1/* Renesas M32C target-dependent code for GDB, the GNU debugger.
2
3   Copyright 2004, 2005, 2007 Free Software Foundation, Inc.
4
5   This file is part of GDB.
6
7   This program is free software; you can redistribute it and/or modify
8   it under the terms of the GNU General Public License as published by
9   the Free Software Foundation; either version 3 of the License, or
10   (at your option) any later version.
11
12   This program is distributed in the hope that it will be useful,
13   but WITHOUT ANY WARRANTY; without even the implied warranty of
14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15   GNU General Public License for more details.
16
17   You should have received a copy of the GNU General Public License
18   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19
20#include "defs.h"
21
22#include <stdarg.h>
23
24#if defined (HAVE_STRING_H)
25#include <string.h>
26#endif
27
28#include "gdb_assert.h"
29#include "elf-bfd.h"
30#include "elf/m32c.h"
31#include "gdb/sim-m32c.h"
32#include "dis-asm.h"
33#include "gdbtypes.h"
34#include "regcache.h"
35#include "arch-utils.h"
36#include "frame.h"
37#include "frame-unwind.h"
38#include "dwarf2-frame.h"
39#include "dwarf2expr.h"
40#include "symtab.h"
41#include "gdbcore.h"
42#include "value.h"
43#include "reggroups.h"
44#include "prologue-value.h"
45#include "target.h"
46
47
48/* The m32c tdep structure.  */
49
50static struct reggroup *m32c_dma_reggroup;
51
52struct m32c_reg;
53
54/* The type of a function that moves the value of REG between CACHE or
55   BUF --- in either direction.  */
56typedef void (m32c_move_reg_t) (struct m32c_reg *reg,
57				struct regcache *cache,
58				void *buf);
59
60struct m32c_reg
61{
62  /* The name of this register.  */
63  const char *name;
64
65  /* Its type.  */
66  struct type *type;
67
68  /* The architecture this register belongs to.  */
69  struct gdbarch *arch;
70
71  /* Its GDB register number.  */
72  int num;
73
74  /* Its sim register number.  */
75  int sim_num;
76
77  /* Its DWARF register number, or -1 if it doesn't have one.  */
78  int dwarf_num;
79
80  /* Register group memberships.  */
81  unsigned int general_p : 1;
82  unsigned int dma_p : 1;
83  unsigned int system_p : 1;
84  unsigned int save_restore_p : 1;
85
86  /* Functions to read its value from a regcache, and write its value
87     to a regcache.  */
88  m32c_move_reg_t *read, *write;
89
90  /* Data for READ and WRITE functions.  The exact meaning depends on
91     the specific functions selected; see the comments for those
92     functions.  */
93  struct m32c_reg *rx, *ry;
94  int n;
95};
96
97
98/* An overestimate of the number of raw and pseudoregisters we will
99   have.  The exact answer depends on the variant of the architecture
100   at hand, but we can use this to declare statically allocated
101   arrays, and bump it up when needed.  */
102#define M32C_MAX_NUM_REGS (75)
103
104/* The largest assigned DWARF register number.  */
105#define M32C_MAX_DWARF_REGNUM (40)
106
107
108struct gdbarch_tdep
109{
110  /* All the registers for this variant, indexed by GDB register
111     number, and the number of registers present.  */
112  struct m32c_reg regs[M32C_MAX_NUM_REGS];
113
114  /* The number of valid registers.  */
115  int num_regs;
116
117  /* Interesting registers.  These are pointers into REGS.  */
118  struct m32c_reg *pc, *flg;
119  struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
120  struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
121  struct m32c_reg *sb, *fb, *sp;
122
123  /* A table indexed by DWARF register numbers, pointing into
124     REGS.  */
125  struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
126
127  /* Types for this architecture.  We can't use the builtin_type_foo
128     types, because they're not initialized when building a gdbarch
129     structure.  */
130  struct type *voyd, *ptr_voyd, *func_voyd;
131  struct type *uint8, *uint16;
132  struct type *int8, *int16, *int32, *int64;
133
134  /* The types for data address and code address registers.  */
135  struct type *data_addr_reg_type, *code_addr_reg_type;
136
137  /* The number of bytes a return address pushed by a 'jsr' instruction
138     occupies on the stack.  */
139  int ret_addr_bytes;
140
141  /* The number of bytes an address register occupies on the stack
142     when saved by an 'enter' or 'pushm' instruction.  */
143  int push_addr_bytes;
144};
145
146
147/* Types.  */
148
149static void
150make_types (struct gdbarch *arch)
151{
152  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
153  unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
154  int data_addr_reg_bits, code_addr_reg_bits;
155  char type_name[50];
156
157#if 0
158  /* This is used to clip CORE_ADDR values, so this value is
159     appropriate both on the m32c, where pointers are 32 bits long,
160     and on the m16c, where pointers are sixteen bits long, but there
161     may be code above the 64k boundary.  */
162  set_gdbarch_addr_bit (arch, 24);
163#else
164  /* GCC uses 32 bits for addrs in the dwarf info, even though
165     only 16/24 bits are used.  Setting addr_bit to 24 causes
166     errors in reading the dwarf addresses.  */
167  set_gdbarch_addr_bit (arch, 32);
168#endif
169
170  set_gdbarch_int_bit (arch, 16);
171  switch (mach)
172    {
173    case bfd_mach_m16c:
174      data_addr_reg_bits = 16;
175      code_addr_reg_bits = 24;
176      set_gdbarch_ptr_bit (arch, 16);
177      tdep->ret_addr_bytes = 3;
178      tdep->push_addr_bytes = 2;
179      break;
180
181    case bfd_mach_m32c:
182      data_addr_reg_bits = 24;
183      code_addr_reg_bits = 24;
184      set_gdbarch_ptr_bit (arch, 32);
185      tdep->ret_addr_bytes = 4;
186      tdep->push_addr_bytes = 4;
187      break;
188
189    default:
190      gdb_assert (0);
191    }
192
193  /* The builtin_type_mumble variables are sometimes uninitialized when
194     this is called, so we avoid using them.  */
195  tdep->voyd = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
196  tdep->ptr_voyd = init_type (TYPE_CODE_PTR, gdbarch_ptr_bit (arch) / 8,
197			      TYPE_FLAG_UNSIGNED, NULL, NULL);
198  TYPE_TARGET_TYPE (tdep->ptr_voyd) = tdep->voyd;
199  tdep->func_voyd = lookup_function_type (tdep->voyd);
200
201  sprintf (type_name, "%s_data_addr_t",
202	   gdbarch_bfd_arch_info (arch)->printable_name);
203  tdep->data_addr_reg_type
204    = init_type (TYPE_CODE_PTR, data_addr_reg_bits / 8,
205		 TYPE_FLAG_UNSIGNED, xstrdup (type_name), NULL);
206  TYPE_TARGET_TYPE (tdep->data_addr_reg_type) = tdep->voyd;
207
208  sprintf (type_name, "%s_code_addr_t",
209	   gdbarch_bfd_arch_info (arch)->printable_name);
210  tdep->code_addr_reg_type
211    = init_type (TYPE_CODE_PTR, code_addr_reg_bits / 8,
212		 TYPE_FLAG_UNSIGNED, xstrdup (type_name), NULL);
213  TYPE_TARGET_TYPE (tdep->code_addr_reg_type) = tdep->func_voyd;
214
215  tdep->uint8  = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
216			    "uint8_t", NULL);
217  tdep->uint16 = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
218			    "uint16_t", NULL);
219  tdep->int8   = init_type (TYPE_CODE_INT, 1, 0, "int8_t", NULL);
220  tdep->int16  = init_type (TYPE_CODE_INT, 2, 0, "int16_t", NULL);
221  tdep->int32  = init_type (TYPE_CODE_INT, 4, 0, "int32_t", NULL);
222  tdep->int64  = init_type (TYPE_CODE_INT, 8, 0, "int64_t", NULL);
223}
224
225
226
227/* Register set.  */
228
229static const char *
230m32c_register_name (int num)
231{
232  return gdbarch_tdep (current_gdbarch)->regs[num].name;
233}
234
235
236static struct type *
237m32c_register_type (struct gdbarch *arch, int reg_nr)
238{
239  return gdbarch_tdep (arch)->regs[reg_nr].type;
240}
241
242
243static int
244m32c_register_sim_regno (int reg_nr)
245{
246  return gdbarch_tdep (current_gdbarch)->regs[reg_nr].sim_num;
247}
248
249
250static int
251m32c_debug_info_reg_to_regnum (int reg_nr)
252{
253  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
254  if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
255      && tdep->dwarf_regs[reg_nr])
256    return tdep->dwarf_regs[reg_nr]->num;
257  else
258    /* The DWARF CFI code expects to see -1 for invalid register
259       numbers.  */
260    return -1;
261}
262
263
264int
265m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
266			  struct reggroup *group)
267{
268  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
269  struct m32c_reg *reg = &tdep->regs[regnum];
270
271  /* The anonymous raw registers aren't in any groups.  */
272  if (! reg->name)
273    return 0;
274
275  if (group == all_reggroup)
276    return 1;
277
278  if (group == general_reggroup
279      && reg->general_p)
280    return 1;
281
282  if (group == m32c_dma_reggroup
283      && reg->dma_p)
284    return 1;
285
286  if (group == system_reggroup
287      && reg->system_p)
288    return 1;
289
290  /* Since the m32c DWARF register numbers refer to cooked registers, not
291     raw registers, and frame_pop depends on the save and restore groups
292     containing registers the DWARF CFI will actually mention, our save
293     and restore groups are cooked registers, not raw registers.  (This is
294     why we can't use the default reggroup function.)  */
295  if ((group == save_reggroup
296       || group == restore_reggroup)
297      && reg->save_restore_p)
298    return 1;
299
300  return 0;
301}
302
303
304/* Register move functions.  We declare them here using
305   m32c_move_reg_t to check the types.  */
306static m32c_move_reg_t m32c_raw_read,      m32c_raw_write;
307static m32c_move_reg_t m32c_banked_read,   m32c_banked_write;
308static m32c_move_reg_t m32c_sb_read, 	   m32c_sb_write;
309static m32c_move_reg_t m32c_part_read,     m32c_part_write;
310static m32c_move_reg_t m32c_cat_read,      m32c_cat_write;
311static m32c_move_reg_t m32c_r3r2r1r0_read, m32c_r3r2r1r0_write;
312
313
314/* Copy the value of the raw register REG from CACHE to BUF.  */
315static void
316m32c_raw_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
317{
318  regcache_raw_read (cache, reg->num, buf);
319}
320
321
322/* Copy the value of the raw register REG from BUF to CACHE.  */
323static void
324m32c_raw_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
325{
326  regcache_raw_write (cache, reg->num, (const void *) buf);
327}
328
329
330/* Return the value of the 'flg' register in CACHE.  */
331static int
332m32c_read_flg (struct regcache *cache)
333{
334  struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (cache));
335  ULONGEST flg;
336  regcache_raw_read_unsigned (cache, tdep->flg->num, &flg);
337  return flg & 0xffff;
338}
339
340
341/* Evaluate the real register number of a banked register.  */
342static struct m32c_reg *
343m32c_banked_register (struct m32c_reg *reg, struct regcache *cache)
344{
345  return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
346}
347
348
349/* Move the value of a banked register from CACHE to BUF.
