1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3   Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4   1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007
5   Free Software Foundation, Inc.
6
7   This file is part of GDB.
8
9   This program is free software; you can redistribute it and/or modify
10   it under the terms of the GNU General Public License as published by
11   the Free Software Foundation; either version 3 of the License, or
12   (at your option) any later version.
13
14   This program is distributed in the hope that it will be useful,
15   but WITHOUT ANY WARRANTY; without even the implied warranty of
16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17   GNU General Public License for more details.
18
19   You should have received a copy of the GNU General Public License
20   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21
22#include "defs.h"
23#include "gdb_string.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "gdbcore.h"
28#include "command.h"
29#include "gdbcmd.h"
30#include "target.h"
31#include "language.h"
32#include "demangle.h"
33#include "doublest.h"
34#include "gdb_assert.h"
35#include "regcache.h"
36#include "block.h"
37
38/* Prototypes for exported functions. */
39
40void _initialize_values (void);
41
42struct value
43{
44  /* Type of value; either not an lval, or one of the various
45     different possible kinds of lval.  */
46  enum lval_type lval;
47
48  /* Is it modifiable?  Only relevant if lval != not_lval.  */
49  int modifiable;
50
51  /* Location of value (if lval).  */
52  union
53  {
54    /* If lval == lval_memory, this is the address in the inferior.
55       If lval == lval_register, this is the byte offset into the
56       registers structure.  */
57    CORE_ADDR address;
58
59    /* Pointer to internal variable.  */
60    struct internalvar *internalvar;
61  } location;
62
63  /* Describes offset of a value within lval of a structure in bytes.
64     If lval == lval_memory, this is an offset to the address.  If
65     lval == lval_register, this is a further offset from
66     location.address within the registers structure.  Note also the
67     member embedded_offset below.  */
68  int offset;
69
70  /* Only used for bitfields; number of bits contained in them.  */
71  int bitsize;
72
73  /* Only used for bitfields; position of start of field.  For
74     BITS_BIG_ENDIAN=0 targets, it is the position of the LSB.  For
75     BITS_BIG_ENDIAN=1 targets, it is the position of the MSB. */
76  int bitpos;
77
78  /* Frame register value is relative to.  This will be described in
79     the lval enum above as "lval_register".  */
80  struct frame_id frame_id;
81
82  /* Type of the value.  */
83  struct type *type;
84
85  /* If a value represents a C++ object, then the `type' field gives
86     the object's compile-time type.  If the object actually belongs
87     to some class derived from `type', perhaps with other base
88     classes and additional members, then `type' is just a subobject
89     of the real thing, and the full object is probably larger than
90     `type' would suggest.
91
92     If `type' is a dynamic class (i.e. one with a vtable), then GDB
93     can actually determine the object's run-time type by looking at
94     the run-time type information in the vtable.  When this
95     information is available, we may elect to read in the entire
96     object, for several reasons:
97
98     - When printing the value, the user would probably rather see the
99     full object, not just the limited portion apparent from the
100     compile-time type.
101
102     - If `type' has virtual base classes, then even printing `type'
103     alone may require reaching outside the `type' portion of the
104     object to wherever the virtual base class has been stored.
105
106     When we store the entire object, `enclosing_type' is the run-time
107     type -- the complete object -- and `embedded_offset' is the
108     offset of `type' within that larger type, in bytes.  The
109     value_contents() macro takes `embedded_offset' into account, so
110     most GDB code continues to see the `type' portion of the value,
111     just as the inferior would.
112
113     If `type' is a pointer to an object, then `enclosing_type' is a
114     pointer to the object's run-time type, and `pointed_to_offset' is
115     the offset in bytes from the full object to the pointed-to object
116     -- that is, the value `embedded_offset' would have if we followed
117     the pointer and fetched the complete object.  (I don't really see
118     the point.  Why not just determine the run-time type when you
119     indirect, and avoid the special case?  The contents don't matter
120     until you indirect anyway.)
121
122     If we're not doing anything fancy, `enclosing_type' is equal to
123     `type', and `embedded_offset' is zero, so everything works
124     normally.  */
125  struct type *enclosing_type;
126  int embedded_offset;
127  int pointed_to_offset;
128
129  /* Values are stored in a chain, so that they can be deleted easily
130     over calls to the inferior.  Values assigned to internal
131     variables or put into the value history are taken off this
132     list.  */
133  struct value *next;
134
135  /* Register number if the value is from a register.  */
136  short regnum;
137
138  /* If zero, contents of this value are in the contents field.  If
139     nonzero, contents are in inferior memory at address in the
140     location.address field plus the offset field (and the lval field
141     should be lval_memory).
142
143     WARNING: This field is used by the code which handles watchpoints
144     (see breakpoint.c) to decide whether a particular value can be
145     watched by hardware watchpoints.  If the lazy flag is set for
146     some member of a value chain, it is assumed that this member of
147     the chain doesn't need to be watched as part of watching the
148     value itself.  This is how GDB avoids watching the entire struct
149     or array when the user wants to watch a single struct member or
150     array element.  If you ever change the way lazy flag is set and
151     reset, be sure to consider this use as well!  */
152  char lazy;
153
154  /* If nonzero, this is the value of a variable which does not
155     actually exist in the program.  */
156  char optimized_out;
157
158  /* If value is a variable, is it initialized or not.  */
159  int initialized;
160
161  /* Actual contents of the value.  For use of this value; setting it
162     uses the stuff above.  Not valid if lazy is nonzero.  Target
163     byte-order.  We force it to be aligned properly for any possible
164     value.  Note that a value therefore extends beyond what is
165     declared here.  */
166  union
167  {
168    gdb_byte contents[1];
169    DOUBLEST force_doublest_align;
170    LONGEST force_longest_align;
171    CORE_ADDR force_core_addr_align;
172    void *force_pointer_align;
173  } aligner;
174  /* Do not add any new members here -- contents above will trash
175     them.  */
176};
177
178/* Prototypes for local functions. */
179
180static void show_values (char *, int);
181
182static void show_convenience (char *, int);
183
184
185/* The value-history records all the values printed
186   by print commands during this session.  Each chunk
187   records 60 consecutive values.  The first chunk on
188   the chain records the most recent values.
