1/* Target-struct-independent code to start (run) and stop an inferior
2   process.
3
4   Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5   1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6   Free Software Foundation, Inc.
7
8   This file is part of GDB.
9
10   This program is free software; you can redistribute it and/or modify
11   it under the terms of the GNU General Public License as published by
12   the Free Software Foundation; either version 3 of the License, or
13   (at your option) any later version.
14
15   This program is distributed in the hope that it will be useful,
16   but WITHOUT ANY WARRANTY; without even the implied warranty of
17   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18   GNU General Public License for more details.
19
20   You should have received a copy of the GNU General Public License
21   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
29#include "exceptions.h"
30#include "breakpoint.h"
31#include "gdb_wait.h"
32#include "gdbcore.h"
33#include "gdbcmd.h"
34#include "cli/cli-script.h"
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
38#include "symfile.h"
39#include "top.h"
40#include <signal.h>
41#include "inf-loop.h"
42#include "regcache.h"
43#include "value.h"
44#include "observer.h"
45#include "language.h"
46#include "solib.h"
47#include "main.h"
48
49#include "gdb_assert.h"
50#include "mi/mi-common.h"
51
52/* Prototypes for local functions */
53
54static void signals_info (char *, int);
55
56static void handle_command (char *, int);
57
58static void sig_print_info (enum target_signal);
59
60static void sig_print_header (void);
61
62static void resume_cleanups (void *);
63
64static int hook_stop_stub (void *);
65
66static int restore_selected_frame (void *);
67
68static void build_infrun (void);
69
70static int follow_fork (void);
71
72static void set_schedlock_func (char *args, int from_tty,
73				struct cmd_list_element *c);
74
75struct execution_control_state;
76
77static int currently_stepping (struct execution_control_state *ecs);
78
79static void xdb_handle_command (char *args, int from_tty);
80
81static int prepare_to_proceed (void);
82
83void _initialize_infrun (void);
84
85int inferior_ignoring_leading_exec_events = 0;
86
87/* When set, stop the 'step' command if we enter a function which has
88   no line number information.  The normal behavior is that we step
89   over such function.  */
90int step_stop_if_no_debug = 0;
91static void
92show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
93			    struct cmd_list_element *c, const char *value)
94{
95  fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
96}
97
98/* In asynchronous mode, but simulating synchronous execution. */
99
100int sync_execution = 0;
101
102/* wait_for_inferior and normal_stop use this to notify the user
103   when the inferior stopped in a different thread than it had been
104   running in.  */
105
106static ptid_t previous_inferior_ptid;
107
108/* This is true for configurations that may follow through execl() and
109   similar functions.  At present this is only true for HP-UX native.  */
110
111#ifndef MAY_FOLLOW_EXEC
112#define MAY_FOLLOW_EXEC (0)
113#endif
114
115static int may_follow_exec = MAY_FOLLOW_EXEC;
116
117static int debug_infrun = 0;
118static void
119show_debug_infrun (struct ui_file *file, int from_tty,
120		   struct cmd_list_element *c, const char *value)
121{
122  fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
123}
124
125/* If the program uses ELF-style shared libraries, then calls to
126   functions in shared libraries go through stubs, which live in a
127   table called the PLT (Procedure Linkage Table).  The first time the
128   function is called, the stub sends control to the dynamic linker,
129   which looks up the function's real address, patches the stub so
130   that future calls will go directly to the function, and then passes
131   control to the function.
132
133   If we are stepping at the source level, we don't want to see any of
134   this --- we just want to skip over the stub and the dynamic linker.
135   The simple approach is to single-step until control leaves the
136   dynamic linker.
137
138   However, on some systems (e.g., Red Hat's 5.2 distribution) the
139   dynamic linker calls functions in the shared C library, so you
140   can't tell from the PC alone whether the dynamic linker is still
141   running.  In this case, we use a step-resume breakpoint to get us
142   past the dynamic linker, as if we were using "next" to step over a
143   function call.