350   If the value of the 'flg' register in CACHE has any of the bits
351   masked in REG->n set, then read REG->ry.  Otherwise, read
352   REG->rx.  */
353static void
354m32c_banked_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
355{
356  struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
357  regcache_raw_read (cache, bank_reg->num, buf);
358}
359
360
361/* Move the value of a banked register from BUF to CACHE.
362   If the value of the 'flg' register in CACHE has any of the bits
363   masked in REG->n set, then write REG->ry.  Otherwise, write
364   REG->rx.  */
365static void
366m32c_banked_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
367{
368  struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
369  regcache_raw_write (cache, bank_reg->num, (const void *) buf);
370}
371
372
373/* Move the value of SB from CACHE to BUF.  On bfd_mach_m32c, SB is a
374   banked register; on bfd_mach_m16c, it's not.  */
375static void
376m32c_sb_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
377{
378  if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
379    m32c_raw_read (reg->rx, cache, buf);
380  else
381    m32c_banked_read (reg, cache, buf);
382}
383
384
385/* Move the value of SB from BUF to CACHE.  On bfd_mach_m32c, SB is a
386   banked register; on bfd_mach_m16c, it's not.  */
387static void
388m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
389{
390  if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
391    m32c_raw_write (reg->rx, cache, buf);
392  else
393    m32c_banked_write (reg, cache, buf);
394}
395
396
397/* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
398   and *LEN_P to the offset and length, in bytes, of the part REG
399   occupies in its underlying register.  The offset is from the
400   lower-addressed end, regardless of the architecture's endianness.
401   (The M32C family is always little-endian, but let's keep those
402   assumptions out of here.)  */
403static void
404m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
405{
406  /* The length of the containing register, of which REG is one part.  */
407  int containing_len = TYPE_LENGTH (reg->rx->type);
408
409  /* The length of one "element" in our imaginary array.  */
410  int elt_len = TYPE_LENGTH (reg->type);
411
412  /* The offset of REG's "element" from the least significant end of
413     the containing register.  */
414  int elt_offset = reg->n * elt_len;
415
416  /* If we extend off the end, trim the length of the element.  */
417  if (elt_offset + elt_len > containing_len)
418    {
419      elt_len = containing_len - elt_offset;
420      /* We shouldn't be declaring partial registers that go off the
421	 end of their containing registers.  */
422      gdb_assert (elt_len > 0);
423    }
424
425  /* Flip the offset around if we're big-endian.  */
426  if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
427    elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
428
429  *offset_p = elt_offset;
430  *len_p = elt_len;
431}
432
433
434/* Move the value of a partial register (r0h, intbl, etc.) from CACHE
435   to BUF.  Treating the value of the register REG->rx as an array of
436   REG->type values, where higher indices refer to more significant
437   bits, read the value of the REG->n'th element.  */
438static void
439m32c_part_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
440{
441  int offset, len;
442  memset (buf, 0, TYPE_LENGTH (reg->type));
443  m32c_find_part (reg, &offset, &len);
444  regcache_cooked_read_part (cache, reg->rx->num, offset, len, buf);
445}
446
447
448/* Move the value of a banked register from BUF to CACHE.
449   Treating the value of the register REG->rx as an array of REG->type
450   values, where higher indices refer to more significant bits, write
451   the value of the REG->n'th element.  */
452static void
453m32c_part_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
454{
455  int offset, len;
456  m32c_find_part (reg, &offset, &len);
457  regcache_cooked_write_part (cache, reg->rx->num, offset, len, buf);
458}
459
460
461/* Move the value of REG from CACHE to BUF.  REG's value is the
462   concatenation of the values of the registers REG->rx and REG->ry,
463   with REG->rx contributing the more significant bits.  */
464static void
465m32c_cat_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
466{
467  int high_bytes = TYPE_LENGTH (reg->rx->type);
468  int low_bytes  = TYPE_LENGTH (reg->ry->type);
469  /* For address arithmetic.  */
470  unsigned char *cbuf = buf;
471
472  gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
473
474  if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
475    {
476      regcache_cooked_read (cache, reg->rx->num, cbuf);
477      regcache_cooked_read (cache, reg->ry->num, cbuf + high_bytes);
478    }
479  else
480    {
481      regcache_cooked_read (cache, reg->rx->num, cbuf + low_bytes);
482      regcache_cooked_read (cache, reg->ry->num, cbuf);
483    }
484}
485
486
487/* Move the value of REG from CACHE to BUF.  REG's value is the
488   concatenation of the values of the registers REG->rx and REG->ry,
489   with REG->rx contributing the more significant bits.  */
490static void
491m32c_cat_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
492{
493  int high_bytes = TYPE_LENGTH (reg->rx->type);
494  int low_bytes  = TYPE_LENGTH (reg->ry->type);
495  /* For address arithmetic.  */
496  unsigned char *cbuf = buf;
497
498  gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
499
500  if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
501    {
502      regcache_cooked_write (cache, reg->rx->num, cbuf);
503      regcache_cooked_write (cache, reg->ry->num, cbuf + high_bytes);
504    }
505  else
506    {
507      regcache_cooked_write (cache, reg->rx->num, cbuf + low_bytes);
508      regcache_cooked_write (cache, reg->ry->num, cbuf);
509    }
510}
511
512
513/* Copy the value of the raw register REG from CACHE to BUF.  REG is
514   the concatenation (from most significant to least) of r3, r2, r1,
515   and r0.  */
516static void
517m32c_r3r2r1r0_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
518{
519  struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
520  int len = TYPE_LENGTH (tdep->r0->type);
521
522  /* For address arithmetic.  */
523  unsigned char *cbuf = buf;
524
525  if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
526    {
527      regcache_cooked_read (cache, tdep->r0->num, cbuf + len * 3);
528      regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 2);
529      regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 1);
530      regcache_cooked_read (cache, tdep->r3->num, cbuf);
531    }
532  else
533    {
534      regcache_cooked_read (cache, tdep->r0->num, cbuf);
535      regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 1);
536      regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 2);
537      regcache_cooked_read (cache, tdep->r3->num, cbuf + len * 3);
538    }
539}
540
541
542/* Copy the value of the raw register REG from BUF to CACHE.  REG is
543   the concatenation (from most significant to least) of r3, r2, r1,
544   and r0.  */
545static void
546m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
547{
548  struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
549  int len = TYPE_LENGTH (tdep->r0->type);
550
551  /* For address arithmetic.  */
552  unsigned char *cbuf = buf;
553
554  if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
555    {
556      regcache_cooked_write (cache, tdep->r0->num, cbuf + len * 3);
557      regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 2);
558      regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 1);
559      regcache_cooked_write (cache, tdep->r3->num, cbuf);
560    }
561  else
562    {
563      regcache_cooked_write (cache, tdep->r0->num, cbuf);
564      regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 1);
565      regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 2);
566      regcache_cooked_write (cache, tdep->r3->num, cbuf + len * 3);
567    }
568}
569
570
571static void
572m32c_pseudo_register_read (struct gdbarch *arch,
573			   struct regcache *cache,
574			   int cookednum,
575			   gdb_byte *buf)
576{
577  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
578  struct m32c_reg *reg;
579
580  gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
581  gdb_assert (arch == get_regcache_arch (cache));
582  gdb_assert (arch == tdep->regs[cookednum].arch);
583  reg = &tdep->regs[cookednum];
584
585  reg->read (reg, cache, buf);
586}
587
588
589static void
590m32c_pseudo_register_write (struct gdbarch *arch,
591			    struct regcache *cache,
592			    int cookednum,
593			    const gdb_byte *buf)
594{
595  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
596  struct m32c_reg *reg;
597
598  gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
599  gdb_assert (arch == get_regcache_arch (cache));
600  gdb_assert (arch == tdep->regs[cookednum].arch);
601  reg = &tdep->regs[cookednum];
602
603  reg->write (reg, cache, (void *) buf);
604}
605
606
607/* Add a register with the given fields to the end of ARCH's table.
608   Return a pointer to the newly added register.  */
609static struct m32c_reg *
610add_reg (struct gdbarch *arch,
611	 const char *name,
612	 struct type *type,
613	 int sim_num,
614	 m32c_move_reg_t *read,
615	 m32c_move_reg_t *write,
616	 struct m32c_reg *rx,
617	 struct m32c_reg *ry,
618	 int n)
619{
620  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
621  struct m32c_reg *r = &tdep->regs[tdep->num_regs];
622
623  gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
624
625  r->name           = name;
626  r->type           = type;
627  r->arch           = arch;
628  r->num            = tdep->num_regs;
629  r->sim_num        = sim_num;
630  r->dwarf_num      = -1;
631  r->general_p      = 0;
632  r->dma_p          = 0;
633  r->system_p       = 0;
634  r->save_restore_p = 0;
635  r->read           = read;
636  r->write          = write;
637  r->rx             = rx;
638  r->ry             = ry;
639  r->n              = n;
640
641  tdep->num_regs++;
642
643  return r;
644}
645
646
647/* Record NUM as REG's DWARF register number.  */
648static void
649set_dwarf_regnum (struct m32c_reg *reg, int num)
650{
651  gdb_assert (num < M32C_MAX_NUM_REGS);
652
653  /* Update the reg->DWARF mapping.  Only count the first number
654     assigned to this register.  */
655  if (reg->dwarf_num == -1)
656    reg->dwarf_num = num;
657
658  /* Update the DWARF->reg mapping.  */
659  gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
660}
661
662
663/* Mark REG as a general-purpose register, and return it.  */
664static struct m32c_reg *
665mark_general (struct m32c_reg *reg)
666{
667  reg->general_p = 1;
668  return reg;
669}
670
671
672/* Mark REG as a DMA register, and return it.  */
673static struct m32c_reg *
674mark_dma (struct m32c_reg *reg)
675{
676  reg->dma_p = 1;
677  return reg;
678}
679
680
681/* Mark REG as a SYSTEM register, and return it.  */
682static struct m32c_reg *
683mark_system (struct m32c_reg *reg)
684{
685  reg->system_p = 1;
686  return reg;
687}
688
689
690/* Mark REG as a save-restore register, and return it.  */
691static struct m32c_reg *
692mark_save_restore (struct m32c_reg *reg)
693{
694  reg->save_restore_p = 1;
695  return reg;
696}
697
698
699#define FLAGBIT_B	0x0010
700#define FLAGBIT_U	0x0080
701
702/* Handy macros for declaring registers.  These all evaluate to
703   pointers to the register declared.  Macros that define two
704   registers evaluate to a pointer to the first.  */
705
706/* A raw register named NAME, with type TYPE and sim number SIM_NUM.  */
707#define R(name, type, sim_num)					\
708  (add_reg (arch, (name), (type), (sim_num),			\
709	    m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
710
711/* The simulator register number for a raw register named NAME.  */
712#define SIM(name) (m32c_sim_reg_ ## name)
713
714/* A raw unsigned 16-bit data register named NAME.