189   The total number of values is in value_history_count.  */
190
191#define VALUE_HISTORY_CHUNK 60
192
193struct value_history_chunk
194  {
195    struct value_history_chunk *next;
196    struct value *values[VALUE_HISTORY_CHUNK];
197  };
198
199/* Chain of chunks now in use.  */
200
201static struct value_history_chunk *value_history_chain;
202
203static int value_history_count;	/* Abs number of last entry stored */
204
205/* List of all value objects currently allocated
206   (except for those released by calls to release_value)
207   This is so they can be freed after each command.  */
208
209static struct value *all_values;
210
211/* Allocate a  value  that has the correct length for type TYPE.  */
212
213struct value *
214allocate_value (struct type *type)
215{
216  struct value *val;
217  struct type *atype = check_typedef (type);
218
219  val = (struct value *) xzalloc (sizeof (struct value) + TYPE_LENGTH (atype));
220  val->next = all_values;
221  all_values = val;
222  val->type = type;
223  val->enclosing_type = type;
224  VALUE_LVAL (val) = not_lval;
225  VALUE_ADDRESS (val) = 0;
226  VALUE_FRAME_ID (val) = null_frame_id;
227  val->offset = 0;
228  val->bitpos = 0;
229  val->bitsize = 0;
230  VALUE_REGNUM (val) = -1;
231  val->lazy = 0;
232  val->optimized_out = 0;
233  val->embedded_offset = 0;
234  val->pointed_to_offset = 0;
235  val->modifiable = 1;
236  val->initialized = 1;  /* Default to initialized.  */
237  return val;
238}
239
240/* Allocate a  value  that has the correct length
241   for COUNT repetitions type TYPE.  */
242
243struct value *
244allocate_repeat_value (struct type *type, int count)
245{
246  int low_bound = current_language->string_lower_bound;		/* ??? */
247  /* FIXME-type-allocation: need a way to free this type when we are
248     done with it.  */
249  struct type *range_type
250  = create_range_type ((struct type *) NULL, builtin_type_int,
251		       low_bound, count + low_bound - 1);
252  /* FIXME-type-allocation: need a way to free this type when we are
253     done with it.  */
254  return allocate_value (create_array_type ((struct type *) NULL,
255					    type, range_type));
256}
257
258/* Accessor methods.  */
259
260struct value *
261value_next (struct value *value)
262{
263  return value->next;
264}
265
266struct type *
267value_type (struct value *value)
268{
269  return value->type;
270}
271void
272deprecated_set_value_type (struct value *value, struct type *type)
273{
274  value->type = type;
275}
276
277int
278value_offset (struct value *value)
279{
280  return value->offset;
281}
282void
283set_value_offset (struct value *value, int offset)
284{
285  value->offset = offset;
286}
287
288int
289value_bitpos (struct value *value)
290{
291  return value->bitpos;
292}
293void
294set_value_bitpos (struct value *value, int bit)
295{
296  value->bitpos = bit;
297}
298
299int
300value_bitsize (struct value *value)
301{
302  return value->bitsize;
303}
304void
305set_value_bitsize (struct value *value, int bit)
306{
307  value->bitsize = bit;
308}
309
310gdb_byte *
311value_contents_raw (struct value *value)
312{
313  return value->aligner.contents + value->embedded_offset;
314}
315
316gdb_byte *
317value_contents_all_raw (struct value *value)
318{
319  return value->aligner.contents;
320}
321
322struct type *
323value_enclosing_type (struct value *value)
324{
325  return value->enclosing_type;
326}
327
328const gdb_byte *
329value_contents_all (struct value *value)
330{
331  if (value->lazy)
332    value_fetch_lazy (value);
333  return value->aligner.contents;
334}
335
336int
337value_lazy (struct value *value)
338{
339  return value->lazy;
340}
341
342void
343set_value_lazy (struct value *value, int val)
344{
345  value->lazy = val;
346}
347
348const gdb_byte *
349value_contents (struct value *value)
350{
351  return value_contents_writeable (value);
352}
353
354gdb_byte *
355value_contents_writeable (struct value *value)
356{
357  if (value->lazy)
358    value_fetch_lazy (value);
359  return value_contents_raw (value);
360}
361
362/* Return non-zero if VAL1 and VAL2 have the same contents.  Note that
363   this function is different from value_equal; in C the operator ==
364   can return 0 even if the two values being compared are equal.  */
365
366int
367value_contents_equal (struct value *val1, struct value *val2)
368{
369  struct type *type1;
370  struct type *type2;
371  int len;
372
373  type1 = check_typedef (value_type (val1));
374  type2 = check_typedef (value_type (val2));
375  len = TYPE_LENGTH (type1);
376  if (len != TYPE_LENGTH (type2))
377    return 0;
378
379  return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
380}
381
382int
383value_optimized_out (struct value *value)
384{
385  return value->optimized_out;
386}
387
388void
389set_value_optimized_out (struct value *value, int val)
390{
391  value->optimized_out = val;
392}
393
394int
395value_embedded_offset (struct value *value)
396{
397  return value->embedded_offset;
398}
399
400void
401set_value_embedded_offset (struct value *value, int val)
402{
403  value->embedded_offset = val;
404}
405
406int
407value_pointed_to_offset (struct value *value)
408{
409  return value->pointed_to_offset;
410}
411
412void
413set_value_pointed_to_offset (struct value *value, int val)
414{
415  value->pointed_to_offset = val;
416}
417
418enum lval_type *
419deprecated_value_lval_hack (struct value *value)
420{
421  return &value->lval;
422}
423
424CORE_ADDR *
425deprecated_value_address_hack (struct value *value)
426{
427  return &value->location.address;
428}
429
430struct internalvar **
431deprecated_value_internalvar_hack (struct value *value)
432{
433  return &value->location.internalvar;
434}
435
436struct frame_id *
437deprecated_value_frame_id_hack (struct value *value)
438{
439  return &value->frame_id;
440}
441
442short *
443deprecated_value_regnum_hack (struct value *value)
444{
445  return &value->regnum;
446}
447
448int
449deprecated_value_modifiable (struct value *value)
450{
451  return value->modifiable;
452}
453void
454deprecated_set_value_modifiable (struct value *value, int modifiable)
455{
456  value->modifiable = modifiable;
457}
458
459/* Return a mark in the value chain.  All values allocated after the
460   mark is obtained (except for those released) are subject to being freed
461   if a subsequent value_free_to_mark is passed the mark.  */
462struct value *
463value_mark (void)
464{
465  return all_values;
466}
467
468/* Free all values allocated since MARK was obtained by value_mark
469   (except for those released).  */
470void
471value_free_to_mark (struct value *mark)
472{
473  struct value *val;
474  struct value *next;
475
476  for (val = all_values; val && val != mark; val = next)
477    {
478      next = val->next;
479      value_free (val);
480    }
481  all_values = val;
482}
483
484/* Free all the values that have been allocated (except for those released).
