• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/router/samba-3.0.25b/source/lib/
1/*
2   This bit of code was derived from the UFC-crypt package which
3   carries the following copyright
4
5   Modified for use by Samba by Andrew Tridgell, October 1994
6
7   Note that this routine is only faster on some machines. Under Linux 1.1.51
8   libc 4.5.26 I actually found this routine to be slightly slower.
9
10   Under SunOS I found a huge speedup by using these routines
11   (a factor of 20 or so)
12
13   Warning: I've had a report from Steve Kennedy <steve@gbnet.org>
14   that this crypt routine may sometimes get the wrong answer. Only
15   use UFC_CRYT if you really need it.
16
17*/
18
19#include "includes.h"
20
21#ifndef HAVE_CRYPT
22
23/*
24 * UFC-crypt: ultra fast crypt(3) implementation
25 *
26 * Copyright (C) 1991-1998, Free Software Foundation, Inc.
27 *
28 * This library is free software; you can redistribute it and/or
29 * modify it under the terms of the GNU Library General Public
30 * License as published by the Free Software Foundation; either
31 * version 2 of the License, or (at your option) any later version.
32 *
33 * This library is distributed in the hope that it will be useful,
34 * but WITHOUT ANY WARRANTY; without even the implied warranty of
35 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
36 * Library General Public License for more details.
37 *
38 * You should have received a copy of the GNU Library General Public
39 * License along with this library; if not, write to the Free
40 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
41 *
42 * @(#)crypt_util.c	2.31 02/08/92
43 *
44 * Support routines
45 *
46 */
47
48
49#ifndef long32
50#define long32 int32
51#endif
52
53#ifndef long64
54#define long64 int64
55#endif
56
57#ifndef ufc_long
58#define ufc_long unsigned
59#endif
60
61#ifndef _UFC_64_
62#define _UFC_32_
63#endif
64
65/*
66 * Permutation done once on the 56 bit
67 *  key derived from the original 8 byte ASCII key.
68 */
69static int pc1[56] = {
70  57, 49, 41, 33, 25, 17,  9,  1, 58, 50, 42, 34, 26, 18,
71  10,  2, 59, 51, 43, 35, 27, 19, 11,  3, 60, 52, 44, 36,
72  63, 55, 47, 39, 31, 23, 15,  7, 62, 54, 46, 38, 30, 22,
73  14,  6, 61, 53, 45, 37, 29, 21, 13,  5, 28, 20, 12,  4
74};
75
76/*
77 * How much to rotate each 28 bit half of the pc1 permutated
78 *  56 bit key before using pc2 to give the i' key
79 */
80static int rots[16] = {
81  1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
82};
83
84/*
85 * Permutation giving the key
86 * of the i' DES round
87 */
88static int pc2[48] = {
89  14, 17, 11, 24,  1,  5,  3, 28, 15,  6, 21, 10,
90  23, 19, 12,  4, 26,  8, 16,  7, 27, 20, 13,  2,
91  41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
92  44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
93};
94
95/*
96 * The E expansion table which selects
97 * bits from the 32 bit intermediate result.