715   NAME should be an identifier, not a string.  */
716#define R16U(name)						\
717  (R(#name, tdep->uint16, SIM (name)))
718
719/* A raw data address register named NAME.
720   NAME should be an identifier, not a string.  */
721#define RA(name)						\
722  (R(#name, tdep->data_addr_reg_type, SIM (name)))
723
724/* A raw code address register named NAME.  NAME should
725   be an identifier, not a string.  */
726#define RC(name)						\
727  (R(#name, tdep->code_addr_reg_type, SIM (name)))
728
729/* A pair of raw registers named NAME0 and NAME1, with type TYPE.
730   NAME should be an identifier, not a string.  */
731#define RP(name, type)				\
732  (R(#name "0", (type), SIM (name ## 0)),	\
733   R(#name "1", (type), SIM (name ## 1)) - 1)
734
735/* A raw banked general-purpose data register named NAME.
736   NAME should be an identifier, not a string.  */
737#define RBD(name)						\
738  (R(NULL, tdep->int16, SIM (name ## _bank0)),		\
739   R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
740
741/* A raw banked data address register named NAME.
742   NAME should be an identifier, not a string.  */
743#define RBA(name)						\
744  (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)),	\
745   R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
746
747/* A cooked register named NAME referring to a raw banked register
748   from the bank selected by the current value of FLG.  RAW_PAIR
749   should be a pointer to the first register in the banked pair.
750   NAME must be an identifier, not a string.  */
751#define CB(name, raw_pair)				\
752  (add_reg (arch, #name, (raw_pair)->type, 0,		\
753	    m32c_banked_read, m32c_banked_write,	\
754            (raw_pair), (raw_pair + 1), FLAGBIT_B))
755
756/* A pair of registers named NAMEH and NAMEL, of type TYPE, that
757   access the top and bottom halves of the register pointed to by
758   NAME.  NAME should be an identifier.  */
759#define CHL(name, type)							\
760  (add_reg (arch, #name "h", (type), 0,					\
761	    m32c_part_read, m32c_part_write, name, NULL, 1),		\
762   add_reg (arch, #name "l", (type), 0,					\
763	    m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
764
765/* A register constructed by concatenating the two registers HIGH and
766   LOW, whose name is HIGHLOW and whose type is TYPE.  */
767#define CCAT(high, low, type)					\
768  (add_reg (arch, #high #low, (type), 0,			\
769	    m32c_cat_read, m32c_cat_write, (high), (low), 0))
770
771/* Abbreviations for marking register group membership.  */
772#define G(reg)   (mark_general (reg))
773#define S(reg)   (mark_system  (reg))
774#define DMA(reg) (mark_dma     (reg))
775
776
777/* Construct the register set for ARCH.  */
778static void
779make_regs (struct gdbarch *arch)
780{
781  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
782  int mach = gdbarch_bfd_arch_info (arch)->mach;
783  int num_raw_regs;
784  int num_cooked_regs;
785
786  struct m32c_reg *r0;
787  struct m32c_reg *r1;
788  struct m32c_reg *r2;
789  struct m32c_reg *r3;
790  struct m32c_reg *a0;
791  struct m32c_reg *a1;
792  struct m32c_reg *fb;
793  struct m32c_reg *sb;
794  struct m32c_reg *sp;
795  struct m32c_reg *r0hl;
796  struct m32c_reg *r1hl;
797  struct m32c_reg *r2hl;
798  struct m32c_reg *r3hl;
799  struct m32c_reg *intbhl;
800  struct m32c_reg *r2r0;
801  struct m32c_reg *r3r1;
802  struct m32c_reg *r3r1r2r0;
803  struct m32c_reg *r3r2r1r0;
804  struct m32c_reg *a1a0;
805
806  struct m32c_reg *raw_r0_pair = RBD (r0);
807  struct m32c_reg *raw_r1_pair = RBD (r1);
808  struct m32c_reg *raw_r2_pair = RBD (r2);
809  struct m32c_reg *raw_r3_pair = RBD (r3);
810  struct m32c_reg *raw_a0_pair = RBA (a0);
811  struct m32c_reg *raw_a1_pair = RBA (a1);
812  struct m32c_reg *raw_fb_pair = RBA (fb);
813
814  /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
815     We always declare both raw registers, and deal with the distinction
816     in the pseudoregister.  */
817  struct m32c_reg *raw_sb_pair = RBA (sb);
818
819  struct m32c_reg *usp         = S (RA (usp));
820  struct m32c_reg *isp         = S (RA (isp));
821  struct m32c_reg *intb        = S (RC (intb));
822  struct m32c_reg *pc          = G (RC (pc));
823  struct m32c_reg *flg         = G (R16U (flg));
824
825  if (mach == bfd_mach_m32c)
826    {
827      struct m32c_reg *svf     = S (R16U (svf));
828      struct m32c_reg *svp     = S (RC (svp));
829      struct m32c_reg *vct     = S (RC (vct));
830
831      struct m32c_reg *dmd01   = DMA (RP (dmd, tdep->uint8));
832      struct m32c_reg *dct01   = DMA (RP (dct, tdep->uint16));
833      struct m32c_reg *drc01   = DMA (RP (drc, tdep->uint16));
834      struct m32c_reg *dma01   = DMA (RP (dma, tdep->data_addr_reg_type));
835      struct m32c_reg *dsa01   = DMA (RP (dsa, tdep->data_addr_reg_type));
836      struct m32c_reg *dra01   = DMA (RP (dra, tdep->data_addr_reg_type));
837    }
838
839  num_raw_regs = tdep->num_regs;
840
841  r0 	      = G (CB (r0, raw_r0_pair));
842  r1 	      = G (CB (r1, raw_r1_pair));
843  r2          = G (CB (r2, raw_r2_pair));
844  r3          = G (CB (r3, raw_r3_pair));
845  a0          = G (CB (a0, raw_a0_pair));
846  a1          = G (CB (a1, raw_a1_pair));
847  fb          = G (CB (fb, raw_fb_pair));
848
849  /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
850     Specify custom read/write functions that do the right thing.  */
851  sb          = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
852			    m32c_sb_read, m32c_sb_write,
853			    raw_sb_pair, raw_sb_pair + 1, 0));
854
855  /* The current sp is either usp or isp, depending on the value of
856     the FLG register's U bit.  */
857  sp          = G (add_reg (arch, "sp", usp->type, 0,
858			    m32c_banked_read, m32c_banked_write,
859			    isp, usp, FLAGBIT_U));
860
861  r0hl        = CHL (r0, tdep->int8);
862  r1hl        = CHL (r1, tdep->int8);
863  r2hl        = CHL (r2, tdep->int8);
864  r3hl        = CHL (r3, tdep->int8);
865  intbhl      = CHL (intb, tdep->int16);
866
867  r2r0        = CCAT (r2,   r0,   tdep->int32);
868  r3r1        = CCAT (r3,   r1,   tdep->int32);
869  r3r1r2r0    = CCAT (r3r1, r2r0, tdep->int64);
870
871  r3r2r1r0
872    = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
873	       m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
874
875  if (mach == bfd_mach_m16c)
876    a1a0 = CCAT (a1, a0, tdep->int32);
877  else
878    a1a0 = NULL;
879
880  num_cooked_regs = tdep->num_regs - num_raw_regs;
881
882  tdep->pc   	 = pc;
883  tdep->flg  	 = flg;
884  tdep->r0   	 = r0;
885  tdep->r1   	 = r1;
886  tdep->r2   	 = r2;
887  tdep->r3   	 = r3;
888  tdep->r2r0 	 = r2r0;
889  tdep->r3r2r1r0 = r3r2r1r0;
890  tdep->r3r1r2r0 = r3r1r2r0;
891  tdep->a0       = a0;
892  tdep->a1       = a1;
893  tdep->sb       = sb;
894  tdep->fb   	 = fb;
895  tdep->sp   	 = sp;
896
897  /* Set up the DWARF register table.  */
898  memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
899  set_dwarf_regnum (r0hl + 1, 0x01);
900  set_dwarf_regnum (r0hl + 0, 0x02);
901  set_dwarf_regnum (r1hl + 1, 0x03);
902  set_dwarf_regnum (r1hl + 0, 0x04);
903  set_dwarf_regnum (r0,       0x05);
904  set_dwarf_regnum (r1,       0x06);
905  set_dwarf_regnum (r2,       0x07);
906  set_dwarf_regnum (r3,       0x08);
907  set_dwarf_regnum (a0,       0x09);
908  set_dwarf_regnum (a1,       0x0a);
909  set_dwarf_regnum (fb,       0x0b);
910  set_dwarf_regnum (sp,       0x0c);
911  set_dwarf_regnum (pc,       0x0d); /* GCC's invention */
912  set_dwarf_regnum (sb,       0x13);
913  set_dwarf_regnum (r2r0,     0x15);
914  set_dwarf_regnum (r3r1,     0x16);
915  if (a1a0)
916    set_dwarf_regnum (a1a0,   0x17);
917
918  /* Enumerate the save/restore register group.
919
920     The regcache_save and regcache_restore functions apply their read
921     function to each register in this group.
922
923     Since frame_pop supplies frame_unwind_register as its read
924     function, the registers meaningful to the Dwarf unwinder need to
925     be in this group.
926
927     On the other hand, when we make inferior calls, save_inferior_status
928     and restore_inferior_status use them to preserve the current register
929     values across the inferior call.  For this, you'd kind of like to
930     preserve all the raw registers, to protect the interrupted code from
931     any sort of bank switching the callee might have done.  But we handle
932     those cases so badly anyway --- for example, it matters whether we
933     restore FLG before or after we restore the general-purpose registers,
934     but there's no way to express that --- that it isn't worth worrying
935     about.
936
937     We omit control registers like inthl: if you call a function that
938     changes those, it's probably because you wanted that change to be
939     visible to the interrupted code.  */
940  mark_save_restore (r0);
941  mark_save_restore (r1);
942  mark_save_restore (r2);
943  mark_save_restore (r3);
944  mark_save_restore (a0);
945  mark_save_restore (a1);
946  mark_save_restore (sb);
947  mark_save_restore (fb);
948  mark_save_restore (sp);
949  mark_save_restore (pc);
950  mark_save_restore (flg);
951
952  set_gdbarch_num_regs (arch, num_raw_regs);
953  set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
954  set_gdbarch_pc_regnum (arch, pc->num);
955  set_gdbarch_sp_regnum (arch, sp->num);
956  set_gdbarch_register_name (arch, m32c_register_name);
957  set_gdbarch_register_type (arch, m32c_register_type);
958  set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
959  set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
960  set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
961  set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
962  set_gdbarch_dwarf_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
963  set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
964  set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
965
966  reggroup_add (arch, general_reggroup);
967  reggroup_add (arch, all_reggroup);
968  reggroup_add (arch, save_reggroup);
969  reggroup_add (arch, restore_reggroup);
970  reggroup_add (arch, system_reggroup);
971  reggroup_add (arch, m32c_dma_reggroup);
972}
973
974
975
976/* Breakpoints.  */
977
978static const unsigned char *
979m32c_breakpoint_from_pc (CORE_ADDR *pc, int *len)
980{
981  static unsigned char break_insn[] = { 0x00 };	/* brk */
982
983  *len = sizeof (break_insn);
984  return break_insn;
985}
986
987
988
989/* Prologue analysis.  */
990
991struct m32c_prologue
992{
993  /* For consistency with the DWARF 2 .debug_frame info generated by
994     GCC, a frame's CFA is the address immediately after the saved
995     return address.  */
996
997  /* The architecture for which we generated this prologue info.  */
998  struct gdbarch *arch;
999
1000  enum {
1001    /* This function uses a frame pointer.  */
1002    prologue_with_frame_ptr,
1003
1004    /* This function has no frame pointer.  */
1005    prologue_sans_frame_ptr,
1006
1007    /* This function sets up the stack, so its frame is the first
1008       frame on the stack.  */
1009    prologue_first_frame
1010
1011  } kind;
1012
1013  /* If KIND is prologue_with_frame_ptr, this is the offset from the
1014     CFA to where the frame pointer points.  This is always zero or
1015     negative.  */
1016  LONGEST frame_ptr_offset;
1017
1018  /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1019     the stack pointer --- always zero or negative.
