1/* Target-dependent code for the Toshiba MeP for GDB, the GNU debugger.
2
3   Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
4   Free Software Foundation, Inc.
5
6   Contributed by Red Hat, Inc.
7
8   This file is part of GDB.
9
10   This program is free software; you can redistribute it and/or modify
11   it under the terms of the GNU General Public License as published by
12   the Free Software Foundation; either version 3 of the License, or
13   (at your option) any later version.
14
15   This program is distributed in the hope that it will be useful,
16   but WITHOUT ANY WARRANTY; without even the implied warranty of
17   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18   GNU General Public License for more details.
19
20   You should have received a copy of the GNU General Public License
21   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
22
23#include "defs.h"
24#include "frame.h"
25#include "frame-unwind.h"
26#include "frame-base.h"
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcmd.h"
30#include "gdbcore.h"
31#include "gdb_string.h"
32#include "value.h"
33#include "inferior.h"
34#include "dis-asm.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "language.h"
38#include "arch-utils.h"
39#include "regcache.h"
40#include "remote.h"
41#include "floatformat.h"
42#include "sim-regno.h"
43#include "disasm.h"
44#include "trad-frame.h"
45#include "reggroups.h"
46#include "elf-bfd.h"
47#include "elf/mep.h"
48#include "prologue-value.h"
49#include "opcode/cgen-bitset.h"
50#include "infcall.h"
51
52#include "gdb_assert.h"
53
54/* Get the user's customized MeP coprocessor register names from
55   libopcodes.  */
56#include "opcodes/mep-desc.h"
57#include "opcodes/mep-opc.h"
58
59
60/* The gdbarch_tdep structure.  */
61
62/* A quick recap for GDB hackers not familiar with the whole Toshiba
63   Media Processor story:
64
65   The MeP media engine is a configureable processor: users can design
66   their own coprocessors, implement custom instructions, adjust cache
67   sizes, select optional standard facilities like add-and-saturate
68   instructions, and so on.  Then, they can build custom versions of
69   the GNU toolchain to support their customized chips.  The
70   MeP-Integrator program (see utils/mep) takes a GNU toolchain source
71   tree, and a config file pointing to various files provided by the
72   user describing their customizations, and edits the source tree to
73   produce a compiler that can generate their custom instructions, an
74   assembler that can assemble them and recognize their custom
75   register names, and so on.
76
77   Furthermore, the user can actually specify several of these custom
78   configurations, called 'me_modules', and get a toolchain which can
79   produce code for any of them, given a compiler/assembler switch;
80   you say something like 'gcc -mconfig=mm_max' to generate code for
81   the me_module named 'mm_max'.
82
83   GDB, in particular, needs to:
84
85   - use the coprocessor control register names provided by the user
86     in their hardware description, in expressions, 'info register'
87     output, and disassembly,
88
89   - know the number, names, and types of the coprocessor's
90     general-purpose registers, adjust the 'info all-registers' output
91     accordingly, and print error messages if the user refers to one
92     that doesn't exist
93
94   - allow access to the control bus space only when the configuration
95     actually has a control bus, and recognize which regions of the
96     control bus space are actually populated,
97
98   - disassemble using the user's provided mnemonics for their custom
99     instructions, and
100
101   - recognize whether the $hi and $lo registers are present, and
102     allow access to them only when they are actually there.
103
104   There are three sources of information about what sort of me_module
105   we're actually dealing with:
106
107   - A MeP executable file indicates which me_module it was compiled
108     for, and libopcodes has tables describing each module.  So, given
109     an executable file, we can find out about the processor it was
110     compiled for.
111
112   - There are SID command-line options to select a particular
113     me_module, overriding the one specified in the ELF file.  SID
114     provides GDB with a fake read-only register, 'module', which
115     indicates which me_module GDB is communicating with an instance
116     of.
117
118   - There are SID command-line options to enable or disable certain
119     optional processor features, overriding the defaults for the
120     selected me_module.  The MeP $OPT register indicates which
121     options are present on the current processor.  */
122
123
124struct gdbarch_tdep
125{
126  /* A CGEN cpu descriptor for this BFD architecture and machine.
127
128     Note: this is *not* customized for any particular me_module; the
129     MeP libopcodes machinery actually puts off module-specific
130     customization until the last minute.  So this contains
131     information about all supported me_modules.  */
132  CGEN_CPU_DESC cpu_desc;
133
134  /* The me_module index from the ELF file we used to select this
135     architecture, or CONFIG_NONE if there was none.
136
137     Note that we should prefer to use the me_module number available
138     via the 'module' register, whenever we're actually talking to a
139     real target.
140
141     In the absence of live information, we'd like to get the
142     me_module number from the ELF file.  But which ELF file: the
143     executable file, the core file, ... ?  The answer is, "the last
144     ELF file we used to set the current architecture".  Thus, we
145     create a separate instance of the gdbarch structure for each
146     me_module value mep_gdbarch_init sees, and store the me_module
147     value from the ELF file here.  */
148  CONFIG_ATTR me_module;
149};
150
151
152
153/* Getting me_module information from the CGEN tables.  */
154
155
156/* Find an entry in the DESC's hardware table whose name begins with
157   PREFIX, and whose ISA mask intersects COPRO_ISA_MASK, but does not
158   intersect with GENERIC_ISA_MASK.  If there is no matching entry,
159   return zero.  */
160static const CGEN_HW_ENTRY *
161find_hw_entry_by_prefix_and_isa (CGEN_CPU_DESC desc,
162                                 const char *prefix,
163                                 CGEN_BITSET *copro_isa_mask,
164                                 CGEN_BITSET *generic_isa_mask)
165{
166  int prefix_len = strlen (prefix);
167  int i;
168
169  for (i = 0; i < desc->hw_table.num_entries; i++)
170    {
171      const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
172      if (strncmp (prefix, hw->name, prefix_len) == 0)
173        {
174          CGEN_BITSET *hw_isa_mask
175            = ((CGEN_BITSET *)
176               &CGEN_ATTR_CGEN_HW_ISA_VALUE (CGEN_HW_ATTRS (hw)));
177
178          if (cgen_bitset_intersect_p (hw_isa_mask, copro_isa_mask)
179              && ! cgen_bitset_intersect_p (hw_isa_mask, generic_isa_mask))
180            return hw;
181        }
182    }
183
184  return 0;
185}
186
187
188/* Find an entry in DESC's hardware table whose type is TYPE.  Return
189   zero if there is none.  */
190static const CGEN_HW_ENTRY *
191find_hw_entry_by_type (CGEN_CPU_DESC desc, CGEN_HW_TYPE type)
192{
193  int i;
194
195  for (i = 0; i < desc->hw_table.num_entries; i++)
196    {
197      const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
198
199      if (hw->type == type)
200        return hw;
201    }
202
203  return 0;
204}
205
206
207/* Return the CGEN hardware table entry for the coprocessor register
208   set for ME_MODULE, whose name prefix is PREFIX.  If ME_MODULE has
209   no such register set, return zero.  If ME_MODULE is the generic
210   me_module CONFIG_NONE, return the table entry for the register set
211   whose hardware type is GENERIC_TYPE.  */
212static const CGEN_HW_ENTRY *
213me_module_register_set (CONFIG_ATTR me_module,
214                        const char *prefix,
215                        CGEN_HW_TYPE generic_type)
216{
217  /* This is kind of tricky, because the hardware table is constructed
218     in a way that isn't very helpful.  Perhaps we can fix that, but
219     here's how it works at the moment:
220
221     The configuration map, `mep_config_map', is indexed by me_module
222     number, and indicates which coprocessor and core ISAs that
223     me_module supports.  The 'core_isa' mask includes all the core
224     ISAs, and the 'cop_isa' mask includes all the coprocessor ISAs.
225     The entry for the generic me_module, CONFIG_NONE, has an empty
226     'cop_isa', and its 'core_isa' selects only the standard MeP
227     instruction set.
228
229     The CGEN CPU descriptor's hardware table, desc->hw_table, has
230     entries for all the register sets, for all me_modules.  Each
231     entry has a mask indicating which ISAs use that register set.
232     So, if an me_module supports some coprocessor ISA, we can find
233     applicable register sets by scanning the hardware table for
234     register sets whose masks include (at least some of) those ISAs.
235
236     Each hardware table entry also has a name, whose prefix says
237     whether it's a general-purpose ("h-cr") or control ("h-ccr")
238     coprocessor register set.  It might be nicer to have an attribute
239     indicating what sort of register set it was, that we could use
240     instead of pattern-matching on the name.
241
242     When there is no hardware table entry whose mask includes a
243     particular coprocessor ISA and whose name starts with a given
244     prefix, then that means that that coprocessor doesn't have any
245     registers of that type.  In such cases, this function must return
246     a null pointer.
247
248     Coprocessor register sets' masks may or may not include the core
249     ISA for the me_module they belong to.  Those generated by a2cgen
250     do, but the sample me_module included in the unconfigured tree,
251     'ccfx', does not.
252
253     There are generic coprocessor register sets, intended only for
254     use with the generic me_module.  Unfortunately, their masks
255     include *all* ISAs --- even those for coprocessors that don't
256     have such register sets.  This makes detecting the case where a
257     coprocessor lacks a particular register set more complicated.
258
259     So, here's the approach we take:
260
261     - For CONFIG_NONE, we return the generic coprocessor register set.
262
263     - For any other me_module, we search for a register set whose
264       mask contains any of the me_module's coprocessor ISAs,
265       specifically excluding the generic coprocessor register sets.  */
266
267  CGEN_CPU_DESC desc = gdbarch_tdep (current_gdbarch)->cpu_desc;
268  const CGEN_HW_ENTRY *hw;
269
270  if (me_module == CONFIG_NONE)
271    hw = find_hw_entry_by_type (desc, generic_type);
272  else
273    {
274      CGEN_BITSET *cop = &mep_config_map[me_module].cop_isa;
275      CGEN_BITSET *core = &mep_config_map[me_module].core_isa;
276      CGEN_BITSET *generic = &mep_config_map[CONFIG_NONE].core_isa;
277      CGEN_BITSET *cop_and_core;
278
279      /* The coprocessor ISAs include the ISA for the specific core which
280	 has that coprocessor.  */
281      cop_and_core = cgen_bitset_copy (cop);
282      cgen_bitset_union (cop, core, cop_and_core);
283      hw = find_hw_entry_by_prefix_and_isa (desc, prefix, cop_and_core, generic);
284    }
285
286  return hw;
287}
288
289
290/* Given a hardware table entry HW representing a register set, return
291   a pointer to the keyword table with all the register names.  If HW
292   is NULL, return NULL, to propage the "no such register set" info
293   along.  */
294static CGEN_KEYWORD *
295register_set_keyword_table (const CGEN_HW_ENTRY *hw)
296{
297  if (! hw)
298    return NULL;
299
300  /* Check that HW is actually a keyword table.  */
301  gdb_assert (hw->asm_type == CGEN_ASM_KEYWORD);
302
303  /* The 'asm_data' field of a register set's hardware table entry
304     refers to a keyword table.  */
305  return (CGEN_KEYWORD *) hw->asm_data;
306}
307
308
309/* Given a keyword table KEYWORD and a register number REGNUM, return
310   the name of the register, or "" if KEYWORD contains no register
311   whose number is REGNUM.  */
312static char *
313register_name_from_keyword (CGEN_KEYWORD *keyword_table, int regnum)
314{
315  const CGEN_KEYWORD_ENTRY *entry
316    = cgen_keyword_lookup_value (keyword_table, regnum);
317
318  if (entry)
319    {
320      char *name = entry->name;
321
322      /* The CGEN keyword entries for register names include the
323         leading $, which appears in MeP assembly as well as in GDB.