144
145   IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
146   linker code or not.  Normally, this means we single-step.  However,
147   if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
148   address where we can place a step-resume breakpoint to get past the
149   linker's symbol resolution function.
150
151   IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
152   pretty portable way, by comparing the PC against the address ranges
153   of the dynamic linker's sections.
154
155   SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
156   it depends on internal details of the dynamic linker.  It's usually
157   not too hard to figure out where to put a breakpoint, but it
158   certainly isn't portable.  SKIP_SOLIB_RESOLVER should do plenty of
159   sanity checking.  If it can't figure things out, returning zero and
160   getting the (possibly confusing) stepping behavior is better than
161   signalling an error, which will obscure the change in the
162   inferior's state.  */
163
164/* This function returns TRUE if pc is the address of an instruction
165   that lies within the dynamic linker (such as the event hook, or the
166   dld itself).
167
168   This function must be used only when a dynamic linker event has
169   been caught, and the inferior is being stepped out of the hook, or
170   undefined results are guaranteed.  */
171
172#ifndef SOLIB_IN_DYNAMIC_LINKER
173#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
174#endif
175
176
177/* Convert the #defines into values.  This is temporary until wfi control
178   flow is completely sorted out.  */
179
180#ifndef CANNOT_STEP_HW_WATCHPOINTS
181#define CANNOT_STEP_HW_WATCHPOINTS 0
182#else
183#undef  CANNOT_STEP_HW_WATCHPOINTS
184#define CANNOT_STEP_HW_WATCHPOINTS 1
185#endif
186
187/* Tables of how to react to signals; the user sets them.  */
188
189static unsigned char *signal_stop;
190static unsigned char *signal_print;
191static unsigned char *signal_program;
192
193#define SET_SIGS(nsigs,sigs,flags) \
194  do { \
195    int signum = (nsigs); \
196    while (signum-- > 0) \
197      if ((sigs)[signum]) \
198	(flags)[signum] = 1; \
199  } while (0)
200
201#define UNSET_SIGS(nsigs,sigs,flags) \
202  do { \
203    int signum = (nsigs); \
204    while (signum-- > 0) \
205      if ((sigs)[signum]) \
206	(flags)[signum] = 0; \
207  } while (0)
208
209/* Value to pass to target_resume() to cause all threads to resume */
210
211#define RESUME_ALL (pid_to_ptid (-1))
212
213/* Command list pointer for the "stop" placeholder.  */
214
215static struct cmd_list_element *stop_command;
216
217/* Nonzero if breakpoints are now inserted in the inferior.  */
218
219static int breakpoints_inserted;
220
221/* Function inferior was in as of last step command.  */
222
223static struct symbol *step_start_function;
224
225/* Nonzero if we are expecting a trace trap and should proceed from it.  */
226
227static int trap_expected;
228
229/* Nonzero if we want to give control to the user when we're notified
230   of shared library events by the dynamic linker.  */
231static int stop_on_solib_events;
232static void
233show_stop_on_solib_events (struct ui_file *file, int from_tty,
234			   struct cmd_list_element *c, const char *value)
235{
236  fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
237		    value);
238}
239
240/* Nonzero means expecting a trace trap
241   and should stop the inferior and return silently when it happens.  */
242
243int stop_after_trap;
244
245/* Nonzero means expecting a trap and caller will handle it themselves.
246   It is used after attach, due to attaching to a process;
247   when running in the shell before the child program has been exec'd;
248   and when running some kinds of remote stuff (FIXME?).  */
249
250enum stop_kind stop_soon;
251
252/* Nonzero if proceed is being used for a "finish" command or a similar
253   situation when stop_registers should be saved.  */
254
255int proceed_to_finish;
256
257/* Save register contents here when about to pop a stack dummy frame,
258   if-and-only-if proceed_to_finish is set.