1020
1021     Calling this a "size" is a bit misleading, but given that the
1022     stack grows downwards, using offsets for everything keeps one
1023     from going completely sign-crazy: you never change anything's
1024     sign for an ADD instruction; always change the second operand's
1025     sign for a SUB instruction; and everything takes care of
1026     itself.
1027
1028     Functions that use alloca don't have a constant frame size.  But
1029     they always have frame pointers, so we must use that to find the
1030     CFA (and perhaps to unwind the stack pointer).  */
1031  LONGEST frame_size;
1032
1033  /* The address of the first instruction at which the frame has been
1034     set up and the arguments are where the debug info says they are
1035     --- as best as we can tell.  */
1036  CORE_ADDR prologue_end;
1037
1038  /* reg_offset[R] is the offset from the CFA at which register R is
1039     saved, or 1 if register R has not been saved.  (Real values are
1040     always zero or negative.)  */
1041  LONGEST reg_offset[M32C_MAX_NUM_REGS];
1042};
1043
1044
1045/* The longest I've seen, anyway.  */
1046#define M32C_MAX_INSN_LEN (9)
1047
1048/* Processor state, for the prologue analyzer.  */
1049struct m32c_pv_state
1050{
1051  struct gdbarch *arch;
1052  pv_t r0, r1, r2, r3;
1053  pv_t a0, a1;
1054  pv_t sb, fb, sp;
1055  pv_t pc;
1056  struct pv_area *stack;
1057
1058  /* Bytes from the current PC, the address they were read from,
1059     and the address of the next unconsumed byte.  */
1060  gdb_byte insn[M32C_MAX_INSN_LEN];
1061  CORE_ADDR scan_pc, next_addr;
1062};
1063
1064
1065/* Push VALUE on STATE's stack, occupying SIZE bytes.  Return zero if
1066   all went well, or non-zero if simulating the action would trash our
1067   state.  */
1068static int
1069m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1070{
1071  if (pv_area_store_would_trash (state->stack, state->sp))
1072    return 1;
1073
1074  state->sp = pv_add_constant (state->sp, -size);
1075  pv_area_store (state->stack, state->sp, size, value);
1076
1077  return 0;
1078}
1079
1080
1081/* A source or destination location for an m16c or m32c
1082   instruction.  */
1083struct srcdest
1084{
1085  /* If srcdest_reg, the location is a register pointed to by REG.
1086     If srcdest_partial_reg, the location is part of a register pointed
1087     to by REG.  We don't try to handle this too well.
1088     If srcdest_mem, the location is memory whose address is ADDR.  */
1089  enum { srcdest_reg, srcdest_partial_reg, srcdest_mem } kind;
1090  pv_t *reg, addr;
1091};
1092
1093
1094/* Return the SIZE-byte value at LOC in STATE.  */
1095static pv_t
1096m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1097{
1098  if (loc.kind == srcdest_mem)
1099    return pv_area_fetch (state->stack, loc.addr, size);
1100  else if (loc.kind == srcdest_partial_reg)
1101    return pv_unknown ();
1102  else
1103    return *loc.reg;
1104}
1105
1106
1107/* Write VALUE, a SIZE-byte value, to LOC in STATE.  Return zero if
1108   all went well, or non-zero if simulating the store would trash our
1109   state.  */
1110static int
1111m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1112		    pv_t value, int size)
1113{
1114  if (loc.kind == srcdest_mem)
1115    {
1116      if (pv_area_store_would_trash (state->stack, loc.addr))
1117	return 1;
1118      pv_area_store (state->stack, loc.addr, size, value);
1119    }
1120  else if (loc.kind == srcdest_partial_reg)
1121    *loc.reg = pv_unknown ();
1122  else
1123    *loc.reg = value;
1124
1125  return 0;
1126}
1127
1128
1129static int
1130m32c_sign_ext (int v, int bits)
1131{
1132  int mask = 1 << (bits - 1);
1133  return (v ^ mask) - mask;
1134}
1135
1136static unsigned int
1137m32c_next_byte (struct m32c_pv_state *st)
1138{
1139  gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1140  return st->insn[st->next_addr++ - st->scan_pc];
1141}
1142
1143static int
1144m32c_udisp8 (struct m32c_pv_state *st)
1145{
1146  return m32c_next_byte (st);
1147}
1148
1149
1150static int
1151m32c_sdisp8 (struct m32c_pv_state *st)
1152{
1153  return m32c_sign_ext (m32c_next_byte (st), 8);
1154}
1155
1156
1157static int
1158m32c_udisp16 (struct m32c_pv_state *st)
1159{
1160  int low  = m32c_next_byte (st);
1161  int high = m32c_next_byte (st);
1162
1163  return low + (high << 8);
1164}
1165
1166
1167static int
1168m32c_sdisp16 (struct m32c_pv_state *st)
1169{
1170  int low  = m32c_next_byte (st);
1171  int high = m32c_next_byte (st);
1172
1173  return m32c_sign_ext (low + (high << 8), 16);
1174}
1175
1176
1177static int
1178m32c_udisp24 (struct m32c_pv_state *st)
1179{
1180  int low  = m32c_next_byte (st);
1181  int mid  = m32c_next_byte (st);
1182  int high = m32c_next_byte (st);
1183
1184  return low + (mid << 8) + (high << 16);
1185}
1186
1187
1188/* Extract the 'source' field from an m32c MOV.size:G-format instruction.  */
1189static int
1190m32c_get_src23 (unsigned char *i)
1191{
1192  return (((i[0] & 0x70) >> 2)
1193	  | ((i[1] & 0x30) >> 4));
1194}
1195
1196
1197/* Extract the 'dest' field from an m32c MOV.size:G-format instruction.  */
1198static int
1199m32c_get_dest23 (unsigned char *i)
1200{
1201  return (((i[0] & 0x0e) << 1)
1202	  | ((i[1] & 0xc0) >> 6));
1203}
1204
1205
1206static struct srcdest
1207m32c_decode_srcdest4 (struct m32c_pv_state *st,
1208		      int code, int size)
1209{
1210  struct srcdest sd;
1211
1212  if (code < 6)
1213    sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1214  else
1215    sd.kind = srcdest_mem;
1216
1217  sd.addr = pv_unknown ();
1218  sd.reg = 0;
1219
1220  switch (code)
1221    {
1222    case 0x0: sd.reg = (size == 1 ? &st->r0 : &st->r0); break;
1223    case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1224    case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1225    case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1226
1227    case 0x4: sd.reg = &st->a0; break;
1228    case 0x5: sd.reg = &st->a1; break;
1229
1230    case 0x6: sd.addr = st->a0; break;
1231    case 0x7: sd.addr = st->a1; break;
1232
1233    case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1234    case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1235    case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1236    case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1237
1238    case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1239    case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1240    case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1241    case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1242
1243    default:
1244      gdb_assert (0);
1245    }
1246
1247  return sd;
1248}
1249
1250
1251static struct srcdest
1252m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1253{
1254  struct srcdest sd;
1255
1256  sd.addr = pv_unknown ();
1257  sd.reg = 0;
1258
1259  switch (code)
1260    {
1261    case 0x12:
1262    case 0x13:
1263    case 0x10:
1264    case 0x11:
1265      sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1266      break;
1267
1268    case 0x02:
1269    case 0x03:
1270      sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1271      break;
1272
1273    default:
1274      sd.kind = srcdest_mem;
1275      break;
1276
1277    }
1278
1279  switch (code)
1280    {
1281    case 0x12: sd.reg = &st->r0; break;
1282    case 0x13: sd.reg = &st->r1; break;
1283    case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1284    case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1285    case 0x02: sd.reg = &st->a0; break;
1286    case 0x03: sd.reg = &st->a1; break;
1287
1288    case 0x00: sd.addr = st->a0; break;
1289    case 0x01: sd.addr = st->a1; break;
1290    case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1291    case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1292    case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1293    case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1294    case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1295    case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1296    case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1297    case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1298    case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1299    case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1300    case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1301    case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1302    default:
1303      gdb_assert (0);
1304    }
1305
1306  if (ind)
1307    {
1308      sd.addr = m32c_srcdest_fetch (st, sd, 4);
1309      sd.kind = srcdest_mem;
1310    }
1311
1312  return sd;
1313}
1314
1315
1316/* The r16c and r32c machines have instructions with similar
1317   semantics, but completely different machine language encodings.  So
1318   we break out the semantics into their own functions, and leave
1319   machine-specific decoding in m32c_analyze_prologue.
1320
1321   The following functions all expect their arguments already decoded,
1322   and they all return zero if analysis should continue past this
1323   instruction, or non-zero if analysis should stop.  */
1324
1325
1326/* Simulate an 'enter SIZE' instruction in STATE.  */
1327static int
1328m32c_pv_enter (struct m32c_pv_state *state, int size)
1329{
1330  struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1331
1332  /* If simulating this store would require us to forget
1333     everything we know about the stack frame in the name of
1334     accuracy, it would be better to just quit now.  */
1335  if (pv_area_store_would_trash (state->stack, state->sp))
1336    return 1;
1337
1338  if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1339    return 1;
1340  state->fb = state->sp;
1341  state->sp = pv_add_constant (state->sp, -size);
1342
1343  return 0;
1344}
1345
1346
1347static int
1348m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1349		   int bit, int src, int size)
1350{
1351  if (bit & src)
1352    {
1353      if (m32c_pv_push (state, reg, size))
1354	return 1;
1355    }
1356
1357  return 0;
1358}
1359
1360
1361/* Simulate a 'pushm SRC' instruction in STATE.  */
1362static int
1363m32c_pv_pushm (struct m32c_pv_state *state, int src)
1364{
1365  struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1366
1367  /* The bits in SRC indicating which registers to save are:
1368     r0 r1 r2 r3 a0 a1 sb fb */
1369  return
1370    (   m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1371     || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1372     || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1373     || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1374     || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1375     || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1376     || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1377     || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1378}
1379
1380/* Return non-zero if VALUE is the first incoming argument register.  */
1381
1382static int
1383m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1384{
1385  struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1386  return (value.kind == pvk_register
1387          && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1388	      ? (value.reg == tdep->r1->num)
1389	      : (value.reg == tdep->r0->num))
1390          && value.k == 0);
1391}
1392
1393/* Return non-zero if VALUE is an incoming argument register.  */
1394
1395static int
1396m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1397{
1398  struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1399  return (value.kind == pvk_register
1400          && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1401	      ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1402	      : (value.reg == tdep->r0->num))
1403          && value.k == 0);
1404}
1405
1406/* Return non-zero if a store of VALUE to LOC is probably spilling an
1407   argument register to its stack slot in STATE.  Such instructions
1408   should be included in the prologue, if possible.
