• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/router/samba-3.5.8/docs-xml/Samba3-ByExample/
1<?xml version="1.0" encoding="iso-8859-1"?>
2<!DOCTYPE chapter PUBLIC "-//Samba-Team//DTD DocBook V4.2-Based Variant V1.0//EN" "http://www.samba.org/samba/DTD/samba-doc">
3<chapter id="secure">
4  <title>Secure Office Networking</title>
5
6	<para>
7	Congratulations, your Samba networking skills are developing nicely. You started out
8	with three simple networks in <link linkend="simple"/>, and then in <link linkend="small"/>
9	you designed and built a network that provides a high degree of flexibility, integrity,
10	and dependability. It was enough for the basic needs each was designed to fulfill. In
11	this chapter you address a more complex set of needs. The solution you explore 
12	introduces you to basic features that are specific to Samba-3.
13	</para>
14
15	<para>
16	You should note that a working and secure solution could be implemented using Samba-2.2.x. 
17	In the exercises presented here, you are gradually using more Samba-3-specific features,
18	so caution is advised for anyone who tries to use Samba-2.2.x with the guidance here given. 
19	To avoid confusion, this book is all about Samba-3. Let's get the exercises in this 
20	chapter underway.
21	</para>
22
23<sect1>
24	<title>Introduction</title>
25
26	<para>
27	You have made Mr. Meany a very happy man. Recently he paid you a fat bonus for work 
28	well done. It is one year since the last network upgrade. You have been quite busy. 
29	Two months ago Mr. Meany gave approval to hire Christine Roberson, who has taken over 
30	general network management. Soon she will provide primary user support. You have
31	demonstrated that you can delegate responsibility and can plan and execute according
32	to that plan. Above all, you have shown Mr. Meany that you are a responsible person.
33	Today is a big day. Mr. Meany called you to his office at 9 a.m. for news you never 
34	expected: You are going to take charge of business operations. Mr. Meany 
35	is retiring and has entrusted the business to your capable hands. 
36	</para>
37
38	<para>
39	Mr. Meany may be retiring from this company, but not from work. He is taking the
40	opportunity to develop Abmas Accounting into a larger and more substantial company.
41	He says that it took him many years to learn that there is no future in just running
42	a business. He now realizes there is great personal satisfaction in the creation of
43	career opportunities for people in the local community. He wants to do more for others,
44	as he is doing for you. Today he spent a lot of time talking about his grand plan
45	for growth, which you will deal with in the chapters ahead.
46	</para>
47
48	<para>
49	Over the past year, the growth projections were exceeded. The network has grown to
50	meet the needs of 130 users. Along with growth, the demand for improved services
51	and better functionality has also developed. You are about to make an interim
52	improvement and then hand over all Help desk and network maintenance to Christine.
53	Christine has professional certifications in Microsoft Windows as well as in Linux;
54	she is a hard worker and quite likable. Christine does not want to manage the department
55	(although she manages well). She gains job satisfaction when left to sort things out.
56	Occasionally she wants to work with you on a challenging problem. When you told her
57	about your move, she almost resigned, although she was reassured that a new manager would
58	be hired to run Information Technology, and she would be responsible only for operations.
59	</para>
60
61	<sect2>
62		<title>Assignment Tasks</title>
63
64		<para>
65		You promised the staff Internet services including Web browsing, electronic mail, virus
66		protection, and a company Web site.  Christine is eager to help turn the vision into 
67		reality. Let's see how close you can get to the promises made.
68		</para>
69
70		<para>
71		The network you are about to deliver will service 130 users today. Within a year,
72		Abmas will aquire another company. Mr. Meany claims that within 2 years there will be
73		well over 500 users on the network. You have bought into the big picture, so prepare 
74		for growth.  You have purchased a new server and will implement a new network infrastructure. 
75		</para>
76
77		<para>
78		You have decided to not recycle old network components. The only items that will be
79		carried forward are notebook computers. You offered staff new notebooks, but not 
80		one person wanted the disruption for what was perceived as a marginal update. 
81		You decided to give everyone, even the notebook user, a new desktop computer.
82		</para>
83
84		<para>
85		You procured a DSL Internet connection that provides 1.5 Mb/sec (bidirectional)
86		and a 10 Mb/sec ethernet port. You registered the domain
87		<constant>abmas.us</constant>, and the Internet Service Provider (ISP) is supplying
88		secondary DNS. Information furnished by your ISP is shown in <link linkend="chap4netid"/>.
89		</para>
90
91		<para>
92		It is of paramount priority that under no circumstances will Samba offer
93		service access from an Internet connection. You are paying an ISP to
94		give, as part of its value-added services, full firewall protection for your
95		connection to the outside world. The only services allowed in from
96		the Internet side are the following destination ports: <constant>http/https (ports 
97		80 and 443), email (port 25), DNS (port 53)</constant>. All Internet traffic
98		will be allowed out after network address translation (NAT). No internal IP addresses
99		are permitted through the NAT filter because complete privacy of internal network
100		operations must be assured.
101		</para>
102
103		<table id="chap4netid">
104			<title>Abmas.US ISP Information</title>
105			<tgroup cols="2">
106				<colspec align="left"/>
107				<colspec align="center"/>
108				<thead>
109					<row>
110						<entry>Parameter</entry>
111						<entry>Value</entry>
112					</row>
113				</thead>
114				<tbody>
115					<row>
116						<entry>Server IP Address</entry>
117						<entry>123.45.67.66</entry>
118					</row>
119					<row>
120						<entry>DSL Device IP Address</entry>
121						<entry>123.45.67.65</entry>
122					</row>
123					<row>
124						<entry>Network Address</entry>
125						<entry>123.45.67.64/30</entry>
126					</row>
127					<row>
128						<entry>Gateway Address</entry>
129						<entry>123.45.54.65</entry>
130					</row>
131					<row>
132						<entry>Primary DNS Server</entry>
133						<entry>123.45.54.65</entry>
134					</row>
135					<row>
136						<entry>Secondary DNS Server</entry>
137						<entry>123.45.54.32</entry>
138					</row>
139					<row>
140						<entry>Forwarding DNS Server</entry>
141						<entry>123.45.12.23</entry>
142					</row>
143				</tbody>
144			</tgroup>
145		</table>
146
147		<figure id="ch04net">
148			<title>Abmas Network Topology &smbmdash; 130 Users</title>
149			<imagefile scale="65">chap4-net</imagefile>
150		</figure>
151
152		<para>
153		Christine recommended that desktop systems should be installed from a single cloned
154		master system that has a minimum of locally installed software and loads all software
155		off a central application server. The benefit of having the central application server
156		is that it allows single-point maintenance of all business applications, a more
157		efficient way to manage software.  She further recommended installation of antivirus 
158		software on workstations as well as on the Samba server. Christine knows the dangers
159		of potential virus infection and insists on a comprehensive approach to detective
160		as well as corrective action to protect network operations.
161		</para>
162
163		<para>
164		A significant concern is the problem of managing company growth. Recently, a number 
165		of users had to share a PC while waiting for new machines to arrive. This presented 
166		some problems with desktop computers and software installation into the new users' 
167		desktop profiles.
168		</para>
169		
170	</sect2>
171</sect1>
172
173<sect1>
174	<title>Dissection and Discussion</title>
175
176	<para>
177	Many of the conclusions you draw here are obvious. Some requirements are not very clear
178	or may simply be your means of drawing the most out of Samba-3. Much can be done more simply
179	than you will demonstrate here, but keep in mind that the network must scale to at least 500
180	users. This means that some functionality will be overdesigned for the current 130-user
181	environment.
182	</para>
183
184	<sect2>
185		<title>Technical Issues</title>
186
187		<para>
188		In this exercise we use a 24-bit subnet mask for the two local networks. This,
189		of course, limits our network to a maximum of 253 usable IP addresses. The network
190		address range chosen is one assigned by RFC1918 for private networks.
191		When the number of users on the network begins to approach the limit of usable
192		addresses, it is a good idea to switch to a network address specified in RFC1918
193		in the 172.16.0.0/16 range. This is done in subsequent chapters.
194		</para>
195
196		<para>
197		<indexterm><primary>tdbsam</primary></indexterm>
198		<indexterm><primary>smbpasswd</primary></indexterm>
199		The high growth rates projected are a good reason to use the <constant>tdbsam</constant>
200		passdb backend. The use of <constant>smbpasswd</constant> for the backend may result in
201		performance problems. The <constant>tdbsam</constant> passdb backend offers features that
202		are not available with the older, flat ASCII-based <constant>smbpasswd</constant> database.
203		</para>
204
205		<para>
206		<indexterm><primary>risk</primary></indexterm>
207		The proposed network design uses a single server to act as an Internet services host for
208		electronic mail, Web serving, remote administrative access via SSH, 
209		Samba-based file and print services. This design is often chosen by sites that feel 	
210		they cannot afford or justify the cost or overhead of having separate servers. It must 
211		be realized that if security of this type of server should ever be violated (compromised), 
212		the whole network and all data is at risk. Many sites continue to choose this type 
213		of solution; therefore, this chapter provides detailed coverage of key implementation 
214		aspects.
215		</para>
216
217		<para>
218		Samba will be configured to specifically not operate on the Ethernet interface that is
219		directly connected to the Internet.
220		</para>
221
222		<para>
223		<indexterm><primary>iptables</primary></indexterm>
224		<indexterm><primary>NAT</primary></indexterm>
225		<indexterm><primary>Network Address Translation</primary><see>NAT</see></indexterm>
226		<indexterm><primary>firewall</primary></indexterm>
227		You know that your ISP is providing full firewall services, but you cannot rely on that.
228		Always assume that human error will occur, so be prepared by using Linux firewall facilities
229		based on <command>iptables</command> to effect NAT. Block all
230		incoming traffic except to permitted well-known ports. You must also allow incoming packets
231		to establish outgoing connections. You will permit all internal outgoing requests.
232		</para>
233
234		<para>
235		The configuration of Web serving, Web proxy services, electronic mail, and the details of
236		generic antivirus handling are beyond the scope of this book and therefore are not
237		covered except insofar as this affects Samba-3.
238		</para>
239
240		<para>
241		<indexterm><primary>login</primary></indexterm>
242		Notebook computers are configured to use a network login when in the office and a
243		local account to log in while away from the office. Users store all work done in
244		transit (away from the office) by using a local share for work files. Standard procedures
245		dictate that on completion of the work that necessitates mobile file access, all
246		work files are moved back to secure storage on the office server. Staff is instructed
247		to not carry on any company notebook computer any files that are not absolutely required.
248		This is a preventative measure to protect client information as well as private business
249		records.
250		</para>
251
252		<para>
253		<indexterm><primary>application server</primary></indexterm>
254		All applications are served from the central server from a share called <constant>apps</constant>.
255		Microsoft Office XP Professional and OpenOffice 1.1.0 will be installed using a network 
256		(or administrative) installation. Accounting and financial management software can also
257		be run only from the central application server. Notebook users are provided with
258		locally installed applications on a need-to-have basis only.
259		</para>
260
261		<para>
262		<indexterm><primary>roaming profiles</primary></indexterm>
263		The introduction of roaming profiles support means that users can move between
264		desktop computer systems without constraint while retaining full access to their data.
265		The desktop travels with them as they move.
266		</para>
267
268		<para>
269		<indexterm><primary>DNS</primary></indexterm>
270		The DNS server implementation must now address both internal and external
271		needs. You forward DNS lookups to your ISP-provided server as well as the 
272		<constant>abmas.us</constant> external secondary DNS server.
273		</para>
274
275		<para>
276		<indexterm><primary>dynamic DNS</primary></indexterm>
277		<indexterm><primary>DDNS</primary><see>dynamic DNS</see></indexterm>
278		<indexterm><primary>DHCP server</primary></indexterm>
279		Compared with the DHCP server configuration in <link linkend="small"/>, <link linkend="dhcp01"/>, the 
280		configuration used in this example has to deal with the presence of an Internet connection.
281		The scope set for it ensures that no DHCP services will be offered on the external
282		connection. All printers are configured as DHCP clients so that the DHCP server assigns
283		the printer a fixed IP address by way of the Ethernet interface (MAC) address. One additional
284		feature of this DHCP server configuration file is the inclusion of parameters to allow dynamic
285		DNS (DDNS) operation.
286		</para>
287
288		<para>
289		This is the first implementation that depends on a correctly functioning DNS server.
290		Comprehensive steps are included to provide for a fully functioning DNS server that also
291		is enabled for DDNS operation. This means that DHCP clients can be autoregistered
292		with the DNS server.
293		</para>
294
295		<para>
296		You are taking the opportunity to manually set the netbios name of the Samba server to
297		a name other than what will be automatically resolved. You are doing this to ensure that
298		the machine has the same NetBIOS name on both network segments.
299		</para>
300
301		<para>
302		As in the previous network configuration, printing in this network configuration uses
303		direct raw printing (i.e., no smart printing and no print driver autodownload to Windows
304		clients). Printer drivers are installed on the Windows client manually. This is not
305		a problem because Christine is to install and configure one single workstation and
306		then clone that configuration, using Norton Ghost, to all workstations. Each machine is
307		identical, so this should pose no problem.
308		</para>
309
310		<sect3>
311		<title>Hardware Requirements</title>
312
313		<para>
314		<indexterm><primary>memory requirements</primary></indexterm>
315		This server runs a considerable number of services. From similarly configured Linux
316		installations, the approximate calculated memory requirements are as shown in
317		<link linkend="ch4memoryest"/>.
318
319<example id="ch4memoryest">
320<title>Estimation of Memory Requirements</title>
321<screen>
322Application  Memory per User    130 Users      500 Users
323   Name        (MBytes)       Total MBytes   Total MBytes
324-----------  ---------------  ------------   ------------
325DHCP              2.5               3              3
326DNS              16.0              16             16
327Samba (nmbd)     16.0              16             16
328Samba (winbind)  16.0              16             16
329Samba (smbd)      4.0             520           2000
330Apache           10.0 (20 User)   200            200
331CUPS              3.5              16             32
332Basic OS        256.0             256            256
333                              -------------- --------------
334    Total:                       1043 MBytes    2539 MBytes
335                              -------------- --------------
336</screen>
337</example>
338		You should add a safety margin of at least 50% to these estimates. The minimum 
339		system memory recommended for initial startup 1 GB, but to permit the system
340		to scale to 500 users, it makes sense to provision the machine with 4 GB memory.