98 */
99static int esel[48] = {
100  32,  1,  2,  3,  4,  5,  4,  5,  6,  7,  8,  9,
101   8,  9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,
102  16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25,
103  24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32,  1
104};
105static int e_inverse[64];
106
107/*
108 * Permutation done on the
109 * result of sbox lookups
110 */
111static int perm32[32] = {
112  16,  7, 20, 21, 29, 12, 28, 17,  1, 15, 23, 26,  5, 18, 31, 10,
113  2,   8, 24, 14, 32, 27,  3,  9, 19, 13, 30,  6, 22, 11,  4, 25
114};
115
116/*
117 * The sboxes
118 */
119static int sbox[8][4][16]= {
120        { { 14,  4, 13,  1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7 },
121          {  0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8 },
122          {  4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0 },
123          { 15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13 }
124        },
125
126        { { 15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10 },
127          {  3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5 },
128          {  0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15 },
129          { 13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9 }
130        },
131
132        { { 10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8 },
133          { 13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1 },
134          { 13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7 },
135          {  1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12 }
136        },
137
138        { {  7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15 },
139          { 13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9 },
140          { 10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4 },
141          {  3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14 }
142        },
143
144        { {  2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9 },
145          { 14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6 },
146          {  4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14 },
147          { 11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3 }
148        },
149
150        { { 12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11 },
151          { 10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8 },
152          {  9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6 },
153          {  4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13 }
154        },
155
156        { {  4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1 },
157          { 13,  0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6 },
158          {  1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2 },
159          {  6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12 }
160        },
161
162        { { 13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7 },
163          {  1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2 },
164          {  7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8 },
165          {  2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11 }
166        }
167};
168
169/*
170 * This is the final
171 * permutation matrix
172 */
173static int final_perm[64] = {
174  40,  8, 48, 16, 56, 24, 64, 32, 39,  7, 47, 15, 55, 23, 63, 31,
175  38,  6, 46, 14, 54, 22, 62, 30, 37,  5, 45, 13, 53, 21, 61, 29,
176  36,  4, 44, 12, 52, 20, 60, 28, 35,  3, 43, 11, 51, 19, 59, 27,
177  34,  2, 42, 10, 50, 18, 58, 26, 33,  1, 41,  9, 49, 17, 57, 25
178};
179
180/*
181 * The 16 DES keys in BITMASK format
182 */
183#ifdef _UFC_32_
184long32 _ufc_keytab[16][2];
185#endif
186
187#ifdef _UFC_64_
188long64 _ufc_keytab[16];
189#endif
190
191
192#define ascii_to_bin(c) ((c)>='a'?(c-59):(c)>='A'?((c)-53):(c)-'.')
193#define bin_to_ascii(c) ((c)>=38?((c)-38+'a'):(c)>=12?((c)-12+'A'):(c)+'.')
194
195/* Macro to set a bit (0..23) */
196#define BITMASK(i) ( (1<<(11-(i)%12+3)) << ((i)<12?16:0) )
197
198/*
199 * sb arrays:
200 *
201 * Workhorses of the inner loop of the DES implementation.
202 * They do sbox lookup, shifting of this  value, 32 bit
203 * permutation and E permutation for the next round.
204 *
205 * Kept in 'BITMASK' format.
206 */
207
208#ifdef _UFC_32_
209long32 _ufc_sb0[8192], _ufc_sb1[8192], _ufc_sb2[8192], _ufc_sb3[8192];
210static long32 *sb[4] = {_ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3};
211#endif
212
213#ifdef _UFC_64_
214long64 _ufc_sb0[4096], _ufc_sb1[4096], _ufc_sb2[4096], _ufc_sb3[4096];
215static long64 *sb[4] = {_ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3};
216#endif
217
218/*
219 * eperm32tab: do 32 bit permutation and E selection
220 *
221 * The first index is the byte number in the 32 bit value to be permuted
222 *  -  second  -   is the value of this byte
223 *  -  third   -   selects the two 32 bit values
224 *
225 * The table is used and generated internally in init_des to speed it up
226 */
227static ufc_long eperm32tab[4][256][2];
228
229/*
230 * do_pc1: permform pc1 permutation in the key schedule generation.
231 *
232 * The first   index is the byte number in the 8 byte ASCII key
233 *  -  second    -      -    the two 28 bits halfs of the result
234 *  -  third     -   selects the 7 bits actually used of each byte
235 *
236 * The result is kept with 28 bit per 32 bit with the 4 most significant
237 * bits zero.
238 */
239static ufc_long do_pc1[8][2][128];
240
241/*
242 * do_pc2: permform pc2 permutation in the key schedule generation.
243 *
244 * The first   index is the septet number in the two 28 bit intermediate values
245 *  -  second    -    -  -  septet values
246 *
247 * Knowledge of the structure of the pc2 permutation is used.
248 *
249 * The result is kept with 28 bit per 32 bit with the 4 most significant
250 * bits zero.
251 */
252static ufc_long do_pc2[8][128];
253
254/*
255 * efp: undo an extra e selection and do final
256 *      permutation giving the DES result.
257 *
258 *      Invoked 6 bit a time on two 48 bit values
259 *      giving two 32 bit longs.