259   Thus this contains the return value from the called function (assuming
260   values are returned in a register).  */
261
262struct regcache *stop_registers;
263
264/* Nonzero after stop if current stack frame should be printed.  */
265
266static int stop_print_frame;
267
268static struct breakpoint *step_resume_breakpoint = NULL;
269
270/* This is a cached copy of the pid/waitstatus of the last event
271   returned by target_wait()/deprecated_target_wait_hook().  This
272   information is returned by get_last_target_status().  */
273static ptid_t target_last_wait_ptid;
274static struct target_waitstatus target_last_waitstatus;
275
276/* This is used to remember when a fork, vfork or exec event
277   was caught by a catchpoint, and thus the event is to be
278   followed at the next resume of the inferior, and not
279   immediately. */
280static struct
281{
282  enum target_waitkind kind;
283  struct
284  {
285    int parent_pid;
286    int child_pid;
287  }
288  fork_event;
289  char *execd_pathname;
290}
291pending_follow;
292
293static const char follow_fork_mode_child[] = "child";
294static const char follow_fork_mode_parent[] = "parent";
295
296static const char *follow_fork_mode_kind_names[] = {
297  follow_fork_mode_child,
298  follow_fork_mode_parent,
299  NULL
300};
301
302static const char *follow_fork_mode_string = follow_fork_mode_parent;
303static void
304show_follow_fork_mode_string (struct ui_file *file, int from_tty,
305			      struct cmd_list_element *c, const char *value)
306{
307  fprintf_filtered (file, _("\
308Debugger response to a program call of fork or vfork is \"%s\".\n"),
309		    value);
310}
311
312
313static int
314follow_fork (void)
315{
316  int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
317
318  return target_follow_fork (follow_child);
319}
320
321void
322follow_inferior_reset_breakpoints (void)
323{
324  /* Was there a step_resume breakpoint?  (There was if the user
325     did a "next" at the fork() call.)  If so, explicitly reset its
326     thread number.
327
328     step_resumes are a form of bp that are made to be per-thread.
329     Since we created the step_resume bp when the parent process
330     was being debugged, and now are switching to the child process,
331     from the breakpoint package's viewpoint, that's a switch of
332     "threads".  We must update the bp's notion of which thread
333     it is for, or it'll be ignored when it triggers.  */
334
335  if (step_resume_breakpoint)
336    breakpoint_re_set_thread (step_resume_breakpoint);
337
338  /* Reinsert all breakpoints in the child.  The user may have set
339     breakpoints after catching the fork, in which case those
340     were never set in the child, but only in the parent.  This makes
341     sure the inserted breakpoints match the breakpoint list.  */
342
343  breakpoint_re_set ();
344  insert_breakpoints ();
345}
346
347/* EXECD_PATHNAME is assumed to be non-NULL. */
348
349static void
350follow_exec (int pid, char *execd_pathname)
351{
352  int saved_pid = pid;
353  struct target_ops *tgt;
354
355  if (!may_follow_exec)
356    return;
357
358  /* This is an exec event that we actually wish to pay attention to.
359     Refresh our symbol table to the newly exec'd program, remove any
360     momentary bp's, etc.
361
362     If there are breakpoints, they aren't really inserted now,
363     since the exec() transformed our inferior into a fresh set
364     of instructions.
365
366     We want to preserve symbolic breakpoints on the list, since
367     we have hopes that they can be reset after the new a.out's
368     symbol table is read.
369
370     However, any "raw" breakpoints must be removed from the list
371     (e.g., the solib bp's), since their address is probably invalid
372     now.
