• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/router/openssl-1.0.0q/crypto/ec/
1/* crypto/ec/ec2_mult.c */
2/* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4 *
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
8 *
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
11 *
12 * The software is originally written by Sheueling Chang Shantz and
13 * Douglas Stebila of Sun Microsystems Laboratories.
14 *
15 */
16/* ====================================================================
17 * Copyright (c) 1998-2003 The OpenSSL Project.  All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 *
23 * 1. Redistributions of source code must retain the above copyright
24 *    notice, this list of conditions and the following disclaimer.
25 *
26 * 2. Redistributions in binary form must reproduce the above copyright
27 *    notice, this list of conditions and the following disclaimer in
28 *    the documentation and/or other materials provided with the
29 *    distribution.
30 *
31 * 3. All advertising materials mentioning features or use of this
32 *    software must display the following acknowledgment:
33 *    "This product includes software developed by the OpenSSL Project
34 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
35 *
36 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
37 *    endorse or promote products derived from this software without
38 *    prior written permission. For written permission, please contact
39 *    openssl-core@openssl.org.
40 *
41 * 5. Products derived from this software may not be called "OpenSSL"
42 *    nor may "OpenSSL" appear in their names without prior written
43 *    permission of the OpenSSL Project.
44 *
45 * 6. Redistributions of any form whatsoever must retain the following
46 *    acknowledgment:
47 *    "This product includes software developed by the OpenSSL Project
48 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
51 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
53 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
54 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
56 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
57 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
61 * OF THE POSSIBILITY OF SUCH DAMAGE.
62 * ====================================================================
63 *
64 * This product includes cryptographic software written by Eric Young
65 * (eay@cryptsoft.com).  This product includes software written by Tim
66 * Hudson (tjh@cryptsoft.com).
67 *
68 */
69
70#include <openssl/err.h>
71
72#include "ec_lcl.h"
73
74
75/* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective
76 * coordinates.
77 * Uses algorithm Mdouble in appendix of
78 *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
79 *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
80 * modified to not require precomputation of c=b^{2^{m-1}}.
81 */
82static int gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z, BN_CTX *ctx)
83	{
84	BIGNUM *t1;
85	int ret = 0;
86
87	/* Since Mdouble is static we can guarantee that ctx != NULL. */
88	BN_CTX_start(ctx);
89	t1 = BN_CTX_get(ctx);
90	if (t1 == NULL) goto err;
91
92	if (!group->meth->field_sqr(group, x, x, ctx)) goto err;
93	if (!group->meth->field_sqr(group, t1, z, ctx)) goto err;
94	if (!group->meth->field_mul(group, z, x, t1, ctx)) goto err;
95	if (!group->meth->field_sqr(group, x, x, ctx)) goto err;
96	if (!group->meth->field_sqr(group, t1, t1, ctx)) goto err;
97	if (!group->meth->field_mul(group, t1, &group->b, t1, ctx)) goto err;
98	if (!BN_GF2m_add(x, x, t1)) goto err;
99
100	ret = 1;
101
102 err:
103	BN_CTX_end(ctx);
104	return ret;
105	}
106
107/* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery
108 * projective coordinates.
109 * Uses algorithm Madd in appendix of
110 *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
111 *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
112 */
113static int gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1, BIGNUM *z1,
114	const BIGNUM *x2, const BIGNUM *z2, BN_CTX *ctx)
115	{
116	BIGNUM *t1, *t2;
117	int ret = 0;
118
119	/* Since Madd is static we can guarantee that ctx != NULL. */