485   Called after each command, successful or not.  */
486
487void
488free_all_values (void)
489{
490  struct value *val;
491  struct value *next;
492
493  for (val = all_values; val; val = next)
494    {
495      next = val->next;
496      value_free (val);
497    }
498
499  all_values = 0;
500}
501
502/* Remove VAL from the chain all_values
503   so it will not be freed automatically.  */
504
505void
506release_value (struct value *val)
507{
508  struct value *v;
509
510  if (all_values == val)
511    {
512      all_values = val->next;
513      return;
514    }
515
516  for (v = all_values; v; v = v->next)
517    {
518      if (v->next == val)
519	{
520	  v->next = val->next;
521	  break;
522	}
523    }
524}
525
526/* Release all values up to mark  */
527struct value *
528value_release_to_mark (struct value *mark)
529{
530  struct value *val;
531  struct value *next;
532
533  for (val = next = all_values; next; next = next->next)
534    if (next->next == mark)
535      {
536	all_values = next->next;
537	next->next = NULL;
538	return val;
539      }
540  all_values = 0;
541  return val;
542}
543
544/* Return a copy of the value ARG.
545   It contains the same contents, for same memory address,
546   but it's a different block of storage.  */
547
548struct value *
549value_copy (struct value *arg)
550{
551  struct type *encl_type = value_enclosing_type (arg);
552  struct value *val = allocate_value (encl_type);
553  val->type = arg->type;
554  VALUE_LVAL (val) = VALUE_LVAL (arg);
555  val->location = arg->location;
556  val->offset = arg->offset;
557  val->bitpos = arg->bitpos;
558  val->bitsize = arg->bitsize;
559  VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
560  VALUE_REGNUM (val) = VALUE_REGNUM (arg);
561  val->lazy = arg->lazy;
562  val->optimized_out = arg->optimized_out;
563  val->embedded_offset = value_embedded_offset (arg);
564  val->pointed_to_offset = arg->pointed_to_offset;
565  val->modifiable = arg->modifiable;
566  if (!value_lazy (val))
567    {
568      memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
569	      TYPE_LENGTH (value_enclosing_type (arg)));
570
571    }
572  return val;
573}
574
575/* Access to the value history.  */
576
577/* Record a new value in the value history.
578   Returns the absolute history index of the entry.
579   Result of -1 indicates the value was not saved; otherwise it is the
580   value history index of this new item.  */
581
582int
583record_latest_value (struct value *val)
584{
585  int i;
586
587  /* We don't want this value to have anything to do with the inferior anymore.
588     In particular, "set $1 = 50" should not affect the variable from which
589     the value was taken, and fast watchpoints should be able to assume that
590     a value on the value history never changes.  */
591  if (value_lazy (val))
592    value_fetch_lazy (val);
593  /* We preserve VALUE_LVAL so that the user can find out where it was fetched
594     from.  This is a bit dubious, because then *&$1 does not just return $1
595     but the current contents of that location.  c'est la vie...  */
596  val->modifiable = 0;
597  release_value (val);
598
599  /* Here we treat value_history_count as origin-zero
600     and applying to the value being stored now.  */
601
602  i = value_history_count % VALUE_HISTORY_CHUNK;
603  if (i == 0)
604    {
605      struct value_history_chunk *new
606      = (struct value_history_chunk *)
607      xmalloc (sizeof (struct value_history_chunk));
608      memset (new->values, 0, sizeof new->values);
609      new->next = value_history_chain;
610      value_history_chain = new;
611    }
612
613  value_history_chain->values[i] = val;
614
615  /* Now we regard value_history_count as origin-one
616     and applying to the value just stored.  */
617
618  return ++value_history_count;
619}
620
621/* Return a copy of the value in the history with sequence number NUM.  */
622
623struct value *
624access_value_history (int num)
625{
626  struct value_history_chunk *chunk;
627  int i;
628  int absnum = num;
629
630  if (absnum <= 0)
631    absnum += value_history_count;
632
633  if (absnum <= 0)
634    {
635      if (num == 0)
636	error (_("The history is empty."));
637      else if (num == 1)
638	error (_("There is only one value in the history."));
639      else
640	error (_("History does not go back to $$%d."), -num);
641    }
642  if (absnum > value_history_count)
643    error (_("History has not yet reached $%d."), absnum);
644
645  absnum--;
646
647  /* Now absnum is always absolute and origin zero.  */
648
649  chunk = value_history_chain;
650  for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
651       i > 0; i--)
652    chunk = chunk->next;
653
654  return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
655}
656
657static void
658show_values (char *num_exp, int from_tty)
659{
660  int i;
661  struct value *val;
662  static int num = 1;
663
664  if (num_exp)
665    {
666      /* "info history +" should print from the stored position.
667         "info history <exp>" should print around value number <exp>.  */
668      if (num_exp[0] != '+' || num_exp[1] != '\0')
669	num = parse_and_eval_long (num_exp) - 5;
670    }
671  else
672    {
673      /* "info history" means print the last 10 values.  */
674      num = value_history_count - 9;
675    }
676
677  if (num <= 0)
678    num = 1;
679
680  for (i = num; i < num + 10 && i <= value_history_count; i++)
681    {
682      val = access_value_history (i);
683      printf_filtered (("$%d = "), i);
684      value_print (val, gdb_stdout, 0, Val_pretty_default);
685      printf_filtered (("\n"));
686    }
687
688  /* The next "info history +" should start after what we just printed.  */
689  num += 10;
690
691  /* Hitting just return after this command should do the same thing as
692     "info history +".  If num_exp is null, this is unnecessary, since
693     "info history +" is not useful after "info history".  */
694  if (from_tty && num_exp)
695    {
696      num_exp[0] = '+';
697      num_exp[1] = '\0';
698    }
699}
700
701/* Internal variables.  These are variables within the debugger
702   that hold values assigned by debugger commands.
703   The user refers to them with a '$' prefix
704   that does not appear in the variable names stored internally.  */
705
706static struct internalvar *internalvars;
707
708/* If the variable does not already exist create it and give it the value given.
709   If no value is given then the default is zero.  */
710static void
711init_if_undefined_command (char* args, int from_tty)
712{
713  struct internalvar* intvar;
714
715  /* Parse the expression - this is taken from set_command().  */
716  struct expression *expr = parse_expression (args);
717  register struct cleanup *old_chain =
718    make_cleanup (free_current_contents, &expr);
719
720  /* Validate the expression.
721     Was the expression an assignment?
722     Or even an expression at all?  */
723  if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
724    error (_("Init-if-undefined requires an assignment expression."));
725
726  /* Extract the variable from the parsed expression.
727     In the case of an assign the lvalue will be in elts[1] and elts[2].  */
728  if (expr->elts[1].opcode != OP_INTERNALVAR)
729    error (_("The first parameter to init-if-undefined should be a GDB variable."));
730  intvar = expr->elts[2].internalvar;
731
732  /* Only evaluate the expression if the lvalue is void.