260 */
261static ufc_long efp[16][64][2];
262
263static unsigned char bytemask[8]  = {
264  0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01
265};
266
267static ufc_long longmask[32] = {
268  0x80000000, 0x40000000, 0x20000000, 0x10000000,
269  0x08000000, 0x04000000, 0x02000000, 0x01000000,
270  0x00800000, 0x00400000, 0x00200000, 0x00100000,
271  0x00080000, 0x00040000, 0x00020000, 0x00010000,
272  0x00008000, 0x00004000, 0x00002000, 0x00001000,
273  0x00000800, 0x00000400, 0x00000200, 0x00000100,
274  0x00000080, 0x00000040, 0x00000020, 0x00000010,
275  0x00000008, 0x00000004, 0x00000002, 0x00000001
276};
277
278
279/*
280 * Silly rewrite of 'bzero'. I do so
281 * because some machines don't have
282 * bzero and some don't have memset.
283 */
284
285static void clearmem(char *start, int cnt)
286  { while(cnt--)
287      *start++ = '\0';
288  }
289
290static int initialized = 0;
291
292/* lookup a 6 bit value in sbox */
293
294#define s_lookup(i,s) sbox[(i)][(((s)>>4) & 0x2)|((s) & 0x1)][((s)>>1) & 0xf];
295
296/*
297 * Initialize unit - may be invoked directly
298 * by fcrypt users.
299 */
300
301static void ufc_init_des(void)
302  { int comes_from_bit;
303    int bit, sg;
304    ufc_long j;
305    ufc_long mask1, mask2;
306
307    /*
308     * Create the do_pc1 table used
309     * to affect pc1 permutation
310     * when generating keys
311     */
312    for(bit = 0; bit < 56; bit++) {
313      comes_from_bit  = pc1[bit] - 1;
314      mask1 = bytemask[comes_from_bit % 8 + 1];
315      mask2 = longmask[bit % 28 + 4];
316      for(j = 0; j < 128; j++) {
317	if(j & mask1)
318	  do_pc1[comes_from_bit / 8][bit / 28][j] |= mask2;
319      }
320    }
321
322    /*
323     * Create the do_pc2 table used
324     * to affect pc2 permutation when
325     * generating keys
326     */
327    for(bit = 0; bit < 48; bit++) {
328      comes_from_bit  = pc2[bit] - 1;
329      mask1 = bytemask[comes_from_bit % 7 + 1];
330      mask2 = BITMASK(bit % 24);
331      for(j = 0; j < 128; j++) {
332	if(j & mask1)
333	  do_pc2[comes_from_bit / 7][j] |= mask2;
334      }
335    }
336
337    /*
338     * Now generate the table used to do combined
339     * 32 bit permutation and e expansion
340     *
341     * We use it because we have to permute 16384 32 bit
342     * longs into 48 bit in order to initialize sb.
343     *
344     * Looping 48 rounds per permutation becomes
345     * just too slow...
346     *
347     */
348
349    clearmem((char*)eperm32tab, sizeof(eperm32tab));
350
351    for(bit = 0; bit < 48; bit++) {
352      ufc_long inner_mask1,comes_from;
353
354      comes_from = perm32[esel[bit]-1]-1;
355      inner_mask1      = bytemask[comes_from % 8];
356
357      for(j = 256; j--;) {
358	if(j & inner_mask1)
359	  eperm32tab[comes_from / 8][j][bit / 24] |= BITMASK(bit % 24);
360      }
361    }
362
363    /*
364     * Create the sb tables:
365     *
366     * For each 12 bit segment of an 48 bit intermediate
367     * result, the sb table precomputes the two 4 bit
368     * values of the sbox lookups done with the two 6
369     * bit halves, shifts them to their proper place,
370     * sends them through perm32 and finally E expands
371     * them so that they are ready for the next
372     * DES round.