324         But we don't want to return that; GDB core code adds that
325         itself.  */
326      if (name[0] == '$')
327        name++;
328
329      return name;
330    }
331  else
332    return "";
333}
334
335
336/* Masks for option bits in the OPT special-purpose register.  */
337enum {
338  MEP_OPT_DIV = 1 << 25,        /* 32-bit divide instruction option */
339  MEP_OPT_MUL = 1 << 24,        /* 32-bit multiply instruction option */
340  MEP_OPT_BIT = 1 << 23,        /* bit manipulation instruction option */
341  MEP_OPT_SAT = 1 << 22,        /* saturation instruction option */
342  MEP_OPT_CLP = 1 << 21,        /* clip instruction option */
343  MEP_OPT_MIN = 1 << 20,        /* min/max instruction option */
344  MEP_OPT_AVE = 1 << 19,        /* average instruction option */
345  MEP_OPT_ABS = 1 << 18,        /* absolute difference instruction option */
346  MEP_OPT_LDZ = 1 << 16,        /* leading zero instruction option */
347  MEP_OPT_VL64 = 1 << 6,        /* 64-bit VLIW operation mode option */
348  MEP_OPT_VL32 = 1 << 5,        /* 32-bit VLIW operation mode option */
349  MEP_OPT_COP = 1 << 4,         /* coprocessor option */
350  MEP_OPT_DSP = 1 << 2,         /* DSP option */
351  MEP_OPT_UCI = 1 << 1,         /* UCI option */
352  MEP_OPT_DBG = 1 << 0,         /* DBG function option */
353};
354
355
356/* Given the option_mask value for a particular entry in
357   mep_config_map, produce the value the processor's OPT register
358   would use to represent the same set of options.  */
359static unsigned int
360opt_from_option_mask (unsigned int option_mask)
361{
362  /* A table mapping OPT register bits onto CGEN config map option
363     bits.  */
364  struct {
365    unsigned int opt_bit, option_mask_bit;
366  } bits[] = {
367    { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
368    { MEP_OPT_MUL, 1 << CGEN_INSN_OPTIONAL_MUL_INSN },
369    { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
370    { MEP_OPT_DBG, 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN },
371    { MEP_OPT_LDZ, 1 << CGEN_INSN_OPTIONAL_LDZ_INSN },
372    { MEP_OPT_ABS, 1 << CGEN_INSN_OPTIONAL_ABS_INSN },
373    { MEP_OPT_AVE, 1 << CGEN_INSN_OPTIONAL_AVE_INSN },
374    { MEP_OPT_MIN, 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN },
375    { MEP_OPT_CLP, 1 << CGEN_INSN_OPTIONAL_CLIP_INSN },
376    { MEP_OPT_SAT, 1 << CGEN_INSN_OPTIONAL_SAT_INSN },
377    { MEP_OPT_UCI, 1 << CGEN_INSN_OPTIONAL_UCI_INSN },
378    { MEP_OPT_DSP, 1 << CGEN_INSN_OPTIONAL_DSP_INSN },
379    { MEP_OPT_COP, 1 << CGEN_INSN_OPTIONAL_CP_INSN },
380  };
381
382  int i;
383  unsigned int opt = 0;
384
385  for (i = 0; i < (sizeof (bits) / sizeof (bits[0])); i++)
386    if (option_mask & bits[i].option_mask_bit)
387      opt |= bits[i].opt_bit;
388
389  return opt;
390}
391
392
393/* Return the value the $OPT register would use to represent the set
394   of options for ME_MODULE.  */
395static unsigned int
396me_module_opt (CONFIG_ATTR me_module)
397{
398  return opt_from_option_mask (mep_config_map[me_module].option_mask);
399}
400
401
402/* Return the width of ME_MODULE's coprocessor data bus, in bits.
403   This is either 32 or 64.  */
404static int
405me_module_cop_data_bus_width (CONFIG_ATTR me_module)
406{
407  if (mep_config_map[me_module].option_mask
408      & (1 << CGEN_INSN_OPTIONAL_CP64_INSN))
409    return 64;
410  else
411    return 32;
412}
413
414
415/* Return true if ME_MODULE is big-endian, false otherwise.  */
416static int
417me_module_big_endian (CONFIG_ATTR me_module)
418{
419  return mep_config_map[me_module].big_endian;
420}
421
422
423/* Return the name of ME_MODULE, or NULL if it has no name.  */
424static const char *
425me_module_name (CONFIG_ATTR me_module)
426{
427  /* The default me_module has "" as its name, but it's easier for our
428     callers to test for NULL.  */
429  if (! mep_config_map[me_module].name
430      || mep_config_map[me_module].name[0] == '\0')
431    return NULL;
432  else
433    return mep_config_map[me_module].name;
434}
435
436/* Register set.  */
437
438
439/* The MeP spec defines the following registers:
440   16 general purpose registers (r0-r15)
441   32 control/special registers (csr0-csr31)
442   32 coprocessor general-purpose registers (c0 -- c31)
443   64 coprocessor control registers (ccr0 -- ccr63)
444
445   For the raw registers, we assign numbers here explicitly, instead
446   of letting the enum assign them for us; the numbers are a matter of
447   external protocol, and shouldn't shift around as things are edited.
448
449   We access the control/special registers via pseudoregisters, to
450   enforce read-only portions that some registers have.
451
452   We access the coprocessor general purpose and control registers via
453   pseudoregisters, to make sure they appear in the proper order in
454   the 'info all-registers' command (which uses the register number
455   ordering), and also to allow them to be renamed and resized
456   depending on the me_module in use.
457
458   The MeP allows coprocessor general-purpose registers to be either
459   32 or 64 bits long, depending on the configuration.  Since we don't
460   want the format of the 'g' packet to vary from one core to another,
461   the raw coprocessor GPRs are always 64 bits.  GDB doesn't allow the
462   types of registers to change (see the implementation of
463   register_type), so we have four banks of pseudoregisters for the
464   coprocessor gprs --- 32-bit vs. 64-bit, and integer
465   vs. floating-point --- and we show or hide them depending on the
466   configuration.  */
467enum
468{
469  MEP_FIRST_RAW_REGNUM = 0,
470
471  MEP_FIRST_GPR_REGNUM = 0,
472  MEP_R0_REGNUM = 0,
473  MEP_R1_REGNUM = 1,
474  MEP_R2_REGNUM = 2,
475  MEP_R3_REGNUM = 3,
476  MEP_R4_REGNUM = 4,
477  MEP_R5_REGNUM = 5,
478  MEP_R6_REGNUM = 6,
479  MEP_R7_REGNUM = 7,
480  MEP_R8_REGNUM = 8,
481  MEP_R9_REGNUM = 9,
482  MEP_R10_REGNUM = 10,
483  MEP_R11_REGNUM = 11,
484  MEP_R12_REGNUM = 12,
485  MEP_FP_REGNUM = MEP_R8_REGNUM,
486  MEP_R13_REGNUM = 13,
487  MEP_TP_REGNUM = MEP_R13_REGNUM,	/* (r13) Tiny data pointer */
488  MEP_R14_REGNUM = 14,
489  MEP_GP_REGNUM = MEP_R14_REGNUM,	/* (r14) Global pointer */
490  MEP_R15_REGNUM = 15,
491  MEP_SP_REGNUM = MEP_R15_REGNUM,	/* (r15) Stack pointer */
492  MEP_LAST_GPR_REGNUM = MEP_R15_REGNUM,
493
494  /* The raw control registers.  These are the values as received via
495     the remote protocol, directly from the target; we only let user
496     code touch the via the pseudoregisters, which enforce read-only
497     bits.  */
498  MEP_FIRST_RAW_CSR_REGNUM = 16,
499  MEP_RAW_PC_REGNUM    = 16,    /* Program counter */
500  MEP_RAW_LP_REGNUM    = 17,    /* Link pointer */
501  MEP_RAW_SAR_REGNUM   = 18,    /* Raw shift amount */
502  MEP_RAW_CSR3_REGNUM  = 19,    /* csr3: reserved */
503  MEP_RAW_RPB_REGNUM   = 20,    /* Raw repeat begin address */
504  MEP_RAW_RPE_REGNUM   = 21,    /* Repeat end address */
505  MEP_RAW_RPC_REGNUM   = 22,    /* Repeat count */
506  MEP_RAW_HI_REGNUM    = 23, /* Upper 32 bits of result of 64 bit mult/div */
507  MEP_RAW_LO_REGNUM    = 24, /* Lower 32 bits of result of 64 bit mult/div */
508  MEP_RAW_CSR9_REGNUM  = 25,    /* csr3: reserved */
509  MEP_RAW_CSR10_REGNUM = 26,    /* csr3: reserved */
510  MEP_RAW_CSR11_REGNUM = 27,    /* csr3: reserved */
511  MEP_RAW_MB0_REGNUM   = 28,    /* Raw modulo begin address 0 */
512  MEP_RAW_ME0_REGNUM   = 29,    /* Raw modulo end address 0 */
513  MEP_RAW_MB1_REGNUM   = 30,    /* Raw modulo begin address 1 */
514  MEP_RAW_ME1_REGNUM   = 31,    /* Raw modulo end address 1 */
515  MEP_RAW_PSW_REGNUM   = 32,    /* Raw program status word */
516  MEP_RAW_ID_REGNUM    = 33,    /* Raw processor ID/revision */
517  MEP_RAW_TMP_REGNUM   = 34,    /* Temporary */
518  MEP_RAW_EPC_REGNUM   = 35,    /* Exception program counter */
519  MEP_RAW_EXC_REGNUM   = 36,    /* Raw exception cause */
520  MEP_RAW_CFG_REGNUM   = 37,    /* Raw processor configuration*/
521  MEP_RAW_CSR22_REGNUM = 38,    /* csr3: reserved */
522  MEP_RAW_NPC_REGNUM   = 39,    /* Nonmaskable interrupt PC */
523  MEP_RAW_DBG_REGNUM   = 40,    /* Raw debug */
524  MEP_RAW_DEPC_REGNUM  = 41,    /* Debug exception PC */
525  MEP_RAW_OPT_REGNUM   = 42,    /* Raw options */
526  MEP_RAW_RCFG_REGNUM  = 43,    /* Raw local ram config */
527  MEP_RAW_CCFG_REGNUM  = 44,    /* Raw cache config */
528  MEP_RAW_CSR29_REGNUM = 45,    /* csr3: reserved */
529  MEP_RAW_CSR30_REGNUM = 46,    /* csr3: reserved */
530  MEP_RAW_CSR31_REGNUM = 47,    /* csr3: reserved */
531  MEP_LAST_RAW_CSR_REGNUM = MEP_RAW_CSR31_REGNUM,
532
533  /* The raw coprocessor general-purpose registers.  These are all 64
534     bits wide.  */
535  MEP_FIRST_RAW_CR_REGNUM = 48,
536  MEP_LAST_RAW_CR_REGNUM = MEP_FIRST_RAW_CR_REGNUM + 31,
537
538  MEP_FIRST_RAW_CCR_REGNUM = 80,
539  MEP_LAST_RAW_CCR_REGNUM = MEP_FIRST_RAW_CCR_REGNUM + 63,
540
541  /* The module number register.  This is the index of the me_module
542     of which the current target is an instance.  (This is not a real
543     MeP-specified register; it's provided by SID.)  */
544  MEP_MODULE_REGNUM,
545
546  MEP_LAST_RAW_REGNUM = MEP_MODULE_REGNUM,
547
548  MEP_NUM_RAW_REGS = MEP_LAST_RAW_REGNUM + 1,
549
550  /* Pseudoregisters.  See mep_pseudo_register_read and
551     mep_pseudo_register_write.  */
552  MEP_FIRST_PSEUDO_REGNUM = MEP_NUM_RAW_REGS,
553
554  /* We have a pseudoregister for every control/special register, to
555     implement registers with read-only bits.  */
556  MEP_FIRST_CSR_REGNUM = MEP_FIRST_PSEUDO_REGNUM,
557  MEP_PC_REGNUM = MEP_FIRST_CSR_REGNUM, /* Program counter */
558  MEP_LP_REGNUM,                /* Link pointer */
559  MEP_SAR_REGNUM,               /* shift amount */
560  MEP_CSR3_REGNUM,              /* csr3: reserved */
561  MEP_RPB_REGNUM,               /* repeat begin address */
562  MEP_RPE_REGNUM,               /* Repeat end address */
563  MEP_RPC_REGNUM,               /* Repeat count */
564  MEP_HI_REGNUM,  /* Upper 32 bits of the result of 64 bit mult/div */
565  MEP_LO_REGNUM,  /* Lower 32 bits of the result of 64 bit mult/div */
566  MEP_CSR9_REGNUM,              /* csr3: reserved */
567  MEP_CSR10_REGNUM,             /* csr3: reserved */
568  MEP_CSR11_REGNUM,             /* csr3: reserved */
569  MEP_MB0_REGNUM,               /* modulo begin address 0 */
570  MEP_ME0_REGNUM,               /* modulo end address 0 */
571  MEP_MB1_REGNUM,               /* modulo begin address 1 */
572  MEP_ME1_REGNUM,               /* modulo end address 1 */
573  MEP_PSW_REGNUM,               /* program status word */
574  MEP_ID_REGNUM,                /* processor ID/revision */
575  MEP_TMP_REGNUM,               /* Temporary */
576  MEP_EPC_REGNUM,               /* Exception program counter */
577  MEP_EXC_REGNUM,               /* exception cause */
578  MEP_CFG_REGNUM,               /* processor configuration*/
579  MEP_CSR22_REGNUM,             /* csr3: reserved */
580  MEP_NPC_REGNUM,               /* Nonmaskable interrupt PC */
581  MEP_DBG_REGNUM,               /* debug */
582  MEP_DEPC_REGNUM,              /* Debug exception PC */
583  MEP_OPT_REGNUM,               /* options */
584  MEP_RCFG_REGNUM,              /* local ram config */
585  MEP_CCFG_REGNUM,              /* cache config */
586  MEP_CSR29_REGNUM,             /* csr3: reserved */
587  MEP_CSR30_REGNUM,             /* csr3: reserved */
588  MEP_CSR31_REGNUM,             /* csr3: reserved */
589  MEP_LAST_CSR_REGNUM = MEP_CSR31_REGNUM,
590
591  /* The 32-bit integer view of the coprocessor GPR's.  */
592  MEP_FIRST_CR32_REGNUM,
593  MEP_LAST_CR32_REGNUM = MEP_FIRST_CR32_REGNUM + 31,
594
595  /* The 32-bit floating-point view of the coprocessor GPR's.  */
596  MEP_FIRST_FP_CR32_REGNUM,
597  MEP_LAST_FP_CR32_REGNUM = MEP_FIRST_FP_CR32_REGNUM + 31,
598
599  /* The 64-bit integer view of the coprocessor GPR's.  */
600  MEP_FIRST_CR64_REGNUM,
601  MEP_LAST_CR64_REGNUM = MEP_FIRST_CR64_REGNUM + 31,
602
603  /* The 64-bit floating-point view of the coprocessor GPR's.  */
604  MEP_FIRST_FP_CR64_REGNUM,
605  MEP_LAST_FP_CR64_REGNUM = MEP_FIRST_FP_CR64_REGNUM + 31,
606
607  MEP_FIRST_CCR_REGNUM,
608  MEP_LAST_CCR_REGNUM = MEP_FIRST_CCR_REGNUM + 63,
609
610  MEP_LAST_PSEUDO_REGNUM = MEP_LAST_CCR_REGNUM,
611
612  MEP_NUM_PSEUDO_REGS = (MEP_LAST_PSEUDO_REGNUM - MEP_LAST_RAW_REGNUM),
613
614  MEP_NUM_REGS = MEP_NUM_RAW_REGS + MEP_NUM_PSEUDO_REGS
615};
616
617
618#define IN_SET(set, n) \
619  (MEP_FIRST_ ## set ## _REGNUM <= (n) && (n) <= MEP_LAST_ ## set ## _REGNUM)
620
621#define IS_GPR_REGNUM(n)     (IN_SET (GPR,     (n)))
622#define IS_RAW_CSR_REGNUM(n) (IN_SET (RAW_CSR, (n)))
623#define IS_RAW_CR_REGNUM(n)  (IN_SET (RAW_CR,  (n)))
624#define IS_RAW_CCR_REGNUM(n) (IN_SET (RAW_CCR, (n)))
625
626#define IS_CSR_REGNUM(n)     (IN_SET (CSR,     (n)))
627#define IS_CR32_REGNUM(n)    (IN_SET (CR32,    (n)))
628#define IS_FP_CR32_REGNUM(n) (IN_SET (FP_CR32, (n)))
629#define IS_CR64_REGNUM(n)    (IN_SET (CR64,    (n)))
630#define IS_FP_CR64_REGNUM(n) (IN_SET (FP_CR64, (n)))
631#define IS_CR_REGNUM(n)      (IS_CR32_REGNUM (n) || IS_FP_CR32_REGNUM (n) \
632                              || IS_CR64_REGNUM (n) || IS_FP_CR64_REGNUM (n))
633#define IS_CCR_REGNUM(n)     (IN_SET (CCR,     (n)))
634
635#define IS_RAW_REGNUM(n)     (IN_SET (RAW,     (n)))
636#define IS_PSEUDO_REGNUM(n)  (IN_SET (PSEUDO,  (n)))
637
638#define NUM_REGS_IN_SET(set) \
639  (MEP_LAST_ ## set ## _REGNUM - MEP_FIRST_ ## set ## _REGNUM + 1)
640
641#define MEP_GPR_SIZE (4)        /* Size of a MeP general-purpose register.  */
642#define MEP_PSW_SIZE (4)        /* Size of the PSW register.  */
643#define MEP_LP_SIZE (4)         /* Size of the LP register.  */
644
645
646/* Many of the control/special registers contain bits that cannot be
647   written to; some are entirely read-only.  So we present them all as
648   pseudoregisters.
