()(*__itx));
942
943	  if (std::distance(__xrange.first, __xrange.second)
944	      != std::distance(__yrange.first, __yrange.second))
945	    return false;
946
947	  if (!_S_is_permutation(__xrange.first,
948				 __xrange.second,
949				 __yrange.first))
950	    return false;
951
952	  __itx = __xrange.second;
953	}
954      return true;
955    }
956} // namespace __detail
957}
958
959#endif // _HASHTABLE_POLICY_H
960