341		An initial configuration with only 1 GB memory would lead to early performance complaints
342		as the system load builds up. Given the low cost of memory, it does not make sense to
343		compromise in this area.
344		</para>
345
346		<para>
347		<indexterm><primary>bandwidth calculations</primary></indexterm>
348		Aggregate input/output loads should be considered for sizing network configuration as 
349		well as disk subsystems. For network bandwidth calculations, one would typically use an
350		estimate of 0.1 MB/sec per user. This suggests that 100-Base-T (approx. 10 MB/sec)
351		would deliver below acceptable capacity for the initial user load. It is therefore a good
352		idea to begin with 1 Gb Ethernet cards for the two internal networks, each attached
353		to a 1 Gb Ethernet switch that provides connectivity to an expandable array of 100-Base-T
354		switched ports.
355		</para>
356
357		<para>
358		<indexterm><primary>network segments</primary></indexterm>
359		<indexterm><primary>RAID</primary></indexterm>
360		Considering the choice of 1 Gb Ethernet interfaces for the two local network segments,
361		the aggregate network I/O capacity will be 2100 Mb/sec (about 230 MB/sec), an I/O
362		demand that would require a fast disk storage I/O capability. Peak disk throughput is 
363		limited by the disk subsystem chosen. It is desirable to provide the maximum 
364		I/O bandwidth affordable. If a low-cost solution must be chosen, 
365		3Ware IDE RAID Controllers are a good choice. These controllers can be fitted into a 
366		64-bit, 66 MHz PCI-X slot. They appear to the operating system as a high-speed SCSI 
367		controller that can operate at the peak of the PCI-X bandwidth (approximately 450 MB/sec).
368		Alternative SCSI-based hardware RAID controllers should also be considered. Alternately,
369		it makes sense to purchase well-known, branded hardware that has appropriate performance
370		specifications. As a minimum, one should attempt to provide a disk subsystem that can
371		deliver I/O rates of at least 100 MB/sec. 
372		</para>
373
374		<para>
375		Disk storage requirements may be calculated as shown in <link linkend="ch4diskest"/>.
376
377<example id="ch4diskest">
378<title>Estimation of Disk Storage Requirements</title>
379<screen>
380Corporate Data: 100 MBytes/user per year
381Email Storage:  500 MBytes/user per year
382Applications:   5000 MBytes
383Safety Buffer:  At least 50%
384
385Given 500 Users and 2 years:
386-----------------------------
387        Corporate Data:  2 x 100 x 500 = 100000 MBytes = 100 GBytes
388        Email Storage:   2 x 500 x 500 = 500000 MBytes = 500 GBytes
389        Applications:                      5000 MBytes =   5 GBytes
390                                       ----------------------------
391                             Total:                      605 GBytes
392             Add 50% buffer                              303 GBytes
393                       Recommended Storage:              908 GBytes
394</screen>
395</example>
396		<indexterm><primary>storage capacity</primary></indexterm>
397		The preferred storage capacity should be approximately 1 Terabyte. Use of RAID level 5
398		with two hot spare drives would require an 8-drive by 200 GB capacity per drive array.
399		</para>
400
401		</sect3>
402
403	</sect2>
404
405
406	<sect2>
407		<title>Political Issues</title>
408
409		<para>
410		Your industry is coming under increasing accountability pressures. Increased paranoia
411		is necessary so you can demonstrate that you have acted with due diligence. You must
412		not trust your Internet connection.
413		</para>
414
415		<para>
416		Apart from permitting more efficient management of business applications through use of
417		an application server, your primary reason for the decision to implement this is that it
418		gives you greater control over software licensing.
419		</para>
420
421		<para>
422		<indexterm><primary>Outlook Express</primary></indexterm>
423		You are well aware that the current configuration results in some performance issues
424		as the size of the desktop profile grows. Given that users use Microsoft Outlook
425		Express, you know that the storage implications of the <constant>.PST</constant> file
426		is something that needs to be addressed later.
427		</para>
428
429	</sect2>
430
431</sect1>
432
433<sect1>
434	<title>Implementation</title>
435
436	<para>
437	<link linkend="ch04net"/> demonstrates the overall design of the network that you will implement.
438	</para>
439
440	<para>
441	The information presented here assumes that you are already familiar with many basic steps.
442	As this stands, the details provided already extend well beyond just the necessities of
443	Samba configuration. This decision is deliberate to ensure that key determinants
444	of a successful installation are not overlooked. This is the last case that documents
445	the finite minutiae of DHCP and DNS server configuration. Beyond the information provided
446	here, there are many other good reference books on these subjects.
447	</para>
448
449	<para>
450	The &smb.conf; file has the following noteworthy features:
451	</para>
452
453	<itemizedlist>
454		<listitem><para>
455		The NetBIOS name of the Samba server is set to <constant>DIAMOND</constant>.
456		</para></listitem>
457
458		<listitem><para>
459		The Domain name is set to <constant>PROMISES</constant>.
460		</para></listitem>
461
462		<listitem><para>
463		<indexterm><primary>broadcast messages</primary></indexterm>
464		<indexterm><primary>interfaces</primary></indexterm>
465		<indexterm><primary>bind interfaces only</primary></indexterm>
466		Ethernet interface <constant>eth0</constant> is attached to the Internet connection
467		and is externally exposed. This interface is explicitly not available for Samba to use.
468		Samba listens on this interface for broadcast messages but does not broadcast any
469		information on <constant>eth0</constant>, nor does it accept any connections from it.
470		This is achieved by way of the <parameter>interfaces</parameter> parameter and the
471		<parameter>bind interfaces only</parameter> entry.
472		</para></listitem>
473
474		<listitem><para>
475		<indexterm><primary>passdb backend</primary></indexterm>
476		<indexterm><primary>tdbsam</primary></indexterm>
477		<indexterm><primary>binary database</primary></indexterm>
478		The <parameter>passdb backend</parameter> parameter specifies the creation and use
479		of the <constant>tdbsam</constant> password backend. This is a binary database that
480		has excellent scalability for a large number of user account entries.
481		</para></listitem>
482
483		<listitem><para>
484		<indexterm><primary>WINS serving</primary></indexterm>
485		<indexterm><primary>wins support</primary></indexterm>
486		<indexterm><primary>name resolve order</primary></indexterm>
487		WINS serving is enabled by the <smbconfoption name="wins support">Yes</smbconfoption>,
488		and name resolution is set to use it by means of the
489		<smbconfoption name="name resolve order">wins bcast hosts</smbconfoption> entry.
490		</para></listitem>
491
492		<listitem><para>
493		<indexterm><primary>time server</primary></indexterm>
494		The Samba server is configured for use by Windows clients as a time server.
495		</para></listitem>
496
497		<listitem><para>
498		<indexterm><primary>CUPS</primary></indexterm>
499		<indexterm><primary>printing</primary></indexterm>
500		<indexterm><primary>printcap name</primary></indexterm>
501		Samba is configured to directly interface with CUPS via the direct internal interface
502		that is provided by CUPS libraries. This is achieved with the 
503		<smbconfoption name="printing">CUPS</smbconfoption> as well as the
504		<smbconfoption name="printcap name">CUPS</smbconfoption> entries.
505		</para></listitem>
506
507		<listitem><para>
508		<indexterm><primary>user management</primary></indexterm>
509		<indexterm><primary>group management</primary></indexterm>
510		<indexterm><primary>SRVTOOLS.EXE</primary></indexterm>
511		External interface scripts are provided to enable Samba to interface smoothly to
512		essential operating system functions for user and group management. This is important
513		to enable workstations to join the Domain and is also important so that you can use
514		the Windows NT4 Domain User Manager as well as the Domain Server Manager. These tools
515		are provided as part of the <filename>SRVTOOLS.EXE</filename> toolkit that can be 
516		downloaded from the Microsoft FTP
517		<ulink url="ftp://ftp.microsoft.com/Softlib/MSLFILES/SRVTOOLS.EXE">site</ulink>.
518		</para></listitem>
519
520		<listitem><para>
521		<indexterm><primary>User Mode</primary></indexterm>
522		The &smb.conf; file specifies that the Samba server will operate in (default) <parameter>
523		security = user</parameter> mode<footnote><para>See <emphasis>TOSHARG2</emphasis>, Chapter 3.
524		This is necessary so that Samba can act as a Domain Controller (PDC); see
525		<emphasis>TOSHARG2</emphasis>, Chapter 4, for additional information.</para></footnote>
526		(User Mode).
527		</para></listitem>
528
529		<listitem><para>
530		<indexterm><primary>logon services</primary></indexterm>
531		<indexterm><primary>logon script</primary></indexterm>
532		Domain logon services as well as a Domain logon script are specified. The logon script
533		will be used to add robustness to the overall network configuration.
534		</para></listitem>
535
536		<listitem><para>
537		<indexterm><primary>roaming profiles</primary></indexterm>
538		<indexterm><primary>logon path</primary></indexterm>
539		<indexterm><primary>profile share</primary></indexterm>
540		Roaming profiles are enabled through the specification of the parameter,
541		<smbconfoption name="logon path">\\%L\profiles\%U</smbconfoption>. The value of this parameter translates the
542		<constant>%L</constant> to the name by which the Samba server is called by the client (for this
543		configuration, it translates to the name <constant>DIAMOND</constant>), and the <constant>%U</constant>
544		will translate to the name of the user within the context of the connection made to the profile share.
545		It is the administrator's responsibility to ensure there is a directory in the root of the
546		profile share for each user. This directory must be owned by the user also. An exception to this
547		requirement is when a profile is created for group use.
548		</para></listitem>
549
550		<listitem><para>
551		<indexterm><primary>virus</primary></indexterm>
552		<indexterm><primary>opportunistic locking</primary></indexterm>
553		Precautionary veto is effected for particular Windows file names that have been targeted by 
554		virus-related activity. Additionally, Microsoft Office files are vetoed from opportunistic locking
555		controls. This should help to prevent lock contention-related file access problems.
556		</para></listitem>
557
558		<listitem><para>
559		Every user has a private home directory on the UNIX/Linux host. This is mapped to
560		a network drive that is the same for all users.
561		</para></listitem>
562
563	</itemizedlist>
564
565	<para>
566	The configuration of the server is the most complex so far. The following steps are used:
567	</para>
568
569	<orderedlist numeration="arabic">
570		<listitem><para>
571		Basic System Configuration
572		</para></listitem>
573
574		<listitem><para>
575		Samba Configuration
576		</para></listitem>
577
578		<listitem><para>
579		DHCP and DNS Server Configuration
580		</para></listitem>
581
582		<listitem><para>
583		Printer Configuration
584		</para></listitem>
585
586		<listitem><para>
587		Process Start-up Configuration
588		</para></listitem>
589
590		<listitem><para>
591		Validation
592		</para></listitem>
593
594		<listitem><para>
595		Application Share Configuration
596		</para></listitem>
597
598		<listitem><para>
599		Windows Client Configuration
600		</para></listitem>
601	</orderedlist>
602
603	<para>
604	The following sections cover each step in logical and defined detail.
605	</para>
606
607	<sect2 id="ch4bsc">
608	<title>Basic System Configuration</title>
609
610	<para>
611	<indexterm><primary>SUSE Enterprise Linux Server</primary></indexterm>
612	The preparation in this section assumes that your SUSE Enterprise Linux Server 8.0 system has been
613	freshly installed. It prepares basic files so that the system is ready for comprehensive
614	operation in line with the network diagram shown in <link linkend="ch04net"/>.
615	</para>
616
617	<procedure>
618	<title>Server Configuration Steps</title>
619
620		<step><para>
621		<indexterm><primary>hostname</primary></indexterm>
622		Using the UNIX/Linux system tools, name the server <constant>server.abmas.us</constant>.
623		Verify that your hostname is correctly set by running:
624<screen>
625&rootprompt; uname -n
626server
627</screen>
628		An alternate method to verify the hostname is:
629<screen>
630&rootprompt; hostname -f
631server.abmas.us
632</screen>
633		</para></step>
634
635		<step><para>
636		<indexterm><primary>/etc/hosts</primary></indexterm>
637		<indexterm><primary>localhost</primary></indexterm>
638		Edit your <filename>/etc/hosts</filename> file to include the primary names and addresses
639		of all network interfaces that are on the host server. This is necessary so that during
640		startup the system can resolve all its own names to the IP address prior to
641		startup of the DNS server. An example of entries that should be in the 
642		<filename>/etc/hosts</filename> file is:
643<screen>
644127.0.0.1       localhost
645192.168.1.1     sleeth1.abmas.biz sleeth1 diamond
646192.168.2.1     sleeth2.abmas.biz sleeth2
647123.45.67.66    server.abmas.us server
648</screen>
649		You should check the startup order of your system. If the CUPS print server is started before
650		the DNS server (<command>named</command>), you should also include an entry for the printers
651		in the <filename>/etc/hosts</filename> file, as follows:
652<screen>
653192.168.1.20    qmsa.abmas.biz qmsa
654192.168.1.30    hplj6a.abmas.biz hplj6a
655192.168.2.20    qmsf.abmas.biz qmsf
656192.168.2.30    hplj6f.abmas.biz hplj6f
657</screen>
658		<indexterm><primary>named</primary></indexterm>
659		<indexterm><primary>cupsd</primary></indexterm>
660		<indexterm><primary>daemon</primary></indexterm>
661		The printer entries are not necessary if <command>named</command> is started prior to
662		startup of <command>cupsd</command>, the CUPS daemon.
663		</para></step>
664
665		<step><para>
666		<indexterm><primary>/etc/rc.d/boot.local</primary></indexterm>
667		<indexterm><primary>IP forwarding</primary></indexterm>
668		<indexterm><primary>/proc/sys/net/ipv4/ip_forward</primary></indexterm>
669		The host server is acting as a router between the two internal network segments as well
670		as for all Internet access. This necessitates that IP forwarding be enabled. This can be
671		achieved by adding to the <filename>/etc/rc.d/boot.local</filename> an entry as follows:
672<screen>
673echo 1 > /proc/sys/net/ipv4/ip_forward
674</screen>
675		To ensure that your kernel is capable of IP forwarding during configuration, you may 
676		wish to execute that command manually also. This setting permits the Linux system to 
677		act as a router.<footnote><para>You may want to do the echo command last and include 
678				"0" in the init scripts, since it opens up your network for a short time.</para></footnote>
679		</para></step>
680
681		<step><para>
682		<indexterm><primary>firewall</primary></indexterm>
683		<indexterm><primary>abmas-netfw.sh</primary></indexterm>
684		Installation of a basic firewall and NAT facility is necessary.
685		The following script can be installed in the <filename>/usr/local/sbin</filename>
686		directory. It is executed from the <filename>/etc/rc.d/boot.local</filename> startup
687		script. In your case, this script is called <filename>abmas-netfw.sh</filename>. The
688		script contents are shown in <link linkend="ch4natfw"/>.