649
650   The following table describes the special properties of each CSR.  */
651struct mep_csr_register
652{
653  /* The number of this CSR's raw register.  */
654  int raw;
655
656  /* The number of this CSR's pseudoregister.  */
657  int pseudo;
658
659  /* A mask of the bits that are writeable: if a bit is set here, then
660     it can be modified; if the bit is clear, then it cannot.  */
661  LONGEST writeable_bits;
662};
663
664
665/* mep_csr_registers[i] describes the i'th CSR.
666   We just list the register numbers here explicitly to help catch
667   typos.  */
668#define CSR(name) MEP_RAW_ ## name ## _REGNUM, MEP_ ## name ## _REGNUM
669struct mep_csr_register mep_csr_registers[] = {
670  { CSR(PC),    0xffffffff },   /* manual says r/o, but we can write it */
671  { CSR(LP),    0xffffffff },
672  { CSR(SAR),   0x0000003f },
673  { CSR(CSR3),  0xffffffff },
674  { CSR(RPB),   0xfffffffe },
675  { CSR(RPE),   0xffffffff },
676  { CSR(RPC),   0xffffffff },
677  { CSR(HI),    0xffffffff },
678  { CSR(LO),    0xffffffff },
679  { CSR(CSR9),  0xffffffff },
680  { CSR(CSR10), 0xffffffff },
681  { CSR(CSR11), 0xffffffff },
682  { CSR(MB0),   0x0000ffff },
683  { CSR(ME0),   0x0000ffff },
684  { CSR(MB1),   0x0000ffff },
685  { CSR(ME1),   0x0000ffff },
686  { CSR(PSW),   0x000003ff },
687  { CSR(ID),    0x00000000 },
688  { CSR(TMP),   0xffffffff },
689  { CSR(EPC),   0xffffffff },
690  { CSR(EXC),   0x000030f0 },
691  { CSR(CFG),   0x00c0001b },
692  { CSR(CSR22), 0xffffffff },
693  { CSR(NPC),   0xffffffff },
694  { CSR(DBG),   0x00000580 },
695  { CSR(DEPC),  0xffffffff },
696  { CSR(OPT),   0x00000000 },
697  { CSR(RCFG),  0x00000000 },
698  { CSR(CCFG),  0x00000000 },
699  { CSR(CSR29), 0xffffffff },
700  { CSR(CSR30), 0xffffffff },
701  { CSR(CSR31), 0xffffffff },
702};
703
704
705/* If R is the number of a raw register, then mep_raw_to_pseudo[R] is
706   the number of the corresponding pseudoregister.  Otherwise,
707   mep_raw_to_pseudo[R] == R.  */
708static int mep_raw_to_pseudo[MEP_NUM_REGS];
709
710/* If R is the number of a pseudoregister, then mep_pseudo_to_raw[R]
711   is the number of the underlying raw register.  Otherwise
712   mep_pseudo_to_raw[R] == R.  */
713static int mep_pseudo_to_raw[MEP_NUM_REGS];
714
715static void
716mep_init_pseudoregister_maps (void)
717{
718  int i;
719
720  /* Verify that mep_csr_registers covers all the CSRs, in order.  */
721  gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (CSR));
722  gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (RAW_CSR));
723
724  /* Verify that the raw and pseudo ranges have matching sizes.  */
725  gdb_assert (NUM_REGS_IN_SET (RAW_CSR) == NUM_REGS_IN_SET (CSR));
726  gdb_assert (NUM_REGS_IN_SET (RAW_CR)  == NUM_REGS_IN_SET (CR32));
727  gdb_assert (NUM_REGS_IN_SET (RAW_CR)  == NUM_REGS_IN_SET (CR64));
728  gdb_assert (NUM_REGS_IN_SET (RAW_CCR) == NUM_REGS_IN_SET (CCR));
729
730  for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
731    {
732      struct mep_csr_register *r = &mep_csr_registers[i];
733
734      gdb_assert (r->pseudo == MEP_FIRST_CSR_REGNUM + i);
735      gdb_assert (r->raw    == MEP_FIRST_RAW_CSR_REGNUM + i);
736    }
737
738  /* Set up the initial  raw<->pseudo mappings.  */
739  for (i = 0; i < MEP_NUM_REGS; i++)
740    {
741      mep_raw_to_pseudo[i] = i;
742      mep_pseudo_to_raw[i] = i;
743    }
744
745  /* Add the CSR raw<->pseudo mappings.  */
746  for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
747    {
748      struct mep_csr_register *r = &mep_csr_registers[i];
749
750      mep_raw_to_pseudo[r->raw] = r->pseudo;
751      mep_pseudo_to_raw[r->pseudo] = r->raw;
752    }
753
754  /* Add the CR raw<->pseudo mappings.  */
755  for (i = 0; i < NUM_REGS_IN_SET (RAW_CR); i++)
756    {
757      int raw = MEP_FIRST_RAW_CR_REGNUM + i;
758      int pseudo32 = MEP_FIRST_CR32_REGNUM + i;
759      int pseudofp32 = MEP_FIRST_FP_CR32_REGNUM + i;
760      int pseudo64 = MEP_FIRST_CR64_REGNUM + i;
761      int pseudofp64 = MEP_FIRST_FP_CR64_REGNUM + i;
762
763      /* Truly, the raw->pseudo mapping depends on the current module.
764         But we use the raw->pseudo mapping when we read the debugging
765         info; at that point, we don't know what module we'll actually
766         be running yet.  So, we always supply the 64-bit register
767         numbers; GDB knows how to pick a smaller value out of a
768         larger register properly.  */
769      mep_raw_to_pseudo[raw] = pseudo64;
770      mep_pseudo_to_raw[pseudo32] = raw;
771      mep_pseudo_to_raw[pseudofp32] = raw;
772      mep_pseudo_to_raw[pseudo64] = raw;
773      mep_pseudo_to_raw[pseudofp64] = raw;
774    }
775
776  /* Add the CCR raw<->pseudo mappings.  */
777  for (i = 0; i < NUM_REGS_IN_SET (CCR); i++)
778    {
779      int raw = MEP_FIRST_RAW_CCR_REGNUM + i;
780      int pseudo = MEP_FIRST_CCR_REGNUM + i;
781      mep_raw_to_pseudo[raw] = pseudo;
782      mep_pseudo_to_raw[pseudo] = raw;
783    }
784}
785
786
787static int
788mep_debug_reg_to_regnum (int debug_reg)
789{
790  /* The debug info uses the raw register numbers.  */
791  return mep_raw_to_pseudo[debug_reg];
792}
793
794
795/* Return the size, in bits, of the coprocessor pseudoregister
796   numbered PSEUDO.  */
797static int
798mep_pseudo_cr_size (int pseudo)
799{
800  if (IS_CR32_REGNUM (pseudo)
801      || IS_FP_CR32_REGNUM (pseudo))
802    return 32;
803  else if (IS_CR64_REGNUM (pseudo)
804           || IS_FP_CR64_REGNUM (pseudo))
805    return 64;
806  else
807    gdb_assert (0);
808}
809
810
811/* If the coprocessor pseudoregister numbered PSEUDO is a
812   floating-point register, return non-zero; if it is an integer
813   register, return zero.  */
814static int
815mep_pseudo_cr_is_float (int pseudo)
816{
817  return (IS_FP_CR32_REGNUM (pseudo)
818          || IS_FP_CR64_REGNUM (pseudo));
819}
820
821
822/* Given a coprocessor GPR pseudoregister number, return its index
823   within that register bank.  */
824static int
825mep_pseudo_cr_index (int pseudo)
826{
827  if (IS_CR32_REGNUM (pseudo))
828    return pseudo - MEP_FIRST_CR32_REGNUM;
829  else if (IS_FP_CR32_REGNUM (pseudo))
830      return pseudo - MEP_FIRST_FP_CR32_REGNUM;
831  else if (IS_CR64_REGNUM (pseudo))
832      return pseudo - MEP_FIRST_CR64_REGNUM;
833  else if (IS_FP_CR64_REGNUM (pseudo))
834      return pseudo - MEP_FIRST_FP_CR64_REGNUM;
835  else
836    gdb_assert (0);
837}
838
839
840/* Return the me_module index describing the current target.
841
842   If the current target has registers (e.g., simulator, remote
843   target), then this uses the value of the 'module' register, raw
844   register MEP_MODULE_REGNUM.  Otherwise, this retrieves the value
845   from the ELF header's e_flags field of the current executable
846   file.  */
847static CONFIG_ATTR
848current_me_module ()
849{
850  if (target_has_registers)
851    {
852      ULONGEST regval;
853      regcache_cooked_read_unsigned (get_current_regcache (),
854				     MEP_MODULE_REGNUM, &regval);
855      return regval;
856    }
857  else
858    return gdbarch_tdep (current_gdbarch)->me_module;
859}
860
861
862/* Return the set of options for the current target, in the form that
863   the OPT register would use.
