• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/router/samba-3.5.8/lib/util/
1/*
2   Unix SMB/CIFS implementation.
3   SMB Byte handling
4   Copyright (C) Andrew Tridgell 1992-1998
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 3 of the License, or
9   (at your option) any later version.
10
11   This program is distributed in the hope that it will be useful,
12   but WITHOUT ANY WARRANTY; without even the implied warranty of
13   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14   GNU General Public License for more details.
15
16   You should have received a copy of the GNU General Public License
17   along with this program.  If not, see <http://www.gnu.org/licenses/>.
18*/
19
20#ifndef _BYTEORDER_H
21#define _BYTEORDER_H
22
23/*
24   This file implements macros for machine independent short and
25   int manipulation
26
27Here is a description of this file that I emailed to the samba list once:
28
29> I am confused about the way that byteorder.h works in Samba. I have
30> looked at it, and I would have thought that you might make a distinction
31> between LE and BE machines, but you only seem to distinguish between 386
32> and all other architectures.
33>
34> Can you give me a clue?
35
36sure.
37
38The distinction between 386 and other architectures is only there as
39an optimisation. You can take it out completely and it will make no
40difference. The routines (macros) in byteorder.h are totally byteorder
41independent. The 386 optimsation just takes advantage of the fact that
42the x86 processors don't care about alignment, so we don't have to
43align ints on int boundaries etc. If there are other processors out
44there that aren't alignment sensitive then you could also define
45CAREFUL_ALIGNMENT=0 on those processors as well.
46
47Ok, now to the macros themselves. I'll take a simple example, say we
48want to extract a 2 byte integer from a SMB packet and put it into a
49type called uint16_t that is in the local machines byte order, and you
50want to do it with only the assumption that uint16_t is _at_least_ 16
51bits long (this last condition is very important for architectures
52that don't have any int types that are 2 bytes long)
53
54You do this:
55
56#define CVAL(buf,pos) (((uint8_t *)(buf))[pos])
57#define PVAL(buf,pos) ((uint_t)CVAL(buf,pos))
58#define SVAL(buf,pos) (PVAL(buf,pos)|PVAL(buf,(pos)+1)<<8)
59
60then to extract a uint16_t value at offset 25 in a buffer you do this:
61
62char *buffer = foo_bar();
63uint16_t xx = SVAL(buffer,25);
64
65We are using the byteoder independence of the ANSI C bitshifts to do
66the work. A good optimising compiler should turn this into efficient
67code, especially if it happens to have the right byteorder :-)
68
69I know these macros can be made a bit tidier by removing some of the
70casts, but you need to look at byteorder.h as a whole to see the
71reasoning behind them. byteorder.h defines the following macros:
72
73SVAL(buf,pos) - extract a 2 byte SMB value
74IVAL(buf,pos) - extract a 4 byte SMB value
75BVAL(buf,pos) - extract a 8 byte SMB value
76SVALS(buf,pos) - signed version of SVAL()
77IVALS(buf,pos) - signed version of IVAL()