373
374     And, we DON'T want to call delete_breakpoints() here, since
375     that may write the bp's "shadow contents" (the instruction
376     value that was overwritten witha TRAP instruction).  Since
377     we now have a new a.out, those shadow contents aren't valid. */
378  update_breakpoints_after_exec ();
379
380  /* If there was one, it's gone now.  We cannot truly step-to-next
381     statement through an exec(). */
382  step_resume_breakpoint = NULL;
383  step_range_start = 0;
384  step_range_end = 0;
385
386  /* What is this a.out's name? */
387  printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
388
389  /* We've followed the inferior through an exec.  Therefore, the
390     inferior has essentially been killed & reborn. */
391
392  /* First collect the run target in effect.  */
393  tgt = find_run_target ();
394  /* If we can't find one, things are in a very strange state...  */
395  if (tgt == NULL)
396    error (_("Could find run target to save before following exec"));
397
398  gdb_flush (gdb_stdout);
399  target_mourn_inferior ();
400  inferior_ptid = pid_to_ptid (saved_pid);
401  /* Because mourn_inferior resets inferior_ptid. */
402  push_target (tgt);
403
404  /* That a.out is now the one to use. */
405  exec_file_attach (execd_pathname, 0);
406
407  /* And also is where symbols can be found. */
408  symbol_file_add_main (execd_pathname, 0);
409
410  /* Reset the shared library package.  This ensures that we get
411     a shlib event when the child reaches "_start", at which point
412     the dld will have had a chance to initialize the child. */
413#if defined(SOLIB_RESTART)
414  SOLIB_RESTART ();
415#endif
416#ifdef SOLIB_CREATE_INFERIOR_HOOK
417  SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
418#else
419  solib_create_inferior_hook ();
420#endif
421
422  /* Reinsert all breakpoints.  (Those which were symbolic have
423     been reset to the proper address in the new a.out, thanks
424     to symbol_file_command...) */
425  insert_breakpoints ();
426
427  /* The next resume of this inferior should bring it to the shlib
428     startup breakpoints.  (If the user had also set bp's on
429     "main" from the old (parent) process, then they'll auto-
430     matically get reset there in the new process.) */
431}
432
433/* Non-zero if we just simulating a single-step.  This is needed
434   because we cannot remove the breakpoints in the inferior process
435   until after the `wait' in `wait_for_inferior'.  */
436static int singlestep_breakpoints_inserted_p = 0;
437
438/* The thread we inserted single-step breakpoints for.  */
439static ptid_t singlestep_ptid;
440
441/* PC when we started this single-step.  */
442static CORE_ADDR singlestep_pc;
443
444/* If another thread hit the singlestep breakpoint, we save the original
445   thread here so that we can resume single-stepping it later.  */
446static ptid_t saved_singlestep_ptid;
447static int stepping_past_singlestep_breakpoint;
448
449
450/* Things to clean up if we QUIT out of resume ().  */
451static void
452resume_cleanups (void *ignore)
453{
454  normal_stop ();
455}
456
457static const char schedlock_off[] = "off";
458static const char schedlock_on[] = "on";
459static const char schedlock_step[] = "step";
460static const char *scheduler_enums[] = {
461  schedlock_off,
462  schedlock_on,
463  schedlock_step,
464  NULL
465};
466static const char *scheduler_mode = schedlock_off;
467static void
468show_scheduler_mode (struct ui_file *file, int from_tty,
469		     struct cmd_list_element *c, const char *value)
470{
471  fprintf_filtered (file, _("\
472Mode for locking scheduler during execution is \"%s\".\n"),
473		    value);
474}
475
476static void
477set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
478{
479  if (!target_can_lock_scheduler)
480    {
481      scheduler_mode = schedlock_off;
482      error (_("Target '%s' cannot support this command."), target_shortname);
483    }
484}
485
486
487/* Resume the inferior, but allow a QUIT.  This is useful if the user
488   wants to interrupt some lengthy single-stepping operation
489   (for child processes, the SIGINT goes to the inferior, and so
490   we get a SIGINT random_signal, but for remote debugging and perhaps
491   other targets, that's not true).