689
690<example id="ch4natfw">
691<title>NAT Firewall Configuration Script</title>
692<screen>
693#!/bin/sh
694echo -e "\n\nLoading NAT firewall.\n"
695IPTABLES=/usr/sbin/iptables
696EXTIF="eth0"
697INTIFA="eth1"
698INTIFB="eth2"
699
700/sbin/depmod -a
701/sbin/modprobe ip_tables
702/sbin/modprobe ip_conntrack
703/sbin/modprobe ip_conntrack_ftp
704/sbin/modprobe iptable_nat
705/sbin/modprobe ip_nat_ftp
706$IPTABLES -P INPUT DROP
707$IPTABLES -F INPUT
708$IPTABLES -P OUTPUT ACCEPT
709$IPTABLES -F OUTPUT
710$IPTABLES -P FORWARD DROP
711$IPTABLES -F FORWARD
712
713$IPTABLES -A INPUT -i lo -j ACCEPT
714$IPTABLES -A INPUT -i $INTIFA -j ACCEPT
715$IPTABLES -A INPUT -i $INTIFB -j ACCEPT
716$IPTABLES -A INPUT -i $EXTIF -m state --state ESTABLISHED,RELATED -j ACCEPT
717# Enable incoming traffic for: SSH, SMTP, DNS(tcp), HTTP, HTTPS
718for i in 22 25 53 80 443
719do
720        $IPTABLES -A INPUT -i $EXTIF -p tcp --dport $i  -j ACCEPT
721done
722# Allow DNS(udp)
723$IPTABLES -A INPUT -i $EXTIF -p udp -dport 53  -j ACCEPT
724echo "Allow all connections OUT and only existing and specified ones IN"
725$IPTABLES -A FORWARD -i $EXTIF -o $INTIFA -m state \
726                                  --state ESTABLISHED,RELATED -j ACCEPT
727$IPTABLES -A FORWARD -i $EXTIF -o $INTIFB -m state \
728                                  --state ESTABLISHED,RELATED -j ACCEPT
729$IPTABLES -A FORWARD -i $INTIFA -o $EXTIF -j ACCEPT
730$IPTABLES -A FORWARD -i $INTIFB -o $EXTIF -j ACCEPT
731$IPTABLES -A FORWARD -j LOG
732echo "   Enabling SNAT (MASQUERADE) functionality on $EXTIF"
733$IPTABLES -t nat -A POSTROUTING -o $EXTIF -j MASQUERADE
734echo "1" > /proc/sys/net/ipv4/ip_forward
735echo -e "\nNAT firewall done.\n"
736</screen>
737</example>
738		</para></step>
739
740		<step><para>
741		Execute the following to make the script executable:
742<screen>
743&rootprompt; chmod 755 /usr/local/sbin/abmas-natfw.sh
744</screen>
745		You must now edit <filename>/etc/rc.d/boot.local</filename> to add an entry
746		that runs your <command>abmas-natfw.sh</command> script. The following
747		entry works for you:
748<screen>
749#! /bin/sh
750#
751# Copyright (c) 2002 SUSE Linux AG Nuernberg, Germany. 
752# All rights reserved.
753#
754# Author: Werner Fink, 1996
755#         Burchard Steinbild, 1996
756#
757# /etc/init.d/boot.local
758#
759# script with local commands to be executed from init on system startup
760#
761# Here you should add things that should happen directly after booting
762# before we're going to the first run level.
763#
764/usr/local/sbin/abmas-natfw.sh
765</screen>
766		</para></step>
767	</procedure>
768
769	<para>
770	<indexterm><primary>/etc/hosts</primary></indexterm>
771	The server is now ready for Samba configuration. During the validation step, you remove
772	the entry for the Samba server <constant>diamond</constant> from the <filename>/etc/hosts</filename>
773	file. This is done after you are satisfied that DNS-based name resolution is functioning correctly.
774	</para>
775
776	</sect2>
777
778	<sect2>
779	<title>Samba Configuration</title>
780
781	<para>
782	When you have completed this section, the Samba server is ready for testing and validation;
783	however, testing and validation have to wait until DHCP, DNS, and printing (CUPS) services have 
784	been configured.
785	</para>
786
787	<procedure>
788	<title>Samba Configuration Steps</title>
789
790		<step><para>
791		Install the Samba-3 binary RPM from the Samba-Team FTP site. Assuming that the binary
792		RPM file is called <filename>samba-3.0.20-1.i386.rpm</filename>, one way to install this
793		file is as follows:
794<screen>
795&rootprompt; rpm -Uvh samba-3.0.20-1.i386.rpm
796</screen>
797		This operation must be performed while logged in as the <command>root</command> user.
798		Successful operation is clearly indicated. If this installation should fail for any reason,
799		refer to the operating system manufacturer's documentation for guidance.
800		</para></step>
801
802		<step><para>
803		Install the &smb.conf; file shown in <link linkend="promisnet"/>, <link linkend="promisnetsvca"/>,
804		and <link linkend="promisnetsvcb"/>. Concatenate (join) all three files to make a single &smb.conf;
805		file. The final, fully qualified path for this file should be <filename>/etc/samba/smb.conf</filename>.
806
807<example id="promisnet">
808<title>130 User Network with <emphasis>tdbsam</emphasis> &smbmdash; [globals] Section</title>
809<smbconfblock>
810<smbconfcomment>Global parameters</smbconfcomment>
811<smbconfsection name="[global]"/>
812<smbconfoption name="workgroup">PROMISES</smbconfoption>
813<smbconfoption name="netbios name">DIAMOND</smbconfoption>
814<smbconfoption name="interfaces">eth1, eth2, lo</smbconfoption>
815<smbconfoption name="bind interfaces only">Yes</smbconfoption>
816<smbconfoption name="passdb backend">tdbsam</smbconfoption>
817<smbconfoption name="pam password change">Yes</smbconfoption>
818<smbconfoption name="passwd program">/usr/bin/passwd %u</smbconfoption>
819<smbconfoption name="passwd chat">*New*Password* %n\n *Re-enter*new*password*%n\n *Password*changed*</smbconfoption>
820<smbconfoption name="username map">/etc/samba/smbusers</smbconfoption>
821<smbconfoption name="unix password sync">Yes</smbconfoption>
822<smbconfoption name="log level">1</smbconfoption>
823<smbconfoption name="syslog">0</smbconfoption>
824<smbconfoption name="log file">/var/log/samba/%m</smbconfoption>
825<smbconfoption name="max log size">50</smbconfoption>
826<smbconfoption name="smb ports">139</smbconfoption>
827<smbconfoption name="name resolve order">wins bcast hosts</smbconfoption>
828<smbconfoption name="time server">Yes</smbconfoption>
829<smbconfoption name="printcap name">CUPS</smbconfoption>
830<smbconfoption name="show add printer wizard">No</smbconfoption>
831<smbconfoption name="add user script">/usr/sbin/useradd -m '%u'</smbconfoption>
832<smbconfoption name="delete user script">/usr/sbin/userdel -r '%u'</smbconfoption>
833<smbconfoption name="add group script">/usr/sbin/groupadd '%g'</smbconfoption>
834<smbconfoption name="delete group script">/usr/sbin/groupdel '%g'</smbconfoption>
835<smbconfoption name="add user to group script">/usr/sbin/usermod -G '%g' '%u'</smbconfoption>
836<smbconfoption name="add machine script">/usr/sbin/useradd -s /bin/false -d /tmp '%u'</smbconfoption>
837<smbconfoption name="shutdown script">/var/lib/samba/scripts/shutdown.sh</smbconfoption>
838<smbconfoption name="abort shutdown script">/sbin/shutdown -c</smbconfoption>
839<smbconfoption name="logon script">scripts\logon.bat</smbconfoption>
840<smbconfoption name="logon path">\\%L\profiles\%U</smbconfoption>
841<smbconfoption name="logon drive">X:</smbconfoption>
842<smbconfoption name="logon home">\\%L\%U</smbconfoption>
843<smbconfoption name="domain logons">Yes</smbconfoption>
844<smbconfoption name="preferred master">Yes</smbconfoption>
845<smbconfoption name="wins support">Yes</smbconfoption>
846<smbconfoption name="utmp">Yes</smbconfoption>
847<smbconfoption name="map acl inherit">Yes</smbconfoption>
848<smbconfoption name="printing">cups</smbconfoption>
849<smbconfoption name="cups options">Raw</smbconfoption>
850<smbconfoption name="veto files">/*.eml/*.nws/*.{*}/</smbconfoption>
851<smbconfoption name="veto oplock files">/*.doc/*.xls/*.mdb/</smbconfoption>
852</smbconfblock>
853</example>
854
855<example id="promisnetsvca">
856<title>130 User Network with <emphasis>tdbsam</emphasis> &smbmdash; Services Section Part A</title>
857<smbconfblock>
858<smbconfsection name="[homes]"/>
859<smbconfoption name="comment">Home Directories</smbconfoption>
860<smbconfoption name="valid users">%S</smbconfoption>
861<smbconfoption name="read only">No</smbconfoption>
862<smbconfoption name="browseable">No</smbconfoption>
863
864<smbconfsection name="[printers]"/>
865<smbconfoption name="comment">SMB Print Spool</smbconfoption>
866<smbconfoption name="path">/var/spool/samba</smbconfoption>
867<smbconfoption name="guest ok">Yes</smbconfoption>
868<smbconfoption name="printable">Yes</smbconfoption>
869<smbconfoption name="use client driver">Yes</smbconfoption>
870<smbconfoption name="default devmode">Yes</smbconfoption>
871<smbconfoption name="browseable">No</smbconfoption>
872
873<smbconfsection name="[netlogon]"/>
874<smbconfoption name="comment">Network Logon Service</smbconfoption>
875<smbconfoption name="path">/var/lib/samba/netlogon</smbconfoption>
876<smbconfoption name="guest ok">Yes</smbconfoption>
877<smbconfoption name="locking">No</smbconfoption>
878
879<smbconfsection name="[profiles]"/>
880<smbconfoption name="comment">Profile Share</smbconfoption>
881<smbconfoption name="path">/var/lib/samba/profiles</smbconfoption>
882<smbconfoption name="read only">No</smbconfoption>
883<smbconfoption name="profile acls">Yes</smbconfoption>
884
885<smbconfsection name="[accounts]"/>
886<smbconfoption name="comment">Accounting Files</smbconfoption>
887<smbconfoption name="path">/data/accounts</smbconfoption>
888<smbconfoption name="read only">No</smbconfoption>
889</smbconfblock>
890</example>
891
892<example id="promisnetsvcb">
893<title>130 User Network with <emphasis>tdbsam</emphasis> &smbmdash; Services Section Part B</title>
894<smbconfblock>
895<smbconfsection name="[service]"/>
896<smbconfoption name="comment">Financial Services Files</smbconfoption>
897<smbconfoption name="path">/data/service</smbconfoption>
898<smbconfoption name="read only">No</smbconfoption>
899
900<smbconfsection name="[pidata]"/>
901<smbconfoption name="comment">Property Insurance Files</smbconfoption>
902<smbconfoption name="path">/data/pidata</smbconfoption>
903<smbconfoption name="read only">No</smbconfoption>
904
905<smbconfsection name="[apps]"/>
906<smbconfoption name="comment">Application Files</smbconfoption>
907<smbconfoption name="path">/apps</smbconfoption>
908<smbconfoption name="read only">Yes</smbconfoption>
909<smbconfoption name="admin users">bjordan</smbconfoption>
910</smbconfblock>
911</example>
912		</para></step>
913
914		<step><para>
915	      <indexterm><primary>administrator</primary></indexterm><indexterm>
916		<primary>smbpasswd</primary>
917	      </indexterm>
918		Add the <constant>root</constant> user to the password backend as follows:
919<screen>
920&rootprompt; smbpasswd -a root
921New SMB password: XXXXXXXX
922Retype new SMB password: XXXXXXXX
923&rootprompt;
924</screen>
925		The <constant>root</constant> account is the UNIX equivalent of the Windows Domain Administrator.
926		This account is essential in the regular maintenance of your Samba server. It must never be
927		deleted. If for any reason the account is deleted, you may not be able to recreate this account
928		without considerable trouble.
929		</para></step>
930
931		<step><para>
932		<indexterm><primary>username map</primary></indexterm>
933                Create the username map file to permit the <constant>root</constant> account to be called
934                <constant>Administrator</constant> from the Windows network environment. To do this, create
935                the file <filename>/etc/samba/smbusers</filename> with the following contents:
936<screen>
937####
938# User mapping file
939####
940# File Format
941# -----------
942# Unix_ID = Windows_ID
943#
944# Examples:
945# root = Administrator
946# janes = "Jane Smith"
947# jimbo = Jim Bones
948#
949# Note: If the name contains a space it must be double quoted.
950#       In the example above the name 'jimbo' will be mapped to Windows
951#       user names 'Jim' and 'Bones' because the space was not quoted.