373     *
374     */
375    for(sg = 0; sg < 4; sg++) {
376      int j1, j2;
377      int s1, s2;
378
379      for(j1 = 0; j1 < 64; j1++) {
380	s1 = s_lookup(2 * sg, j1);
381	for(j2 = 0; j2 < 64; j2++) {
382	  ufc_long to_permute, inx;
383
384	  s2         = s_lookup(2 * sg + 1, j2);
385	  to_permute = ((s1 << 4)  | s2) << (24 - 8 * sg);
386
387#ifdef _UFC_32_
388	  inx = ((j1 << 6)  | j2) << 1;
389	  sb[sg][inx  ]  = eperm32tab[0][(to_permute >> 24) & 0xff][0];
390	  sb[sg][inx+1]  = eperm32tab[0][(to_permute >> 24) & 0xff][1];
391	  sb[sg][inx  ] |= eperm32tab[1][(to_permute >> 16) & 0xff][0];
392	  sb[sg][inx+1] |= eperm32tab[1][(to_permute >> 16) & 0xff][1];
393  	  sb[sg][inx  ] |= eperm32tab[2][(to_permute >>  8) & 0xff][0];
394	  sb[sg][inx+1] |= eperm32tab[2][(to_permute >>  8) & 0xff][1];
395	  sb[sg][inx  ] |= eperm32tab[3][(to_permute)       & 0xff][0];
396	  sb[sg][inx+1] |= eperm32tab[3][(to_permute)       & 0xff][1];
397#endif
398#ifdef _UFC_64_
399	  inx = ((j1 << 6)  | j2);
400	  sb[sg][inx]  =
401	    ((long64)eperm32tab[0][(to_permute >> 24) & 0xff][0] << 32) |
402	     (long64)eperm32tab[0][(to_permute >> 24) & 0xff][1];
403	  sb[sg][inx] |=
404	    ((long64)eperm32tab[1][(to_permute >> 16) & 0xff][0] << 32) |
405	     (long64)eperm32tab[1][(to_permute >> 16) & 0xff][1];
406  	  sb[sg][inx] |=
407	    ((long64)eperm32tab[2][(to_permute >>  8) & 0xff][0] << 32) |
408	     (long64)eperm32tab[2][(to_permute >>  8) & 0xff][1];
409	  sb[sg][inx] |=
410	    ((long64)eperm32tab[3][(to_permute)       & 0xff][0] << 32) |
411	     (long64)eperm32tab[3][(to_permute)       & 0xff][1];
412#endif
413	}
414      }
415    }
416
417    /*
418     * Create an inverse matrix for esel telling
419     * where to plug out bits if undoing it
420     */
421    for(bit=48; bit--;) {
422      e_inverse[esel[bit] - 1     ] = bit;
423      e_inverse[esel[bit] - 1 + 32] = bit + 48;
424    }
425
426    /*
427     * create efp: the matrix used to
428     * undo the E expansion and effect final permutation
429     */
430    clearmem((char*)efp, sizeof efp);
431    for(bit = 0; bit < 64; bit++) {
432      int o_bit, o_long;
433      ufc_long word_value, inner_mask1, inner_mask2;
434      int comes_from_f_bit, comes_from_e_bit;
435      int comes_from_word, bit_within_word;
436
437      /* See where bit i belongs in the two 32 bit long's */
438      o_long = bit / 32; /* 0..1  */
439      o_bit  = bit % 32; /* 0..31 */
440
441      /*
442       * And find a bit in the e permutated value setting this bit.
443       *
444       * Note: the e selection may have selected the same bit several
445       * times. By the initialization of e_inverse, we only look
446       * for one specific instance.
447       */
448      comes_from_f_bit = final_perm[bit] - 1;         /* 0..63 */
449      comes_from_e_bit = e_inverse[comes_from_f_bit]; /* 0..95 */
450      comes_from_word  = comes_from_e_bit / 6;        /* 0..15 */
451      bit_within_word  = comes_from_e_bit % 6;        /* 0..5  */
452
453      inner_mask1 = longmask[bit_within_word + 26];
454      inner_mask2 = longmask[o_bit];
455
456      for(word_value = 64; word_value--;) {
457	if(word_value & inner_mask1)
458	  efp[comes_from_word][word_value][o_long] |= inner_mask2;
459      }
460    }
461    initialized++;
462  }
463
464/*
465 * Process the elements of the sb table permuting the
466 * bits swapped in the expansion by the current salt.