864
865   If the current target has registers (e.g., simulator, remote
866   target), then this is the actual value of the OPT register.  If the
867   current target does not have registers (e.g., an executable file),
868   then use the 'module_opt' field we computed when we build the
869   gdbarch object for this module.  */
870static unsigned int
871current_options ()
872{
873  if (target_has_registers)
874    {
875      ULONGEST regval;
876      regcache_cooked_read_unsigned (get_current_regcache (),
877				     MEP_OPT_REGNUM, &regval);
878      return regval;
879    }
880  else
881    return me_module_opt (current_me_module ());
882}
883
884
885/* Return the width of the current me_module's coprocessor data bus,
886   in bits.  This is either 32 or 64.  */
887static int
888current_cop_data_bus_width ()
889{
890  return me_module_cop_data_bus_width (current_me_module ());
891}
892
893
894/* Return the keyword table of coprocessor general-purpose register
895   names appropriate for the me_module we're dealing with.  */
896static CGEN_KEYWORD *
897current_cr_names ()
898{
899  const CGEN_HW_ENTRY *hw
900    = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
901
902  return register_set_keyword_table (hw);
903}
904
905
906/* Return non-zero if the coprocessor general-purpose registers are
907   floating-point values, zero otherwise.  */
908static int
909current_cr_is_float ()
910{
911  const CGEN_HW_ENTRY *hw
912    = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
913
914  return CGEN_ATTR_CGEN_HW_IS_FLOAT_VALUE (CGEN_HW_ATTRS (hw));
915}
916
917
918/* Return the keyword table of coprocessor control register names
919   appropriate for the me_module we're dealing with.  */
920static CGEN_KEYWORD *
921current_ccr_names ()
922{
923  const CGEN_HW_ENTRY *hw
924    = me_module_register_set (current_me_module (), "h-ccr-", HW_H_CCR);
925
926  return register_set_keyword_table (hw);
927}
928
929
930static const char *
931mep_register_name (int regnr)
932{
933  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
934
935  /* General-purpose registers.  */
936  static const char *gpr_names[] = {
937    "r0",   "r1",   "r2",   "r3",   /* 0 */
938    "r4",   "r5",   "r6",   "r7",   /* 4 */
939    "fp",   "r9",   "r10",  "r11",  /* 8 */
940    "r12",  "tp",   "gp",   "sp"    /* 12 */
941  };
942
943  /* Special-purpose registers.  */
944  static const char *csr_names[] = {
945    "pc",   "lp",   "sar",  "",     /* 0  csr3: reserved */
946    "rpb",  "rpe",  "rpc",  "hi",   /* 4 */
947    "lo",   "",     "",     "",     /* 8  csr9-csr11: reserved */
948    "mb0",  "me0",  "mb1",  "me1",  /* 12 */
949
950    "psw",  "id",   "tmp",  "epc",  /* 16 */
951    "exc",  "cfg",  "",     "npc",  /* 20  csr22: reserved */
952    "dbg",  "depc", "opt",  "rcfg", /* 24 */
953    "ccfg", "",     "",     ""      /* 28  csr29-csr31: reserved */
954  };
955
956  if (IS_GPR_REGNUM (regnr))
957    return gpr_names[regnr - MEP_R0_REGNUM];
958  else if (IS_CSR_REGNUM (regnr))
959    {
960      /* The 'hi' and 'lo' registers are only present on processors
961         that have the 'MUL' or 'DIV' instructions enabled.  */
962      if ((regnr == MEP_HI_REGNUM || regnr == MEP_LO_REGNUM)
963          && (! (current_options () & (MEP_OPT_MUL | MEP_OPT_DIV))))
964        return "";
965
966      return csr_names[regnr - MEP_FIRST_CSR_REGNUM];
967    }
968  else if (IS_CR_REGNUM (regnr))
969    {
970      CGEN_KEYWORD *names;
971      int cr_size;
972      int cr_is_float;
973
974      /* Does this module have a coprocessor at all?  */
975      if (! (current_options () & MEP_OPT_COP))
976        return "";
977
978      names = current_cr_names ();
979      if (! names)
980        /* This module's coprocessor has no general-purpose registers.  */
981        return "";
982
983      cr_size = current_cop_data_bus_width ();
984      if (cr_size != mep_pseudo_cr_size (regnr))
985        /* This module's coprocessor's GPR's are of a different size.  */
986        return "";
987
988      cr_is_float = current_cr_is_float ();
989      /* The extra ! operators ensure we get boolean equality, not
990         numeric equality.  */
991      if (! cr_is_float != ! mep_pseudo_cr_is_float (regnr))
992        /* This module's coprocessor's GPR's are of a different type.  */
993        return "";
994
995      return register_name_from_keyword (names, mep_pseudo_cr_index (regnr));
996    }
997  else if (IS_CCR_REGNUM (regnr))
998    {
999      /* Does this module have a coprocessor at all?  */
1000      if (! (current_options () & MEP_OPT_COP))
1001        return "";
1002
1003      {
1004        CGEN_KEYWORD *names = current_ccr_names ();
1005
1006        if (! names)
1007          /* This me_module's coprocessor has no control registers.  */
1008          return "";
1009
1010        return register_name_from_keyword (names, regnr-MEP_FIRST_CCR_REGNUM);
1011      }
1012    }
1013
1014  /* It might be nice to give the 'module' register a name, but that
1015     would affect the output of 'info all-registers', which would
1016     disturb the test suites.  So we leave it invisible.  */
1017  else
1018    return NULL;
1019}
1020
1021
1022/* Custom register groups for the MeP.  */
1023static struct reggroup *mep_csr_reggroup; /* control/special */
1024static struct reggroup *mep_cr_reggroup;  /* coprocessor general-purpose */
1025static struct reggroup *mep_ccr_reggroup; /* coprocessor control */
1026
1027
1028static int
1029mep_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1030                         struct reggroup *group)
1031{
1032  /* Filter reserved or unused register numbers.  */
1033  {
1034    const char *name = mep_register_name (regnum);
1035
1036    if (! name || name[0] == '\0')
1037      return 0;
1038  }
1039
1040  /* We could separate the GPRs and the CSRs.  Toshiba has approved of
1041     the existing behavior, so we'd want to run that by them.  */
1042  if (group == general_reggroup)
1043    return (IS_GPR_REGNUM (regnum)
1044            || IS_CSR_REGNUM (regnum));
1045
1046  /* Everything is in the 'all' reggroup, except for the raw CSR's.  */
1047  else if (group == all_reggroup)
1048    return (IS_GPR_REGNUM (regnum)
1049            || IS_CSR_REGNUM (regnum)
1050            || IS_CR_REGNUM (regnum)
1051            || IS_CCR_REGNUM (regnum));
1052
1053  /* All registers should be saved and restored, except for the raw
1054     CSR's.
1055
1056     This is probably right if the coprocessor is something like a
1057     floating-point unit, but would be wrong if the coprocessor is
1058     something that does I/O, where register accesses actually cause
1059     externally-visible actions.  But I get the impression that the
1060     coprocessor isn't supposed to do things like that --- you'd use a
1061     hardware engine, perhaps.  */
1062  else if (group == save_reggroup || group == restore_reggroup)
1063    return (IS_GPR_REGNUM (regnum)
1064            || IS_CSR_REGNUM (regnum)
1065            || IS_CR_REGNUM (regnum)
1066            || IS_CCR_REGNUM (regnum));
1067
1068  else if (group == mep_csr_reggroup)
1069    return IS_CSR_REGNUM (regnum);
1070  else if (group == mep_cr_reggroup)
1071    return IS_CR_REGNUM (regnum);
1072  else if (group == mep_ccr_reggroup)
1073    return IS_CCR_REGNUM (regnum);
1074  else
1075    return 0;
1076}
1077
1078
1079static struct type *
1080mep_register_type (struct gdbarch *gdbarch, int reg_nr)
1081{
1082  /* Coprocessor general-purpose registers may be either 32 or 64 bits
1083     long.  So for them, the raw registers are always 64 bits long (to
1084     keep the 'g' packet format fixed), and the pseudoregisters vary
1085     in length.  */
1086  if (IS_RAW_CR_REGNUM (reg_nr))
1087    return builtin_type_uint64;
1088
1089  /* Since GDB doesn't allow registers to change type, we have two
1090     banks of pseudoregisters for the coprocessor general-purpose
1091     registers: one that gives a 32-bit view, and one that gives a
1092     64-bit view.  We hide or show one or the other depending on the
1093     current module.  */
1094  if (IS_CR_REGNUM (reg_nr))
1095    {
1096      int size = mep_pseudo_cr_size (reg_nr);
1097      if (size == 32)
1098        {
1099          if (mep_pseudo_cr_is_float (reg_nr))
1100            return builtin_type_float;
1101          else
1102            return builtin_type_uint32;
1103        }
1104      else if (size == 64)
1105        {
1106          if (mep_pseudo_cr_is_float (reg_nr))
1107            return builtin_type_double;
1108          else
1109            return builtin_type_uint64;
1110        }
1111      else
1112        gdb_assert (0);
1113    }
1114
1115  /* All other registers are 32 bits long.  */
1116  else
1117    return builtin_type_uint32;
1118}
1119
1120
1121static CORE_ADDR
1122mep_read_pc (struct regcache *regcache)
1123{
1124  ULONGEST pc;
1125  regcache_cooked_read_unsigned (regcache, MEP_PC_REGNUM, &pc);
1126  return pc;
1127}
1128
1129static void
1130mep_write_pc (struct regcache *regcache, CORE_ADDR pc)
1131{
1132  regcache_cooked_write_unsigned (regcache, MEP_PC_REGNUM, pc);
1133}
1134
1135
1136static void
1137mep_pseudo_cr32_read (struct gdbarch *gdbarch,
1138                      struct regcache *regcache,
1139                      int cookednum,
1140                      void *buf)
1141{
1142  /* Read the raw register into a 64-bit buffer, and then return the
1143     appropriate end of that buffer.  */
1144  int rawnum = mep_pseudo_to_raw[cookednum];
1145  char buf64[8];
1146
1147  gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1148  gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1149  regcache_raw_read (regcache, rawnum, buf64);
1150  /* Slow, but legible.  */
1151  store_unsigned_integer (buf, 4, extract_unsigned_integer (buf64, 8));
1152}
1153
1154
1155static void
1156mep_pseudo_cr64_read (struct gdbarch *gdbarch,
1157                      struct regcache *regcache,
1158                      int cookednum,
1159                      void *buf)
1160{
1161  regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1162}
1163
1164
1165static void
1166mep_pseudo_register_read (struct gdbarch *gdbarch,
1167                          struct regcache *regcache,
1168                          int cookednum,
1169                          gdb_byte *buf)
1170{
1171  if (IS_CSR_REGNUM (cookednum)
1172      || IS_CCR_REGNUM (cookednum))
1173    regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1174  else if (IS_CR32_REGNUM (cookednum)
1175           || IS_FP_CR32_REGNUM (cookednum))
1176    mep_pseudo_cr32_read (gdbarch, regcache, cookednum, buf);
1177  else if (IS_CR64_REGNUM (cookednum)
1178           || IS_FP_CR64_REGNUM (cookednum))
1179    mep_pseudo_cr64_read (gdbarch, regcache, cookednum, buf);
1180  else
1181    gdb_assert (0);
1182}
1183
1184
1185static void
1186mep_pseudo_csr_write (struct gdbarch *gdbarch,
1187                      struct regcache *regcache,
1188                      int cookednum,
1189                      const void *buf)
1190{
1191  int size = register_size (gdbarch, cookednum);
1192  struct mep_csr_register *r
1193    = &mep_csr_registers[cookednum - MEP_FIRST_CSR_REGNUM];
1194
1195  if (r->writeable_bits == 0)
1196    /* A completely read-only register; avoid the read-modify-
1197       write cycle, and juts ignore the entire write.  */
1198    ;
1199  else
1200    {
1201      /* A partially writeable register; do a read-modify-write cycle.  */
1202      ULONGEST old_bits;
1203      ULONGEST new_bits;
1204      ULONGEST mixed_bits;
1205
1206      regcache_raw_read_unsigned (regcache, r->raw, &old_bits);
1207      new_bits = extract_unsigned_integer (buf, size);
1208      mixed_bits = ((r->writeable_bits & new_bits)
1209                    | (~r->writeable_bits & old_bits));
1210      regcache_raw_write_unsigned (regcache, r->raw, mixed_bits);
1211    }
1212}
1213
1214
1215static void
1216mep_pseudo_cr32_write (struct gdbarch *gdbarch,
1217                       struct regcache *regcache,
1218                       int cookednum,
1219                       const void *buf)
1220{
1221  /* Expand the 32-bit value into a 64-bit value, and write that to
1222     the pseudoregister.  */
1223  int rawnum = mep_pseudo_to_raw[cookednum];
1224  char buf64[8];
1225
1226  gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1227  gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1228  /* Slow, but legible.  */
1229  store_unsigned_integer (buf64, 8, extract_unsigned_integer (buf, 4));
1230  regcache_raw_write (regcache, rawnum, buf64);
1231}
1232
1233
1234static void
1235mep_pseudo_cr64_write (struct gdbarch *gdbarch,
1236                     struct regcache *regcache,
1237                     int cookednum,
1238                     const void *buf)
1239{
1240  regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1241}
1242
1243
1244static void
1245mep_pseudo_register_write (struct gdbarch *gdbarch,
1246                           struct regcache *regcache,
1247                           int cookednum,
1248                           const gdb_byte *buf)
1249{
1250  if (IS_CSR_REGNUM (cookednum))
1251    mep_pseudo_csr_write (gdbarch, regcache, cookednum, buf);
1252  else if (IS_CR32_REGNUM (cookednum)
1253           || IS_FP_CR32_REGNUM (cookednum))
1254    mep_pseudo_cr32_write (gdbarch, regcache, cookednum, buf);
1255  else if (IS_CR64_REGNUM (cookednum)
1256           || IS_FP_CR64_REGNUM (cookednum))
1257    mep_pseudo_cr64_write (gdbarch, regcache, cookednum, buf);
1258  else if (IS_CCR_REGNUM (cookednum))
1259    regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1260  else
1261    gdb_assert (0);
1262}
1263
1264
1265
1266/* Disassembly.  */
1267
1268/* The mep disassembler needs to know about the section in order to
1269   work correctly. */
1270int
1271mep_gdb_print_insn (bfd_vma pc, disassemble_info * info)
1272{
1273  struct obj_section * s = find_pc_section (pc);
1274
1275  if (s)
1276    {
1277      /* The libopcodes disassembly code uses the section to find the
1278         BFD, the BFD to find the ELF header, the ELF header to find
1279         the me_module index, and the me_module index to select the
1280         right instructions to print.  */
1281      info->section = s->the_bfd_section;
1282      info->arch = bfd_arch_mep;
1283
1284      return print_insn_mep (pc, info);
1285    }
1286
1287  return 0;
1288}
1289
1290
1291/* Prologue analysis.  */
1292
1293
1294/* The MeP has two classes of instructions: "core" instructions, which
1295   are pretty normal RISC chip stuff, and "coprocessor" instructions,
1296   which are mostly concerned with moving data in and out of
1297   coprocessor registers, and branching on coprocessor condition
1298   codes.  There's space in the instruction set for custom coprocessor
1299   instructions, too.