952#######################################################################
953root = Administrator
954####
955# End of File
956####
957</screen>
958		</para></step>
959
960		<step><para>
961		<indexterm><primary>initGrps.sh</primary></indexterm>
962		<indexterm><primary>net</primary><secondary>groupmap</secondary><tertiary>add</tertiary></indexterm>
963		<indexterm><primary>net</primary><secondary>groupmap</secondary><tertiary>modify</tertiary></indexterm>
964		<indexterm><primary>net</primary><secondary>groupmap</secondary><tertiary>list</tertiary></indexterm>
965                Create and map Windows Domain Groups to UNIX groups. A sample script is provided in <link linkend="small"/>,
966                <link linkend="initGrps"/>. Create a file containing this script. We called ours
967                <filename>/etc/samba/initGrps.sh</filename>. Set this file so it can be executed,
968                and then execute the script. Sample output should be as follows:
969
970<example id="ch4initGrps">
971<title>Script to Map Windows NT Groups to UNIX Groups</title>
972<indexterm><primary>initGrps.sh</primary></indexterm>
973<screen>
974#!/bin/bash
975#
976# initGrps.sh
977#
978
979# Create UNIX groups
980groupadd acctsdep
981groupadd finsrvcs
982
983# Map Windows Domain Groups to UNIX groups
984net groupmap add ntgroup="Domain Admins"  unixgroup=root type=d
985net groupmap add ntgroup="Domain Users"   unixgroup=users type=d
986net groupmap add ntgroup="Domain Guests"  unixgroup=nobody type=d
987
988# Add Functional Domain Groups
989net groupmap add ntgroup="Accounts Dept"  unixgroup=acctsdep type=d
990net groupmap add ntgroup="Financial Services" unixgroup=finsrvcs type=d
991net groupmap add ntgroup="Insurance Group"     unixgroup=piops type=d
992
993# Map Windows NT machine local groups to local UNIX groups
994# Mapping of local groups is not necessary and not functional
995# for this installation.
996</screen>
997</example>
998
999<screen>
1000&rootprompt; chmod 755 initGrps.sh
1001&rootprompt; /etc/samba # ./initGrps.sh
1002Updated mapping entry for Domain Admins
1003Updated mapping entry for Domain Users
1004Updated mapping entry for Domain Guests
1005No rid or sid specified, choosing algorithmic mapping
1006Successfully added group Accounts Dept to the mapping db
1007No rid or sid specified, choosing algorithmic mapping
1008Successfully added group Domain Guests to the mapping db
1009
1010&rootprompt; /etc/samba # net groupmap list | sort
1011Account Operators (S-1-5-32-548) -> -1
1012Accounts Dept (S-1-5-21-179504-2437109-488451-2003) -> acctsdep
1013Administrators (S-1-5-32-544) -> -1
1014Backup Operators (S-1-5-32-551) -> -1
1015Domain Admins (S-1-5-21-179504-2437109-488451-512) -> root
1016Domain Guests (S-1-5-21-179504-2437109-488451-514) -> nobody
1017Domain Users (S-1-5-21-179504-2437109-488451-513) -> users
1018Financial Services (S-1-5-21-179504-2437109-488451-2005) -> finsrvcs
1019Guests (S-1-5-32-546) -> -1
1020Power Users (S-1-5-32-547) -> -1
1021Print Operators (S-1-5-32-550) -> -1
1022Replicators (S-1-5-32-552) -> -1
1023System Operators (S-1-5-32-549) -> -1
1024Users (S-1-5-32-545) -> -1
1025</screen>
1026		</para></step>
1027
1028		<step><para>
1029		<indexterm><primary>useradd</primary></indexterm>
1030		<indexterm><primary>adduser</primary></indexterm>
1031		<indexterm><primary>passwd</primary></indexterm>
1032		<indexterm><primary>smbpasswd</primary></indexterm>
1033		<indexterm><primary>/etc/passwd</primary></indexterm>
1034		<indexterm><primary>password</primary><secondary>backend</secondary></indexterm>
1035		<indexterm><primary>user</primary><secondary>management</secondary></indexterm>
1036		There is one preparatory step without which you will not have a working Samba 
1037		network environment. You must add an account for each network user. 
1038                For each user who needs to be given a Windows Domain account, make an entry in the
1039                <filename>/etc/passwd</filename> file as well as in the Samba password backend.
1040                Use the system tool of your choice to create the UNIX system account, and use the Samba
1041                <command>smbpasswd</command> to create a Domain user account.
1042                There are a number of tools for user management under UNIX, such as
1043                <command>useradd</command>, and <command>adduser</command>, as well as a plethora of custom
1044                tools. You also want to create a home directory for each user.
1045		You can do this by executing the following steps for each user:
1046<screen>
1047&rootprompt; useradd -m <parameter>username</parameter>
1048&rootprompt; passwd <parameter>username</parameter>
1049Changing password for <parameter>username</parameter>.
1050New password: XXXXXXXX
1051Re-enter new password: XXXXXXXX
1052Password changed
1053&rootprompt; smbpasswd -a <parameter>username</parameter>
1054New SMB password: XXXXXXXX
1055Retype new SMB password: XXXXXXXX
1056Added user <parameter>username</parameter>.
1057</screen>
1058		You do of course use a valid user login ID in place of <parameter>username</parameter>.
1059		</para></step>
1060
1061		<step><para>
1062		<indexterm><primary>file system</primary><secondary>access control</secondary></indexterm>
1063		<indexterm><primary>file system</primary><secondary>permissions</secondary></indexterm>
1064		<indexterm><primary>group membership</primary></indexterm>
1065                Using the preferred tool for your UNIX system, add each user to the UNIX groups created
1066                previously as necessary. File system access control will be based on UNIX group membership.
1067                </para></step>
1068
1069                <step><para>
1070                Create the directory mount point for the disk subsystem that can be mounted to provide
1071                data storage for company files. In this case the mount point is indicated in the &smb.conf;
1072                file is <filename>/data</filename>. Format the file system as required, and mount the formatted
1073                file system partition using appropriate system tools.
1074                </para></step>
1075
1076                <step><para>
1077		<indexterm><primary>file system</primary><secondary>permissions</secondary></indexterm>
1078                Create the top-level file storage directories for data and applications as follows:
1079<screen>
1080&rootprompt; mkdir -p /data/{accounts,finsrvcs}
1081&rootprompt; mkdir -p /apps
1082&rootprompt; chown -R root:root /data
1083&rootprompt; chown -R root:root /apps
1084&rootprompt; chown -R bjordan:acctsdep /data/accounts
1085&rootprompt; chown -R bjordan:finsrvcs /data/finsrvcs
1086&rootprompt; chmod -R ug+rwxs,o-rwx /data
1087&rootprompt; chmod -R ug+rwx,o+rx-w /apps
1088</screen>
1089                Each department is responsible for creating its own directory structure within the departmental
1090                share. The directory root of the <command>accounts</command> share is <filename>/data/accounts</filename>.
1091                The directory root of the <command>finsvcs</command> share is <filename>/data/finsvcs</filename>.
1092		The <filename>/apps</filename> directory is the root of the <constant>apps</constant> share
1093		that provides the application server infrastructure.
1094		</para></step>
1095
1096		<step><para>
1097		The &smb.conf; file specifies an infrastructure to support roaming profiles and network
1098		logon services. You can now create the file system infrastructure to provide the
1099		locations on disk that these services require. Adequate planning is essential,
1100		since desktop profiles can grow to be quite large. For planning purposes, a minimum of
1101		200 MB of storage should be allowed per user for profile storage. The following
1102		commands create the directory infrastructure needed:
1103<screen>
1104&rootprompt; mkdir -p /var/spool/samba 
1105&rootprompt; mkdir -p /var/lib/samba/{netlogon/scripts,profiles}
1106&rootprompt; chown -R root:root /var/spool/samba
1107&rootprompt; chown -R root:root /var/lib/samba
1108&rootprompt; chmod a+rwxt /var/spool/samba
1109&rootprompt; chmod 2775 /var/lib/samba/profiles
1110&rootprompt; chgrp users /var/lib/samba/profiles
1111</screen>
1112		For each user account that is created on the system, the following commands should be
1113		executed:
1114<screen>
1115&rootprompt; mkdir /var/lib/samba/profiles/'username'
1116&rootprompt; chown 'username':users /var/lib/samba/profiles/'username'
1117&rootprompt; chmod ug+wrx,o+rx,-w /var/lib/samba/profiles/'username'
1118</screen>
1119		</para></step>
1120
1121		<step><para>
1122		<indexterm><primary>logon scrip</primary></indexterm>
1123		<indexterm><primary>unix2dos</primary></indexterm>
1124		<indexterm><primary>dos2unix</primary></indexterm>
1125		Create a logon script. It is important that each line is correctly terminated with
1126		a carriage return and line-feed combination (i.e., DOS encoding). The following procedure
1127		works if the right tools (<constant>unix2dos</constant> and <constant>dos2unix</constant>) are installed.
1128		First, create a file called <filename>/var/lib/samba/netlogon/scripts/logon.bat.unix</filename>
1129		with the following contents:
1130<screen>
1131net time \\diamond /set /yes
1132net use h: /home
1133net use p: \\diamond\apps
1134</screen>
1135		Convert the UNIX file to a DOS file using the <command>unix2dos</command> as shown here:
1136<screen>
1137&rootprompt; unix2dos &lt; /var/lib/samba/netlogon/scripts/logon.bat.unix \
1138	&gt; /var/lib/samba/netlogon/scripts/logon.bat
1139</screen>
1140		</para></step>
1141	</procedure>
1142
1143	</sect2>
1144
1145	<sect2 id="ch4dhcpdns">
1146	<title>Configuration of DHCP and DNS Servers</title>
1147
1148	<para>
1149	DHCP services are a basic component of the entire network client installation. DNS operation is
1150	foundational to Internet access as well as to trouble-free operation of local networking. When
1151	you have completed this section, the server should be ready for solid duty operation.
1152	</para>
1153
1154	<procedure>
1155	<title>DHCP and DNS Server Configuration Steps</title>
1156
1157		<step><para>
1158		<indexterm><primary>/etc/dhcpd.conf</primary></indexterm>
1159		Create a file called <filename>/etc/dhcpd.conf</filename> with the contents as
1160		shown in <link linkend="prom-dhcp"/>.
1161
1162<example id="prom-dhcp">
1163<title>DHCP Server Configuration File &smbmdash; <filename>/etc/dhcpd.conf</filename></title>
1164<screen>
1165# Abmas Accounting Inc.
1166default-lease-time 86400;
1167max-lease-time 172800;
1168default-lease-time 86400;
1169option ntp-servers 192.168.1.1;
1170option domain-name "abmas.biz";
1171option domain-name-servers 192.168.1.1, 192.168.2.1;
1172option netbios-name-servers 192.168.1.1, 192.168.2.1;
1173option netbios-node-type 8;       ### Node type = Hybrid ###
1174ddns-updates on;                  ### Dynamic DNS enabled ###
1175ddns-update-style interim;
1176
1177subnet 192.168.1.0 netmask 255.255.255.0 {
1178        range dynamic-bootp 192.168.1.128 192.168.1.254;
1179        option subnet-mask 255.255.255.0;
1180        option routers 192.168.1.1;
1181        allow unknown-clients;
1182        host qmsa {
1183                hardware ethernet 08:00:46:7a:35:e4;
1184                fixed-address 192.168.1.20;
1185                }
1186        host hplj6a {
1187                hardware ethernet 00:03:47:cb:81:e0;
1188                fixed-address 192.168.1.30;
1189                }
1190        }
1191subnet 192.168.2.0 netmask 255.255.255.0 {
1192        range dynamic-bootp 192.168.2.128 192.168.2.254;
1193        option subnet-mask 255.255.255.0;
1194        option routers 192.168.2.1;
1195        allow unknown-clients;
1196        host qmsf {
1197                hardware ethernet 01:04:31:db:e1:c0;
1198                fixed-address 192.168.1.20;
1199        	}
1200        host hplj6f {
1201                hardware ethernet 00:03:47:cf:83:e2;
1202                fixed-address 192.168.2.30;
1203                }
1204	}
1205subnet 127.0.0.0 netmask 255.0.0.0 {
1206        }
1207subnet 123.45.67.64 netmask 255.255.255.252 {
1208        }
1209</screen>
1210</example>
1211		</para></step>
1212
1213		<step><para>
1214		<indexterm><primary>/etc/named.conf</primary></indexterm>
1215		Create a file called <filename>/etc/named.conf</filename> that has the combined contents
1216		of the <link linkend="ch4namedcfg"/>, <link linkend="ch4namedvarfwd"/>, and
1217		<link linkend="ch4namedvarrev"/> files that are concatenated (merged) in this
1218		specific order.
1219		</para></step>
1220
1221		<step><para>
1222		Create the files shown in their respective directories as shown in <link linkend="namedrscfiles">DNS
1223		(named) Resource Files</link>.