120	BN_CTX_start(ctx);
121	t1 = BN_CTX_get(ctx);
122	t2 = BN_CTX_get(ctx);
123	if (t2 == NULL) goto err;
124
125	if (!BN_copy(t1, x)) goto err;
126	if (!group->meth->field_mul(group, x1, x1, z2, ctx)) goto err;
127	if (!group->meth->field_mul(group, z1, z1, x2, ctx)) goto err;
128	if (!group->meth->field_mul(group, t2, x1, z1, ctx)) goto err;
129	if (!BN_GF2m_add(z1, z1, x1)) goto err;
130	if (!group->meth->field_sqr(group, z1, z1, ctx)) goto err;
131	if (!group->meth->field_mul(group, x1, z1, t1, ctx)) goto err;
132	if (!BN_GF2m_add(x1, x1, t2)) goto err;
133
134	ret = 1;
135
136 err:
137	BN_CTX_end(ctx);
138	return ret;
139	}
140
141/* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
142 * using Montgomery point multiplication algorithm Mxy() in appendix of
143 *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
144 *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
145 * Returns:
146 *     0 on error
147 *     1 if return value should be the point at infinity
148 *     2 otherwise
149 */
150static int gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y, BIGNUM *x1,
151	BIGNUM *z1, BIGNUM *x2, BIGNUM *z2, BN_CTX *ctx)
152	{
153	BIGNUM *t3, *t4, *t5;
154	int ret = 0;
155
156	if (BN_is_zero(z1))
157		{
158		BN_zero(x2);
159		BN_zero(z2);
160		return 1;
161		}
162
163	if (BN_is_zero(z2))
164		{
165		if (!BN_copy(x2, x)) return 0;
166		if (!BN_GF2m_add(z2, x, y)) return 0;
167		return 2;
168		}
169
170	/* Since Mxy is static we can guarantee that ctx != NULL. */
171	BN_CTX_start(ctx);
172	t3 = BN_CTX_get(ctx);
173	t4 = BN_CTX_get(ctx);
174	t5 = BN_CTX_get(ctx);
175	if (t5 == NULL) goto err;
176
177	if (!BN_one(t5)) goto err;
178
179	if (!group->meth->field_mul(group, t3, z1, z2, ctx)) goto err;
180
181	if (!group->meth->field_mul(group, z1, z1, x, ctx)) goto err;
182	if (!BN_GF2m_add(z1, z1, x1)) goto err;
183	if (!group->meth->field_mul(group, z2, z2, x, ctx)) goto err;
184	if (!group->meth->field_mul(group, x1, z2, x1, ctx)) goto err;
185	if (!BN_GF2m_add(z2, z2, x2)) goto err;
186
187	if (!group->meth->field_mul(group, z2, z2, z1, ctx)) goto err;
188	if (!group->meth->field_sqr(group, t4, x, ctx)) goto err;
189	if (!BN_GF2m_add(t4, t4, y)) goto err;
190	if (!group->meth->field_mul(group, t4, t4, t3, ctx)) goto err;
191	if (!BN_GF2m_add(t4, t4, z2)) goto err;
192
193	if (!group->meth->field_mul(group, t3, t3, x, ctx)) goto err;
194	if (!group->meth->field_div(group, t3, t5, t3, ctx)) goto err;
195	if (!group->meth->field_mul(group, t4, t3, t4, ctx)) goto err;
196	if (!group->meth->field_mul(group, x2, x1, t3, ctx)) goto err;
197	if (!BN_GF2m_add(z2, x2, x)) goto err;
198
199	if (!group->meth->field_mul(group, z2, z2, t4, ctx)) goto err;
200	if (!BN_GF2m_add(z2, z2, y)) goto err;
201
202	ret = 2;
203
204 err:
205	BN_CTX_end(ctx);
206	return ret;
207	}
208
209
210/* Computes scalar*point and stores the result in r.
211 * point can not equal r.
212 * Uses a modified algorithm 2P of
213 *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
214 *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
215 *
216 * To protect against side-channel attack the function uses constant time swap,
217 * avoiding conditional branches.
218 */
219static int ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
220	const EC_POINT *point, BN_CTX *ctx)
221	{
222	BIGNUM *x1, *x2, *z1, *z2;
223	int ret = 0, i;
224	BN_ULONG mask,word;
225
226	if (r == point)
227		{
228		ECerr(EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY, EC_R_INVALID_ARGUMENT);
229		return 0;
230		}
231
232	/* if result should be point at infinity */
233	if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) ||
234		EC_POINT_is_at_infinity(group, point))
235		{
236		return EC_POINT_set_to_infinity(group, r);
237		}
238
239	/* only support affine coordinates */
240	if (!point->Z_is_one) return 0;
241
242	/* Since point_multiply is static we can guarantee that ctx != NULL. */
243	BN_CTX_start(ctx);
244	x1 = BN_CTX_get(ctx);
245	z1 = BN_CTX_get(ctx);
246	if (z1 == NULL) goto err;
247
248	x2 = &r->X;
249	z2 = &r->Y;
250
251	bn_wexpand(x1, group->field.top);