1300
1301   Instructions can be 16 or 32 bits long; the top two bits of the
1302   first byte indicate the length.  The coprocessor instructions are
1303   mixed in with the core instructions, and there's no easy way to
1304   distinguish them; you have to completely decode them to tell one
1305   from the other.
1306
1307   The MeP also supports a "VLIW" operation mode, where instructions
1308   always occur in fixed-width bundles.  The bundles are either 32
1309   bits or 64 bits long, depending on a fixed configuration flag.  You
1310   decode the first part of the bundle as normal; if it's a core
1311   instruction, and there's any space left in the bundle, the
1312   remainder of the bundle is a coprocessor instruction, which will
1313   execute in parallel with the core instruction.  If the first part
1314   of the bundle is a coprocessor instruction, it occupies the entire
1315   bundle.
1316
1317   So, here are all the cases:
1318
1319   - 32-bit VLIW mode:
1320     Every bundle is four bytes long, and naturally aligned, and can hold
1321     one or two instructions:
1322     - 16-bit core instruction; 16-bit coprocessor instruction
1323       These execute in parallel.
1324     - 32-bit core instruction
1325     - 32-bit coprocessor instruction
1326
1327   - 64-bit VLIW mode:
1328     Every bundle is eight bytes long, and naturally aligned, and can hold
1329     one or two instructions:
1330     - 16-bit core instruction; 48-bit (!) coprocessor instruction
1331       These execute in parallel.
1332     - 32-bit core instruction; 32-bit coprocessor instruction
1333       These execute in parallel.
1334     - 64-bit coprocessor instruction
1335
1336   Now, the MeP manual doesn't define any 48- or 64-bit coprocessor
1337   instruction, so I don't really know what's up there; perhaps these
1338   are always the user-defined coprocessor instructions.  */
1339
1340
1341/* Return non-zero if PC is in a VLIW code section, zero
1342   otherwise.  */
1343static int
1344mep_pc_in_vliw_section (CORE_ADDR pc)
1345{
1346  struct obj_section *s = find_pc_section (pc);
1347  if (s)
1348    return (s->the_bfd_section->flags & SEC_MEP_VLIW);
1349  return 0;
1350}
1351
1352
1353/* Set *INSN to the next core instruction at PC, and return the
1354   address of the next instruction.
1355
1356   The MeP instruction encoding is endian-dependent.  16- and 32-bit
1357   instructions are encoded as one or two two-byte parts, and each
1358   part is byte-swapped independently.  Thus:
1359
1360      void
1361      foo (void)
1362      {
1363        asm ("movu $1, 0x123456");
1364        asm ("sb $1,0x5678($2)");
1365        asm ("clip $1, 19");
1366      }
1367
1368   compiles to this big-endian code:
1369
1370       0:	d1 56 12 34 	movu $1,0x123456
1371       4:	c1 28 56 78 	sb $1,22136($2)
1372       8:	f1 01 10 98 	clip $1,0x13
1373       c:	70 02       	ret
1374
1375   and this little-endian code:
1376
1377       0:	56 d1 34 12 	movu $1,0x123456
1378       4:	28 c1 78 56 	sb $1,22136($2)
1379       8:	01 f1 98 10 	clip $1,0x13
1380       c:	02 70       	ret
1381
1382   Instructions are returned in *INSN in an endian-independent form: a
1383   given instruction always appears in *INSN the same way, regardless
1384   of whether the instruction stream is big-endian or little-endian.
1385
1386   *INSN's most significant 16 bits are the first (i.e., at lower
1387   addresses) 16 bit part of the instruction.  Its least significant
1388   16 bits are the second (i.e., higher-addressed) 16 bit part of the
1389   instruction, or zero for a 16-bit instruction.  Both 16-bit parts
1390   are fetched using the current endianness.
1391
1392   So, the *INSN values for the instruction sequence above would be
1393   the following, in either endianness:
1394
1395       0xd1561234       movu $1,0x123456
1396       0xc1285678 	sb $1,22136($2)
1397       0xf1011098 	clip $1,0x13
1398       0x70020000      	ret
1399
1400   (In a sense, it would be more natural to return 16-bit instructions
1401   in the least significant 16 bits of *INSN, but that would be
1402   ambiguous.  In order to tell whether you're looking at a 16- or a
1403   32-bit instruction, you have to consult the major opcode field ---
1404   the most significant four bits of the instruction's first 16-bit
1405   part.  But if we put 16-bit instructions at the least significant
1406   end of *INSN, then you don't know where to find the major opcode
1407   field until you know if it's a 16- or a 32-bit instruction ---
1408   which is where we started.)
1409
1410   If PC points to a core / coprocessor bundle in a VLIW section, set
1411   *INSN to the core instruction, and return the address of the next
1412   bundle.  This has the effect of skipping the bundled coprocessor
1413   instruction.  That's okay, since coprocessor instructions aren't
1414   significant to prologue analysis --- for the time being,
1415   anyway.  */
1416
1417static CORE_ADDR
1418mep_get_insn (CORE_ADDR pc, long *insn)
1419{
1420  int pc_in_vliw_section;
1421  int vliw_mode;
1422  int insn_len;
1423  char buf[2];
1424
1425  *insn = 0;
1426
1427  /* Are we in a VLIW section?  */
1428  pc_in_vliw_section = mep_pc_in_vliw_section (pc);
1429  if (pc_in_vliw_section)
1430    {
1431      /* Yes, find out which bundle size.  */
1432      vliw_mode = current_options () & (MEP_OPT_VL32 | MEP_OPT_VL64);
1433
1434      /* If PC is in a VLIW section, but the current core doesn't say
1435         that it supports either VLIW mode, then we don't have enough
1436         information to parse the instruction stream it contains.
1437         Since the "undifferentiated" standard core doesn't have
1438         either VLIW mode bit set, this could happen.
1439
1440         But it shouldn't be an error to (say) set a breakpoint in a
1441         VLIW section, if you know you'll never reach it.  (Perhaps
1442         you have a script that sets a bunch of standard breakpoints.)
1443
1444         So we'll just return zero here, and hope for the best.  */
1445      if (! (vliw_mode & (MEP_OPT_VL32 | MEP_OPT_VL64)))
1446        return 0;
1447
1448      /* If both VL32 and VL64 are set, that's bogus, too.  */
1449      if (vliw_mode == (MEP_OPT_VL32 | MEP_OPT_VL64))
1450        return 0;
1451    }
1452  else
1453    vliw_mode = 0;
1454
1455  read_memory (pc, buf, sizeof (buf));
1456  *insn = extract_unsigned_integer (buf, 2) << 16;
1457
1458  /* The major opcode --- the top four bits of the first 16-bit
1459     part --- indicates whether this instruction is 16 or 32 bits
1460     long.  All 32-bit instructions have a major opcode whose top
1461     two bits are 11; all the rest are 16-bit instructions.  */
1462  if ((*insn & 0xc0000000) == 0xc0000000)
1463    {
1464      /* Fetch the second 16-bit part of the instruction.  */
1465      read_memory (pc + 2, buf, sizeof (buf));
1466      *insn = *insn | extract_unsigned_integer (buf, 2);
1467    }
1468
1469  /* If we're in VLIW code, then the VLIW width determines the address
1470     of the next instruction.  */
1471  if (vliw_mode)
1472    {
1473      /* In 32-bit VLIW code, all bundles are 32 bits long.  We ignore the
1474         coprocessor half of a core / copro bundle.  */
1475      if (vliw_mode == MEP_OPT_VL32)
1476        insn_len = 4;
1477
1478      /* In 64-bit VLIW code, all bundles are 64 bits long.  We ignore the
1479         coprocessor half of a core / copro bundle.  */
1480      else if (vliw_mode == MEP_OPT_VL64)
1481        insn_len = 8;
1482
1483      /* We'd better be in either core, 32-bit VLIW, or 64-bit VLIW mode.  */
1484      else
1485        gdb_assert (0);
1486    }
1487
1488  /* Otherwise, the top two bits of the major opcode are (again) what
1489     we need to check.  */
1490  else if ((*insn & 0xc0000000) == 0xc0000000)
1491    insn_len = 4;
1492  else
1493    insn_len = 2;
1494
1495  return pc + insn_len;
1496}
1497
1498
1499/* Sign-extend the LEN-bit value N.  */
1500#define SEXT(n, len) ((((int) (n)) ^ (1 << ((len) - 1))) - (1 << ((len) - 1)))
1501
1502/* Return the LEN-bit field at POS from I.  */
1503#define FIELD(i, pos, len) (((i) >> (pos)) & ((1 << (len)) - 1))
1504
1505/* Like FIELD, but sign-extend the field's value.  */
1506#define SFIELD(i, pos, len) (SEXT (FIELD ((i), (pos), (len)), (len)))
1507
1508
1509/* Macros for decoding instructions.