492
493   STEP nonzero if we should step (zero to continue instead).
494   SIG is the signal to give the inferior (zero for none).  */
495void
496resume (int step, enum target_signal sig)
497{
498  int should_resume = 1;
499  struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
500  QUIT;
501
502  if (debug_infrun)
503    fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
504			step, sig);
505
506  /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
507
508
509  /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
510     over an instruction that causes a page fault without triggering
511     a hardware watchpoint. The kernel properly notices that it shouldn't
512     stop, because the hardware watchpoint is not triggered, but it forgets
513     the step request and continues the program normally.
514     Work around the problem by removing hardware watchpoints if a step is
515     requested, GDB will check for a hardware watchpoint trigger after the
516     step anyway.  */
517  if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
518    remove_hw_watchpoints ();
519
520
521  /* Normally, by the time we reach `resume', the breakpoints are either
522     removed or inserted, as appropriate.  The exception is if we're sitting
523     at a permanent breakpoint; we need to step over it, but permanent
524     breakpoints can't be removed.  So we have to test for it here.  */
525  if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
526    {
527      if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
528	gdbarch_skip_permanent_breakpoint (current_gdbarch,
529					   get_current_regcache ());
530      else
531	error (_("\
532The program is stopped at a permanent breakpoint, but GDB does not know\n\
533how to step past a permanent breakpoint on this architecture.  Try using\n\
534a command like `return' or `jump' to continue execution."));
535    }
536
537  if (step && gdbarch_software_single_step_p (current_gdbarch))
538    {
539      /* Do it the hard way, w/temp breakpoints */
540      if (gdbarch_software_single_step (current_gdbarch, get_current_frame ()))
541        {
542          /* ...and don't ask hardware to do it.  */
543          step = 0;
544          /* and do not pull these breakpoints until after a `wait' in
545          `wait_for_inferior' */
546          singlestep_breakpoints_inserted_p = 1;
547          singlestep_ptid = inferior_ptid;
548          singlestep_pc = read_pc ();
549        }
550    }
551
552  /* If there were any forks/vforks/execs that were caught and are
553     now to be followed, then do so.  */
554  switch (pending_follow.kind)
555    {
556    case TARGET_WAITKIND_FORKED:
557    case TARGET_WAITKIND_VFORKED:
558      pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
559      if (follow_fork ())
560	should_resume = 0;
561      break;
562
563    case TARGET_WAITKIND_EXECD:
564      /* follow_exec is called as soon as the exec event is seen. */
565      pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
566      break;
567
568    default:
569      break;
570    }
571
572  /* Install inferior's terminal modes.  */
573  target_terminal_inferior ();
574
575  if (should_resume)
576    {
577      ptid_t resume_ptid;
578
579      resume_ptid = RESUME_ALL;	/* Default */
580
581      if ((step || singlestep_breakpoints_inserted_p)
582	  && (stepping_past_singlestep_breakpoint
583	      || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
584	{
585	  /* Stepping past a breakpoint without inserting breakpoints.
586	     Make sure only the current thread gets to step, so that
587	     other threads don't sneak past breakpoints while they are
588	     not inserted. */
589
590	  resume_ptid = inferior_ptid;
591	}
592
593      if ((scheduler_mode == schedlock_on)
594	  || (scheduler_mode == schedlock_step
595	      && (step || singlestep_breakpoints_inserted_p)))
596	{
597	  /* User-settable 'scheduler' mode requires solo thread resume. */
598	  resume_ptid = inferior_ptid;
599	}
600
601      if (gdbarch_cannot_step_breakpoint (current_gdbarch))
602	{
603	  /* Most targets can step a breakpoint instruction, thus
604	     executing it normally.  But if this one cannot, just
605	     continue and we will hit it anyway.  */
606	  if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
607	    step = 0;
608	}
609      target_resume (resume_ptid, step, sig);
610    }
611
612  discard_cleanups (old_cleanups);
613}
614
615
616/* Clear out all variables saying what to do when inferior is continued.