1409
1410   The store is a spill if:
1411   - the value being stored is the original value of an argument register;
1412   - the value has not already been stored somewhere in STACK; and
1413   - LOC is a stack slot (e.g., a memory location whose address is
1414     relative to the original value of the SP).  */
1415
1416static int
1417m32c_is_arg_spill (struct m32c_pv_state *st,
1418		   struct srcdest loc,
1419		   pv_t value)
1420{
1421  struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1422
1423  return (m32c_is_arg_reg (st, value)
1424	  && loc.kind == srcdest_mem
1425          && pv_is_register (loc.addr, tdep->sp->num)
1426          && ! pv_area_find_reg (st->stack, st->arch, value.reg, 0));
1427}
1428
1429/* Return non-zero if a store of VALUE to LOC is probably
1430   copying the struct return address into an address register
1431   for immediate use.  This is basically a "spill" into the
1432   address register, instead of onto the stack.
1433
1434   The prerequisites are:
1435   - value being stored is original value of the FIRST arg register;
1436   - value has not already been stored on stack; and
1437   - LOC is an address register (a0 or a1).  */
1438
1439static int
1440m32c_is_struct_return (struct m32c_pv_state *st,
1441		       struct srcdest loc,
1442		       pv_t value)
1443{
1444  struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1445
1446  return (m32c_is_1st_arg_reg (st, value)
1447	  && !pv_area_find_reg (st->stack, st->arch, value.reg, 0)
1448	  && loc.kind == srcdest_reg
1449	  && (pv_is_register (*loc.reg, tdep->a0->num)
1450	      || pv_is_register (*loc.reg, tdep->a1->num)));
1451}
1452
1453/* Return non-zero if a 'pushm' saving the registers indicated by SRC
1454   was a register save:
1455   - all the named registers should have their original values, and
1456   - the stack pointer should be at a constant offset from the
1457     original stack pointer.  */
1458static int
1459m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1460{
1461  struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1462  /* The bits in SRC indicating which registers to save are:
1463     r0 r1 r2 r3 a0 a1 sb fb */
1464  return
1465    (pv_is_register (st->sp, tdep->sp->num)
1466     && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1467     && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1468     && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1469     && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1470     && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1471     && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1472     && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1473     && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1474}
1475
1476
1477/* Function for finding saved registers in a 'struct pv_area'; we pass
1478   this to pv_area_scan.
1479
1480   If VALUE is a saved register, ADDR says it was saved at a constant
1481   offset from the frame base, and SIZE indicates that the whole
1482   register was saved, record its offset in RESULT_UNTYPED.  */
1483static void
1484check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1485{
1486  struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1487  struct gdbarch *arch = prologue->arch;
1488  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1489
1490  /* Is this the unchanged value of some register being saved on the
1491     stack?  */
1492  if (value.kind == pvk_register
1493      && value.k == 0
1494      && pv_is_register (addr, tdep->sp->num))
1495    {
1496      /* Some registers require special handling: they're saved as a
1497	 larger value than the register itself.  */
1498      CORE_ADDR saved_size = register_size (arch, value.reg);
1499
1500      if (value.reg == tdep->pc->num)
1501	saved_size = tdep->ret_addr_bytes;
1502      else if (register_type (arch, value.reg)
1503	       == tdep->data_addr_reg_type)
1504	saved_size = tdep->push_addr_bytes;
1505
1506      if (size == saved_size)
1507	{
1508	  /* Find which end of the saved value corresponds to our
1509	     register.  */
1510	  if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1511	    prologue->reg_offset[value.reg]
1512	      = (addr.k + saved_size - register_size (arch, value.reg));
1513	  else
1514	    prologue->reg_offset[value.reg] = addr.k;
1515	}
1516    }
1517}
1518
1519
1520/* Analyze the function prologue for ARCH at START, going no further
1521   than LIMIT, and place a description of what we found in
1522   PROLOGUE.  */
1523void
1524m32c_analyze_prologue (struct gdbarch *arch,
1525		       CORE_ADDR start, CORE_ADDR limit,
1526		       struct m32c_prologue *prologue)
1527{
1528  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1529  unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1530  CORE_ADDR after_last_frame_related_insn;
1531  struct cleanup *back_to;
1532  struct m32c_pv_state st;
1533
1534  st.arch = arch;
1535  st.r0 = pv_register (tdep->r0->num, 0);
1536  st.r1 = pv_register (tdep->r1->num, 0);
1537  st.r2 = pv_register (tdep->r2->num, 0);
1538  st.r3 = pv_register (tdep->r3->num, 0);
1539  st.a0 = pv_register (tdep->a0->num, 0);
1540  st.a1 = pv_register (tdep->a1->num, 0);
1541  st.sb = pv_register (tdep->sb->num, 0);
1542  st.fb = pv_register (tdep->fb->num, 0);
1543  st.sp = pv_register (tdep->sp->num, 0);
1544  st.pc = pv_register (tdep->pc->num, 0);
1545  st.stack = make_pv_area (tdep->sp->num);
1546  back_to = make_cleanup_free_pv_area (st.stack);
1547
1548  /* Record that the call instruction has saved the return address on
1549     the stack.  */
1550  m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1551
1552  memset (prologue, 0, sizeof (*prologue));
1553  prologue->arch = arch;
1554  {
1555    int i;
1556    for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1557      prologue->reg_offset[i] = 1;
1558  }
1559
1560  st.scan_pc = after_last_frame_related_insn = start;
1561
1562  while (st.scan_pc < limit)
1563    {
1564      pv_t pre_insn_fb = st.fb;
1565      pv_t pre_insn_sp = st.sp;
1566
1567      /* In theory we could get in trouble by trying to read ahead
1568	 here, when we only know we're expecting one byte.  In
1569	 practice I doubt anyone will care, and it makes the rest of
1570	 the code easier.  */
1571      if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1572	/* If we can't fetch the instruction from memory, stop here
1573	   and hope for the best.  */
1574	break;
1575      st.next_addr = st.scan_pc;
1576
1577      /* The assembly instructions are written as they appear in the
1578	 section of the processor manuals that describe the
1579	 instruction encodings.
1580
1581	 When a single assembly language instruction has several
1582	 different machine-language encodings, the manual
1583	 distinguishes them by a number in parens, before the
1584	 mnemonic.  Those numbers are included, as well.
1585
1586	 The srcdest decoding instructions have the same names as the
1587	 analogous functions in the simulator.  */
1588      if (mach == bfd_mach_m16c)
1589	{
1590	  /* (1) ENTER #imm8 */
1591	  if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1592	    {
1593	      if (m32c_pv_enter (&st, st.insn[2]))
1594		break;
1595	      st.next_addr += 3;
1596	    }
1597	  /* (1) PUSHM src */
1598	  else if (st.insn[0] == 0xec)
1599	    {
1600	      int src = st.insn[1];
1601	      if (m32c_pv_pushm (&st, src))
1602		break;
1603	      st.next_addr += 2;
1604
1605	      if (m32c_pushm_is_reg_save (&st, src))
1606		after_last_frame_related_insn = st.next_addr;
1607	    }
1608
1609	  /* (6) MOV.size:G src, dest */
1610	  else if ((st.insn[0] & 0xfe) == 0x72)
1611	    {
1612	      int size = (st.insn[0] & 0x01) ? 2 : 1;
1613	      struct srcdest src;
1614	      struct srcdest dest;
1615	      pv_t src_value;
1616	      st.next_addr += 2;
1617
1618	      src
1619		= m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
1620	      dest
1621		= m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
1622	      src_value = m32c_srcdest_fetch (&st, src, size);
1623
1624	      if (m32c_is_arg_spill (&st, dest, src_value))
1625		after_last_frame_related_insn = st.next_addr;
1626	      else if (m32c_is_struct_return (&st, dest, src_value))
1627		after_last_frame_related_insn = st.next_addr;
1628
1629	      if (m32c_srcdest_store (&st, dest, src_value, size))
1630		break;
1631	    }
1632
1633	  /* (1) LDC #IMM16, sp */
1634	  else if (st.insn[0] == 0xeb
1635		   && st.insn[1] == 0x50)
1636	    {
1637	      st.next_addr += 2;
1638	      st.sp = pv_constant (m32c_udisp16 (&st));
1639	    }
1640
1641	  else
1642	    /* We've hit some instruction we don't know how to simulate.
1643	       Strictly speaking, we should set every value we're
1644	       tracking to "unknown".  But we'll be optimistic, assume
1645	       that we have enough information already, and stop
1646	       analysis here.  */
1647	    break;
1648	}
1649      else
1650	{
1651	  int src_indirect = 0;
1652	  int dest_indirect = 0;
1653	  int i = 0;
1654
1655	  gdb_assert (mach == bfd_mach_m32c);
1656
1657	  /* Check for prefix bytes indicating indirect addressing.  */
1658	  if (st.insn[0] == 0x41)
1659	    {
1660	      src_indirect = 1;
1661	      i++;
1662	    }
1663	  else if (st.insn[0] == 0x09)
1664	    {
1665	      dest_indirect = 1;
1666	      i++;
1667	    }
1668	  else if (st.insn[0] == 0x49)
1669	    {
1670	      src_indirect = dest_indirect = 1;
1671	      i++;
1672	    }
1673
1674	  /* (1) ENTER #imm8 */
1675	  if (st.insn[i] == 0xec)
1676	    {
1677	      if (m32c_pv_enter (&st, st.insn[i + 1]))
1678		break;
1679	      st.next_addr += 2;
1680	    }
1681
1682	  /* (1) PUSHM src */
1683	  else if (st.insn[i] == 0x8f)
1684	    {
1685	      int src = st.insn[i + 1];
1686	      if (m32c_pv_pushm (&st, src))
1687		break;
1688	      st.next_addr += 2;
1689
1690	      if (m32c_pushm_is_reg_save (&st, src))
1691		after_last_frame_related_insn = st.next_addr;
1692	    }
1693
1694	  /* (7) MOV.size:G src, dest */
1695	  else if ((st.insn[i] & 0x80) == 0x80
1696		   && (st.insn[i + 1] & 0x0f) == 0x0b
1697		   && m32c_get_src23 (&st.insn[i]) < 20
1698		   && m32c_get_dest23 (&st.insn[i]) < 20)
1699	    {
1700	      struct srcdest src;
1701	      struct srcdest dest;
1702	      pv_t src_value;
1703	      int bw = st.insn[i] & 0x01;
1704	      int size = bw ? 2 : 1;
1705	      st.next_addr += 2;
1706
1707	      src
1708		= m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1709				    size, src_indirect);
1710	      dest
1711		= m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1712				    size, dest_indirect);
1713	      src_value = m32c_srcdest_fetch (&st, src, size);
1714
1715	      if (m32c_is_arg_spill (&st, dest, src_value))
1716		after_last_frame_related_insn = st.next_addr;
1717
1718	      if (m32c_srcdest_store (&st, dest, src_value, size))
1719		break;
1720	    }
1721	  /* (2) LDC #IMM24, sp */
1722	  else if (st.insn[i] == 0xd5
1723		   && st.insn[i + 1] == 0x29)
1724	    {
1725	      st.next_addr += 2;
1726	      st.sp = pv_constant (m32c_udisp24 (&st));
1727	    }
1728	  else
1729	    /* We've hit some instruction we don't know how to simulate.