733     This may still fail if the expresssion is invalid.  */
734  if (TYPE_CODE (value_type (intvar->value)) == TYPE_CODE_VOID)
735    evaluate_expression (expr);
736
737  do_cleanups (old_chain);
738}
739
740
741/* Look up an internal variable with name NAME.  NAME should not
742   normally include a dollar sign.
743
744   If the specified internal variable does not exist,
745   one is created, with a void value.  */
746
747struct internalvar *
748lookup_internalvar (char *name)
749{
750  struct internalvar *var;
751
752  for (var = internalvars; var; var = var->next)
753    if (strcmp (var->name, name) == 0)
754      return var;
755
756  var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
757  var->name = concat (name, (char *)NULL);
758  var->value = allocate_value (builtin_type_void);
759  var->endian = gdbarch_byte_order (current_gdbarch);
760  release_value (var->value);
761  var->next = internalvars;
762  internalvars = var;
763  return var;
764}
765
766struct value *
767value_of_internalvar (struct internalvar *var)
768{
769  struct value *val;
770  int i, j;
771  gdb_byte temp;
772
773  val = value_copy (var->value);
774  if (value_lazy (val))
775    value_fetch_lazy (val);
776  VALUE_LVAL (val) = lval_internalvar;
777  VALUE_INTERNALVAR (val) = var;
778
779  /* Values are always stored in the target's byte order.  When connected to a
780     target this will most likely always be correct, so there's normally no
781     need to worry about it.
782
783     However, internal variables can be set up before the target endian is
784     known and so may become out of date.  Fix it up before anybody sees.
785
786     Internal variables usually hold simple scalar values, and we can
787     correct those.  More complex values (e.g. structures and floating
788     point types) are left alone, because they would be too complicated
789     to correct.  */
790
791  if (var->endian != gdbarch_byte_order (current_gdbarch))
792    {
793      gdb_byte *array = value_contents_raw (val);
794      struct type *type = check_typedef (value_enclosing_type (val));
795      switch (TYPE_CODE (type))
796	{
797	case TYPE_CODE_INT:
798	case TYPE_CODE_PTR:
799	  /* Reverse the bytes.  */
800	  for (i = 0, j = TYPE_LENGTH (type) - 1; i < j; i++, j--)
801	    {
802	      temp = array[j];
803	      array[j] = array[i];
804	      array[i] = temp;
805	    }
806	  break;
807	}
808    }
809
810  return val;
811}
812
813void
814set_internalvar_component (struct internalvar *var, int offset, int bitpos,
815			   int bitsize, struct value *newval)
816{
817  gdb_byte *addr = value_contents_writeable (var->value) + offset;
818
819  if (bitsize)
820    modify_field (addr, value_as_long (newval),
821		  bitpos, bitsize);
822  else
823    memcpy (addr, value_contents (newval), TYPE_LENGTH (value_type (newval)));
824}
825
826void
827set_internalvar (struct internalvar *var, struct value *val)
828{
829  struct value *newval;
830
831  newval = value_copy (val);
832  newval->modifiable = 1;
833
834  /* Force the value to be fetched from the target now, to avoid problems
835     later when this internalvar is referenced and the target is gone or
836     has changed.  */
837  if (value_lazy (newval))
838    value_fetch_lazy (newval);
839
840  /* Begin code which must not call error().  If var->value points to
841     something free'd, an error() obviously leaves a dangling pointer.
842     But we also get a danling pointer if var->value points to
843     something in the value chain (i.e., before release_value is
844     called), because after the error free_all_values will get called before
845     long.  */
846  xfree (var->value);
847  var->value = newval;
848  var->endian = gdbarch_byte_order (current_gdbarch);
849  release_value (newval);
850  /* End code which must not call error().  */
851}
852
853char *
854internalvar_name (struct internalvar *var)
855{
856  return var->name;
857}
858
859/* Update VALUE before discarding OBJFILE.  COPIED_TYPES is used to
860   prevent cycles / duplicates.  */
861
862static void
863preserve_one_value (struct value *value, struct objfile *objfile,
864		    htab_t copied_types)
865{
866  if (TYPE_OBJFILE (value->type) == objfile)
867    value->type = copy_type_recursive (objfile, value->type, copied_types);
868
869  if (TYPE_OBJFILE (value->enclosing_type) == objfile)
870    value->enclosing_type = copy_type_recursive (objfile,
871						 value->enclosing_type,
872						 copied_types);
873}
874
875/* Update the internal variables and value history when OBJFILE is
876   discarded; we must copy the types out of the objfile.  New global types
877   will be created for every convenience variable which currently points to
878   this objfile's types, and the convenience variables will be adjusted to
879   use the new global types.  */
880
881void
882preserve_values (struct objfile *objfile)
883{
884  htab_t copied_types;
885  struct value_history_chunk *cur;
886  struct internalvar *var;
887  int i;
888
889  /* Create the hash table.  We allocate on the objfile's obstack, since
890     it is soon to be deleted.  */
891  copied_types = create_copied_types_hash (objfile);
892
893  for (cur = value_history_chain; cur; cur = cur->next)
894    for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
895      if (cur->values[i])
896	preserve_one_value (cur->values[i], objfile, copied_types);
897
898  for (var = internalvars; var; var = var->next)
899    preserve_one_value (var->value, objfile, copied_types);
900
901  htab_delete (copied_types);
902}
903
904static void
905show_convenience (char *ignore, int from_tty)
906{
907  struct internalvar *var;
908  int varseen = 0;
909
910  for (var = internalvars; var; var = var->next)
911    {
912      if (!varseen)
913	{
914	  varseen = 1;
915	}
916      printf_filtered (("$%s = "), var->name);
917      value_print (value_of_internalvar (var), gdb_stdout,
918		   0, Val_pretty_default);
919      printf_filtered (("\n"));
920    }
921  if (!varseen)
922    printf_unfiltered (_("\
923No debugger convenience variables now defined.\n\
924Convenience variables have names starting with \"$\";\n\
925use \"set\" as in \"set $foo = 5\" to define them.\n"));
926}
927
928/* Extract a value as a C number (either long or double).
929   Knows how to convert fixed values to double, or
930   floating values to long.
931   Does not deallocate the value.  */
932
933LONGEST
934value_as_long (struct value *val)
935{
936  /* This coerces arrays and functions, which is necessary (e.g.
937     in disassemble_command).  It also dereferences references, which
938     I suspect is the most logical thing to do.  */
939  val = coerce_array (val);
940  return unpack_long (value_type (val), value_contents (val));
941}
942
943DOUBLEST
944value_as_double (struct value *val)
945{
946  DOUBLEST foo;
947  int inv;
948
949  foo = unpack_double (value_type (val), value_contents (val), &inv);
950  if (inv)
951    error (_("Invalid floating value found in program."));
952  return foo;
953}
954/* Extract a value as a C pointer. Does not deallocate the value.