78BVALS(buf,pos) - signed version of BVAL()
79
80SSVAL(buf,pos,val) - put a 2 byte SMB value into a buffer
81SIVAL(buf,pos,val) - put a 4 byte SMB value into a buffer
82SBVAL(buf,pos,val) - put a 8 byte SMB value into a buffer
83SSVALS(buf,pos,val) - signed version of SSVAL()
84SIVALS(buf,pos,val) - signed version of SIVAL()
85SBVALS(buf,pos,val) - signed version of SBVAL()
86
87RSVAL(buf,pos) - like SVAL() but for NMB byte ordering
88RSVALS(buf,pos) - like SVALS() but for NMB byte ordering
89RIVAL(buf,pos) - like IVAL() but for NMB byte ordering
90RIVALS(buf,pos) - like IVALS() but for NMB byte ordering
91RSSVAL(buf,pos,val) - like SSVAL() but for NMB ordering
92RSIVAL(buf,pos,val) - like SIVAL() but for NMB ordering
93RSIVALS(buf,pos,val) - like SIVALS() but for NMB ordering
94
95it also defines lots of intermediate macros, just ignore those :-)
96
97*/
98
99
100/*
101  on powerpc we can use the magic instructions to load/store
102  in little endian
103*/
104#if (defined(__powerpc__) && defined(__GNUC__))
105static __inline__ uint16_t ld_le16(const uint16_t *addr)
106{
107	uint16_t val;
108	__asm__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (addr), "m" (*addr));
109	return val;
110}
111
112static __inline__ void st_le16(uint16_t *addr, const uint16_t val)
113{
114	__asm__ ("sthbrx %1,0,%2" : "=m" (*addr) : "r" (val), "r" (addr));
115}
116
117static __inline__ uint32_t ld_le32(const uint32_t *addr)
118{
119	uint32_t val;
120	__asm__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (addr), "m" (*addr));
121	return val;
122}
123
124static __inline__ void st_le32(uint32_t *addr, const uint32_t val)
125{
126	__asm__ ("stwbrx %1,0,%2" : "=m" (*addr) : "r" (val), "r" (addr));
127}
128#define HAVE_ASM_BYTEORDER 1
129#else
130#define HAVE_ASM_BYTEORDER 0
131#endif
132
133
134
135#undef CAREFUL_ALIGNMENT
136
137/* we know that the 386 can handle misalignment and has the "right"
138   byteorder */
139#if defined(__i386__)
140#define CAREFUL_ALIGNMENT 0
141#endif
142
143#ifndef CAREFUL_ALIGNMENT
144#define CAREFUL_ALIGNMENT 1
145#endif
146
147#define CVAL(buf,pos) ((uint_t)(((const uint8_t *)(buf))[pos]))
148#define CVAL_NC(buf,pos) (((uint8_t *)(buf))[pos]) /* Non-const version of CVAL */
149#define PVAL(buf,pos) (CVAL(buf,pos))
150#define SCVAL(buf,pos,val) (CVAL_NC(buf,pos) = (val))
151
152#if HAVE_ASM_BYTEORDER
153
154#define  _PTRPOS(buf,pos) (((const uint8_t *)(buf))+(pos))
155#define SVAL(buf,pos) ld_le16((const uint16_t *)_PTRPOS(buf,pos))
156#define IVAL(buf,pos) ld_le32((const uint32_t *)_PTRPOS(buf,pos))
157#define SSVAL(buf,pos,val) st_le16((uint16_t *)_PTRPOS(buf,pos), val)
158#define SIVAL(buf,pos,val) st_le32((uint32_t *)_PTRPOS(buf,pos), val)
159#define SVALS(buf,pos) ((int16_t)SVAL(buf,pos))
160#define IVALS(buf,pos) ((int32_t)IVAL(buf,pos))
161#define SSVALS(buf,pos,val) SSVAL((buf),(pos),((int16_t)(val)))
162#define SIVALS(buf,pos,val) SIVAL((buf),(pos),((int32_t)(val)))
163
164#elif CAREFUL_ALIGNMENT
165
166#define SVAL(buf,pos) (PVAL(buf,pos)|PVAL(buf,(pos)+1)<<8)
167#define IVAL(buf,pos) (SVAL(buf,pos)|SVAL(buf,(pos)+2)<<16)