467 */
468
469#ifdef _UFC_32_
470static void shuffle_sb(long32 *k, ufc_long saltbits)
471  { ufc_long j;
472    long32 x;
473    for(j=4096; j--;) {
474      x = (k[0] ^ k[1]) & (long32)saltbits;
475      *k++ ^= x;
476      *k++ ^= x;
477    }
478  }
479#endif
480
481#ifdef _UFC_64_
482static void shuffle_sb(long64 *k, ufc_long saltbits)
483  { ufc_long j;
484    long64 x;
485    for(j=4096; j--;) {
486      x = ((*k >> 32) ^ *k) & (long64)saltbits;
487      *k++ ^= (x << 32) | x;
488    }
489  }
490#endif
491
492/*
493 * Setup the unit for a new salt
494 * Hopefully we'll not see a new salt in each crypt call.
495 */
496
497static unsigned char current_salt[3] = "&&"; /* invalid value */
498static ufc_long current_saltbits = 0;
499static int direction = 0;
500
501static void setup_salt(const char *s1)
502  { ufc_long i, j, saltbits;
503    const unsigned char *s2 = (const unsigned char *)s1;
504
505    if(!initialized)
506      ufc_init_des();
507
508    if(s2[0] == current_salt[0] && s2[1] == current_salt[1])
509      return;
510    current_salt[0] = s2[0]; current_salt[1] = s2[1];
511
512    /*
513     * This is the only crypt change to DES:
514     * entries are swapped in the expansion table
515     * according to the bits set in the salt.
516     */
517    saltbits = 0;
518    for(i = 0; i < 2; i++) {
519      long c=ascii_to_bin(s2[i]);
520      if(c < 0 || c > 63)
521	c = 0;
522      for(j = 0; j < 6; j++) {
523	if((c >> j) & 0x1)
524	  saltbits |= BITMASK(6 * i + j);
525      }
526    }
527
528    /*
529     * Permute the sb table values
530     * to reflect the changed e
531     * selection table
532     */
533    shuffle_sb(_ufc_sb0, current_saltbits ^ saltbits);
534    shuffle_sb(_ufc_sb1, current_saltbits ^ saltbits);
535    shuffle_sb(_ufc_sb2, current_saltbits ^ saltbits);
536    shuffle_sb(_ufc_sb3, current_saltbits ^ saltbits);
537
538    current_saltbits = saltbits;
539  }
540
541static void ufc_mk_keytab(char *key)
542  { ufc_long v1, v2, *k1;
543    int i;
544#ifdef _UFC_32_
545    long32 v, *k2 = &_ufc_keytab[0][0];
546#endif
547#ifdef _UFC_64_
548    long64 v, *k2 = &_ufc_keytab[0];
549#endif
550
551    v1 = v2 = 0; k1 = &do_pc1[0][0][0];
552    for(i = 8; i--;) {
553      v1 |= k1[*key   & 0x7f]; k1 += 128;
554      v2 |= k1[*key++ & 0x7f]; k1 += 128;
555    }
556
557    for(i = 0; i < 16; i++) {
558      k1 = &do_pc2[0][0];
559
560      v1 = (v1 << rots[i]) | (v1 >> (28 - rots[i]));
561      v  = k1[(v1 >> 21) & 0x7f]; k1 += 128;
562      v |= k1[(v1 >> 14) & 0x7f]; k1 += 128;
563      v |= k1[(v1 >>  7) & 0x7f]; k1 += 128;
564      v |= k1[(v1      ) & 0x7f]; k1 += 128;
565
566#ifdef _UFC_32_
567      *k2++ = v;
568      v = 0;
569#endif
570#ifdef _UFC_64_
571      v <<= 32;
572#endif
573
574      v2 = (v2 << rots[i]) | (v2 >> (28 - rots[i]));
575      v |= k1[(v2 >> 21) & 0x7f]; k1 += 128;
576      v |= k1[(v2 >> 14) & 0x7f]; k1 += 128;