1730	       Strictly speaking, we should set every value we're
1731	       tracking to "unknown".  But we'll be optimistic, assume
1732	       that we have enough information already, and stop
1733	       analysis here.  */
1734	    break;
1735	}
1736
1737      /* If this instruction changed the FB or decreased the SP (i.e.,
1738         allocated more stack space), then this may be a good place to
1739         declare the prologue finished.  However, there are some
1740         exceptions:
1741
1742         - If the instruction just changed the FB back to its original
1743           value, then that's probably a restore instruction.  The
1744           prologue should definitely end before that.
1745
1746         - If the instruction increased the value of the SP (that is,
1747           shrunk the frame), then it's probably part of a frame
1748           teardown sequence, and the prologue should end before
1749           that.  */
1750
1751      if (! pv_is_identical (st.fb, pre_insn_fb))
1752        {
1753          if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1754            after_last_frame_related_insn = st.next_addr;
1755        }
1756      else if (! pv_is_identical (st.sp, pre_insn_sp))
1757        {
1758          /* The comparison of the constants looks odd, there, because
1759             .k is unsigned.  All it really means is that the SP is
1760             lower than it was before the instruction.  */
1761          if (   pv_is_register (pre_insn_sp, tdep->sp->num)
1762              && pv_is_register (st.sp,       tdep->sp->num)
1763              && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1764            after_last_frame_related_insn = st.next_addr;
1765        }
1766
1767      st.scan_pc = st.next_addr;
1768    }
1769
1770  /* Did we load a constant value into the stack pointer?  */
1771  if (pv_is_constant (st.sp))
1772    prologue->kind = prologue_first_frame;
1773
1774  /* Alternatively, did we initialize the frame pointer?  Remember
1775     that the CFA is the address after the return address.  */
1776  if (pv_is_register (st.fb, tdep->sp->num))
1777    {
1778      prologue->kind = prologue_with_frame_ptr;
1779      prologue->frame_ptr_offset = st.fb.k;
1780    }
1781
1782  /* Is the frame size a known constant?  Remember that frame_size is
1783     actually the offset from the CFA to the SP (i.e., a negative
1784     value).  */
1785  else if (pv_is_register (st.sp, tdep->sp->num))
1786    {
1787      prologue->kind = prologue_sans_frame_ptr;
1788      prologue->frame_size = st.sp.k;
1789    }
1790
1791  /* We haven't been able to make sense of this function's frame.  Treat
1792     it as the first frame.  */
1793  else
1794    prologue->kind = prologue_first_frame;
1795
1796  /* Record where all the registers were saved.  */
1797  pv_area_scan (st.stack, check_for_saved, (void *) prologue);
1798
1799  prologue->prologue_end = after_last_frame_related_insn;
1800
1801  do_cleanups (back_to);
1802}
1803
1804
1805static CORE_ADDR
1806m32c_skip_prologue (CORE_ADDR ip)
1807{
1808  char *name;
1809  CORE_ADDR func_addr, func_end, sal_end;
1810  struct m32c_prologue p;
1811
1812  /* Try to find the extent of the function that contains IP.  */
1813  if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1814    return ip;
1815
1816  /* Find end by prologue analysis.  */
1817  m32c_analyze_prologue (current_gdbarch, ip, func_end, &p);
1818  /* Find end by line info.  */
1819  sal_end = skip_prologue_using_sal (ip);
1820  /* Return whichever is lower.  */
1821  if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1822    return sal_end;
1823  else
1824    return p.prologue_end;
1825}
1826
1827
1828
1829/* Stack unwinding.  */
1830
1831static struct m32c_prologue *
1832m32c_analyze_frame_prologue (struct frame_info *next_frame,
1833			     void **this_prologue_cache)
1834{
1835  if (! *this_prologue_cache)
1836    {
1837      CORE_ADDR func_start = frame_func_unwind (next_frame, NORMAL_FRAME);
1838      CORE_ADDR stop_addr = frame_pc_unwind (next_frame);
1839
1840      /* If we couldn't find any function containing the PC, then
1841         just initialize the prologue cache, but don't do anything.  */
1842      if (! func_start)
1843        stop_addr = func_start;
1844
1845      *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
1846      m32c_analyze_prologue (get_frame_arch (next_frame),
1847			     func_start, stop_addr, *this_prologue_cache);
1848    }
1849
1850  return *this_prologue_cache;
1851}
1852
1853
1854static CORE_ADDR
1855m32c_frame_base (struct frame_info *next_frame,
1856                void **this_prologue_cache)
1857{
1858  struct m32c_prologue *p
1859    = m32c_analyze_frame_prologue (next_frame, this_prologue_cache);
1860  struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
1861
1862  /* In functions that use alloca, the distance between the stack
1863     pointer and the frame base varies dynamically, so we can't use
1864     the SP plus static information like prologue analysis to find the
1865     frame base.  However, such functions must have a frame pointer,
1866     to be able to restore the SP on exit.  So whenever we do have a
1867     frame pointer, use that to find the base.  */
1868  switch (p->kind)
1869    {
1870    case prologue_with_frame_ptr:
1871      {
1872	CORE_ADDR fb
1873	  = frame_unwind_register_unsigned (next_frame, tdep->fb->num);
1874	return fb - p->frame_ptr_offset;
1875      }
1876
1877    case prologue_sans_frame_ptr:
1878      {
1879	CORE_ADDR sp
1880	  = frame_unwind_register_unsigned (next_frame, tdep->sp->num);
1881	return sp - p->frame_size;
1882      }
1883
1884    case prologue_first_frame:
1885      return 0;
1886
1887    default:
1888      gdb_assert (0);
1889    }
1890}
1891
1892
1893static void
1894m32c_this_id (struct frame_info *next_frame,
1895	      void **this_prologue_cache,
1896	      struct frame_id *this_id)
1897{
1898  CORE_ADDR base = m32c_frame_base (next_frame, this_prologue_cache);
1899
1900  if (base)
1901    *this_id = frame_id_build (base,
1902			       frame_func_unwind (next_frame, NORMAL_FRAME));
1903  /* Otherwise, leave it unset, and that will terminate the backtrace.  */
1904}
1905
1906
1907static void
1908m32c_prev_register (struct frame_info *next_frame,
1909		    void **this_prologue_cache,
1910		    int regnum, int *optimizedp,
1911		    enum lval_type *lvalp, CORE_ADDR *addrp,
1912		    int *realnump, gdb_byte *bufferp)
1913{
1914  struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
1915  struct m32c_prologue *p
1916    = m32c_analyze_frame_prologue (next_frame, this_prologue_cache);
1917  CORE_ADDR frame_base = m32c_frame_base (next_frame, this_prologue_cache);
1918  int reg_size = register_size (get_frame_arch (next_frame), regnum);
1919
1920  if (regnum == tdep->sp->num)
1921    {
1922      *optimizedp = 0;
1923      *lvalp = not_lval;
1924      *addrp = 0;
1925      *realnump = -1;
1926      if (bufferp)
1927	store_unsigned_integer (bufferp, reg_size, frame_base);
1928    }
1929
1930  /* If prologue analysis says we saved this register somewhere,
1931     return a description of the stack slot holding it.  */
1932  else if (p->reg_offset[regnum] != 1)
1933    {
1934      *optimizedp = 0;
1935      *lvalp = lval_memory;
1936      *addrp = frame_base + p->reg_offset[regnum];
1937      *realnump = -1;
1938      if (bufferp)
1939	get_frame_memory (next_frame, *addrp, bufferp, reg_size);
1940    }
1941
1942  /* Otherwise, presume we haven't changed the value of this
1943     register, and get it from the next frame.  */
1944  else
1945    {
1946      *optimizedp = 0;
1947      *lvalp = lval_register;
1948      *addrp = 0;
1949      *realnump = regnum;
1950      if (bufferp)
1951	frame_unwind_register (next_frame, *realnump, bufferp);
1952    }
1953}
1954
1955
1956static const struct frame_unwind m32c_unwind = {
1957  NORMAL_FRAME,
1958  m32c_this_id,
1959  m32c_prev_register
1960};
1961
1962
1963static const struct frame_unwind *
1964m32c_frame_sniffer (struct frame_info *next_frame)
1965{
1966  return &m32c_unwind;
1967}
1968
1969
1970static CORE_ADDR
1971m32c_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
1972{
1973  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1974  return frame_unwind_register_unsigned (next_frame, tdep->pc->num);
1975}
1976
1977
1978static CORE_ADDR
1979m32c_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
1980{
1981  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1982  return frame_unwind_register_unsigned (next_frame, tdep->sp->num);
1983}
1984
1985
1986/* Inferior calls.  */
1987
1988/* The calling conventions, according to GCC:
1989
1990   r8c, m16c
1991   ---------
1992   First arg may be passed in r1l or r1 if it (1) fits (QImode or
1993   HImode), (2) is named, and (3) is an integer or pointer type (no
1994   structs, floats, etc).  Otherwise, it's passed on the stack.
1995
1996   Second arg may be passed in r2, same restrictions (but not QImode),
1997   even if the first arg is passed on the stack.
1998
1999   Third and further args are passed on the stack.  No padding is
2000   used, stack "alignment" is 8 bits.