955   Note that val's type may not actually be a pointer; value_as_long
956   handles all the cases.  */
957CORE_ADDR
958value_as_address (struct value *val)
959{
960  /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
961     whether we want this to be true eventually.  */
962#if 0
963  /* gdbarch_addr_bits_remove is wrong if we are being called for a
964     non-address (e.g. argument to "signal", "info break", etc.), or
965     for pointers to char, in which the low bits *are* significant.  */
966  return gdbarch_addr_bits_remove (current_gdbarch, value_as_long (val));
967#else
968
969  /* There are several targets (IA-64, PowerPC, and others) which
970     don't represent pointers to functions as simply the address of
971     the function's entry point.  For example, on the IA-64, a
972     function pointer points to a two-word descriptor, generated by
973     the linker, which contains the function's entry point, and the
974     value the IA-64 "global pointer" register should have --- to
975     support position-independent code.  The linker generates
976     descriptors only for those functions whose addresses are taken.
977
978     On such targets, it's difficult for GDB to convert an arbitrary
979     function address into a function pointer; it has to either find
980     an existing descriptor for that function, or call malloc and
981     build its own.  On some targets, it is impossible for GDB to
982     build a descriptor at all: the descriptor must contain a jump
983     instruction; data memory cannot be executed; and code memory
984     cannot be modified.
985
986     Upon entry to this function, if VAL is a value of type `function'
987     (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
988     VALUE_ADDRESS (val) is the address of the function.  This is what
989     you'll get if you evaluate an expression like `main'.  The call
990     to COERCE_ARRAY below actually does all the usual unary
991     conversions, which includes converting values of type `function'
992     to `pointer to function'.  This is the challenging conversion
993     discussed above.  Then, `unpack_long' will convert that pointer
994     back into an address.
995
996     So, suppose the user types `disassemble foo' on an architecture
997     with a strange function pointer representation, on which GDB
998     cannot build its own descriptors, and suppose further that `foo'
999     has no linker-built descriptor.  The address->pointer conversion
1000     will signal an error and prevent the command from running, even
1001     though the next step would have been to convert the pointer
1002     directly back into the same address.
1003
1004     The following shortcut avoids this whole mess.  If VAL is a
1005     function, just return its address directly.  */
1006  if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1007      || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
1008    return VALUE_ADDRESS (val);
1009
1010  val = coerce_array (val);
1011
1012  /* Some architectures (e.g. Harvard), map instruction and data
1013     addresses onto a single large unified address space.  For
1014     instance: An architecture may consider a large integer in the
1015     range 0x10000000 .. 0x1000ffff to already represent a data
1016     addresses (hence not need a pointer to address conversion) while
1017     a small integer would still need to be converted integer to
1018     pointer to address.  Just assume such architectures handle all
1019     integer conversions in a single function.  */
1020
1021  /* JimB writes:
1022
1023     I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1024     must admonish GDB hackers to make sure its behavior matches the
1025     compiler's, whenever possible.
1026
1027     In general, I think GDB should evaluate expressions the same way
1028     the compiler does.  When the user copies an expression out of
1029     their source code and hands it to a `print' command, they should
1030     get the same value the compiler would have computed.  Any
1031     deviation from this rule can cause major confusion and annoyance,
1032     and needs to be justified carefully.  In other words, GDB doesn't
1033     really have the freedom to do these conversions in clever and
1034     useful ways.
1035
1036     AndrewC pointed out that users aren't complaining about how GDB
1037     casts integers to pointers; they are complaining that they can't
1038     take an address from a disassembly listing and give it to `x/i'.
1039     This is certainly important.
1040
1041     Adding an architecture method like integer_to_address() certainly
1042     makes it possible for GDB to "get it right" in all circumstances
1043     --- the target has complete control over how things get done, so
1044     people can Do The Right Thing for their target without breaking
1045     anyone else.  The standard doesn't specify how integers get
1046     converted to pointers; usually, the ABI doesn't either, but
1047     ABI-specific code is a more reasonable place to handle it.  */
1048
1049  if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1050      && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
1051      && gdbarch_integer_to_address_p (current_gdbarch))
1052    return gdbarch_integer_to_address (current_gdbarch, value_type (val),
1053				       value_contents (val));
1054
1055  return unpack_long (value_type (val), value_contents (val));
1056#endif
1057}
1058
1059/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1060   as a long, or as a double, assuming the raw data is described
1061   by type TYPE.  Knows how to convert different sizes of values
1062   and can convert between fixed and floating point.  We don't assume
1063   any alignment for the raw data.  Return value is in host byte order.
1064
1065   If you want functions and arrays to be coerced to pointers, and
1066   references to be dereferenced, call value_as_long() instead.
1067
1068   C++: It is assumed that the front-end has taken care of
1069   all matters concerning pointers to members.  A pointer
1070   to member which reaches here is considered to be equivalent
1071   to an INT (or some size).  After all, it is only an offset.  */
1072
1073LONGEST
1074unpack_long (struct type *type, const gdb_byte *valaddr)
1075{
1076  enum type_code code = TYPE_CODE (type);
1077  int len = TYPE_LENGTH (type);
1078  int nosign = TYPE_UNSIGNED (type);
1079
1080  switch (code)
1081    {
1082    case TYPE_CODE_TYPEDEF:
1083      return unpack_long (check_typedef (type), valaddr);
1084    case TYPE_CODE_ENUM:
1085    case TYPE_CODE_FLAGS:
1086    case TYPE_CODE_BOOL:
1087    case TYPE_CODE_INT:
1088    case TYPE_CODE_CHAR:
1089    case TYPE_CODE_RANGE:
1090    case TYPE_CODE_MEMBERPTR:
1091      if (nosign)
1092	return extract_unsigned_integer (valaddr, len);
1093      else
1094	return extract_signed_integer (valaddr, len);
1095
1096    case TYPE_CODE_FLT:
1097      return extract_typed_floating (valaddr, type);
1098
1099    case TYPE_CODE_PTR:
1100    case TYPE_CODE_REF:
1101      /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
1102         whether we want this to be true eventually.  */
1103      return extract_typed_address (valaddr, type);
1104
1105    default:
1106      error (_("Value can't be converted to integer."));
1107    }
1108  return 0;			/* Placate lint.  */
1109}
1110
1111/* Return a double value from the specified type and address.