1224
1225			<table id="namedrscfiles">
1226				<title>DNS (named) Resource Files</title>
1227				<tgroup cols="2">
1228					<colspec align="left"/>
1229					<colspec align="left"/>
1230					<thead>
1231						<row>
1232							<entry>Reference</entry>
1233							<entry>File Location</entry>
1234						</row>
1235					</thead>
1236					<tbody>
1237						<row>
1238							<entry><link linkend="loopback"/></entry>
1239							<entry>/var/lib/named/localhost.zone</entry>
1240						</row>
1241						<row>
1242							<entry><link linkend="dnsloopy"/></entry>
1243							<entry>/var/lib/named/127.0.0.zone</entry>
1244						</row>
1245						<row>
1246							<entry><link linkend="roothint"/></entry>
1247							<entry>/var/lib/named/root.hint</entry>
1248						</row>
1249						<row>
1250							<entry><link linkend="abmasbiz"/></entry>
1251							<entry>/var/lib/named/master/abmas.biz.hosts</entry>
1252						</row>
1253						<row>
1254							<entry><link linkend="abmasus"/></entry>
1255							<entry>/var/lib/named/abmas.us.hosts</entry>
1256						</row>
1257						<row>
1258							<entry><link linkend="eth1zone"/></entry>
1259							<entry>/var/lib/named/192.168.1.0.rev</entry>
1260						</row>
1261						<row>
1262							<entry><link linkend="eth2zone"/></entry>
1263							<entry>/var/lib/named/192.168.2.0.rev</entry>
1264						</row>
1265					</tbody>
1266				</tgroup>
1267			</table>
1268
1269<example id="ch4namedcfg">
1270<title>DNS Master Configuration File &smbmdash; <filename>/etc/named.conf</filename> Master Section</title>
1271<indexterm><primary>/etc/named.conf</primary></indexterm>
1272<screen>
1273###
1274# Abmas Biz DNS Control File
1275###
1276# Date: November 15, 2003
1277###
1278options {
1279	directory "/var/lib/named";
1280	forwarders {
1281		123.45.12.23;
1282		};
1283	forward first;
1284	listen-on {
1285		mynet;
1286		};
1287	auth-nxdomain yes;
1288	multiple-cnames yes;
1289	notify no;
1290};
1291
1292zone "." in {
1293	type hint;
1294	file "root.hint";
1295};
1296
1297zone "localhost" in {
1298	type master;
1299	file "localhost.zone";
1300};
1301
1302zone "0.0.127.in-addr.arpa" in {
1303	type master;
1304	file "127.0.0.zone";
1305};
1306
1307acl mynet {
1308	192.168.1.0/24;
1309	192.168.2.0/24;
1310	127.0.0.1;
1311};
1312
1313acl seconddns {
1314	123.45.54.32;
1315};
1316
1317</screen>
1318</example>
1319
1320<example id="ch4namedvarfwd">
1321<title>DNS Master Configuration File &smbmdash; <filename>/etc/named.conf</filename> Forward Lookup Definition Section</title>
1322<screen>
1323zone "abmas.biz" {
1324	type master;
1325	file "/var/lib/named/master/abmas.biz.hosts";
1326	allow-query {
1327		mynet;
1328	};
1329	allow-transfer {
1330		mynet;
1331	};
1332	allow-update {
1333		mynet;
1334	};
1335};
1336
1337zone "abmas.us" {
1338	type master;
1339	file "/var/lib/named/master/abmas.us.hosts";
1340	allow-query {
1341		any;
1342	};
1343	allow-transfer {
1344		seconddns;
1345	};
1346};
1347</screen>
1348</example>
1349
1350<example id="ch4namedvarrev">
1351<title>DNS Master Configuration File &smbmdash; <filename>/etc/named.conf</filename> Reverse Lookup Definition Section</title>
1352<screen>
1353zone "1.168.192.in-addr.arpa" {
1354	type master;
1355	file "/var/lib/named/master/192.168.1.0.rev";
1356	allow-query {
1357		mynet;
1358	};
1359	allow-transfer {
1360		mynet;
1361	};
1362	allow-update {
1363		mynet;
1364	};
1365};
1366
1367zone "2.168.192.in-addr.arpa" {
1368	type master;
1369	file "/var/lib/named/master/192.168.2.0.rev";
1370	allow-query {
1371		mynet;
1372	};
1373	allow-transfer {
1374		mynet;
1375	};
1376	allow-update {
1377		mynet;
1378	};
1379};
1380</screen>
1381</example>
1382
1383<example id="eth1zone">
1384<title>DNS 192.168.1 Reverse Zone File</title>
1385<screen>
1386$ORIGIN .
1387$TTL 38400	; 10 hours 40 minutes
13881.168.192.in-addr.arpa	IN SOA	sleeth.abmas.biz. root.abmas.biz. (
1389				2003021825 ; serial
1390				10800      ; refresh (3 hours)
1391				3600       ; retry (1 hour)
1392				604800     ; expire (1 week)
1393				38400      ; minimum (10 hours 40 minutes)
1394				)
1395			NS	sleeth1.abmas.biz.
1396$ORIGIN 1.168.192.in-addr.arpa.
13971			PTR	sleeth1.abmas.biz.
139820			PTR	qmsa.abmas.biz.
139930			PTR	hplj6a.abmas.biz.
1400</screen>
1401</example>
1402
1403<example id="eth2zone">
1404<title>DNS 192.168.2 Reverse Zone File</title>
1405<screen>
1406$ORIGIN .
1407$TTL 38400	; 10 hours 40 minutes
14082.168.192.in-addr.arpa	IN SOA	sleeth.abmas.biz. root.abmas.biz. (
1409				2003021825 ; serial
1410				10800      ; refresh (3 hours)
1411				3600       ; retry (1 hour)
1412				604800     ; expire (1 week)
1413				38400      ; minimum (10 hours 40 minutes)
1414				)
1415			NS	sleeth2.abmas.biz.
1416$ORIGIN 2.168.192.in-addr.arpa.
14171			PTR	sleeth2.abmas.biz.
141820			PTR	qmsf.abmas.biz.
141930			PTR	hplj6f.abmas.biz.
1420</screen>
1421</example>
1422
1423<example id="abmasbiz">
1424<title>DNS Abmas.biz Forward Zone File</title>
1425<screen>
1426$ORIGIN .
1427$TTL 38400      ; 10 hours 40 minutes
1428abmas.biz       IN SOA  sleeth1.abmas.biz. root.abmas.biz. (
1429                                2003021833 ; serial
1430                                10800      ; refresh (3 hours)
1431                                3600       ; retry (1 hour)
1432                                604800     ; expire (1 week)
1433                                38400      ; minimum (10 hours 40 minutes)
1434                                )
1435                        NS      dns.abmas.biz.
1436                        MX      10 mail.abmas.biz.
1437$ORIGIN abmas.biz.
1438sleeth1                 A       192.168.1.1
1439sleeth2                 A       192.168.2.1
1440qmsa                    A       192.168.1.20
1441hplj6a                  A       192.168.1.30
1442qmsf                    A       192.168.2.20
1443hplj6f                  A       192.168.2.30
1444dns                     CNAME   sleeth1
1445diamond                 CNAME   sleeth1
1446mail                    CNAME   sleeth1
1447</screen>
1448</example>
1449
1450<example id="abmasus">
1451<title>DNS Abmas.us Forward Zone File</title>
1452<screen>
1453$ORIGIN .
1454$TTL 38400      ; 10 hours 40 minutes
1455abmas.us        IN SOA  server.abmas.us. root.abmas.us. (
1456                                2003021833 ; serial
1457                                10800      ; refresh (3 hours)
1458                                3600       ; retry (1 hour)
1459                                604800     ; expire (1 week)
1460                                38400      ; minimum (10 hours 40 minutes)
1461                                )
1462                        NS      dns.abmas.us.
1463                        NS      dns2.abmas.us.
1464                        MX      10 mail.abmas.us.
1465$ORIGIN abmas.us.
1466server                  A       123.45.67.66
1467dns2                    A       123.45.54.32
1468gw                      A       123.45.67.65
1469www                     CNAME   server
1470mail                    CNAME   server
1471dns                     CNAME   server
1472</screen>
1473</example>
1474
1475		</para></step>
1476
1477		<step><para>
1478	      <indexterm><primary>/etc/resolv.conf</primary></indexterm><indexterm>
1479		<primary>name resolution</primary>
1480	      </indexterm>
1481		All DNS name resolution should be handled locally. To ensure that the server is configured
1482		correctly to handle this, edit <filename>/etc/resolv.conf</filename> to have the following
1483		content:
1484<screen>
1485search abmas.us abmas.biz
1486nameserver 127.0.0.1
1487nameserver 123.45.54.23
1488</screen>
1489	      <indexterm>
1490		<primary>DNS server</primary>
1491	      </indexterm>
1492		This instructs the name resolver function (when configured correctly) to ask the DNS server
1493		that is running locally to resolve names to addresses. In the event that the local name server
1494		is not available, ask the name server provided by the ISP. The latter, of course, does not resolve
1495		purely local names to IP addresses.
1496		</para></step>
1497
1498		<step><para>
1499		<indexterm><primary>/etc/nsswitch.conf</primary></indexterm>
1500		The final step is to edit the <filename>/etc/nsswitch.conf</filename> file.
1501		This file controls the operation of the various resolver libraries that are part of the Linux
1502		Glibc libraries. Edit this file so that it contains the following entries:
1503<screen>
1504hosts:      files dns wins
1505</screen>
1506		</para></step>
1507	</procedure>
1508
1509	<para>
1510	The basic DHCP and DNS services are now ready for validation testing. Before you can proceed,
1511	there are a few more steps along the road. First, configure the print spooling and print
1512	processing system.  Then you can configure the server so that all services
1513	start automatically on reboot. You must also manually start all services prior to validation testing.
1514	</para>
1515
1516	</sect2>
1517
1518	<sect2 id="ch4ptrcfg">
1519	<title>Printer Configuration</title>
1520
1521	<para>
1522	Network administrators who are new to CUPS based-printing typically experience some difficulty mastering
1523	its powerful features. The steps outlined in this section are designed to navigate around the distractions
1524	of learning CUPS. Instead of implementing smart features and capabilities, our approach is to use it as a
1525	transparent print queue that performs no filtering, and only minimal handling of each print job that is
1526	submitted to it. In other words, our configuration turns CUPS into a raw-mode print queue. This means that
1527	the correct printer driver must be installed on all clients.
1528	</para>
1529
1530	<procedure>
1531	<title>Printer Configuration Steps</title>
1532
1533		<step><para>
1534		Configure each printer to be a DHCP client, carefully following the manufacturer's guidelines.
1535		</para></step>
1536
1537                <step><para>
1538                Follow the instructions in the printer manufacturer's manuals to permit printing to port 9100.
1539		Use any other port the manufacturer specifies for direct-mode raw printing, and adjust the
1540		port as necessary in the following example commands.
1541                This allows the CUPS spooler to print using raw mode protocols.
1542                <indexterm><primary>CUPS</primary></indexterm>
1543                <indexterm><primary>raw printing</primary></indexterm>
1544                </para></step>
1545
1546                <step><para>
1547	      <indexterm><primary>CUPS</primary><secondary>queue</secondary></indexterm><indexterm>
1548		<primary>lpadmin</primary>
1549	      </indexterm>
1550                Configure the CUPS Print Queues as follows:
1551<screen>
1552&rootprompt; lpadmin -p qmsa -v socket://qmsa.abmas.biz:9100 -E
1553&rootprompt; lpadmin -p hplj6a -v socket://hplj6a.abmas.biz:9100 -E
1554&rootprompt; lpadmin -p qmsf -v socket://qmsf.abmas.biz:9100 -E
1555&rootprompt; lpadmin -p hplj6f -v socket://hplj6f.abmas.biz:9100 -E
1556</screen>
1557                <indexterm><primary>print filter</primary></indexterm>
1558                This creates the necessary print queues with no assigned print filter.
1559                </para></step>
1560
1561	  <step><para><indexterm>
1562		<primary>enable</primary>
1563	      </indexterm>
1564		Print queues may not be enabled at creation. Use <command>lpc stat</command> to check
1565		the status of the print queues and, if necessary, make certain that the queues you have 
1566		just created are enabled by executing the following:
1567<screen>
1568&rootprompt; /usr/bin/enable qmsa
1569&rootprompt; /usr/bin/enable hplj6a
1570&rootprompt; /usr/bin/enable qmsf
1571&rootprompt; /usr/bin/enable hplj6f
1572</screen>
1573		</para></step>
1574
1575	  <step><para><indexterm>
1576		<primary>accept</primary>
1577	      </indexterm>
1578		Even though your print queues may be enabled, it is still possible that they
1579		are not accepting print jobs. A print queue services incoming printing
1580		requests only when configured to do so. Ensure that your print queues are
1581		set to accept incoming jobs by executing the following commands:
1582<screen>
1583&rootprompt; /usr/sbin/accept qmsa
1584&rootprompt; /usr/sbin/accept hplj6a
1585&rootprompt; /usr/sbin/accept qmsf
1586&rootprompt; /usr/sbin/accept hplj6f
1587</screen>
1588		</para></step>
1589
1590                <step><para>
1591                <indexterm><primary>mime type</primary></indexterm>
1592                <indexterm><primary>/etc/mime.convs</primary></indexterm>
1593                <indexterm><primary>application/octet-stream</primary></indexterm>
1594                Edit the file <filename>/etc/cups/mime.convs</filename> to uncomment the line:
1595<screen>
1596application/octet-stream     application/vnd.cups-raw      0     -
1597</screen>
1598                </para></step>
1599
1600                <step><para>
1601                <indexterm><primary>/etc/mime.types</primary></indexterm>
1602                Edit the file <filename>/etc/cups/mime.types</filename> to uncomment the line:
1603<screen>
1604application/octet-stream
1605</screen>
1606                </para></step>
1607
1608		<step><para>
1609		Printing drivers are installed on each network client workstation.
1610		</para></step>
1611	</procedure>
1612
1613	<para>
1614	Note: If the parameter <parameter>cups options = Raw</parameter> is specified in the &smb.conf; file,
1615	the last two steps can be omitted with CUPS version 1.1.18, or later.
1616	</para>
1617
1618	<para>
1619	The UNIX system print queues have been configured and are ready for validation testing.
1620	</para>
1621
1622	</sect2>
1623
1624	<sect2 id="procstart">
1625	<title>Process Startup Configuration</title>
1626
1627	<para>
1628	<indexterm><primary>chkconfig</primary></indexterm>
1629	There are two essential steps to process startup configuration. First, the process
1630	must be configured so that it automatically restarts each time the server
1631	is rebooted. This step involves use of the <command>chkconfig</command> tool that
1632	creates the appropriate symbolic links from the master daemon control file that is
1633	located in the <filename>/etc/rc.d</filename> directory, to the <filename>/etc/rc'x'.d</filename>
1634	directories. Links are created so that when the system run level is changed, the
1635	necessary start or kill script is run.
1636	</para>
1637
1638	<para>
1639	<indexterm><primary>/etc/xinetd.d</primary></indexterm>
1640	<indexterm><primary>inetd</primary></indexterm>
1641	<indexterm><primary>xinetd</primary></indexterm>
1642	<indexterm><primary>chkconfig</primary></indexterm>
1643	<indexterm><primary>super daemon</primary></indexterm>
1644	In the event that a service is not run as a daemon, but via the internetworking
1645	super daemon (<command>inetd</command> or <command>xinetd</command>), then the <command>chkconfig</command>
1646	tool makes the necessary entries in the <filename>/etc/xinetd.d</filename> directory
1647	and sends a hang-up (HUP) signal to the the super daemon, thus forcing it to
1648	re-read its control files.