2001
2002   m32cm, m32c
2003   -----------
2004
2005   First arg may be passed in r0l or r0, same restrictions as above.
2006
2007   Second and further args are passed on the stack.  Padding is used
2008   after QImode parameters (i.e. lower-addressed byte is the value,
2009   higher-addressed byte is the padding), stack "alignment" is 16
2010   bits.  */
2011
2012
2013/* Return true if TYPE is a type that can be passed in registers.  (We
2014   ignore the size, and pay attention only to the type code;
2015   acceptable sizes depends on which register is being considered to
2016   hold it.)  */
2017static int
2018m32c_reg_arg_type (struct type *type)
2019{
2020  enum type_code code = TYPE_CODE (type);
2021
2022  return (code == TYPE_CODE_INT
2023	  || code == TYPE_CODE_ENUM
2024	  || code == TYPE_CODE_PTR
2025	  || code == TYPE_CODE_REF
2026	  || code == TYPE_CODE_BOOL
2027	  || code == TYPE_CODE_CHAR);
2028}
2029
2030
2031static CORE_ADDR
2032m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2033		      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2034		      struct value **args, CORE_ADDR sp, int struct_return,
2035		      CORE_ADDR struct_addr)
2036{
2037  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2038  unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2039  CORE_ADDR cfa;
2040  int i;
2041
2042  /* The number of arguments given in this function's prototype, or
2043     zero if it has a non-prototyped function type.  The m32c ABI
2044     passes arguments mentioned in the prototype differently from
2045     those in the ellipsis of a varargs function, or from those passed
2046     to a non-prototyped function.  */
2047  int num_prototyped_args = 0;
2048
2049  {
2050    struct type *func_type = value_type (function);
2051
2052    gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC ||
2053		TYPE_CODE (func_type) == TYPE_CODE_METHOD);
2054
2055#if 0
2056    /* The ABI description in gcc/config/m32c/m32c.abi says that
2057       we need to handle prototyped and non-prototyped functions
2058       separately, but the code in GCC doesn't actually do so.  */
2059    if (TYPE_PROTOTYPED (func_type))
2060#endif
2061      num_prototyped_args = TYPE_NFIELDS (func_type);
2062  }
2063
2064  /* First, if the function returns an aggregate by value, push a
2065     pointer to a buffer for it.  This doesn't affect the way
2066     subsequent arguments are allocated to registers.  */
2067  if (struct_return)
2068    {
2069      int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
2070      sp -= ptr_len;
2071      write_memory_unsigned_integer (sp, ptr_len, struct_addr);
2072    }
2073
2074  /* Push the arguments.  */
2075  for (i = nargs - 1; i >= 0; i--)
2076    {
2077      struct value *arg = args[i];
2078      const gdb_byte *arg_bits = value_contents (arg);
2079      struct type *arg_type = value_type (arg);
2080      ULONGEST arg_size = TYPE_LENGTH (arg_type);
2081
2082      /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)?  */
2083      if (i == 0
2084	  && arg_size <= 2
2085	  && i < num_prototyped_args
2086	  && m32c_reg_arg_type (arg_type))
2087	{
2088	  /* Extract and re-store as an integer as a terse way to make
2089	     sure it ends up in the least significant end of r1.  (GDB
2090	     should avoid assuming endianness, even on uni-endian
2091	     processors.)  */
2092	  ULONGEST u = extract_unsigned_integer (arg_bits, arg_size);
2093	  struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2094	  regcache_cooked_write_unsigned (regcache, reg->num, u);
2095	}
2096
2097      /* Can it go in r2?  */
2098      else if (mach == bfd_mach_m16c
2099	       && i == 1
2100	       && arg_size == 2
2101	       && i < num_prototyped_args
2102	       && m32c_reg_arg_type (arg_type))
2103	regcache_cooked_write (regcache, tdep->r2->num, arg_bits);
2104
2105      /* Everything else goes on the stack.  */
2106      else
2107	{
2108	  sp -= arg_size;
2109
2110	  /* Align the stack.  */
2111	  if (mach == bfd_mach_m32c)
2112	    sp &= ~1;
2113
2114	  write_memory (sp, arg_bits, arg_size);
2115	}
2116    }
2117
2118  /* This is the CFA we use to identify the dummy frame.  */
2119  cfa = sp;
2120
2121  /* Push the return address.  */
2122  sp -= tdep->ret_addr_bytes;
2123  write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, bp_addr);
2124
2125  /* Update the stack pointer.  */
2126  regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2127
2128  /* We need to borrow an odd trick from the i386 target here.
2129
2130     The value we return from this function gets used as the stack
2131     address (the CFA) for the dummy frame's ID.  The obvious thing is
2132     to return the new TOS.  However, that points at the return
2133     address, saved on the stack, which is inconsistent with the CFA's
2134     described by GCC's DWARF 2 .debug_frame information: DWARF 2
2135     .debug_frame info uses the address immediately after the saved
2136     return address.  So you end up with a dummy frame whose CFA
2137     points at the return address, but the frame for the function
2138     being called has a CFA pointing after the return address: the
2139     younger CFA is *greater than* the older CFA.  The sanity checks
2140     in frame.c don't like that.
2141
2142     So we try to be consistent with the CFA's used by DWARF 2.
2143     Having a dummy frame and a real frame with the *same* CFA is
2144     tolerable.  */
2145  return cfa;
2146}
2147
2148
2149static struct frame_id
2150m32c_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2151{
2152  /* This needs to return a frame ID whose PC is the return address
2153     passed to m32c_push_dummy_call, and whose stack_addr is the SP
2154     m32c_push_dummy_call returned.
2155
2156     m32c_unwind_sp gives us the CFA, which is the value the SP had
2157     before the return address was pushed.  */
2158  return frame_id_build (m32c_unwind_sp (gdbarch, next_frame),
2159                         frame_pc_unwind (next_frame));
2160}
2161
2162
2163
2164/* Return values.  */
2165
2166/* Return value conventions, according to GCC:
2167
2168   r8c, m16c
2169   ---------
2170
2171   QImode in r0l
2172   HImode in r0
2173   SImode in r2r0
2174   near pointer in r0
2175   far pointer in r2r0
2176
2177   Aggregate values (regardless of size) are returned by pushing a
2178   pointer to a temporary area on the stack after the args are pushed.
2179   The function fills in this area with the value.  Note that this
2180   pointer on the stack does not affect how register arguments, if any,
2181   are configured.
2182
2183   m32cm, m32c
2184   -----------
2185   Same.  */
2186
2187/* Return non-zero if values of type TYPE are returned by storing them
2188   in a buffer whose address is passed on the stack, ahead of the
2189   other arguments.  */
2190static int
2191m32c_return_by_passed_buf (struct type *type)
2192{
2193  enum type_code code = TYPE_CODE (type);
2194
2195  return (code == TYPE_CODE_STRUCT
2196	  || code == TYPE_CODE_UNION);
2197}
2198
2199static enum return_value_convention
2200m32c_return_value (struct gdbarch *gdbarch,
2201		   struct type *valtype,
2202		   struct regcache *regcache,
2203		   gdb_byte *readbuf,
2204		   const gdb_byte *writebuf)
2205{
2206  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2207  enum return_value_convention conv;
2208  ULONGEST valtype_len = TYPE_LENGTH (valtype);
2209
2210  if (m32c_return_by_passed_buf (valtype))
2211    conv = RETURN_VALUE_STRUCT_CONVENTION;
2212  else
2213    conv = RETURN_VALUE_REGISTER_CONVENTION;
2214
2215  if (readbuf)
2216    {
2217      /* We should never be called to find values being returned by
2218	 RETURN_VALUE_STRUCT_CONVENTION.  Those can't be located,
2219	 unless we made the call ourselves.  */
2220      gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2221
2222      gdb_assert (valtype_len <= 8);
2223
2224      /* Anything that fits in r0 is returned there.  */
2225      if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2226	{
2227	  ULONGEST u;
2228	  regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
2229	  store_unsigned_integer (readbuf, valtype_len, u);
2230	}
2231      else
2232	{
2233	  /* Everything else is passed in mem0, using as many bytes as
2234	     needed.  This is not what the Renesas tools do, but it's
2235	     what GCC does at the moment.  */
2236	  struct minimal_symbol *mem0
2237	    = lookup_minimal_symbol ("mem0", NULL, NULL);
2238
2239	  if (! mem0)
2240	    error ("The return value is stored in memory at 'mem0', "
2241		   "but GDB cannot find\n"
2242		   "its address.");
2243	  read_memory (SYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
2244	}
2245    }
2246
2247  if (writebuf)
2248    {
2249      /* We should never be called to store values to be returned
2250	 using RETURN_VALUE_STRUCT_CONVENTION.  We have no way of
2251	 finding the buffer, unless we made the call ourselves.  */
2252      gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2253
2254      gdb_assert (valtype_len <= 8);
2255
2256      /* Anything that fits in r0 is returned there.  */
2257      if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2258	{
2259	  ULONGEST u = extract_unsigned_integer (writebuf, valtype_len);
2260	  regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2261	}
2262      else
2263	{
2264	  /* Everything else is passed in mem0, using as many bytes as
2265	     needed.  This is not what the Renesas tools do, but it's
2266	     what GCC does at the moment.  */
2267	  struct minimal_symbol *mem0
2268	    = lookup_minimal_symbol ("mem0", NULL, NULL);
2269
2270	  if (! mem0)
2271	    error ("The return value is stored in memory at 'mem0', "
2272		   "but GDB cannot find\n"
2273		   " its address.");
2274	  write_memory (SYMBOL_VALUE_ADDRESS (mem0),
2275                        (char *) writebuf, valtype_len);
2276	}
2277    }
2278
2279  return conv;
2280}
2281
2282
2283
2284/* Trampolines.  */
2285
2286/* The m16c and m32c use a trampoline function for indirect function
2287   calls.  An indirect call looks like this:
2288
2289	     ... push arguments ...
2290	     ... push target function address ...
2291	     jsr.a m32c_jsri16
2292
2293   The code for m32c_jsri16 looks like this:
2294
2295     m32c_jsri16:
2296
2297             # Save return address.
2298	     pop.w	m32c_jsri_ret
2299	     pop.b	m32c_jsri_ret+2
2300
2301             # Store target function address.
2302	     pop.w	m32c_jsri_addr
2303
2304	     # Re-push return address.
2305	     push.b	m32c_jsri_ret+2
2306	     push.w	m32c_jsri_ret
2307
2308	     # Call the target function.
2309	     jmpi.a	m32c_jsri_addr
2310
2311   Without further information, GDB will treat calls to m32c_jsri16
2312   like calls to any other function.  Since m32c_jsri16 doesn't have
2313   debugging information, that normally means that GDB sets a step-
2314   resume breakpoint and lets the program continue --- which is not
2315   what the user wanted.  (Giving the trampoline debugging info
2316   doesn't help: the user expects the program to stop in the function
2317   their program is calling, not in some trampoline code they've never
2318   seen before.)
2319
2320   The gdbarch_skip_trampoline_code method tells GDB how to step
2321   through such trampoline functions transparently to the user.  When
2322   given the address of a trampoline function's first instruction,
2323   gdbarch_skip_trampoline_code should return the address of the first
2324   instruction of the function really being called.  If GDB decides it
2325   wants to step into that function, it will set a breakpoint there
2326   and silently continue to it.