617   First do this, then set the ones you want, then call `proceed'.  */
618
619void
620clear_proceed_status (void)
621{
622  trap_expected = 0;
623  step_range_start = 0;
624  step_range_end = 0;
625  step_frame_id = null_frame_id;
626  step_over_calls = STEP_OVER_UNDEBUGGABLE;
627  stop_after_trap = 0;
628  stop_soon = NO_STOP_QUIETLY;
629  proceed_to_finish = 0;
630  breakpoint_proceeded = 1;	/* We're about to proceed... */
631
632  if (stop_registers)
633    {
634      regcache_xfree (stop_registers);
635      stop_registers = NULL;
636    }
637
638  /* Discard any remaining commands or status from previous stop.  */
639  bpstat_clear (&stop_bpstat);
640}
641
642/* This should be suitable for any targets that support threads. */
643
644static int
645prepare_to_proceed (void)
646{
647  ptid_t wait_ptid;
648  struct target_waitstatus wait_status;
649
650  /* Get the last target status returned by target_wait().  */
651  get_last_target_status (&wait_ptid, &wait_status);
652
653  /* Make sure we were stopped either at a breakpoint, or because
654     of a Ctrl-C.  */
655  if (wait_status.kind != TARGET_WAITKIND_STOPPED
656      || (wait_status.value.sig != TARGET_SIGNAL_TRAP
657	  && wait_status.value.sig != TARGET_SIGNAL_INT))
658    {
659      return 0;
660    }
661
662  if (!ptid_equal (wait_ptid, minus_one_ptid)
663      && !ptid_equal (inferior_ptid, wait_ptid))
664    {
665      /* Switched over from WAIT_PID.  */
666      CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
667
668      if (wait_pc != read_pc ())
669	{
670	  /* Switch back to WAIT_PID thread.  */
671	  inferior_ptid = wait_ptid;
672
673	  /* FIXME: This stuff came from switch_to_thread() in
674	     thread.c (which should probably be a public function).  */
675	  reinit_frame_cache ();
676	  registers_changed ();
677	  stop_pc = wait_pc;
678	}
679
680      /* We return 1 to indicate that there is a breakpoint here,
681         so we need to step over it before continuing to avoid
682         hitting it straight away. */
683      if (breakpoint_here_p (wait_pc))
684	return 1;
685    }
686
687  return 0;
688
689}
690
691/* Record the pc of the program the last time it stopped.  This is
692   just used internally by wait_for_inferior, but need to be preserved
693   over calls to it and cleared when the inferior is started.  */
694static CORE_ADDR prev_pc;
695
696/* Basic routine for continuing the program in various fashions.
697
698   ADDR is the address to resume at, or -1 for resume where stopped.
699   SIGGNAL is the signal to give it, or 0 for none,
700   or -1 for act according to how it stopped.
701   STEP is nonzero if should trap after one instruction.
702   -1 means return after that and print nothing.
703   You should probably set various step_... variables
704   before calling here, if you are stepping.
705
706   You should call clear_proceed_status before calling proceed.  */
707
708void
709proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
710{
711  int oneproc = 0;
712
713  if (step > 0)
714    step_start_function = find_pc_function (read_pc ());
715  if (step < 0)
716    stop_after_trap = 1;
717
718  if (addr == (CORE_ADDR) -1)
719    {
720      if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
721	/* There is a breakpoint at the address we will resume at,
722	   step one instruction before inserting breakpoints so that
723	   we do not stop right away (and report a second hit at this
724	   breakpoint).  */
725	oneproc = 1;
726      else if (gdbarch_single_step_through_delay_p (current_gdbarch)
727              && gdbarch_single_step_through_delay (current_gdbarch,
728                                                    get_current_frame ()))
729	/* We stepped onto an instruction that needs to be stepped
730	   again before re-inserting the breakpoint, do so.  */
731	oneproc = 1;
732    }
733  else
734    {
735      write_pc (addr);
736    }
737
738  if (debug_infrun)
739    fprintf_unfiltered (gdb_stdlog,
740			"infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
741			paddr_nz (addr), siggnal, step);
742
743  /* In a multi-threaded task we may select another thread
744     and then continue or step.