1649	</para>
1650
1651	<para>
1652	Last, each service must be started to permit system validation to proceed.
1653	</para>
1654
1655	<procedure>
1656                <step><para>
1657                Use the standard system tool to configure each service to restart
1658                automatically at every system reboot. For example,
1659                <indexterm><primary>chkconfig</primary></indexterm>
1660<screen>
1661&rootprompt; chkconfig dhpcd on
1662&rootprompt; chkconfig named on
1663&rootprompt; chkconfig cups on
1664&rootprompt; chkconfig smb on
1665</screen>
1666		</para></step>
1667
1668		<step><para>
1669                <indexterm><primary>starting dhcpd</primary></indexterm>
1670                <indexterm><primary>starting samba</primary></indexterm>
1671                <indexterm><primary>starting CUPS</primary></indexterm>
1672		Now start each service to permit the system to be validated.
1673		Execute each of the following in the sequence shown:
1674
1675<screen>
1676&rootprompt; /etc/rc.d/init.d/dhcpd restart
1677&rootprompt; /etc/rc.d/init.d/named restart
1678&rootprompt; /etc/rc.d/init.d/cups restart
1679&rootprompt; /etc/rc.d/init.d/smb restart
1680</screen>
1681                </para></step>
1682	</procedure>
1683
1684	</sect2>
1685
1686	<sect2 id="ch4valid">
1687	<title>Validation</title>
1688
1689	<para>
1690	<indexterm><primary>validation</primary></indexterm>
1691	Complex networking problems are most often caused by simple things that are poorly or incorrectly
1692	configured. The validation process adopted here should be followed carefully; it is the result of the
1693	experience gained from years of making and correcting the most common mistakes. Shortcuts often lead to basic errors. You should
1694	refrain from taking shortcuts, from making basic assumptions, and from not exercising due process
1695	and diligence in network validation. By thoroughly testing and validating every step in the process
1696	of network installation and configuration, you can save yourself from sleepless nights and restless
1697	days. A well debugged network is a foundation for happy network users and network administrators. 
1698	Later in this book you learn how to make users happier. For now, it is enough to learn to 
1699	validate. Let's get on with it.
1700	</para>
1701
1702		<procedure>
1703		<title>Server Validation Steps</title>
1704
1705			<step><para>
1706			<indexterm><primary>/etc/nsswitch.conf</primary></indexterm>
1707			One of the most important facets of Samba configuration is to ensure that
1708			name resolution functions correctly. You can check name resolution
1709			with a few simple tests. The most basic name resolution is provided from the
1710			<filename>/etc/hosts</filename> file. To test its operation, make a
1711			temporary edit to the <filename>/etc/nsswitch.conf</filename> file. Using
1712			your favorite editor, change the entry for <constant>hosts</constant> to read:
1713<screen>
1714hosts:     files
1715</screen>
1716			When you have saved this file, execute the following command:
1717<screen>
1718&rootprompt; ping diamond
1719PING sleeth1.abmas.biz (192.168.1.1) 56(84) bytes of data.
172064 bytes from sleeth1 (192.168.1.1): icmp_seq=1 ttl=64 time=0.131 ms
172164 bytes from sleeth1 (192.168.1.1): icmp_seq=2 ttl=64 time=0.179 ms
172264 bytes from sleeth1 (192.168.1.1): icmp_seq=3 ttl=64 time=0.192 ms
172364 bytes from sleeth1 (192.168.1.1): icmp_seq=4 ttl=64 time=0.191 ms
1724
1725--- sleeth1.abmas.biz ping statistics ---
17264 packets transmitted, 4 received, 0% packet loss, time 3016ms
1727rtt min/avg/max/mdev = 0.131/0.173/0.192/0.026 ms
1728</screen>
1729			This proves that name resolution via the <filename>/etc/hosts</filename> file
1730			is working.
1731			</para></step>
1732
1733			<step><para>
1734			<indexterm><primary>/etc/nsswitch.conf</primary></indexterm>
1735			So far, your installation is going particularly well. In this step we validate
1736			DNS server and name resolution operation. Using your favorite UNIX system editor,
1737			change the <filename>/etc/nsswitch.conf</filename> file so that the
1738			<constant>hosts</constant> entry reads:
1739<screen>
1740hosts:        dns
1741</screen>
1742			</para></step>
1743
1744			<step><para>
1745			<indexterm><primary>named</primary></indexterm>
1746			Before you test DNS operation, it is a good idea to verify that the DNS server
1747			is running by executing the following:
1748<screen>
1749&rootprompt; ps ax | grep named
1750  437 ?        S      0:00 /sbin/syslogd -a /var/lib/named/dev/log
1751  524 ?        S      0:00 /usr/sbin/named -t /var/lib/named -u named
1752  525 ?        S      0:00 /usr/sbin/named -t /var/lib/named -u named
1753  526 ?        S      0:00 /usr/sbin/named -t /var/lib/named -u named
1754  529 ?        S      0:00 /usr/sbin/named -t /var/lib/named -u named
1755  540 ?        S      0:00 /usr/sbin/named -t /var/lib/named -u named
1756 2552 pts/2    S      0:00 grep named
1757</screen>
1758			This means that we are ready to check DNS operation. Do so by executing:
1759			<indexterm><primary>ping</primary></indexterm>
1760<screen>
1761&rootprompt; ping diamond
1762PING sleeth1.abmas.biz (192.168.1.1) 56(84) bytes of data.
176364 bytes from sleeth1 (192.168.1.1): icmp_seq=1 ttl=64 time=0.156 ms
176464 bytes from sleeth1 (192.168.1.1): icmp_seq=2 ttl=64 time=0.183 ms
1765
1766--- sleeth1.abmas.biz ping statistics ---
17672 packets transmitted, 2 received, 0% packet loss, time 999ms
1768rtt min/avg/max/mdev = 0.156/0.169/0.183/0.018 ms
1769</screen>
1770			You should take a few more steps to validate DNS server operation, as follows:
1771<screen>
1772&rootprompt; host -f diamond.abmas.biz
1773sleeth1.abmas.biz has address 192.168.1.1
1774</screen>
1775			<indexterm><primary>/etc/hosts</primary></indexterm>
1776			You may now remove the entry called <constant>diamond</constant> from the
1777			<filename>/etc/hosts</filename> file. It does not hurt to leave it there,
1778			but its removal reduces the number of administrative steps for this name.
1779			</para></step>
1780
1781			<step><para>
1782			<indexterm><primary>/etc/nsswitch.conf</primary></indexterm>
1783			WINS is a great way to resolve NetBIOS names to their IP address. You can test
1784			the operation of WINS by starting <command>nmbd</command> (manually or by way
1785			of the Samba startup method shown in <link linkend="procstart"/>). You must edit
1786			the <filename>/etc/nsswitch.conf</filename> file so that the <constant>hosts</constant>
1787			entry is as follows:
1788<screen>
1789hosts:        wins
1790</screen>
1791			The next step is to make certain that Samba is running using <command>ps ax | grep mbd</command>.
1792			The <command>nmbd</command> daemon will provide the WINS name resolution service when the
1793			&smb.conf; file <smbconfsection name="global"/> parameter <smbconfoption name="wins
1794			support">Yes</smbconfoption> has been specified.  Having validated that Samba is operational,
1795			excute the following:
1796<screen>
1797&rootprompt; ping diamond
1798PING diamond (192.168.1.1) 56(84) bytes of data.
179964 bytes from 192.168.1.1: icmp_seq=1 ttl=64 time=0.094 ms
180064 bytes from 192.168.1.1: icmp_seq=2 ttl=64 time=0.479 ms
1801</screen>
1802			<indexterm><primary>ping</primary></indexterm>
1803			Now that you can relax with the knowledge that all three major forms of name
1804			resolution to IP address resolution are working, edit the <filename>/etc/nsswitch.conf</filename>
1805			again. This time you add all three forms of name resolution to this file.
1806			Your edited entry for <constant>hosts</constant> should now look like this:
1807<screen>
1808hosts:       files dns wins
1809</screen>
1810			The system is looking good. Let's move on.
1811			</para></step>
1812
1813			<step><para>
1814			It would give you peace of mind to know that the DHCP server is running
1815			and available for service. You can validate DHCP services by running:
1816
1817<screen>
1818&rootprompt; ps ax | grep dhcp
1819 2618 ?        S      0:00 /usr/sbin/dhcpd ...
1820 8180 pts/2    S      0:00 grep dhcp
1821</screen>
1822			This shows that the server is running. The proof of whether or not it is working
1823			comes when you try to add the first DHCP client to the network.
1824			</para></step>
1825
1826			<step><para>
1827			<indexterm><primary>testparm</primary></indexterm>
1828			This is a good point at which to start validating Samba operation. You are 
1829			content that name resolution is working for basic TCP/IP needs. Let's move on.
1830			If your &smb.conf; file has bogus options or parameters, this may cause Samba
1831			to refuse to start. The first step should always be to validate the contents
1832			of this file by running:
1833<screen>
1834&rootprompt; testparm -s
1835Load smb config files from smb.conf
1836Processing section "[homes]"
1837Processing section "[printers]"
1838Processing section "[netlogon]"
1839Processing section "[profiles]"
1840Processing section "[accounts]"
1841Processing section "[service]"
1842Processing section "[apps]"
1843Loaded services file OK.
1844# Global parameters
1845[global]
1846    workgroup = PROMISES
1847    netbios name = DIAMOND
1848    interfaces = eth1, eth2, lo
1849    bind interfaces only = Yes
1850    passdb backend = tdbsam
1851    pam password change = Yes
1852    passwd program = /usr/bin/passwd '%u'
1853    passwd chat = *New*Password* %n\n \
1854             *Re-enter*new*password* %n\n *Password*changed*
1855    username map = /etc/samba/smbusers
1856    unix password sync = Yes
1857    log level = 1
1858    syslog = 0
1859    log file = /var/log/samba/%m
1860    max log size = 50
1861    smb ports = 139
1862    name resolve order = wins bcast hosts
1863    time server = Yes
1864    printcap name = CUPS
1865    show add printer wizard = No
1866    add user script = /usr/sbin/useradd -m '%u'
1867    delete user script = /usr/sbin/userdel -r '%u'
1868    add group script = /usr/sbin/groupadd '%g'
1869    delete group script = /usr/sbin/groupdel '%g'
1870    add user to group script = /usr/sbin/usermod -G '%g' '%u'
1871    add machine script = /usr/sbin/useradd \
1872                              -s /bin/false -d /dev/null '%u'
1873    shutdown script = /var/lib/samba/scripts/shutdown.sh
1874    abort shutdown script = /sbin/shutdown -c
1875    logon script = scripts\logon.bat
1876    logon path = \\%L\profiles\%U
1877    logon drive = X:
1878    logon home = \\%L\%U
1879    domain logons = Yes
1880    preferred master = Yes
1881    wins support = Yes
1882    utmp = Yes
1883    winbind use default domain = Yes
1884    map acl inherit = Yes
1885    cups options = Raw
1886    veto files = /*.eml/*.nws/*.{*}/
1887    veto oplock files = /*.doc/*.xls/*.mdb/
1888
1889[homes]
1890    comment = Home Directories
1891    valid users = %S
1892    read only = No
1893    browseable = No
1894...
1895### Remainder cut to save space ###
1896</screen>
1897			Clear away all errors before proceeding.
1898			</para></step>
1899
1900			<step><para>
1901			<indexterm><primary>check samba daemons</primary></indexterm>
1902			<indexterm><primary>smbd</primary></indexterm>
1903			<indexterm><primary>nmbd</primary></indexterm>
1904			<indexterm><primary>winbindd</primary></indexterm>
1905			Check that the Samba server is running:
1906<screen>
1907&rootprompt; ps ax | grep mbd
190814244 ?        S      0:00 /usr/sbin/nmbd -D
190914245 ?        S      0:00 /usr/sbin/nmbd -D
191014290 ?        S      0:00 /usr/sbin/smbd -D
1911
1912$rootprompt; ps ax | grep winbind
191314293 ?        S     0:00 /usr/sbin/winbindd -D
191414295 ?        S     0:00 /usr/sbin/winbindd -D
1915</screen>
1916			The <command>winbindd</command> daemon is running in split mode (normal), so there are also
1917			two instances<footnote><para>For more information regarding winbindd, see <emphasis>TOSHARG2</emphasis>, 
1918			Chapter 23, Section 23.3. The single instance of <command>smbd</command> is normal. One additional
1919			<command>smbd</command> slave process is spawned for each SMB/CIFS client 
1920			connection.</para></footnote> of it.
1921			</para></step>
1922	
1923			<step><para>
1924			<indexterm><primary>anonymous
1925		  connection</primary></indexterm>
1926	      <indexterm>
1927		<primary>smbclient</primary>
1928	      </indexterm>
1929			Check that an anonymous connection can be made to the Samba server:
1930<screen>
1931&rootprompt; smbclient -L localhost -U%
1932
1933        Sharename      Type      Comment
1934        ---------      ----      -------
1935        IPC$           IPC       IPC Service (Samba 3.0.20)
1936        netlogon       Disk      Network Logon Service
1937        profiles       Disk      Profile Share
1938        accounts       Disk      Accounting Files
1939        service        Disk      Financial Services Files
1940        apps           Disk      Application Files
1941        ADMIN$         IPC       IPC Service (Samba 3.0.20)
1942        hplj6a         Printer   hplj6a
1943        hplj6f         Printer   hplj6f
1944        qmsa           Printer   qmsa
1945        qmsf           Printer   qmsf
1946
1947        Server               Comment
1948        ---------            -------
1949        DIAMOND              Samba 3.0.20
1950
1951        Workgroup            Master
1952        ---------            -------
1953        PROMISES             DIAMOND
1954</screen>
1955			This demonstrates that an anonymous listing of shares can be obtained. This is the equivalent
1956			of browsing the server from a Windows client to obtain a list of shares on the server.
1957			The <constant>-U%</constant> argument means to send a <constant>NULL</constant> username and
1958			a <constant>NULL</constant> password.
1959			</para></step>
1960
1961			<step><para>
1962			<indexterm><primary>dhcp client validation</primary></indexterm>
1963			<indexterm><primary>printer validation</primary></indexterm>
1964			<indexterm><primary>arp</primary></indexterm>
1965			Verify that each printer has the IP address assigned in the DHCP server configuration file.
1966			The easiest way to do this is to ping the printer name. Immediately after the ping response
1967			has been received, execute <command>arp -a</command> to find the MAC address of the printer
1968			that has responded. Now you can compare the IP address and the MAC address of the printer
1969			with the configuration information in the <filename>/etc/dhcpd.conf</filename> file. They
1970			should, of course, match. For example,
1971<screen>
1972&rootprompt; ping hplj6
1973PING hplj6a (192.168.1.30) 56(84) bytes of data.