1112   INVP points to an int which is set to 0 for valid value,
1113   1 for invalid value (bad float format).  In either case,
1114   the returned double is OK to use.  Argument is in target
1115   format, result is in host format.  */
1116
1117DOUBLEST
1118unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
1119{
1120  enum type_code code;
1121  int len;
1122  int nosign;
1123
1124  *invp = 0;			/* Assume valid.   */
1125  CHECK_TYPEDEF (type);
1126  code = TYPE_CODE (type);
1127  len = TYPE_LENGTH (type);
1128  nosign = TYPE_UNSIGNED (type);
1129  if (code == TYPE_CODE_FLT)
1130    {
1131      /* NOTE: cagney/2002-02-19: There was a test here to see if the
1132	 floating-point value was valid (using the macro
1133	 INVALID_FLOAT).  That test/macro have been removed.
1134
1135	 It turns out that only the VAX defined this macro and then
1136	 only in a non-portable way.  Fixing the portability problem
1137	 wouldn't help since the VAX floating-point code is also badly
1138	 bit-rotten.  The target needs to add definitions for the
1139	 methods gdbarch_float_format and gdbarch_double_format - these
1140	 exactly describe the target floating-point format.  The
1141	 problem here is that the corresponding floatformat_vax_f and
1142	 floatformat_vax_d values these methods should be set to are
1143	 also not defined either.  Oops!
1144
1145         Hopefully someone will add both the missing floatformat
1146         definitions and the new cases for floatformat_is_valid ().  */
1147
1148      if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1149	{
1150	  *invp = 1;
1151	  return 0.0;
1152	}
1153
1154      return extract_typed_floating (valaddr, type);
1155    }
1156  else if (nosign)
1157    {
1158      /* Unsigned -- be sure we compensate for signed LONGEST.  */
1159      return (ULONGEST) unpack_long (type, valaddr);
1160    }
1161  else
1162    {
1163      /* Signed -- we are OK with unpack_long.  */
1164      return unpack_long (type, valaddr);
1165    }
1166}
1167
1168/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1169   as a CORE_ADDR, assuming the raw data is described by type TYPE.
1170   We don't assume any alignment for the raw data.  Return value is in
1171   host byte order.
1172
1173   If you want functions and arrays to be coerced to pointers, and
1174   references to be dereferenced, call value_as_address() instead.
1175
1176   C++: It is assumed that the front-end has taken care of
1177   all matters concerning pointers to members.  A pointer
1178   to member which reaches here is considered to be equivalent
1179   to an INT (or some size).  After all, it is only an offset.  */
1180
1181CORE_ADDR
1182unpack_pointer (struct type *type, const gdb_byte *valaddr)
1183{
1184  /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
1185     whether we want this to be true eventually.  */
1186  return unpack_long (type, valaddr);
1187}
1188
1189
1190/* Get the value of the FIELDN'th field (which must be static) of
1191   TYPE.  Return NULL if the field doesn't exist or has been
1192   optimized out. */
1193
1194struct value *
1195value_static_field (struct type *type, int fieldno)
1196{
1197  struct value *retval;
1198
1199  if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
1200    {
1201      retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1202			 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1203    }
1204  else
1205    {
1206      char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1207      struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL);
1208      if (sym == NULL)
1209	{
1210	  /* With some compilers, e.g. HP aCC, static data members are reported
1211	     as non-debuggable symbols */
1212	  struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
1213	  if (!msym)
1214	    return NULL;
1215	  else
1216	    {
1217	      retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1218				 SYMBOL_VALUE_ADDRESS (msym));
1219	    }
1220	}
1221      else
1222	{
1223	  /* SYM should never have a SYMBOL_CLASS which will require
1224	     read_var_value to use the FRAME parameter.  */
1225	  if (symbol_read_needs_frame (sym))
1226	    warning (_("static field's value depends on the current "
1227		     "frame - bad debug info?"));
1228	  retval = read_var_value (sym, NULL);
1229 	}
1230      if (retval && VALUE_LVAL (retval) == lval_memory)
1231	SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1232			    VALUE_ADDRESS (retval));
1233    }
1234  return retval;
1235}
1236
1237/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1238   You have to be careful here, since the size of the data area for the value
1239   is set by the length of the enclosing type.  So if NEW_ENCL_TYPE is bigger
1240   than the old enclosing type, you have to allocate more space for the data.
1241   The return value is a pointer to the new version of this value structure. */
1242
1243struct value *
1244value_change_enclosing_type (struct value *val, struct type *new_encl_type)
1245{
1246  if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (value_enclosing_type (val)))
1247    {
1248      val->enclosing_type = new_encl_type;
1249      return val;
1250    }
1251  else
1252    {
1253      struct value *new_val;
1254      struct value *prev;
1255
1256      new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
1257
1258      new_val->enclosing_type = new_encl_type;
1259
1260      /* We have to make sure this ends up in the same place in the value
1261	 chain as the original copy, so it's clean-up behavior is the same.
1262	 If the value has been released, this is a waste of time, but there
1263	 is no way to tell that in advance, so... */
1264
1265      if (val != all_values)
1266	{
1267	  for (prev = all_values; prev != NULL; prev = prev->next)
1268	    {
1269	      if (prev->next == val)
1270		{
1271		  prev->next = new_val;
1272		  break;
1273		}
1274	    }
1275	}
1276
1277      return new_val;
1278    }
1279}
1280
1281/* Given a value ARG1 (offset by OFFSET bytes)
1282   of a struct or union type ARG_TYPE,
1283   extract and return the value of one of its (non-static) fields.
1284   FIELDNO says which field. */
1285
1286struct value *
1287value_primitive_field (struct value *arg1, int offset,
1288		       int fieldno, struct type *arg_type)
1289{
1290  struct value *v;
1291  struct type *type;
1292
1293  CHECK_TYPEDEF (arg_type);
1294  type = TYPE_FIELD_TYPE (arg_type, fieldno);
1295
1296  /* Handle packed fields */
1297
1298  if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1299    {
1300      v = value_from_longest (type,
1301			      unpack_field_as_long (arg_type,
1302						    value_contents (arg1)
1303						    + offset,
1304						    fieldno));
1305      v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
1306      v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1307      v->offset = value_offset (arg1) + offset
1308	+ TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1309    }
1310  else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1311    {
1312      /* This field is actually a base subobject, so preserve the
1313         entire object's contents for later references to virtual
1314         bases, etc.  */
1315      v = allocate_value (value_enclosing_type (arg1));
1316      v->type = type;
1317      if (value_lazy (arg1))
1318	set_value_lazy (v, 1);
1319      else
1320	memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1321		TYPE_LENGTH (value_enclosing_type (arg1)));
1322      v->offset = value_offset (arg1);
1323      v->embedded_offset = (offset + value_embedded_offset (arg1)
1324			    + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
1325    }
1326  else
1327    {
1328      /* Plain old data member */
1329      offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1330      v = allocate_value (type);
1331      if (value_lazy (arg1))
1332	set_value_lazy (v, 1);
1333      else
1334	memcpy (value_contents_raw (v),
1335		value_contents_raw (arg1) + offset,
1336		TYPE_LENGTH (type));
1337      v->offset = (value_offset (arg1) + offset
1338		   + value_embedded_offset (arg1));
1339    }
1340  VALUE_LVAL (v) = VALUE_LVAL (arg1);
1341  if (VALUE_LVAL (arg1) == lval_internalvar)
1342    VALUE_LVAL (v) = lval_internalvar_component;
1343  v->location = arg1->location;
1344  VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
1345  VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
1346  return v;
1347}
1348
1349/* Given a value ARG1 of a struct or union type,
1350   extract and return the value of one of its (non-static) fields.