2327
2328   We recognize the trampoline by name, and extract the target address
2329   directly from the stack.  This isn't great, but recognizing by its
2330   code sequence seems more fragile.  */
2331
2332static CORE_ADDR
2333m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
2334{
2335  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2336
2337  /* It would be nicer to simply look up the addresses of known
2338     trampolines once, and then compare stop_pc with them.  However,
2339     we'd need to ensure that that cached address got invalidated when
2340     someone loaded a new executable, and I'm not quite sure of the
2341     best way to do that.  find_pc_partial_function does do some
2342     caching, so we'll see how this goes.  */
2343  char *name;
2344  CORE_ADDR start, end;
2345
2346  if (find_pc_partial_function (stop_pc, &name, &start, &end))
2347    {
2348      /* Are we stopped at the beginning of the trampoline function?  */
2349      if (strcmp (name, "m32c_jsri16") == 0
2350	  && stop_pc == start)
2351	{
2352	  /* Get the stack pointer.  The return address is at the top,
2353	     and the target function's address is just below that.  We
2354	     know it's a two-byte address, since the trampoline is
2355	     m32c_jsri*16*.  */
2356	  CORE_ADDR sp = get_frame_sp (get_current_frame ());
2357	  CORE_ADDR target
2358	    = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes, 2);
2359
2360	  /* What we have now is the address of a jump instruction.
2361	     What we need is the destination of that jump.
2362	     The opcode is 1 byte, and the destination is the next 3 bytes.
2363	  */
2364	  target = read_memory_unsigned_integer (target + 1, 3);
2365	  return target;
2366	}
2367    }
2368
2369  return 0;
2370}
2371
2372
2373/* Address/pointer conversions.  */
2374
2375/* On the m16c, there is a 24-bit address space, but only a very few
2376   instructions can generate addresses larger than 0xffff: jumps,
2377   jumps to subroutines, and the lde/std (load/store extended)
2378   instructions.
2379
2380   Since GCC can only support one size of pointer, we can't have
2381   distinct 'near' and 'far' pointer types; we have to pick one size
2382   for everything.  If we wanted to use 24-bit pointers, then GCC
2383   would have to use lde and ste for all memory references, which
2384   would be terrible for performance and code size.  So the GNU
2385   toolchain uses 16-bit pointers for everything, and gives up the
2386   ability to have pointers point outside the first 64k of memory.
2387
2388   However, as a special hack, we let the linker place functions at
2389   addresses above 0xffff, as long as it also places a trampoline in
2390   the low 64k for every function whose address is taken.  Each
2391   trampoline consists of a single jmp.a instruction that jumps to the
2392   function's real entry point.  Pointers to functions can be 16 bits
2393   long, even though the functions themselves are at higher addresses:
2394   the pointers refer to the trampolines, not the functions.
2395
2396   This complicates things for GDB, however: given the address of a
2397   function (from debug info or linker symbols, say) which could be
2398   anywhere in the 24-bit address space, how can we find an
2399   appropriate 16-bit value to use as a pointer to it?
2400
2401   If the linker has not generated a trampoline for the function,
2402   we're out of luck.  Well, I guess we could malloc some space and
2403   write a jmp.a instruction to it, but I'm not going to get into that
2404   at the moment.
2405
2406   If the linker has generated a trampoline for the function, then it
2407   also emitted a symbol for the trampoline: if the function's linker
2408   symbol is named NAME, then the function's trampoline's linker
2409   symbol is named NAME.plt.
2410
2411   So, given a code address:
2412   - We try to find a linker symbol at that address.
2413   - If we find such a symbol named NAME, we look for a linker symbol
2414     named NAME.plt.
2415   - If we find such a symbol, we assume it is a trampoline, and use
2416     its address as the pointer value.
2417
2418   And, given a function pointer:
2419   - We try to find a linker symbol at that address named NAME.plt.
2420   - If we find such a symbol, we look for a linker symbol named NAME.
2421   - If we find that, we provide that as the function's address.
2422   - If any of the above steps fail, we return the original address
2423     unchanged; it might really be a function in the low 64k.
2424
2425   See?  You *knew* there was a reason you wanted to be a computer
2426   programmer!  :)  */
2427
2428static void
2429m32c_m16c_address_to_pointer (struct type *type, gdb_byte *buf, CORE_ADDR addr)
2430{
2431  enum type_code target_code;
2432  gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2433	      TYPE_CODE (type) == TYPE_CODE_REF);
2434
2435  target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2436
2437  if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2438    {
2439      char *func_name;
2440      char *tramp_name;
2441      struct minimal_symbol *tramp_msym;
2442
2443      /* Try to find a linker symbol at this address.  */
2444      struct minimal_symbol *func_msym = lookup_minimal_symbol_by_pc (addr);
2445
2446      if (! func_msym)
2447        error ("Cannot convert code address %s to function pointer:\n"
2448               "couldn't find a symbol at that address, to find trampoline.",
2449               paddr_nz (addr));
2450
2451      func_name = SYMBOL_LINKAGE_NAME (func_msym);
2452      tramp_name = xmalloc (strlen (func_name) + 5);
2453      strcpy (tramp_name, func_name);
2454      strcat (tramp_name, ".plt");
2455
2456      /* Try to find a linker symbol for the trampoline.  */
2457      tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
2458
2459      /* We've either got another copy of the name now, or don't need
2460         the name any more.  */
2461      xfree (tramp_name);
2462
2463      if (! tramp_msym)
2464        error ("Cannot convert code address %s to function pointer:\n"
2465               "couldn't find trampoline named '%s.plt'.",
2466               paddr_nz (addr), func_name);
2467
2468      /* The trampoline's address is our pointer.  */
2469      addr = SYMBOL_VALUE_ADDRESS (tramp_msym);
2470    }
2471
2472  store_unsigned_integer (buf, TYPE_LENGTH (type), addr);
2473}
2474
2475
2476static CORE_ADDR
2477m32c_m16c_pointer_to_address (struct type *type, const gdb_byte *buf)
2478{
2479  CORE_ADDR ptr;
2480  enum type_code target_code;
2481
2482  gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2483	      TYPE_CODE (type) == TYPE_CODE_REF);
2484
2485  ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
2486
2487  target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2488
2489  if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2490    {
2491      /* See if there is a minimal symbol at that address whose name is
2492         "NAME.plt".  */
2493      struct minimal_symbol *ptr_msym = lookup_minimal_symbol_by_pc (ptr);
2494
2495      if (ptr_msym)
2496        {
2497          char *ptr_msym_name = SYMBOL_LINKAGE_NAME (ptr_msym);
2498          int len = strlen (ptr_msym_name);
2499
2500          if (len > 4
2501              && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2502            {
2503	      struct minimal_symbol *func_msym;
2504              /* We have a .plt symbol; try to find the symbol for the
2505                 corresponding function.
2506
2507                 Since the trampoline contains a jump instruction, we
2508                 could also just extract the jump's target address.  I
2509                 don't see much advantage one way or the other.  */
2510              char *func_name = xmalloc (len - 4 + 1);
2511              memcpy (func_name, ptr_msym_name, len - 4);
2512              func_name[len - 4] = '\0';
2513              func_msym
2514                = lookup_minimal_symbol (func_name, NULL, NULL);
2515
2516              /* If we do have such a symbol, return its value as the
2517                 function's true address.  */
2518              if (func_msym)
2519                ptr = SYMBOL_VALUE_ADDRESS (func_msym);
2520            }
2521        }
2522    }
2523
2524  return ptr;
2525}
2526
2527void
2528m32c_virtual_frame_pointer (CORE_ADDR pc,
2529			    int *frame_regnum,
2530			    LONGEST *frame_offset)
2531{
2532  char *name;
2533  CORE_ADDR func_addr, func_end, sal_end;
2534  struct m32c_prologue p;
2535
2536  struct regcache *regcache = get_current_regcache ();
2537  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2538
2539  if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
2540    internal_error (__FILE__, __LINE__, _("No virtual frame pointer available"));
2541
2542  m32c_analyze_prologue (current_gdbarch, func_addr, pc, &p);
2543  switch (p.kind)
2544    {
2545    case prologue_with_frame_ptr:
2546      *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
2547      *frame_offset = p.frame_ptr_offset;
2548      break;
2549    case prologue_sans_frame_ptr:
2550      *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2551      *frame_offset = p.frame_size;
2552      break;
2553    default:
2554      *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2555      *frame_offset = 0;
2556      break;
2557    }
2558  /* Sanity check */
2559  if (*frame_regnum > gdbarch_num_regs (current_gdbarch))
2560    internal_error (__FILE__, __LINE__, _("No virtual frame pointer available"));
2561}
2562
2563
2564/* Initialization.  */
2565
2566static struct gdbarch *
2567m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2568{
2569  struct gdbarch *arch;
2570  struct gdbarch_tdep *tdep;
2571  unsigned long mach = info.bfd_arch_info->mach;
2572
2573  /* Find a candidate among the list of architectures we've created
2574     already.  */
2575  for (arches = gdbarch_list_lookup_by_info (arches, &info);
2576       arches != NULL;
2577       arches = gdbarch_list_lookup_by_info (arches->next, &info))
2578    return arches->gdbarch;
2579
2580  tdep = xcalloc (1, sizeof (*tdep));
2581  arch = gdbarch_alloc (&info, tdep);
2582
2583  /* Essential types.  */
2584  make_types (arch);
2585
2586  /* Address/pointer conversions.  */
2587  if (mach == bfd_mach_m16c)
2588    {
2589      set_gdbarch_address_to_pointer (arch, m32c_m16c_address_to_pointer);
2590      set_gdbarch_pointer_to_address (arch, m32c_m16c_pointer_to_address);
2591    }
2592
2593  /* Register set.  */
2594  make_regs (arch);
2595
2596  /* Disassembly.  */
2597  set_gdbarch_print_insn (arch, print_insn_m32c);
2598
2599  /* Breakpoints.  */
2600  set_gdbarch_breakpoint_from_pc (arch, m32c_breakpoint_from_pc);
2601
2602  /* Prologue analysis and unwinding.  */
2603  set_gdbarch_inner_than (arch, core_addr_lessthan);
2604  set_gdbarch_skip_prologue (arch, m32c_skip_prologue);
2605  set_gdbarch_unwind_pc (arch, m32c_unwind_pc);
2606  set_gdbarch_unwind_sp (arch, m32c_unwind_sp);
2607#if 0
2608  /* I'm dropping the dwarf2 sniffer because it has a few problems.
2609     They may be in the dwarf2 cfi code in GDB, or they may be in
2610     the debug info emitted by the upstream toolchain.  I don't
2611     know which, but I do know that the prologue analyzer works better.
2612     MVS 04/13/06
2613  */
2614  frame_unwind_append_sniffer (arch, dwarf2_frame_sniffer);
2615#endif
2616  frame_unwind_append_sniffer (arch, m32c_frame_sniffer);
2617
2618  /* Inferior calls.  */
2619  set_gdbarch_push_dummy_call (arch, m32c_push_dummy_call);
2620  set_gdbarch_return_value (arch, m32c_return_value);
2621  set_gdbarch_unwind_dummy_id (arch, m32c_unwind_dummy_id);
2622
2623  /* Trampolines.  */
2624  set_gdbarch_skip_trampoline_code (arch, m32c_skip_trampoline_code);
2625
2626  set_gdbarch_virtual_frame_pointer (arch, m32c_virtual_frame_pointer);
2627
2628  return arch;
2629}
2630
2631
2632void
2633_initialize_m32c_tdep (void)
2634{
2635  register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
2636
2637  m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
2638}
2639