1510
1511   Remember that 16-bit instructions are placed in bits 16..31 of i,
1512   not at the least significant end; this means that the major opcode
1513   field is always in the same place, regardless of the width of the
1514   instruction.  As a reminder of this, we show the lower 16 bits of a
1515   16-bit instruction as xxxx_xxxx_xxxx_xxxx.  */
1516
1517/* SB Rn,(Rm)		      0000_nnnn_mmmm_1000 */
1518/* SH Rn,(Rm)		      0000_nnnn_mmmm_1001 */
1519/* SW Rn,(Rm)		      0000_nnnn_mmmm_1010 */
1520
1521/* SW Rn,disp16(Rm)	      1100_nnnn_mmmm_1010 dddd_dddd_dddd_dddd */
1522#define IS_SW(i)	      (((i) & 0xf00f0000) == 0xc00a0000)
1523/* SB Rn,disp16(Rm)	      1100_nnnn_mmmm_1000 dddd_dddd_dddd_dddd */
1524#define IS_SB(i)	      (((i) & 0xf00f0000) == 0xc0080000)
1525/* SH Rn,disp16(Rm)	      1100_nnnn_mmmm_1001 dddd_dddd_dddd_dddd */
1526#define IS_SH(i)	      (((i) & 0xf00f0000) == 0xc0090000)
1527#define SWBH_32_BASE(i)       (FIELD (i, 20, 4))
1528#define SWBH_32_SOURCE(i)     (FIELD (i, 24, 4))
1529#define SWBH_32_OFFSET(i)     (SFIELD (i, 0, 16))
1530
1531/* SW Rn,disp7.align4(SP)     0100_nnnn_0ddd_dd10 xxxx_xxxx_xxxx_xxxx */
1532#define IS_SW_IMMD(i)	      (((i) & 0xf0830000) == 0x40020000)
1533#define SW_IMMD_SOURCE(i)     (FIELD (i, 24, 4))
1534#define SW_IMMD_OFFSET(i)     (FIELD (i, 18, 5) << 2)
1535
1536/* SW Rn,(Rm)                 0000_nnnn_mmmm_1010 xxxx_xxxx_xxxx_xxxx */
1537#define IS_SW_REG(i)	      (((i) & 0xf00f0000) == 0x000a0000)
1538#define SW_REG_SOURCE(i)      (FIELD (i, 24, 4))
1539#define SW_REG_BASE(i)        (FIELD (i, 20, 4))
1540
1541/* ADD3 Rl,Rn,Rm              1001_nnnn_mmmm_llll xxxx_xxxx_xxxx_xxxx */
1542#define IS_ADD3_16_REG(i)     (((i) & 0xf0000000) == 0x90000000)
1543#define ADD3_16_REG_SRC1(i)   (FIELD (i, 20, 4))               /* n */
1544#define ADD3_16_REG_SRC2(i)   (FIELD (i, 24, 4))               /* m */
1545
1546/* ADD3 Rn,Rm,imm16           1100_nnnn_mmmm_0000 iiii_iiii_iiii_iiii */
1547#define IS_ADD3_32(i)	      (((i) & 0xf00f0000) == 0xc0000000)
1548#define ADD3_32_TARGET(i)     (FIELD (i, 24, 4))
1549#define ADD3_32_SOURCE(i)     (FIELD (i, 20, 4))
1550#define ADD3_32_OFFSET(i)     (SFIELD (i, 0, 16))
1551
1552/* ADD3 Rn,SP,imm7.align4     0100_nnnn_0iii_ii00 xxxx_xxxx_xxxx_xxxx */
1553#define IS_ADD3_16(i)  	      (((i) & 0xf0830000) == 0x40000000)
1554#define ADD3_16_TARGET(i)     (FIELD (i, 24, 4))
1555#define ADD3_16_OFFSET(i)     (FIELD (i, 18, 5) << 2)
1556
1557/* ADD Rn,imm6		      0110_nnnn_iiii_ii00 xxxx_xxxx_xxxx_xxxx */
1558#define IS_ADD(i) 	      (((i) & 0xf0030000) == 0x60000000)
1559#define ADD_TARGET(i)	      (FIELD (i, 24, 4))
1560#define ADD_OFFSET(i)         (SFIELD (i, 18, 6))
1561
1562/* LDC Rn,imm5		      0111_nnnn_iiii_101I xxxx_xxxx_xxxx_xxxx
1563                              imm5 = I||i[7:4] */
1564#define IS_LDC(i)	      (((i) & 0xf00e0000) == 0x700a0000)
1565#define LDC_IMM(i)            ((FIELD (i, 16, 1) << 4) | FIELD (i, 20, 4))
1566#define LDC_TARGET(i)         (FIELD (i, 24, 4))
1567
1568/* LW Rn,disp16(Rm)           1100_nnnn_mmmm_1110 dddd_dddd_dddd_dddd  */
1569#define IS_LW(i)              (((i) & 0xf00f0000) == 0xc00e0000)
1570#define LW_TARGET(i)          (FIELD (i, 24, 4))
1571#define LW_BASE(i)            (FIELD (i, 20, 4))
1572#define LW_OFFSET(i)          (SFIELD (i, 0, 16))
1573
1574/* MOV Rn,Rm		      0000_nnnn_mmmm_0000 xxxx_xxxx_xxxx_xxxx */
1575#define IS_MOV(i)	      (((i) & 0xf00f0000) == 0x00000000)
1576#define MOV_TARGET(i)	      (FIELD (i, 24, 4))
1577#define MOV_SOURCE(i)	      (FIELD (i, 20, 4))
1578
1579/* BRA disp12.align2	      1011_dddd_dddd_ddd0 xxxx_xxxx_xxxx_xxxx */
1580#define IS_BRA(i)	      (((i) & 0xf0010000) == 0xb0000000)
1581#define BRA_DISP(i)           (SFIELD (i, 17, 11) << 1)
1582
1583
1584/* This structure holds the results of a prologue analysis.  */
1585struct mep_prologue
1586{
1587  /* The offset from the frame base to the stack pointer --- always
1588     zero or negative.
1589
1590     Calling this a "size" is a bit misleading, but given that the
1591     stack grows downwards, using offsets for everything keeps one
1592     from going completely sign-crazy: you never change anything's
1593     sign for an ADD instruction; always change the second operand's
1594     sign for a SUB instruction; and everything takes care of
1595     itself.  */
1596  int frame_size;
1597
1598  /* Non-zero if this function has initialized the frame pointer from
1599     the stack pointer, zero otherwise.  */
1600  int has_frame_ptr;
1601
1602  /* If has_frame_ptr is non-zero, this is the offset from the frame
1603     base to where the frame pointer points.  This is always zero or
1604     negative.  */
1605  int frame_ptr_offset;
1606
1607  /* The address of the first instruction at which the frame has been
1608     set up and the arguments are where the debug info says they are
1609     --- as best as we can tell.  */
1610  CORE_ADDR prologue_end;
1611
1612  /* reg_offset[R] is the offset from the CFA at which register R is
1613     saved, or 1 if register R has not been saved.  (Real values are
1614     always zero or negative.)  */
1615  int reg_offset[MEP_NUM_REGS];
1616};
1617
1618/* Return non-zero if VALUE is an incoming argument register.  */
1619
1620static int
1621is_arg_reg (pv_t value)
1622{
1623  return (value.kind == pvk_register
1624          && MEP_R1_REGNUM <= value.reg && value.reg <= MEP_R4_REGNUM
1625          && value.k == 0);
1626}
1627
1628/* Return non-zero if a store of REG's current value VALUE to ADDR is
1629   probably spilling an argument register to its stack slot in STACK.
1630   Such instructions should be included in the prologue, if possible.
1631
1632   The store is a spill if:
1633   - the value being stored is REG's original value;
1634   - the value has not already been stored somewhere in STACK; and
1635   - ADDR is a stack slot's address (e.g., relative to the original
1636     value of the SP).  */
1637static int
1638is_arg_spill (pv_t value, pv_t addr, struct pv_area *stack)
1639{
1640  return (is_arg_reg (value)
1641          && pv_is_register (addr, MEP_SP_REGNUM)
1642          && ! pv_area_find_reg (stack, current_gdbarch, value.reg, 0));
1643}
1644
1645
1646/* Function for finding saved registers in a 'struct pv_area'; we pass
1647   this to pv_area_scan.
1648
1649   If VALUE is a saved register, ADDR says it was saved at a constant
1650   offset from the frame base, and SIZE indicates that the whole
1651   register was saved, record its offset in RESULT_UNTYPED.  */
1652static void
1653check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1654{
1655  struct mep_prologue *result = (struct mep_prologue *) result_untyped;
1656
1657  if (value.kind == pvk_register
1658      && value.k == 0
1659      && pv_is_register (addr, MEP_SP_REGNUM)
1660      && size == register_size (current_gdbarch, value.reg))
1661    result->reg_offset[value.reg] = addr.k;
1662}
1663
1664
1665/* Analyze a prologue starting at START_PC, going no further than
1666   LIMIT_PC.  Fill in RESULT as appropriate.  */
1667static void
1668mep_analyze_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1669                      struct mep_prologue *result)
1670{
1671  CORE_ADDR pc;
1672  unsigned long insn;
1673  int rn;
1674  int found_lp = 0;
1675  pv_t reg[MEP_NUM_REGS];
1676  struct pv_area *stack;
1677  struct cleanup *back_to;
1678  CORE_ADDR after_last_frame_setup_insn = start_pc;
1679
1680  memset (result, 0, sizeof (*result));
1681
1682  for (rn = 0; rn < MEP_NUM_REGS; rn++)
1683    {
1684      reg[rn] = pv_register (rn, 0);
1685      result->reg_offset[rn] = 1;
1686    }
1687
1688  stack = make_pv_area (MEP_SP_REGNUM);
1689  back_to = make_cleanup_free_pv_area (stack);
1690
1691  pc = start_pc;
1692  while (pc < limit_pc)
1693    {
1694      CORE_ADDR next_pc;
1695      pv_t pre_insn_fp, pre_insn_sp;
1696
1697      next_pc = mep_get_insn (pc, &insn);
1698
1699      /* A zero return from mep_get_insn means that either we weren't
1700         able to read the instruction from memory, or that we don't
1701         have enough information to be able to reliably decode it.  So
1702         we'll store here and hope for the best.  */
1703      if (! next_pc)
1704        break;
1705
1706      /* Note the current values of the SP and FP, so we can tell if
1707         this instruction changed them, below.  */
1708      pre_insn_fp = reg[MEP_FP_REGNUM];
1709      pre_insn_sp = reg[MEP_SP_REGNUM];
1710
1711      if (IS_ADD (insn))
1712        {
1713          int rn = ADD_TARGET (insn);
1714          CORE_ADDR imm6 = ADD_OFFSET (insn);
1715
1716          reg[rn] = pv_add_constant (reg[rn], imm6);
1717        }
1718      else if (IS_ADD3_16 (insn))
1719	{
1720          int rn = ADD3_16_TARGET (insn);
1721          int imm7 = ADD3_16_OFFSET (insn);
1722
1723          reg[rn] = pv_add_constant (reg[MEP_SP_REGNUM], imm7);
1724        }
1725      else if (IS_ADD3_32 (insn))
1726	{
1727          int rn = ADD3_32_TARGET (insn);
1728          int rm = ADD3_32_SOURCE (insn);
1729          int imm16 = ADD3_32_OFFSET (insn);
1730
1731          reg[rn] = pv_add_constant (reg[rm], imm16);
1732	}
1733      else if (IS_SW_REG (insn))
1734        {
1735          int rn = SW_REG_SOURCE (insn);
1736          int rm = SW_REG_BASE (insn);
1737
1738          /* If simulating this store would require us to forget
1739             everything we know about the stack frame in the name of
1740             accuracy, it would be better to just quit now.  */
1741          if (pv_area_store_would_trash (stack, reg[rm]))
1742            break;
1743
1744          if (is_arg_spill (reg[rn], reg[rm], stack))
1745            after_last_frame_setup_insn = next_pc;
1746
1747          pv_area_store (stack, reg[rm], 4, reg[rn]);
1748        }
1749      else if (IS_SW_IMMD (insn))
1750        {
1751          int rn = SW_IMMD_SOURCE (insn);
1752          int offset = SW_IMMD_OFFSET (insn);
1753          pv_t addr = pv_add_constant (reg[MEP_SP_REGNUM], offset);
1754
1755          /* If simulating this store would require us to forget
1756             everything we know about the stack frame in the name of
1757             accuracy, it would be better to just quit now.  */
1758          if (pv_area_store_would_trash (stack, addr))
1759            break;
1760
1761          if (is_arg_spill (reg[rn], addr, stack))
1762            after_last_frame_setup_insn = next_pc;
1763
1764          pv_area_store (stack, addr, 4, reg[rn]);
1765        }
1766      else if (IS_MOV (insn))
1767	{
1768          int rn = MOV_TARGET (insn);
1769          int rm = MOV_SOURCE (insn);
1770
1771          reg[rn] = reg[rm];
1772
1773	  if (pv_is_register (reg[rm], rm) && is_arg_reg (reg[rm]))
1774	    after_last_frame_setup_insn = next_pc;
1775	}
1776      else if (IS_SB (insn) || IS_SH (insn) || IS_SW (insn))
1777	{
1778          int rn = SWBH_32_SOURCE (insn);
1779          int rm = SWBH_32_BASE (insn);
1780          int disp = SWBH_32_OFFSET (insn);
1781          int size = (IS_SB (insn) ? 1
1782                      : IS_SH (insn) ? 2
1783                      : IS_SW (insn) ? 4
1784                      : (gdb_assert (0), 1));
1785          pv_t addr = pv_add_constant (reg[rm], disp);
1786
1787          if (pv_area_store_would_trash (stack, addr))
1788            break;
1789
1790          if (is_arg_spill (reg[rn], addr, stack))
1791            after_last_frame_setup_insn = next_pc;
1792
1793          pv_area_store (stack, addr, size, reg[rn]);
1794	}
1795      else if (IS_LDC (insn))
1796	{
1797          int rn = LDC_TARGET (insn);
1798          int cr = LDC_IMM (insn) + MEP_FIRST_CSR_REGNUM;
1799
1800          reg[rn] = reg[cr];
1801	}
1802      else if (IS_LW (insn))
1803        {
1804          int rn = LW_TARGET (insn);
1805          int rm = LW_BASE (insn);
1806          int offset = LW_OFFSET (insn);
1807          pv_t addr = pv_add_constant (reg[rm], offset);
1808
1809          reg[rn] = pv_area_fetch (stack, addr, 4);
1810        }
1811      else if (IS_BRA (insn) && BRA_DISP (insn) > 0)
1812	{
1813	  /* When a loop appears as the first statement of a function
1814	     body, gcc 4.x will use a BRA instruction to branch to the
1815	     loop condition checking code.  This BRA instruction is
1816	     marked as part of the prologue.  We therefore set next_pc
1817	     to this branch target and also stop the prologue scan.
1818	     The instructions at and beyond the branch target should
1819	     no longer be associated with the prologue.
1820
1821	     Note that we only consider forward branches here.  We
1822	     presume that a forward branch is being used to skip over
1823	     a loop body.
1824
1825	     A backwards branch is covered by the default case below.
1826	     If we were to encounter a backwards branch, that would
1827	     most likely mean that we've scanned through a loop body.
1828	     We definitely want to stop the prologue scan when this
1829	     happens and that is precisely what is done by the default
1830	     case below.  */
1831	  next_pc = pc + BRA_DISP (insn);
1832	  after_last_frame_setup_insn = next_pc;
1833	  break;
1834	}
1835      else
1836        /* We've hit some instruction we don't know how to simulate.