197464 bytes from hplj6a (192.168.1.30): icmp_seq=1 ttl=64 time=0.113 ms
1975
1976&rootprompt; arp -a
1977hplj6a (192.168.1.30) at 00:03:47:CB:81:E0 [ether] on eth0
1978</screen>
1979	      <indexterm>
1980		<primary>/etc/dhcpd.conf</primary>
1981	      </indexterm>
1982			The MAC address <constant>00:03:47:CB:81:E0</constant> matches that specified for the
1983			IP address from which the printer has responded and with the entry for it in the
1984			<filename>/etc/dhcpd.conf</filename> file. Repeat this for each printer configured.
1985			</para></step>
1986	
1987			<step><para>
1988			<indexterm><primary>authenticated connection</primary></indexterm>
1989			Make an authenticated connection to the server using the <command>smbclient</command> tool:
1990<screen>
1991&rootprompt; smbclient //diamond/accounts -U gholmes
1992Password: XXXXXXX
1993smb: \> dir
1994  .                          D        0  Thu Nov 27 15:07:09 2003
1995  ..                         D        0  Sat Nov 15 17:40:50 2003
1996  zakadmin.exe                   161424  Thu Nov 27 15:06:52 2003
1997  zak.exe                       6066384  Thu Nov 27 15:06:52 2003
1998  dhcpd.conf                       1256  Thu Nov 27 15:06:52 2003
1999  smb.conf                         2131  Thu Nov 27 15:06:52 2003
2000  initGrps.sh                A     1089  Thu Nov 27 15:06:52 2003
2001  POLICY.EXE                      86542  Thu Nov 27 15:06:52 2003
2002
2003                55974 blocks of size 65536. 33968 blocks available
2004smb: \> q
2005</screen>
2006			</para></step>
2007
2008			<step><para>
2009			<indexterm><primary>nmap</primary></indexterm>
2010			Your new server is connected to an Internet-accessible connection. Before you start
2011			your firewall, you should run a port scanner against your system. You should repeat that
2012			after the firewall has been started. This helps you understand to what extent the
2013			server may be vulnerable to external attack. One way you can do this is by using an
2014			external service, such as the <ulink url="http://www.dslreports.com/scan">DSL Reports</ulink> 
2015			tools. Alternately, if you can gain root-level access to a remote
2016			UNIX/Linux system that has the <command>nmap</command> tool, you can run the following:
2017<screen>
2018&rootprompt; nmap -v -sT server.abmas.us
2019
2020Starting nmap V. 3.00 ( www.insecure.org/nmap/ )
2021Host server.abmas.us (123.45.67.66) appears to be up ... good.
2022Initiating Connect() Scan against server.abmas.us (123.45.67.66)
2023Adding open port 6000/tcp
2024Adding open port 873/tcp
2025Adding open port 445/tcp
2026Adding open port 10000/tcp
2027Adding open port 901/tcp
2028Adding open port 631/tcp
2029Adding open port 25/tcp
2030Adding open port 111/tcp
2031Adding open port 32770/tcp
2032Adding open port 3128/tcp
2033Adding open port 53/tcp
2034Adding open port 80/tcp
2035Adding open port 443/tcp
2036Adding open port 139/tcp
2037Adding open port 22/tcp
2038The Connect() Scan took 0 seconds to scan 1601 ports.
2039Interesting ports on server.abmas.us (123.45.67.66):
2040(The 1587 ports scanned but not shown below are in state: closed)
2041Port       State       Service
204222/tcp     open        ssh
204325/tcp     open        smtp
204453/tcp     open        domain
204580/tcp     open        http
2046111/tcp    open        sunrpc
2047139/tcp    open        netbios-ssn
2048443/tcp    open        https
2049445/tcp    open        microsoft-ds
2050631/tcp    open        ipp
2051873/tcp    open        rsync
2052901/tcp    open        samba-swat
20533128/tcp   open        squid-http
20546000/tcp   open        X11
205510000/tcp  open        snet-sensor-mgmt
205632770/tcp  open        sometimes-rpc3
2057
2058Nmap run completed -- 1 IP address (1 host up) scanned in 1 second
2059</screen>
2060			The above scan was run before the external interface was locked down with the NAT-firewall
2061			script you created above. The following results are obtained after the firewall rules
2062			have been put into place:
2063<screen>
2064&rootprompt; nmap -v -sT server.abmas.us
2065
2066Starting nmap V. 3.00 ( www.insecure.org/nmap/ )
2067Host server.abmas.us (123.45.67.66) appears to be up ... good.
2068Initiating Connect() Scan against server.abmas.us (123.45.67.66)
2069Adding open port 53/tcp
2070Adding open port 22/tcp
2071The Connect() Scan took 168 seconds to scan 1601 ports.
2072Interesting ports on server.abmas.us (123.45.67.66):
2073(The 1593 ports scanned but not shown below are in state: filtered)
2074Port       State       Service
207522/tcp     open        ssh
207625/tcp     closed      smtp
207753/tcp     open        domain
207880/tcp     closed      http
2079443/tcp    closed      https
2080
2081Nmap run completed -- 1 IP address (1 host up) scanned in 168 seconds
2082</screen>
2083			</para></step>
2084	
2085		</procedure>
2086
2087	</sect2>
2088
2089	<sect2 id="ch4appscfg">
2090	<title>Application Share Configuration</title>
2091
2092	<para>
2093	<indexterm><primary>application server</primary></indexterm>
2094	<indexterm><primary>administrative installation</primary></indexterm>
2095	The use of an application server is a key mechanism by which desktop administration overheads
2096	can be reduced. Check the application manual for your software to identify how best to
2097	create an administrative installation.
2098	</para>
2099
2100	<para>
2101	Some Windows software will only run locally on the desktop computer. Such software
2102	is typically not suited for administrative installation. Administratively installed software
2103	permits one or more of the following installation choices:
2104	</para>
2105
2106	<itemizedlist>
2107		<listitem><para>
2108		Install software fully onto a workstation, storing data files on the same workstation.
2109		</para></listitem>
2110
2111		<listitem><para>
2112		Install software fully onto a workstation with central network data file storage.
2113		</para></listitem>
2114
2115		<listitem><para>
2116		Install software to run off a central application server with data files stored
2117		on the local workstation. This is often called a minimum installation, or a
2118		network client installation.
2119		</para></listitem>
2120
2121		<listitem><para>
2122		Install software to run off a central application server with data files stored
2123		on a central network share. This type of installation often prevents storage
2124		of work files on the local workstation.
2125		</para></listitem>
2126	</itemizedlist>
2127
2128	<para>
2129	<indexterm><primary></primary></indexterm>
2130	A common application deployed in this environment is an office suite.
2131	Enterprise editions of Microsoft Office XP Professional can be administratively installed
2132	by launching the installation from a command shell. The command that achieves this is
2133	<command>setup /a</command>. It results in a set of prompts through which various
2134	installation choices can be made. Refer to the Microsoft Office Resource SDK and Resource
2135	Kit for more information regarding this mode of installation of MS Office XP Professional.
2136	The full administrative installation of MS Office XP Professional requires approximately
2137	650 MB of disk space.
2138	</para>
2139
2140	<para>
2141	When the MS Office XP Professional product has been installed to the administrative network
2142	share, the product can be installed onto a workstation by executing the normal setup program.
2143	The installation process now provides a choice to either perform a minimum installation
2144	or a full local installation. A full local installation takes over 100 MB of disk space.
2145	A network workstation (minimum) installation requires typically 10 MB to 15 MB of
2146	local disk space. In the latter case, when the applications are used, they load over the network.
2147	</para>
2148
2149	<para>
2150	<indexterm><primary>Service Packs</primary></indexterm>
2151	<indexterm><primary>Microsoft Office</primary></indexterm>
2152	Microsoft Office Service Packs can be unpacked to update an administrative share. This makes
2153	it possible to update MS Office XP Professional for all users from a single installation
2154	of the service pack and generally circumvents the need to run updates on each network
2155	Windows client.
2156	</para>	
2157
2158	<para>
2159	The default location for MS Office XP Professional data files can be set through registry
2160	editing or by way of configuration options inside each Office XP Professional application.
2161	</para>
2162
2163	<para>
2164	<indexterm><primary>OpenOffice</primary></indexterm>
2165	OpenOffice.Org OpenOffice Version 1.1.0 can be installed locally. It can also
2166	be installed to run off a network share. The latter is a most desirable solution for office-bound 
2167	network users and for administrative staff alike. It permits quick and easy updates
2168	to be rolled out to all users with a minimum of disruption and with maximum flexibility.
2169	</para>
2170
2171	<para>
2172	The process for installation of administrative shared OpenOffice involves download of the
2173	distribution ZIP file, followed by extraction of the ZIP file into a temporary disk area.
2174	When fully extracted using the unzipping tool of your choosing, change into the Windows
2175	installation files directory then execute <command>setup -net</command>. You are
2176	prompted on screen for the target installation location. This is the administrative
2177	share point. The full administrative OpenOffice share takes approximately 150 MB of disk
2178	space.
2179	</para>
2180
2181		<sect3>
2182		<title>Comments Regarding Software Terms of Use</title>
2183			<para>
2184			Many single-user products can be installed into an administrative share, but
2185			personal versions of products such as Microsoft Office XP Professional do not permit this. 
2186			Many people do not like terms of use typical with commercial products, so a few comments
2187			regarding software licensing seem important.
2188			</para>
2189
2190			<para>
2191			Please do not use an administrative installation of proprietary and commercially licensed 
2192			software products to violate the copyright holders' property. All software is licensed,
2193			particularly software that is licensed for use free of charge. All software is the property
2194			of the copyright holder unless the author and/or copyright holder has explicitly disavowed
2195			ownership and has placed the software into the public domain.
2196			</para>
2197
2198			<para>
2199			Software that is under the GNU General Public License, like proprietary software, is 
2200			licensed in a way that restricts use. For example, if you modify GPL software and then
2201			distribute the binary version of your modifications, you must offer to provide the source
2202			code as well. This restriction is designed to maintain the momentum
2203			of the diffusion of technology and to protect against the withholding of innovations.
2204			</para>
2205
2206			<para>
2207			Commercial and proprietary software generally restrict use to those who have paid the
2208			license fees and who comply with the licensee's terms of use. Software that is released
2209			under the GNU General Public License is restricted to particular terms and conditions
2210			also. Whatever the licensing terms may be, if you do not approve of the terms of use,
2211			please do not use the software.
2212			</para>
2213
2214			<para>
2215			<indexterm><primary>GPL</primary></indexterm>
2216			Samba is provided under the terms of the GNU GPL Version 2, a copy of which is provided
2217			with the source code.
2218			</para>
2219		</sect3>
2220
2221	</sect2>
2222
2223	<sect2 id="ch4wincfg">
2224	<title>Windows Client Configuration</title>
2225
2226	<para>
2227	Christine needs to roll out 130 new desktop systems. There is no doubt that she also needs
2228	to reinstall many of the notebook computers that will be recycled for use with the new network 
2229	configuration. The smartest way to handle the challenge of the roll-out program is to build
2230	a staged system for each type of target machine, and then use an image replication tool such as Norton
2231	Ghost (enterprise edition) to replicate the staged machine to its target desktops. The same can
2232	be done with notebook computers as long as they are identical or sufficiently similar.
2233	</para>
2234
2235	<procedure id="sbewinclntprep">
2236	<title>Windows Client Configuration Procedure</title>
2237
2238		<step><para>
2239		<indexterm><primary>WINS</primary></indexterm>
2240		<indexterm><primary>DHCP</primary></indexterm>
2241		Install MS Windows XP Professional. During installation, configure the client to use DHCP for 
2242		TCP/IP protocol configuration. DHCP configures all Windows clients to use the WINS Server
2243		address that has been defined for the local subnet.
2244		</para></step>
2245
2246		<step><para>
2247		Join the Windows Domain <constant>PROMISES</constant>. Use the Domain Administrator
2248		username <constant>root</constant> and the SMB password you assigned to this account.
2249		A detailed step-by-step procedure for joining a Windows 200x/XP Professional client to
2250		a Windows Domain is given in <link linkend="appendix"/>, <link linkend="domjoin"/>. 
2251		Reboot the machine as prompted and then log on using the Domain Administrator account
2252		(<constant>root</constant>).
2253		</para></step>
2254
2255		<step><para>
2256		Verify <constant>DIAMOND</constant> is visible in <guimenu>My Network Places</guimenu>, 
2257		that it is possible to connect to it and see the shares <guimenuitem>accounts</guimenuitem>,
2258		<guimenuitem>apps</guimenuitem>, and <guimenuitem>finsvcs</guimenuitem>, and that it is
2259		possible to open each share to reveal its contents.
2260		</para></step>
2261
2262		<step><para>
2263		Create a drive mapping to the <constant>apps</constant> share on the server <constant>DIAMOND</constant>.
2264		</para></step>
2265
2266		<step><para>
2267		Perform an administrative installation of each application to be used. Select the options
2268		that you wish to use. Of course, you can choose to run applications over the network, correct?
2269		</para></step>
2270
2271		<step><para>
2272		Now install all applications to be installed locally. Typical tools include Adobe Acrobat,
2273		NTP-based time synchronization software, drivers for specific local devices such as fingerprint
2274		scanners, and the like. Probably the most significant application for local installation
2275		is antivirus software.
2276		</para></step>
2277
2278		<step><para>
2279		Now install all four printers onto the staging system. The printers you install
2280		include the accounting department HP LaserJet 6 and Minolta QMS Magicolor printers. You will
2281		also configure identical printers that are located in the financial services department.
2282		Install printers on each machine following the steps shown in the Windows client printer
2283		preparation procedure below.
2284		</para></step>
2285
2286		<step><para>
2287		<indexterm><primary>defragmentation</primary></indexterm>
2288		When you are satisfied that the staging systems are complete, use the appropriate procedure to
2289		remove the client from the domain. Reboot the system and then log on as the local administrator
2290		and clean out all temporary files stored on the system. Before shutting down, use the disk
2291		defragmentation tool so that the file system is in optimal condition before replication.
2292		</para></step>
2293
2294		<step><para>
2295		Boot the workstation using the Norton (Symantec) Ghosting diskette (or CD-ROM) and image the
2296		machine to a network share on the server.