252	bn_wexpand(z1, group->field.top);
253	bn_wexpand(x2, group->field.top);
254	bn_wexpand(z2, group->field.top);
255
256	if (!BN_GF2m_mod_arr(x1, &point->X, group->poly)) goto err; /* x1 = x */
257	if (!BN_one(z1)) goto err; /* z1 = 1 */
258	if (!group->meth->field_sqr(group, z2, x1, ctx)) goto err; /* z2 = x1^2 = x^2 */
259	if (!group->meth->field_sqr(group, x2, z2, ctx)) goto err;
260	if (!BN_GF2m_add(x2, x2, &group->b)) goto err; /* x2 = x^4 + b */
261
262	/* find top most bit and go one past it */
263	i = scalar->top - 1;
264	mask = BN_TBIT;
265	word = scalar->d[i];
266	while (!(word & mask)) mask >>= 1;
267	mask >>= 1;
268	/* if top most bit was at word break, go to next word */
269	if (!mask)
270		{
271		i--;
272		mask = BN_TBIT;
273		}
274
275	for (; i >= 0; i--)
276		{
277		word = scalar->d[i];
278		while (mask)
279			{
280			BN_consttime_swap(word & mask, x1, x2, group->field.top);
281			BN_consttime_swap(word & mask, z1, z2, group->field.top);
282			if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx)) goto err;
283			if (!gf2m_Mdouble(group, x1, z1, ctx)) goto err;
284			BN_consttime_swap(word & mask, x1, x2, group->field.top);
285			BN_consttime_swap(word & mask, z1, z2, group->field.top);
286			mask >>= 1;
287			}
288		mask = BN_TBIT;
289		}
290
291	/* convert out of "projective" coordinates */
292	i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx);
293	if (i == 0) goto err;
294	else if (i == 1)
295		{
296		if (!EC_POINT_set_to_infinity(group, r)) goto err;
297		}
298	else
299		{
300		if (!BN_one(&r->Z)) goto err;
301		r->Z_is_one = 1;
302		}
303
304	/* GF(2^m) field elements should always have BIGNUM::neg = 0 */
305	BN_set_negative(&r->X, 0);
306	BN_set_negative(&r->Y, 0);
307
308	ret = 1;
309
310 err:
311	BN_CTX_end(ctx);
312	return ret;
313	}
314
315
316/* Computes the sum
317 *     scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1]
318 * gracefully ignoring NULL scalar values.
319 */
320int ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
321	size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
322	{
323	BN_CTX *new_ctx = NULL;
324	int ret = 0;
325	size_t i;
326	EC_POINT *p=NULL;
327	EC_POINT *acc = NULL;
328
329	if (ctx == NULL)
330		{
331		ctx = new_ctx = BN_CTX_new();
332		if (ctx == NULL)
333			return 0;
334		}
335
336	/* This implementation is more efficient than the wNAF implementation for 2
337	 * or fewer points.  Use the ec_wNAF_mul implementation for 3 or more points,
338	 * or if we can perform a fast multiplication based on precomputation.
339	 */
340	if ((scalar && (num > 1)) || (num > 2) || (num == 0 && EC_GROUP_have_precompute_mult(group)))
341		{
342		ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
343		goto err;
344		}
345
346	if ((p = EC_POINT_new(group)) == NULL) goto err;
347	if ((acc = EC_POINT_new(group)) == NULL) goto err;
348
349	if (!EC_POINT_set_to_infinity(group, acc)) goto err;
350
351	if (scalar)
352		{
353		if (!ec_GF2m_montgomery_point_multiply(group, p, scalar, group->generator, ctx)) goto err;
354		if (BN_is_negative(scalar))
355			if (!group->meth->invert(group, p, ctx)) goto err;
356		if (!group->meth->add(group, acc, acc, p, ctx)) goto err;
357		}
358
359	for (i = 0; i < num; i++)
360		{
361		if (!ec_GF2m_montgomery_point_multiply(group, p, scalars[i], points[i], ctx)) goto err;
362		if (BN_is_negative(scalars[i]))
363			if (!group->meth->invert(group, p, ctx)) goto err;
364		if (!group->meth->add(group, acc, acc, p, ctx)) goto err;
365		}
366
367	if (!EC_POINT_copy(r, acc)) goto err;
368
369	ret = 1;
370
371  err:
372	if (p) EC_POINT_free(p);
373	if (acc) EC_POINT_free(acc);
374	if (new_ctx != NULL)
375		BN_CTX_free(new_ctx);
376	return ret;
377	}
378
379
380/* Precomputation for point multiplication: fall back to wNAF methods
381 * because ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate */
382
383int ec_GF2m_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
384	{
385	return ec_wNAF_precompute_mult(group, ctx);
386 	}
387
388int ec_GF2m_have_precompute_mult(const EC_GROUP *group)
389	{
390	return ec_wNAF_have_precompute_mult(group);
391 	}
392