1837           Strictly speaking, we should set every value we're
1838           tracking to "unknown".  But we'll be optimistic, assume
1839           that we have enough information already, and stop
1840           analysis here.  */
1841        break;
1842
1843      /* If this instruction changed the FP or decreased the SP (i.e.,
1844         allocated more stack space), then this may be a good place to
1845         declare the prologue finished.  However, there are some
1846         exceptions:
1847
1848         - If the instruction just changed the FP back to its original
1849           value, then that's probably a restore instruction.  The
1850           prologue should definitely end before that.
1851
1852         - If the instruction increased the value of the SP (that is,
1853           shrunk the frame), then it's probably part of a frame
1854           teardown sequence, and the prologue should end before that.  */
1855
1856      if (! pv_is_identical (reg[MEP_FP_REGNUM], pre_insn_fp))
1857        {
1858          if (! pv_is_register_k (reg[MEP_FP_REGNUM], MEP_FP_REGNUM, 0))
1859            after_last_frame_setup_insn = next_pc;
1860        }
1861      else if (! pv_is_identical (reg[MEP_SP_REGNUM], pre_insn_sp))
1862        {
1863          /* The comparison of constants looks odd, there, because .k
1864             is unsigned.  All it really means is that the new value
1865             is lower than it was before the instruction.  */
1866          if (pv_is_register (pre_insn_sp, MEP_SP_REGNUM)
1867              && pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM)
1868              && ((pre_insn_sp.k - reg[MEP_SP_REGNUM].k)
1869                  < (reg[MEP_SP_REGNUM].k - pre_insn_sp.k)))
1870            after_last_frame_setup_insn = next_pc;
1871        }
1872
1873      pc = next_pc;
1874    }
1875
1876  /* Is the frame size (offset, really) a known constant?  */
1877  if (pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM))
1878    result->frame_size = reg[MEP_SP_REGNUM].k;
1879
1880  /* Was the frame pointer initialized?  */
1881  if (pv_is_register (reg[MEP_FP_REGNUM], MEP_SP_REGNUM))
1882    {
1883      result->has_frame_ptr = 1;
1884      result->frame_ptr_offset = reg[MEP_FP_REGNUM].k;
1885    }
1886
1887  /* Record where all the registers were saved.  */
1888  pv_area_scan (stack, check_for_saved, (void *) result);
1889
1890  result->prologue_end = after_last_frame_setup_insn;
1891
1892  do_cleanups (back_to);
1893}
1894
1895
1896static CORE_ADDR
1897mep_skip_prologue (CORE_ADDR pc)
1898{
1899  char *name;
1900  CORE_ADDR func_addr, func_end;
1901  struct mep_prologue p;
1902
1903  /* Try to find the extent of the function that contains PC.  */
1904  if (! find_pc_partial_function (pc, &name, &func_addr, &func_end))
1905    return pc;
1906
1907  mep_analyze_prologue (pc, func_end, &p);
1908  return p.prologue_end;
1909}
1910
1911
1912
1913/* Breakpoints.  */
1914
1915static const unsigned char *
1916mep_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
1917{
1918  static unsigned char breakpoint[] = { 0x70, 0x32 };
1919  *lenptr = sizeof (breakpoint);
1920  return breakpoint;
1921}
1922
1923
1924
1925/* Frames and frame unwinding.  */
1926
1927
1928static struct mep_prologue *
1929mep_analyze_frame_prologue (struct frame_info *next_frame,
1930                            void **this_prologue_cache)
1931{
1932  if (! *this_prologue_cache)
1933    {
1934      CORE_ADDR func_start, stop_addr;
1935
1936      *this_prologue_cache
1937        = FRAME_OBSTACK_ZALLOC (struct mep_prologue);
1938
1939      func_start = frame_func_unwind (next_frame, NORMAL_FRAME);
1940      stop_addr = frame_pc_unwind (next_frame);
1941
1942      /* If we couldn't find any function containing the PC, then
1943         just initialize the prologue cache, but don't do anything.  */
1944      if (! func_start)
1945        stop_addr = func_start;
1946
1947      mep_analyze_prologue (func_start, stop_addr, *this_prologue_cache);
1948    }
1949
1950  return *this_prologue_cache;
1951}
1952
1953
1954/* Given the next frame and a prologue cache, return this frame's
1955   base.  */
1956static CORE_ADDR
1957mep_frame_base (struct frame_info *next_frame,
1958                void **this_prologue_cache)
1959{
1960  struct mep_prologue *p
1961    = mep_analyze_frame_prologue (next_frame, this_prologue_cache);
1962
1963  /* In functions that use alloca, the distance between the stack
1964     pointer and the frame base varies dynamically, so we can't use
1965     the SP plus static information like prologue analysis to find the
1966     frame base.  However, such functions must have a frame pointer,
1967     to be able to restore the SP on exit.  So whenever we do have a
1968     frame pointer, use that to find the base.  */
1969  if (p->has_frame_ptr)
1970    {
1971      CORE_ADDR fp
1972        = frame_unwind_register_unsigned (next_frame, MEP_FP_REGNUM);
1973      return fp - p->frame_ptr_offset;
1974    }
1975  else
1976    {
1977      CORE_ADDR sp
1978        = frame_unwind_register_unsigned (next_frame, MEP_SP_REGNUM);
1979      return sp - p->frame_size;
1980    }
1981}
1982
1983
1984static void
1985mep_frame_this_id (struct frame_info *next_frame,
1986                   void **this_prologue_cache,
1987                   struct frame_id *this_id)
1988{
1989  *this_id = frame_id_build (mep_frame_base (next_frame, this_prologue_cache),
1990                             frame_func_unwind (next_frame, NORMAL_FRAME));
1991}
1992
1993
1994static void
1995mep_frame_prev_register (struct frame_info *next_frame,
1996                         void **this_prologue_cache,
1997                         int regnum, int *optimizedp,
1998                         enum lval_type *lvalp, CORE_ADDR *addrp,
1999                         int *realnump, gdb_byte *bufferp)
2000{
2001  struct mep_prologue *p
2002    = mep_analyze_frame_prologue (next_frame, this_prologue_cache);
2003
2004  /* There are a number of complications in unwinding registers on the
2005     MeP, having to do with core functions calling VLIW functions and
2006     vice versa.
2007
2008     The least significant bit of the link register, LP.LTOM, is the
2009     VLIW mode toggle bit: it's set if a core function called a VLIW
2010     function, or vice versa, and clear when the caller and callee
2011     were both in the same mode.
2012
2013     So, if we're asked to unwind the PC, then we really want to
2014     unwind the LP and clear the least significant bit.  (Real return
2015     addresses are always even.)  And if we want to unwind the program
2016     status word (PSW), we need to toggle PSW.OM if LP.LTOM is set.
2017
2018     Tweaking the register values we return in this way means that the
2019     bits in BUFFERP[] are not the same as the bits you'd find at
2020     ADDRP in the inferior, so we make sure lvalp is not_lval when we
2021     do this.  */
2022  if (regnum == MEP_PC_REGNUM)
2023    {
2024      mep_frame_prev_register (next_frame, this_prologue_cache, MEP_LP_REGNUM,
2025                               optimizedp, lvalp, addrp, realnump, bufferp);
2026      store_unsigned_integer (bufferp, MEP_LP_SIZE,
2027                              (extract_unsigned_integer (bufferp, MEP_LP_SIZE)
2028                               & ~1));
2029      *lvalp = not_lval;
2030    }
2031  else
2032    {
2033      CORE_ADDR frame_base = mep_frame_base (next_frame, this_prologue_cache);
2034      int reg_size = register_size (get_frame_arch (next_frame), regnum);
2035
2036      /* Our caller's SP is our frame base.  */
2037      if (regnum == MEP_SP_REGNUM)
2038        {
2039          *optimizedp = 0;
2040          *lvalp = not_lval;
2041          *addrp = 0;
2042          *realnump = -1;
2043          if (bufferp)
2044            store_unsigned_integer (bufferp, reg_size, frame_base);
2045        }
2046
2047      /* If prologue analysis says we saved this register somewhere,
2048         return a description of the stack slot holding it.  */
2049      else if (p->reg_offset[regnum] != 1)
2050        {
2051          *optimizedp = 0;
2052          *lvalp = lval_memory;
2053          *addrp = frame_base + p->reg_offset[regnum];
2054          *realnump = -1;
2055          if (bufferp)
2056            get_frame_memory (next_frame, *addrp, bufferp, reg_size);
2057        }
2058
2059      /* Otherwise, presume we haven't changed the value of this
2060         register, and get it from the next frame.  */
2061      else
2062        frame_register_unwind (next_frame, regnum,
2063                               optimizedp, lvalp, addrp, realnump, bufferp);
2064
2065      /* If we need to toggle the operating mode, do so.  */
2066      if (regnum == MEP_PSW_REGNUM)
2067        {
2068          int lp_optimized;
2069          enum lval_type lp_lval;
2070          CORE_ADDR lp_addr;
2071          int lp_realnum;
2072          char lp_buffer[MEP_LP_SIZE];
2073
2074          /* Get the LP's value, too.  */
2075          frame_register_unwind (next_frame, MEP_LP_REGNUM,
2076                                 &lp_optimized, &lp_lval, &lp_addr,
2077                                 &lp_realnum, lp_buffer);
2078
2079          /* If LP.LTOM is set, then toggle PSW.OM.  */
2080          if (extract_unsigned_integer (lp_buffer, MEP_LP_SIZE) & 0x1)
2081            store_unsigned_integer
2082              (bufferp, MEP_PSW_SIZE,
2083               (extract_unsigned_integer (bufferp, MEP_PSW_SIZE) ^ 0x1000));
2084          *lvalp = not_lval;
2085        }
2086    }
2087}
2088
2089
2090static const struct frame_unwind mep_frame_unwind = {
2091  NORMAL_FRAME,
2092  mep_frame_this_id,
2093  mep_frame_prev_register
2094};
2095
2096
2097static const struct frame_unwind *
2098mep_frame_sniffer (struct frame_info *next_frame)
2099{
2100  return &mep_frame_unwind;
2101}
2102
2103
2104/* Our general unwinding function can handle unwinding the PC.  */
2105static CORE_ADDR
2106mep_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2107{
2108  return frame_unwind_register_unsigned (next_frame, MEP_PC_REGNUM);
2109}
2110
2111
2112/* Our general unwinding function can handle unwinding the SP.  */
2113static CORE_ADDR
2114mep_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2115{
2116  return frame_unwind_register_unsigned (next_frame, MEP_SP_REGNUM);
2117}
2118
2119
2120
2121/* Return values.  */
2122
2123
2124static int
2125mep_use_struct_convention (struct type *type)
2126{
2127  return (TYPE_LENGTH (type) > MEP_GPR_SIZE);
2128}
2129
2130
2131static void
2132mep_extract_return_value (struct gdbarch *arch,
2133                          struct type *type,
2134                          struct regcache *regcache,
2135                          gdb_byte *valbuf)
2136{
2137  int byte_order = gdbarch_byte_order (arch);
2138
2139  /* Values that don't occupy a full register appear at the less
2140     significant end of the value.  This is the offset to where the
2141     value starts.  */
2142  int offset;
2143
2144  /* Return values > MEP_GPR_SIZE bytes are returned in memory,
2145     pointed to by R0.  */
2146  gdb_assert (TYPE_LENGTH (type) <= MEP_GPR_SIZE);
2147
2148  if (byte_order == BFD_ENDIAN_BIG)
2149    offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2150  else
2151    offset = 0;
2152
2153  /* Return values that do fit in a single register are returned in R0. */
2154  regcache_cooked_read_part (regcache, MEP_R0_REGNUM,
2155                             offset, TYPE_LENGTH (type),
2156                             valbuf);
2157}
2158
2159
2160static void
2161mep_store_return_value (struct gdbarch *arch,
2162                        struct type *type,
2163                        struct regcache *regcache,
2164                        const gdb_byte *valbuf)
2165{
2166  int byte_order = gdbarch_byte_order (arch);
2167
2168  /* Values that fit in a single register go in R0.  */
2169  if (TYPE_LENGTH (type) <= MEP_GPR_SIZE)
2170    {
2171      /* Values that don't occupy a full register appear at the least
2172         significant end of the value.  This is the offset to where the
2173         value starts.  */
2174      int offset;
2175
2176      if (byte_order == BFD_ENDIAN_BIG)
2177        offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2178      else
2179        offset = 0;
2180
2181      regcache_cooked_write_part (regcache, MEP_R0_REGNUM,
2182                                  offset, TYPE_LENGTH (type),
2183                                  valbuf);
2184    }
2185
2186  /* Return values larger than a single register are returned in
2187     memory, pointed to by R0.  Unfortunately, we can't count on R0
2188     pointing to the return buffer, so we raise an error here. */
2189  else
2190    error ("GDB cannot set return values larger than four bytes; "
2191           "the Media Processor's\n"
2192           "calling conventions do not provide enough information "
2193           "to do this.\n"
2194           "Try using the 'return' command with no argument.");
2195}
2196
2197enum return_value_convention
2198mep_return_value (struct gdbarch *gdbarch, struct type *type,
2199		  struct regcache *regcache, gdb_byte *readbuf,
2200		  const gdb_byte *writebuf)
2201{
2202  if (mep_use_struct_convention (type))
2203    {
2204      if (readbuf)
2205	{
2206	  ULONGEST addr;
2207	  /* Although the address of the struct buffer gets passed in R1, it's
2208	     returned in R0.  Fetch R0's value and then read the memory
2209	     at that address.  */
2210	  regcache_raw_read_unsigned (regcache, MEP_R0_REGNUM, &addr);
2211	  read_memory (addr, readbuf, TYPE_LENGTH (type));
2212	}
2213      if (writebuf)
2214	{
2215	  /* Return values larger than a single register are returned in
2216	     memory, pointed to by R0.  Unfortunately, we can't count on R0
2217	     pointing to the return buffer, so we raise an error here. */
2218	  error ("GDB cannot set return values larger than four bytes; "
2219		 "the Media Processor's\n"
2220		 "calling conventions do not provide enough information "
2221		 "to do this.\n"
2222		 "Try using the 'return' command with no argument.");
2223	}
2224      return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2225    }
2226
2227  if (readbuf)
2228    mep_extract_return_value (gdbarch, type, regcache, readbuf);
2229  if (writebuf)
2230    mep_store_return_value (gdbarch, type, regcache, writebuf);
2231
2232  return RETURN_VALUE_REGISTER_CONVENTION;
2233}
2234
2235
2236/* Inferior calls.  */
2237
2238
2239static CORE_ADDR
2240mep_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2241{
2242  /* Require word alignment.  */
2243  return sp & -4;
2244}
2245
2246
2247/* From "lang_spec2.txt":
2248
2249   4.2 Calling conventions
2250
2251   4.2.1 Core register conventions
2252
2253   - Parameters should be evaluated from left to right, and they
2254     should be held in $1,$2,$3,$4 in order. The fifth parameter or
2255     after should be held in the stack. If the size is larger than 4
2256     bytes in the first four parameters, the pointer should be held in
2257     the registers instead. If the size is larger than 4 bytes in the
2258     fifth parameter or after, the pointer should be held in the stack.