168#define SSVALX(buf,pos,val) (CVAL_NC(buf,pos)=(uint8_t)((val)&0xFF),CVAL_NC(buf,pos+1)=(uint8_t)((val)>>8))
169#define SIVALX(buf,pos,val) (SSVALX(buf,pos,val&0xFFFF),SSVALX(buf,pos+2,val>>16))
170#define SVALS(buf,pos) ((int16_t)SVAL(buf,pos))
171#define IVALS(buf,pos) ((int32_t)IVAL(buf,pos))
172#define SSVAL(buf,pos,val) SSVALX((buf),(pos),((uint16_t)(val)))
173#define SIVAL(buf,pos,val) SIVALX((buf),(pos),((uint32_t)(val)))
174#define SSVALS(buf,pos,val) SSVALX((buf),(pos),((int16_t)(val)))
175#define SIVALS(buf,pos,val) SIVALX((buf),(pos),((int32_t)(val)))
176
177#else /* not CAREFUL_ALIGNMENT */
178
179/* this handles things for architectures like the 386 that can handle
180   alignment errors */
181/*
182   WARNING: This section is dependent on the length of int16_t and int32_t
183   being correct
184*/
185
186/* get single value from an SMB buffer */
187#define SVAL(buf,pos) (*(const uint16_t *)((const char *)(buf) + (pos)))
188#define SVAL_NC(buf,pos) (*(uint16_t *)((char *)(buf) + (pos))) /* Non const version of above. */
189#define IVAL(buf,pos) (*(const uint32_t *)((const char *)(buf) + (pos)))
190#define IVAL_NC(buf,pos) (*(uint32_t *)((char *)(buf) + (pos))) /* Non const version of above. */
191#define SVALS(buf,pos) (*(const int16_t *)((const char *)(buf) + (pos)))
192#define SVALS_NC(buf,pos) (*(int16_t *)((char *)(buf) + (pos))) /* Non const version of above. */
193#define IVALS(buf,pos) (*(const int32_t *)((const char *)(buf) + (pos)))
194#define IVALS_NC(buf,pos) (*(int32_t *)((char *)(buf) + (pos))) /* Non const version of above. */
195
196/* store single value in an SMB buffer */
197#define SSVAL(buf,pos,val) SVAL_NC(buf,pos)=((uint16_t)(val))
198#define SIVAL(buf,pos,val) IVAL_NC(buf,pos)=((uint32_t)(val))
199#define SSVALS(buf,pos,val) SVALS_NC(buf,pos)=((int16_t)(val))
200#define SIVALS(buf,pos,val) IVALS_NC(buf,pos)=((int32_t)(val))
201
202#endif /* not CAREFUL_ALIGNMENT */
203
204/* now the reverse routines - these are used in nmb packets (mostly) */
205#define SREV(x) ((((x)&0xFF)<<8) | (((x)>>8)&0xFF))
206#define IREV(x) ((SREV(x)<<16) | (SREV((x)>>16)))
207
208#define RSVAL(buf,pos) SREV(SVAL(buf,pos))
209#define RSVALS(buf,pos) SREV(SVALS(buf,pos))
210#define RIVAL(buf,pos) IREV(IVAL(buf,pos))
211#define RIVALS(buf,pos) IREV(IVALS(buf,pos))
212#define RSSVAL(buf,pos,val) SSVAL(buf,pos,SREV(val))
213#define RSSVALS(buf,pos,val) SSVALS(buf,pos,SREV(val))
214#define RSIVAL(buf,pos,val) SIVAL(buf,pos,IREV(val))
215#define RSIVALS(buf,pos,val) SIVALS(buf,pos,IREV(val))
216
217/* Alignment macros. */
218#define ALIGN4(p,base) ((p) + ((4 - (PTR_DIFF((p), (base)) & 3)) & 3))
219#define ALIGN2(p,base) ((p) + ((2 - (PTR_DIFF((p), (base)) & 1)) & 1))
220
221
222/* macros for accessing SMB protocol elements */
223#define VWV(vwv) ((vwv)*2)
224
225/* 64 bit macros */
226#define BVAL(p, ofs) (IVAL(p,ofs) | (((uint64_t)IVAL(p,(ofs)+4)) << 32))
227#define BVALS(p, ofs) ((int64_t)BVAL(p,ofs))
228#define SBVAL(p, ofs, v) (SIVAL(p,ofs,(v)&0xFFFFFFFF), SIVAL(p,(ofs)+4,((uint64_t)(v))>>32))
229#define SBVALS(p, ofs, v) (SBVAL(p,ofs,(uint64_t)v))
230
231#endif /* _BYTEORDER_H */
232