2297		</para></step>
2298
2299		<step><para>
2300		<indexterm><primary>Windows security identifier</primary><see>SID</see></indexterm>
2301		<indexterm><primary>SID</primary></indexterm>
2302		You may now replicate the image to the target machines using the appropriate Norton Ghost 
2303		procedure. Make sure to use the procedure that ensures each machine has a unique
2304		Windows security identifier (SID). When the installation of the disk image has completed, boot the PC. 
2305		</para></step>
2306
2307		<step><para>
2308		Log on to the machine as the local Administrator (the only option), and join the machine to
2309		the Domain, following the procedure set out in <link linkend="appendix"/>, <link linkend="domjoin"/>. The system is now 
2310		ready for the user to log on, provided you have created a network logon account for that 
2311		user, of course.
2312		</para></step>
2313
2314		<step><para>
2315		Instruct all users to log on to the workstation using their assigned username and password.
2316		</para></step>
2317	</procedure>
2318
2319	<procedure id="sbewinclntptrprep">
2320	<title>Windows Client Printer Preparation Procedure</title>
2321
2322		<step><para>
2323		Click <menuchoice>
2324			<guimenu>Start</guimenu>
2325			<guimenuitem>Settings</guimenuitem>
2326			<guimenuitem>Printers</guimenuitem>
2327			<guiicon>Add Printer</guiicon>
2328			<guibutton>Next</guibutton>
2329			</menuchoice>. Do not click <guimenuitem>Network printer</guimenuitem>.
2330			Ensure that <guimenuitem>Local printer</guimenuitem> is selected.
2331		</para></step>
2332
2333		<step><para>
2334		Click <guibutton>Next</guibutton>. In the
2335		<guimenuitem>Manufacturer:</guimenuitem> panel, select <constant>HP</constant>.
2336		In the <guimenuitem>Printers:</guimenuitem> panel, select the printer called
2337		<constant>HP LaserJet 6</constant>. Click <guibutton>Next</guibutton>.
2338		</para></step>
2339
2340		<step><para>
2341		In the <guimenuitem>Available ports:</guimenuitem> panel, select
2342		<constant>FILE:</constant>. Accept the default printer name by clicking
2343		<guibutton>Next</guibutton>. When asked, <quote>Would you like to print a
2344		test page?,</quote> click <guimenuitem>No</guimenuitem>. Click
2345		<guibutton>Finish</guibutton>.
2346		</para></step>
2347
2348		<step><para>
2349		You may be prompted for the name of a file to print to. If so, close the
2350		dialog panel. Right-click <menuchoice>
2351			<guiicon>HP LaserJet 6</guiicon>
2352			<guimenuitem>Properties</guimenuitem>
2353			<guisubmenu>Details (Tab)</guisubmenu>
2354			<guimenuitem>Add Port</guimenuitem>
2355			</menuchoice>.
2356		</para></step>
2357
2358		<step><para>
2359		In the <guimenuitem>Network</guimenuitem> panel, enter the name of
2360		the print queue on the Samba server as follows: <constant>\\DIAMOND\hplj6a</constant>.
2361		Click <menuchoice> 
2362			<guibutton>OK</guibutton>
2363			<guibutton>OK</guibutton>
2364			</menuchoice> to complete the installation.
2365		</para></step>
2366
2367		<step><para>
2368		Repeat the printer installation steps above for both HP LaserJet 6 printers
2369		as well as for both QMS Magicolor laser printers.
2370		</para></step>
2371	</procedure>
2372
2373	</sect2>
2374
2375	<sect2>
2376	<title>Key Points Learned</title>
2377
2378		<para>
2379		How do you feel? You have built a capable network, a truly ambitious project.
2380		Future network updates can be handled by
2381		your staff. You must be a satisfied manager. Let's review the achievements.
2382		</para>
2383
2384		<itemizedlist>
2385			<listitem><para>
2386			A simple firewall has been configured to protect the server in the event that
2387			the ISP firewall service should fail.
2388			</para></listitem>
2389
2390			<listitem><para>
2391			The Samba configuration uses measures to ensure that only local network users
2392			can connect to SMB/CIFS services.
2393			</para></listitem>
2394
2395			<listitem><para>
2396			Samba uses the new <constant>tdbsam</constant> passdb backend facility.
2397			Considerable complexity was added to Samba functionality.
2398			</para></listitem>
2399
2400			<listitem><para>
2401			A DHCP server was configured to implement dynamic DNS (DDNS) updates to the DNS
2402			server.
2403			</para></listitem>
2404
2405			<listitem><para>
2406			The DNS server was configured to permit DDNS only for local network clients. This
2407			server also provides primary DNS services for the company Internet presence.
2408			</para></listitem>
2409
2410			<listitem><para>
2411			You introduced an application server as well as the concept of cloning a Windows
2412			client in order to effect improved standardization of desktops and to reduce
2413			the costs of network management.
2414			</para></listitem>
2415		</itemizedlist>
2416
2417	</sect2>
2418
2419</sect1>
2420
2421<sect1>
2422	<title>Questions and Answers</title>
2423
2424	<para>
2425	</para>
2426
2427	<qandaset defaultlable="missed01" type="number">
2428	<qandaentry>
2429	<question>
2430
2431		<para>
2432		What is the maximum number of account entries that the <parameter>tdbsam</parameter>
2433		passdb backend can handle?
2434		</para>
2435
2436	</question>
2437	<answer>
2438
2439		<para>
2440		The tdb data structure and support system can handle more entries than the number of
2441		accounts that are possible on most UNIX systems. A practical limit would come into
2442		play long before a performance boundary would be anticipated. That practical limit
2443		is controlled by the nature of Windows networking. There are few Windows file and
2444		print servers that can handle more than a few hundred concurrent client connections.
2445		The key limiting factors that predicate offloading of services to additional servers
2446		are memory capacity, the number of CPUs, network bandwidth, and disk I/O limitations.
2447		All of these are readily exhausted by just a few hundred concurrent active users.
2448		Such bottlenecks can best be removed by segmentation of the network (distributing
2449		network load across multiple networks).
2450		</para>
2451
2452		<para>
2453		As the network grows, it becomes necessary to provide additional authentication
2454		servers (domain controllers).  The tdbsam is limited to a single machine and cannot
2455		be reliably replicated.  This means that practical limits on network design dictate
2456		the point at which a distributed passdb backend is required; at this time, there is
2457		no real alternative other than ldapsam (LDAP).
2458		</para>
2459
2460		<para>
2461		The guideline provided in <emphasis>TOSHARG2</emphasis>, Chapter 10, Section 10.1.2,
2462		is to limit the number of accounts in the tdbsam backend to 250. This is the point
2463		at which most networks tend to want backup domain controllers (BDCs). Samba-3 does
2464		not provide a mechanism for replicating tdbsam data so it can be used by a BDC. The
2465		limitation of 250 users per tdbsam is predicated only on the need for replication,
2466		not on the limits<footnote><para>Bench tests have shown that tdbsam is a very
2467		effective database technology.  There is surprisingly little performance loss even
2468		with over 4000 users.</para></footnote> of the tdbsam backend itself. 
2469		</para>
2470
2471	</answer>
2472	</qandaentry>
2473
2474	<qandaentry>
2475	<question>
2476
2477		<para>
2478		Would Samba operate any better if the OS level is set to a value higher than 35?
2479		</para>
2480
2481	</question>
2482	<answer>
2483
2484		<para>
2485		No. MS Windows workstations and servers do not use a value higher than 33. Setting this to a value
2486		of 35 already assures Samba of precedence over MS Windows products in browser elections. There is
2487		no gain to be had from setting this higher.
2488		</para>
2489
2490	</answer>
2491	</qandaentry>
2492
2493	<qandaentry>
2494	<question>
2495
2496		<para>
2497		Why in this example have you provided UNIX group to Windows Group mappings for only Domain Groups?
2498		</para>
2499
2500	</question>
2501	<answer>
2502
2503		<para>
2504		At this time, Samba has the capacity to use only Domain Groups mappings. It is possible that at
2505		a later date Samba may make use of Windows Local Groups, as well as of the Active Directory special
2506		Groups. Proper operation requires Domain Groups to be mapped to valid UNIX groups.
2507		</para>
2508
2509	</answer>
2510	</qandaentry>
2511
2512	<qandaentry>
2513	<question>
2514
2515		<para>
2516		Why has a path been specified in the <parameter>IPC$</parameter> share?
2517		</para>
2518
2519	</question>
2520	<answer>
2521
2522		<para>
2523		This is done so that in the event that a software bug may permit a client connection to the IPC$ share to
2524		obtain access to the file system, it does so at a location that presents least risk. Under normal operation
2525		this type of paranoid step should not be necessary. The use of this parameter should not be necessary. 
2526		</para>
2527
2528	</answer>
2529	</qandaentry>
2530
2531	<qandaentry>
2532	<question>
2533
2534		<para>
2535		Why does the &smb.conf; file in this exercise include an entry for <smbconfoption name="smb ports"/>?
2536		</para>
2537
2538	</question>
2539	<answer>
2540
2541		<para>
2542		The default order by which Samba-3 attempts to communicate with MS Windows clients is via port 445 (the TCP port
2543		used by Windows clients when NetBIOS-less SMB over TCP/IP is in use). TCP port 139 is the primary port used for NetBIOS
2544		over TCP/IP. In this configuration Windows network operations are predicated around NetBIOS over TCP/IP. By
2545		specifying the use of only port 139, the intent is to reduce unsuccessful service connection attempts.
2546		The result of this is improved network performance. Where Samba-3 is installed as an Active Directory Domain
2547		member, the default behavior is highly beneficial and should not be changed.
2548		</para>
2549
2550	</answer>
2551	</qandaentry>
2552
2553	<qandaentry>
2554	<question>
2555
2556		<para>
2557		What is the difference between a print queue and a printer?
2558		</para>
2559
2560	</question>
2561	<answer>
2562
2563		<para>
2564		A printer is a physical device that is connected either directly to the network or to a computer 
2565		via a serial, parallel, or USB connection so that print jobs can be submitted to it to create a 
2566		hard copy printout. Network-attached printers that use TCP/IP-based printing generally accept a 
2567		single print data stream and block all secondary attempts to dispatch jobs concurrently to the 
2568		same device. If many clients were to concurrently print directly via TCP/IP to the same printer, 
2569		it would result in a huge amount of network traffic through continually failing connection attempts.
2570		</para>
2571
2572		<para>
2573		A print server (like CUPS or LPR/LPD) accepts multiple concurrent input streams or
2574		print requests. When the data stream has been fully received, the input stream is closed,
2575		and the job is then submitted to a sequential print queue where the job is stored until
2576		the printer is ready to receive the job.
2577		</para>
2578
2579	</answer>
2580	</qandaentry>
2581
2582	<qandaentry>
2583	<question>
2584
2585		<para>
2586		Can all MS Windows application software be installed onto an application server share?
2587		</para>
2588
2589	</question>
2590	<answer>
2591
2592		<para>
2593		Much older Windows software is not compatible with installation to and execution from
2594		an application server. Enterprise versions of Microsoft Office XP Professional can
2595		be installed to an application server. Retail consumer versions of Microsoft Office XP
2596		Professional do not permit installation to an application server share and can be installed
2597		and used only to/from a local workstation hard disk.
2598		</para>
2599
2600	</answer>
2601	</qandaentry>
2602
2603	<qandaentry>
2604	<question>
2605
2606		<para>
2607		Why use dynamic DNS (DDNS)?
2608		</para>
2609
2610	</question>
2611	<answer>
2612
2613		<para>
2614		When DDNS records are updated directly from the DHCP server, it is possible for
2615		network clients that are not NetBIOS-enabled, and thus cannot use WINS, to locate
2616		Windows clients via DNS.
2617		</para>
2618
2619	</answer>
2620	</qandaentry>
2621
2622	<qandaentry>
2623	<question>
2624
2625		<para>
2626		Why would you use WINS as well as DNS-based name resolution?
2627		</para>
2628
2629	</question>
2630	<answer>
2631
2632		<para>
2633		WINS is to NetBIOS names as DNS is to fully qualified domain names (FQDN). The FQDN is
2634		a name like <quote>myhost.mydomain.tld</quote> where <parameter>tld</parameter>
2635		means <constant>top-level domain</constant>. A FQDN is a longhand but easy-to-remember
2636		expression that may be up to 1024 characters in length and that represents an IP address. 
2637		A NetBIOS name is always 16 characters long. The 16<superscript>th</superscript> character
2638		is a name type indicator. A specific name type is registered<footnote><para>
2639		See <emphasis>TOSHARG2</emphasis>, Chapter 9, for more information.</para></footnote> for each 
2640		type of service that is provided by the Windows server or client and that may be registered
2641		where a WINS server is in use.
2642		</para>
2643
2644		<para>
2645		WINS is a mechanism by which a client may locate the IP Address that corresponds to a
2646		NetBIOS name. The WINS server may be queried to obtain the IP Address for a NetBIOS name 
2647		that includes a particular registered NetBIOS name type. DNS does not provide a mechanism
2648		that permits handling of the NetBIOS name type information.
2649		</para>
2650
2651		<para>
2652		DNS provides a mechanism by which TCP/IP clients may locate the IP address of a particular 
2653		hostname or service name that has been registered in the DNS database for a particular domain. 
2654		A DNS server has limited scope of control and is said to be authoritative for the zone over
2655		which it has control.
2656		</para>
2657
2658		<para>
2659		Windows 200x Active Directory requires the registration in the DNS zone for the domain it 
2660		controls of service locator<footnote><para>See TOSHARG2, Chapter 9, Section 9.3.3.</para></footnote> records 
2661		that Windows clients and servers will use to locate Kerberos and LDAP services. ADS also 
2662		requires the registration of special records that are called global catalog (GC) entries 
2663		and site entries by which domain controllers and other essential ADS servers may be located. 
2664		</para>
2665
2666	</answer>
2667	</qandaentry>
2668
2669	<qandaentry>
2670	<question>
2671
2672		<para>
2673		What are the major benefits of using an application server?
2674		</para>
2675
2676	</question>
2677	<answer>
2678
2679		<para>
2680		The use of an application server can significantly reduce application update maintenance.
2681		By providing a centralized application share, software updates need be applied to only
2682		one location for all major applications used. This results in faster update roll-outs and
2683		significantly better application usage control.
2684		</para>
2685
2686	</answer>
2687	</qandaentry>
2688
2689	</qandaset>
2690
2691</sect1>
2692
2693</chapter>
2694