2259
2260   - Return value of a function should be held in register $0. If the
2261     size of return value is larger than 4 bytes, $1 should hold the
2262     pointer pointing memory that would hold the return value. In this
2263     case, the first parameter should be held in $2, the second one in
2264     $3, and the third one in $4, and the forth parameter or after
2265     should be held in the stack.
2266
2267   [This doesn't say so, but arguments shorter than four bytes are
2268   passed in the least significant end of a four-byte word when
2269   they're passed on the stack.]  */
2270
2271
2272/* Traverse the list of ARGC arguments ARGV; for every ARGV[i] too
2273   large to fit in a register, save it on the stack, and place its
2274   address in COPY[i].  SP is the initial stack pointer; return the
2275   new stack pointer.  */
2276static CORE_ADDR
2277push_large_arguments (CORE_ADDR sp, int argc, struct value **argv,
2278                      CORE_ADDR copy[])
2279{
2280  int i;
2281
2282  for (i = 0; i < argc; i++)
2283    {
2284      unsigned arg_len = TYPE_LENGTH (value_type (argv[i]));
2285
2286      if (arg_len > MEP_GPR_SIZE)
2287        {
2288          /* Reserve space for the copy, and then round the SP down, to
2289             make sure it's all aligned properly.  */
2290          sp = (sp - arg_len) & -4;
2291          write_memory (sp, value_contents (argv[i]), arg_len);
2292          copy[i] = sp;
2293        }
2294    }
2295
2296  return sp;
2297}
2298
2299
2300static CORE_ADDR
2301mep_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2302                     struct regcache *regcache, CORE_ADDR bp_addr,
2303                     int argc, struct value **argv, CORE_ADDR sp,
2304                     int struct_return,
2305                     CORE_ADDR struct_addr)
2306{
2307  CORE_ADDR *copy = (CORE_ADDR *) alloca (argc * sizeof (copy[0]));
2308  CORE_ADDR func_addr = find_function_addr (function, NULL);
2309  int i;
2310
2311  /* The number of the next register available to hold an argument.  */
2312  int arg_reg;
2313
2314  /* The address of the next stack slot available to hold an argument.  */
2315  CORE_ADDR arg_stack;
2316
2317  /* The address of the end of the stack area for arguments.  This is
2318     just for error checking.  */
2319  CORE_ADDR arg_stack_end;
2320
2321  sp = push_large_arguments (sp, argc, argv, copy);
2322
2323  /* Reserve space for the stack arguments, if any.  */
2324  arg_stack_end = sp;
2325  if (argc + (struct_addr ? 1 : 0) > 4)
2326    sp -= ((argc + (struct_addr ? 1 : 0)) - 4) * MEP_GPR_SIZE;
2327
2328  arg_reg = MEP_R1_REGNUM;
2329  arg_stack = sp;
2330
2331  /* If we're returning a structure by value, push the pointer to the
2332     buffer as the first argument.  */
2333  if (struct_return)
2334    {
2335      regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
2336      arg_reg++;
2337    }
2338
2339  for (i = 0; i < argc; i++)
2340    {
2341      unsigned arg_size = TYPE_LENGTH (value_type (argv[i]));
2342      ULONGEST value;
2343
2344      /* Arguments that fit in a GPR get expanded to fill the GPR.  */
2345      if (arg_size <= MEP_GPR_SIZE)
2346        value = extract_unsigned_integer (value_contents (argv[i]),
2347                                          TYPE_LENGTH (value_type (argv[i])));
2348
2349      /* Arguments too large to fit in a GPR get copied to the stack,
2350         and we pass a pointer to the copy.  */
2351      else
2352        value = copy[i];
2353
2354      /* We use $1 -- $4 for passing arguments, then use the stack.  */
2355      if (arg_reg <= MEP_R4_REGNUM)
2356        {
2357          regcache_cooked_write_unsigned (regcache, arg_reg, value);
2358          arg_reg++;
2359        }
2360      else
2361        {
2362          char buf[MEP_GPR_SIZE];
2363          store_unsigned_integer (buf, MEP_GPR_SIZE, value);
2364          write_memory (arg_stack, buf, MEP_GPR_SIZE);
2365          arg_stack += MEP_GPR_SIZE;
2366        }
2367    }
2368
2369  gdb_assert (arg_stack <= arg_stack_end);
2370
2371  /* Set the return address.  */
2372  regcache_cooked_write_unsigned (regcache, MEP_LP_REGNUM, bp_addr);
2373
2374  /* Update the stack pointer.  */
2375  regcache_cooked_write_unsigned (regcache, MEP_SP_REGNUM, sp);
2376
2377  return sp;
2378}
2379
2380
2381static struct frame_id
2382mep_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2383{
2384  return frame_id_build (mep_unwind_sp (gdbarch, next_frame),
2385                         frame_pc_unwind (next_frame));
2386}
2387
2388
2389
2390/* Initialization.  */
2391
2392
2393static struct gdbarch *
2394mep_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2395{
2396  struct gdbarch *gdbarch;
2397  struct gdbarch_tdep *tdep;
2398
2399  /* Which me_module are we building a gdbarch object for?  */
2400  CONFIG_ATTR me_module;
2401
2402  /* If we have a BFD in hand, figure out which me_module it was built
2403     for.  Otherwise, use the no-particular-me_module code.  */
2404  if (info.abfd)
2405    {
2406      /* The way to get the me_module code depends on the object file
2407         format.  At the moment, we only know how to handle ELF.  */
2408      if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
2409        me_module = elf_elfheader (info.abfd)->e_flags & EF_MEP_INDEX_MASK;
2410      else
2411        me_module = CONFIG_NONE;
2412    }
2413  else
2414    me_module = CONFIG_NONE;
2415
2416  /* If we're setting the architecture from a file, check the
2417     endianness of the file against that of the me_module.  */
2418  if (info.abfd)
2419    {
2420      /* The negations on either side make the comparison treat all
2421         non-zero (true) values as equal.  */
2422      if (! bfd_big_endian (info.abfd) != ! me_module_big_endian (me_module))
2423        {
2424          const char *module_name = me_module_name (me_module);
2425          const char *module_endianness
2426            = me_module_big_endian (me_module) ? "big" : "little";
2427          const char *file_name = bfd_get_filename (info.abfd);
2428          const char *file_endianness
2429            = bfd_big_endian (info.abfd) ? "big" : "little";
2430
2431          fputc_unfiltered ('\n', gdb_stderr);
2432          if (module_name)
2433            warning ("the MeP module '%s' is %s-endian, but the executable\n"
2434                     "%s is %s-endian.",
2435                     module_name, module_endianness,
2436                     file_name, file_endianness);
2437          else
2438            warning ("the selected MeP module is %s-endian, but the "
2439                     "executable\n"
2440                     "%s is %s-endian.",
2441                     module_endianness, file_name, file_endianness);
2442        }
2443    }
2444
2445  /* Find a candidate among the list of architectures we've created
2446     already.  info->bfd_arch_info needs to match, but we also want
2447     the right me_module: the ELF header's e_flags field needs to
2448     match as well.  */
2449  for (arches = gdbarch_list_lookup_by_info (arches, &info);
2450       arches != NULL;
2451       arches = gdbarch_list_lookup_by_info (arches->next, &info))
2452    if (gdbarch_tdep (arches->gdbarch)->me_module == me_module)
2453      return arches->gdbarch;
2454
2455  tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
2456  gdbarch = gdbarch_alloc (&info, tdep);
2457
2458  /* Get a CGEN CPU descriptor for this architecture.  */
2459  {
2460    const char *mach_name = info.bfd_arch_info->printable_name;
2461    enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
2462                               ? CGEN_ENDIAN_BIG
2463                               : CGEN_ENDIAN_LITTLE);
2464
2465    tdep->cpu_desc = mep_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
2466                                        CGEN_CPU_OPEN_ENDIAN, endian,
2467                                        CGEN_CPU_OPEN_END);
2468  }
2469
2470  tdep->me_module = me_module;
2471
2472  /* Register set.  */
2473  set_gdbarch_read_pc (gdbarch, mep_read_pc);
2474  set_gdbarch_write_pc (gdbarch, mep_write_pc);
2475  set_gdbarch_num_regs (gdbarch, MEP_NUM_RAW_REGS);
2476  set_gdbarch_sp_regnum (gdbarch, MEP_SP_REGNUM);
2477  set_gdbarch_register_name (gdbarch, mep_register_name);
2478  set_gdbarch_register_type (gdbarch, mep_register_type);
2479  set_gdbarch_num_pseudo_regs (gdbarch, MEP_NUM_PSEUDO_REGS);
2480  set_gdbarch_pseudo_register_read (gdbarch, mep_pseudo_register_read);
2481  set_gdbarch_pseudo_register_write (gdbarch, mep_pseudo_register_write);
2482  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2483  set_gdbarch_stab_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2484
2485  set_gdbarch_register_reggroup_p (gdbarch, mep_register_reggroup_p);
2486  reggroup_add (gdbarch, all_reggroup);
2487  reggroup_add (gdbarch, general_reggroup);
2488  reggroup_add (gdbarch, save_reggroup);
2489  reggroup_add (gdbarch, restore_reggroup);
2490  reggroup_add (gdbarch, mep_csr_reggroup);
2491  reggroup_add (gdbarch, mep_cr_reggroup);
2492  reggroup_add (gdbarch, mep_ccr_reggroup);
2493
2494  /* Disassembly.  */
2495  set_gdbarch_print_insn (gdbarch, mep_gdb_print_insn);
2496
2497  /* Breakpoints.  */
2498  set_gdbarch_breakpoint_from_pc (gdbarch, mep_breakpoint_from_pc);
2499  set_gdbarch_decr_pc_after_break (gdbarch, 0);
2500  set_gdbarch_skip_prologue (gdbarch, mep_skip_prologue);
2501
2502  /* Frames and frame unwinding.  */
2503  frame_unwind_append_sniffer (gdbarch, mep_frame_sniffer);
2504  set_gdbarch_unwind_pc (gdbarch, mep_unwind_pc);
2505  set_gdbarch_unwind_sp (gdbarch, mep_unwind_sp);
2506  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2507  set_gdbarch_frame_args_skip (gdbarch, 0);
2508
2509  /* Return values.  */
2510  set_gdbarch_return_value (gdbarch, mep_return_value);
2511
2512  /* Inferior function calls.  */
2513  set_gdbarch_frame_align (gdbarch, mep_frame_align);
2514  set_gdbarch_push_dummy_call (gdbarch, mep_push_dummy_call);
2515  set_gdbarch_unwind_dummy_id (gdbarch, mep_unwind_dummy_id);
2516
2517  return gdbarch;
2518}
2519
2520
2521void
2522_initialize_mep_tdep (void)
2523{
2524  mep_csr_reggroup = reggroup_new ("csr", USER_REGGROUP);
2525  mep_cr_reggroup  = reggroup_new ("cr", USER_REGGROUP);
2526  mep_ccr_reggroup = reggroup_new ("ccr", USER_REGGROUP);
2527
2528  register_gdbarch_init (bfd_arch_mep, mep_gdbarch_init);
2529
2530  mep_init_pseudoregister_maps ();
2531}
2532