577      v |= k1[(v2 >>  7) & 0x7f]; k1 += 128;
578      v |= k1[(v2      ) & 0x7f];
579
580      *k2++ = v;
581    }
582
583    direction = 0;
584  }
585
586/*
587 * Undo an extra E selection and do final permutations
588 */
589
590ufc_long *_ufc_dofinalperm(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2)
591  { ufc_long v1, v2, x;
592    static ufc_long ary[2];
593
594    x = (l1 ^ l2) & current_saltbits; l1 ^= x; l2 ^= x;
595    x = (r1 ^ r2) & current_saltbits; r1 ^= x; r2 ^= x;
596
597    v1=v2=0; l1 >>= 3; l2 >>= 3; r1 >>= 3; r2 >>= 3;
598
599    v1 |= efp[15][ r2         & 0x3f][0]; v2 |= efp[15][ r2 & 0x3f][1];
600    v1 |= efp[14][(r2 >>= 6)  & 0x3f][0]; v2 |= efp[14][ r2 & 0x3f][1];
601    v1 |= efp[13][(r2 >>= 10) & 0x3f][0]; v2 |= efp[13][ r2 & 0x3f][1];
602    v1 |= efp[12][(r2 >>= 6)  & 0x3f][0]; v2 |= efp[12][ r2 & 0x3f][1];
603
604    v1 |= efp[11][ r1         & 0x3f][0]; v2 |= efp[11][ r1 & 0x3f][1];
605    v1 |= efp[10][(r1 >>= 6)  & 0x3f][0]; v2 |= efp[10][ r1 & 0x3f][1];
606    v1 |= efp[ 9][(r1 >>= 10) & 0x3f][0]; v2 |= efp[ 9][ r1 & 0x3f][1];
607    v1 |= efp[ 8][(r1 >>= 6)  & 0x3f][0]; v2 |= efp[ 8][ r1 & 0x3f][1];
608
609    v1 |= efp[ 7][ l2         & 0x3f][0]; v2 |= efp[ 7][ l2 & 0x3f][1];
610    v1 |= efp[ 6][(l2 >>= 6)  & 0x3f][0]; v2 |= efp[ 6][ l2 & 0x3f][1];
611    v1 |= efp[ 5][(l2 >>= 10) & 0x3f][0]; v2 |= efp[ 5][ l2 & 0x3f][1];
612    v1 |= efp[ 4][(l2 >>= 6)  & 0x3f][0]; v2 |= efp[ 4][ l2 & 0x3f][1];
613
614    v1 |= efp[ 3][ l1         & 0x3f][0]; v2 |= efp[ 3][ l1 & 0x3f][1];
615    v1 |= efp[ 2][(l1 >>= 6)  & 0x3f][0]; v2 |= efp[ 2][ l1 & 0x3f][1];
616    v1 |= efp[ 1][(l1 >>= 10) & 0x3f][0]; v2 |= efp[ 1][ l1 & 0x3f][1];
617    v1 |= efp[ 0][(l1 >>= 6)  & 0x3f][0]; v2 |= efp[ 0][ l1 & 0x3f][1];
618
619    ary[0] = v1; ary[1] = v2;
620    return ary;
621  }
622
623/*
624 * crypt only: convert from 64 bit to 11 bit ASCII
625 * prefixing with the salt
626 */
627
628static char *output_conversion(ufc_long v1, ufc_long v2, const char *salt)
629  { static char outbuf[14];
630    int i, s;
631
632    outbuf[0] = salt[0];
633    outbuf[1] = salt[1] ? salt[1] : salt[0];
634
635    for(i = 0; i < 5; i++)
636      outbuf[i + 2] = bin_to_ascii((v1 >> (26 - 6 * i)) & 0x3f);
637
638    s  = (v2 & 0xf) << 2;
639    v2 = (v2 >> 2) | ((v1 & 0x3) << 30);
640
641    for(i = 5; i < 10; i++)
642      outbuf[i + 2] = bin_to_ascii((v2 >> (56 - 6 * i)) & 0x3f);
643
644    outbuf[12] = bin_to_ascii(s);
645    outbuf[13] = 0;
646
647    return outbuf;
648  }
649
650/*
651 * UNIX crypt function
652 */
653
654static ufc_long *_ufc_doit(ufc_long , ufc_long, ufc_long, ufc_long, ufc_long);
655
656char *ufc_crypt(const char *key,const char *salt)
657  { ufc_long *s;
658    char ktab[9];
659
660    /*
661     * Hack DES tables according to salt
662     */
663    setup_salt(salt);
664
665    /*
666     * Setup key schedule
667     */
668    clearmem(ktab, sizeof ktab);
669    StrnCpy(ktab, key, 8);