1351   FIELDNO says which field. */
1352
1353struct value *
1354value_field (struct value *arg1, int fieldno)
1355{
1356  return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
1357}
1358
1359/* Return a non-virtual function as a value.
1360   F is the list of member functions which contains the desired method.
1361   J is an index into F which provides the desired method.
1362
1363   We only use the symbol for its address, so be happy with either a
1364   full symbol or a minimal symbol.
1365 */
1366
1367struct value *
1368value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
1369		int offset)
1370{
1371  struct value *v;
1372  struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1373  char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1374  struct symbol *sym;
1375  struct minimal_symbol *msym;
1376
1377  sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL);
1378  if (sym != NULL)
1379    {
1380      msym = NULL;
1381    }
1382  else
1383    {
1384      gdb_assert (sym == NULL);
1385      msym = lookup_minimal_symbol (physname, NULL, NULL);
1386      if (msym == NULL)
1387	return NULL;
1388    }
1389
1390  v = allocate_value (ftype);
1391  if (sym)
1392    {
1393      VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1394    }
1395  else
1396    {
1397      VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
1398    }
1399
1400  if (arg1p)
1401    {
1402      if (type != value_type (*arg1p))
1403	*arg1p = value_ind (value_cast (lookup_pointer_type (type),
1404					value_addr (*arg1p)));
1405
1406      /* Move the `this' pointer according to the offset.
1407         VALUE_OFFSET (*arg1p) += offset;
1408       */
1409    }
1410
1411  return v;
1412}
1413
1414
1415/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1416   VALADDR.
1417
1418   Extracting bits depends on endianness of the machine.  Compute the
1419   number of least significant bits to discard.  For big endian machines,
1420   we compute the total number of bits in the anonymous object, subtract
1421   off the bit count from the MSB of the object to the MSB of the
1422   bitfield, then the size of the bitfield, which leaves the LSB discard
1423   count.  For little endian machines, the discard count is simply the
1424   number of bits from the LSB of the anonymous object to the LSB of the
1425   bitfield.
1426
1427   If the field is signed, we also do sign extension. */
1428
1429LONGEST
1430unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
1431{
1432  ULONGEST val;
1433  ULONGEST valmask;
1434  int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1435  int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1436  int lsbcount;
1437  struct type *field_type;
1438
1439  val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1440  field_type = TYPE_FIELD_TYPE (type, fieldno);
1441  CHECK_TYPEDEF (field_type);
1442
1443  /* Extract bits.  See comment above. */
1444
1445  if (BITS_BIG_ENDIAN)
1446    lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1447  else
1448    lsbcount = (bitpos % 8);
1449  val >>= lsbcount;
1450
1451  /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1452     If the field is signed, and is negative, then sign extend. */
1453
1454  if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1455    {
1456      valmask = (((ULONGEST) 1) << bitsize) - 1;
1457      val &= valmask;
1458      if (!TYPE_UNSIGNED (field_type))
1459	{
1460	  if (val & (valmask ^ (valmask >> 1)))
1461	    {
1462	      val |= ~valmask;
1463	    }
1464	}
1465    }
1466  return (val);
1467}
1468
1469/* Modify the value of a bitfield.  ADDR points to a block of memory in
1470   target byte order; the bitfield starts in the byte pointed to.  FIELDVAL
1471   is the desired value of the field, in host byte order.  BITPOS and BITSIZE
1472   indicate which bits (in target bit order) comprise the bitfield.
1473   Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1474   0 <= BITPOS, where lbits is the size of a LONGEST in bits.  */
1475
1476void
1477modify_field (gdb_byte *addr, LONGEST fieldval, int bitpos, int bitsize)
1478{
1479  ULONGEST oword;
1480  ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
1481
1482  /* If a negative fieldval fits in the field in question, chop
1483     off the sign extension bits.  */
1484  if ((~fieldval & ~(mask >> 1)) == 0)
1485    fieldval &= mask;
1486
1487  /* Warn if value is too big to fit in the field in question.  */
1488  if (0 != (fieldval & ~mask))
1489    {
1490      /* FIXME: would like to include fieldval in the message, but
1491         we don't have a sprintf_longest.  */
1492      warning (_("Value does not fit in %d bits."), bitsize);
1493
1494      /* Truncate it, otherwise adjoining fields may be corrupted.  */
1495      fieldval &= mask;
1496    }
1497
1498  oword = extract_unsigned_integer (addr, sizeof oword);
1499
1500  /* Shifting for bit field depends on endianness of the target machine.  */
1501  if (BITS_BIG_ENDIAN)
1502    bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1503
1504  oword &= ~(mask << bitpos);
1505  oword |= fieldval << bitpos;
1506
1507  store_unsigned_integer (addr, sizeof oword, oword);
1508}
1509
1510/* Pack NUM into BUF using a target format of TYPE.  */
1511
1512void
1513pack_long (gdb_byte *buf, struct type *type, LONGEST num)
1514{
1515  int len;
1516
1517  type = check_typedef (type);
1518  len = TYPE_LENGTH (type);
1519
1520  switch (TYPE_CODE (type))
1521    {
1522    case TYPE_CODE_INT:
1523    case TYPE_CODE_CHAR:
1524    case TYPE_CODE_ENUM:
1525    case TYPE_CODE_FLAGS:
1526    case TYPE_CODE_BOOL:
1527    case TYPE_CODE_RANGE:
1528    case TYPE_CODE_MEMBERPTR:
1529      store_signed_integer (buf, len, num);
1530      break;
1531
1532    case TYPE_CODE_REF:
1533    case TYPE_CODE_PTR:
1534      store_typed_address (buf, type, (CORE_ADDR) num);
1535      break;
1536
1537    default:
1538      error (_("Unexpected type (%d) encountered for integer constant."),
1539	     TYPE_CODE (type));
1540    }
1541}
1542
1543
1544/* Convert C numbers into newly allocated values.  */
1545
1546struct value *
1547value_from_longest (struct type *type, LONGEST num)
1548{
1549  struct value *val = allocate_value (type);
1550
1551  pack_long (value_contents_raw (val), type, num);
1552
1553  return val;
1554}
1555
1556
1557/* Create a value representing a pointer of type TYPE to the address
1558   ADDR.  */
1559struct value *
1560value_from_pointer (struct type *type, CORE_ADDR addr)
1561{
1562  struct value *val = allocate_value (type);
1563  store_typed_address (value_contents_raw (val), type, addr);
1564  return val;
1565}
1566
1567
1568/* Create a value for a string constant to be stored locally
1569   (not in the inferior's memory space, but in GDB memory).