670    ufc_mk_keytab(ktab);
671
672    /*
673     * Go for the 25 DES encryptions
674     */
675    s = _ufc_doit((ufc_long)0, (ufc_long)0,
676		  (ufc_long)0, (ufc_long)0, (ufc_long)25);
677
678    /*
679     * And convert back to 6 bit ASCII
680     */
681    return output_conversion(s[0], s[1], salt);
682  }
683
684
685#ifdef _UFC_32_
686
687/*
688 * 32 bit version
689 */
690
691extern long32 _ufc_keytab[16][2];
692extern long32 _ufc_sb0[], _ufc_sb1[], _ufc_sb2[], _ufc_sb3[];
693
694#define SBA(sb, v) (*(long32*)((char*)(sb)+(v)))
695
696static ufc_long *_ufc_doit(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2, ufc_long itr)
697  { int i;
698    long32 s, *k;
699
700    while(itr--) {
701      k = &_ufc_keytab[0][0];
702      for(i=8; i--; ) {
703	s = *k++ ^ r1;
704	l1 ^= SBA(_ufc_sb1, s & 0xffff); l2 ^= SBA(_ufc_sb1, (s & 0xffff)+4);
705        l1 ^= SBA(_ufc_sb0, s >>= 16);   l2 ^= SBA(_ufc_sb0, (s)         +4);
706        s = *k++ ^ r2;
707        l1 ^= SBA(_ufc_sb3, s & 0xffff); l2 ^= SBA(_ufc_sb3, (s & 0xffff)+4);
708        l1 ^= SBA(_ufc_sb2, s >>= 16);   l2 ^= SBA(_ufc_sb2, (s)         +4);
709
710        s = *k++ ^ l1;
711        r1 ^= SBA(_ufc_sb1, s & 0xffff); r2 ^= SBA(_ufc_sb1, (s & 0xffff)+4);
712        r1 ^= SBA(_ufc_sb0, s >>= 16);   r2 ^= SBA(_ufc_sb0, (s)         +4);
713        s = *k++ ^ l2;
714        r1 ^= SBA(_ufc_sb3, s & 0xffff); r2 ^= SBA(_ufc_sb3, (s & 0xffff)+4);
715        r1 ^= SBA(_ufc_sb2, s >>= 16);   r2 ^= SBA(_ufc_sb2, (s)         +4);
716      }
717      s=l1; l1=r1; r1=s; s=l2; l2=r2; r2=s;
718    }
719    return _ufc_dofinalperm(l1, l2, r1, r2);
720  }
721
722#endif
723
724#ifdef _UFC_64_
725
726/*
727 * 64 bit version
728 */
729
730extern long64 _ufc_keytab[16];
731extern long64 _ufc_sb0[], _ufc_sb1[], _ufc_sb2[], _ufc_sb3[];
732
733#define SBA(sb, v) (*(long64*)((char*)(sb)+(v)))
734
735static ufc_long *_ufc_doit(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2, ufc_long itr)
736  { int i;
737    long64 l, r, s, *k;
738
739    l = (((long64)l1) << 32) | ((long64)l2);
740    r = (((long64)r1) << 32) | ((long64)r2);
741
742    while(itr--) {
743      k = &_ufc_keytab[0];
744      for(i=8; i--; ) {
745	s = *k++ ^ r;
746	l ^= SBA(_ufc_sb3, (s >>  0) & 0xffff);
747        l ^= SBA(_ufc_sb2, (s >> 16) & 0xffff);
748        l ^= SBA(_ufc_sb1, (s >> 32) & 0xffff);
749        l ^= SBA(_ufc_sb0, (s >> 48) & 0xffff);
750
751	s = *k++ ^ l;
752	r ^= SBA(_ufc_sb3, (s >>  0) & 0xffff);
753        r ^= SBA(_ufc_sb2, (s >> 16) & 0xffff);
754        r ^= SBA(_ufc_sb1, (s >> 32) & 0xffff);
755        r ^= SBA(_ufc_sb0, (s >> 48) & 0xffff);
756      }
757      s=l; l=r; r=s;
758    }
759
760    l1 = l >> 32; l2 = l & 0xffffffff;
761    r1 = r >> 32; r2 = r & 0xffffffff;
762    return _ufc_dofinalperm(l1, l2, r1, r2);
763  }
764
765#endif
766
767
768#else
769 int ufc_dummy_procedure(void);
770 int ufc_dummy_procedure(void) {return 0;}
771#endif
772