1570   This is analogous to value_from_longest, which also does not
1571   use inferior memory.  String shall NOT contain embedded nulls.  */
1572
1573struct value *
1574value_from_string (char *ptr)
1575{
1576  struct value *val;
1577  int len = strlen (ptr);
1578  int lowbound = current_language->string_lower_bound;
1579  struct type *string_char_type;
1580  struct type *rangetype;
1581  struct type *stringtype;
1582
1583  rangetype = create_range_type ((struct type *) NULL,
1584				 builtin_type_int,
1585				 lowbound, len + lowbound - 1);
1586  string_char_type = language_string_char_type (current_language,
1587						current_gdbarch);
1588  stringtype = create_array_type ((struct type *) NULL,
1589				  string_char_type,
1590				  rangetype);
1591  val = allocate_value (stringtype);
1592  memcpy (value_contents_raw (val), ptr, len);
1593  return val;
1594}
1595
1596struct value *
1597value_from_double (struct type *type, DOUBLEST num)
1598{
1599  struct value *val = allocate_value (type);
1600  struct type *base_type = check_typedef (type);
1601  enum type_code code = TYPE_CODE (base_type);
1602  int len = TYPE_LENGTH (base_type);
1603
1604  if (code == TYPE_CODE_FLT)
1605    {
1606      store_typed_floating (value_contents_raw (val), base_type, num);
1607    }
1608  else
1609    error (_("Unexpected type encountered for floating constant."));
1610
1611  return val;
1612}
1613
1614struct value *
1615coerce_ref (struct value *arg)
1616{
1617  struct type *value_type_arg_tmp = check_typedef (value_type (arg));
1618  if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1619    arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
1620			 unpack_pointer (value_type (arg),
1621					 value_contents (arg)));
1622  return arg;
1623}
1624
1625struct value *
1626coerce_array (struct value *arg)
1627{
1628  arg = coerce_ref (arg);
1629  if (current_language->c_style_arrays
1630      && TYPE_CODE (value_type (arg)) == TYPE_CODE_ARRAY)
1631    arg = value_coerce_array (arg);
1632  if (TYPE_CODE (value_type (arg)) == TYPE_CODE_FUNC)
1633    arg = value_coerce_function (arg);
1634  return arg;
1635}
1636
1637struct value *
1638coerce_number (struct value *arg)
1639{
1640  arg = coerce_array (arg);
1641  arg = coerce_enum (arg);
1642  return arg;
1643}
1644
1645struct value *
1646coerce_enum (struct value *arg)
1647{
1648  if (TYPE_CODE (check_typedef (value_type (arg))) == TYPE_CODE_ENUM)
1649    arg = value_cast (builtin_type_unsigned_int, arg);
1650  return arg;
1651}
1652
1653
1654/* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of
1655   gdbarch_extract_return_value?  GCC_P is true if compiled with gcc and TYPE
1656   is the type (which is known to be struct, union or array).
1657
1658   On most machines, the struct convention is used unless we are
1659   using gcc and the type is of a special size.  */
1660/* As of about 31 Mar 93, GCC was changed to be compatible with the
1661   native compiler.  GCC 2.3.3 was the last release that did it the
1662   old way.  Since gcc2_compiled was not changed, we have no
1663   way to correctly win in all cases, so we just do the right thing
1664   for gcc1 and for gcc2 after this change.  Thus it loses for gcc
1665   2.0-2.3.3.  This is somewhat unfortunate, but changing gcc2_compiled
1666   would cause more chaos than dealing with some struct returns being
1667   handled wrong.  */
1668/* NOTE: cagney/2004-06-13: Deleted check for "gcc_p".  GCC 1.x is
1669   dead.  */
1670
1671int
1672generic_use_struct_convention (int gcc_p, struct type *value_type)
1673{
1674  return !(TYPE_LENGTH (value_type) == 1
1675	   || TYPE_LENGTH (value_type) == 2
1676	   || TYPE_LENGTH (value_type) == 4
1677	   || TYPE_LENGTH (value_type) == 8);
1678}
1679
1680/* Return true if the function returning the specified type is using
1681   the convention of returning structures in memory (passing in the
1682   address as a hidden first parameter).  GCC_P is nonzero if compiled
1683   with GCC.  */
1684
1685int
1686using_struct_return (struct type *value_type, int gcc_p)
1687{
1688  enum type_code code = TYPE_CODE (value_type);
1689
1690  if (code == TYPE_CODE_ERROR)
1691    error (_("Function return type unknown."));
1692
1693  if (code == TYPE_CODE_VOID)
1694    /* A void return value is never in memory.  See also corresponding
1695       code in "print_return_value".  */
1696    return 0;
1697
1698  /* Probe the architecture for the return-value convention.  */
1699  return (gdbarch_return_value (current_gdbarch, value_type,
1700				NULL, NULL, NULL)
1701	  != RETURN_VALUE_REGISTER_CONVENTION);
1702}
1703
1704/* Set the initialized field in a value struct.  */
1705
1706void
1707set_value_initialized (struct value *val, int status)
1708{
1709  val->initialized = status;
1710}
1711
1712/* Return the initialized field in a value struct.  */
1713
1714int
1715value_initialized (struct value *val)
1716{
1717  return val->initialized;
1718}
1719
1720void
1721_initialize_values (void)
1722{
1723  add_cmd ("convenience", no_class, show_convenience, _("\
1724Debugger convenience (\"$foo\") variables.\n\
1725These variables are created when you assign them values;\n\
1726thus, \"print $foo=1\" gives \"$foo\" the value 1.  Values may be any type.\n\
1727\n\
1728A few convenience variables are given values automatically:\n\
1729\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1730\"$__\" holds the contents of the last address examined with \"x\"."),
1731	   &showlist);
1732
1733  add_cmd ("values", no_class, show_values,
1734	   _("Elements of value history around item number IDX (or last ten)."),
1735	   &showlist);
1736
1737  add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
1738Initialize a convenience variable if necessary.\n\
1739init-if-undefined VARIABLE = EXPRESSION\n\
1740Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
1741exist or does not contain a value.  The EXPRESSION is not evaluated if the\n\
1742VARIABLE is already initialized."));
1743}
1744