745
746     But if the old thread was stopped at a breakpoint, it
747     will immediately cause another breakpoint stop without
748     any execution (i.e. it will report a breakpoint hit
749     incorrectly).  So we must step over it first.
750
751     prepare_to_proceed checks the current thread against the thread
752     that reported the most recent event.  If a step-over is required
753     it returns TRUE and sets the current thread to the old thread. */
754  if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
755    oneproc = 1;
756
757  if (oneproc)
758    /* We will get a trace trap after one instruction.
759       Continue it automatically and insert breakpoints then.  */
760    trap_expected = 1;
761  else
762    {
763      insert_breakpoints ();
764      /* If we get here there was no call to error() in
765         insert breakpoints -- so they were inserted.  */
766      breakpoints_inserted = 1;
767    }
768
769  if (siggnal != TARGET_SIGNAL_DEFAULT)
770    stop_signal = siggnal;
771  /* If this signal should not be seen by program,
772     give it zero.  Used for debugging signals.  */
773  else if (!signal_program[stop_signal])
774    stop_signal = TARGET_SIGNAL_0;
775
776  annotate_starting ();
777
778  /* Make sure that output from GDB appears before output from the
779     inferior.  */
780  gdb_flush (gdb_stdout);
781
782  /* Refresh prev_pc value just prior to resuming.  This used to be
783     done in stop_stepping, however, setting prev_pc there did not handle
784     scenarios such as inferior function calls or returning from
785     a function via the return command.  In those cases, the prev_pc
786     value was not set properly for subsequent commands.  The prev_pc value
787     is used to initialize the starting line number in the ecs.  With an
788     invalid value, the gdb next command ends up stopping at the position
789     represented by the next line table entry past our start position.
790     On platforms that generate one line table entry per line, this
791     is not a problem.  However, on the ia64, the compiler generates
792     extraneous line table entries that do not increase the line number.
793     When we issue the gdb next command on the ia64 after an inferior call
794     or a return command, we often end up a few instructions forward, still
795     within the original line we started.
796
797     An attempt was made to have init_execution_control_state () refresh
798     the prev_pc value before calculating the line number.  This approach
799     did not work because on platforms that use ptrace, the pc register
800     cannot be read unless the inferior is stopped.  At that point, we
801     are not guaranteed the inferior is stopped and so the read_pc ()
802     call can fail.  Setting the prev_pc value here ensures the value is
803     updated correctly when the inferior is stopped.  */
804  prev_pc = read_pc ();
805
806  /* Resume inferior.  */
807  resume (oneproc || step || bpstat_should_step (), stop_signal);
808
809  /* Wait for it to stop (if not standalone)
810     and in any case decode why it stopped, and act accordingly.  */
811  /* Do this only if we are not using the event loop, or if the target
812     does not support asynchronous execution. */
813  if (!target_can_async_p ())
814    {
815      wait_for_inferior ();
816      normal_stop ();
817    }
818}
819
820
821/* Start remote-debugging of a machine over a serial link.  */
822
823void
824start_remote (int from_tty)
825{
826  init_thread_list ();
827  init_wait_for_inferior ();
828  stop_soon = STOP_QUIETLY_REMOTE;
829  trap_expected = 0;
830
831  /* Always go on waiting for the target, regardless of the mode. */
832  /* FIXME: cagney/1999-09-23: At present it isn't possible to
833     indicate to wait_for_inferior that a target should timeout if
834     nothing is returned (instead of just blocking).  Because of this,
835     targets expecting an immediate response need to, internally, set
836     things up so that the target_wait() is forced to eventually
837     timeout. */
838  /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
839     differentiate to its caller what the state of the target is after
840     the initial open has been performed.  Here we're assuming that
841     the target has stopped.  It should be possible to eventually have
842     target_open() return to the caller an indication that the target
843     is currently running and GDB state should be set to the same as
844     for an async run. */
845  wait_for_inferior ();
846
847  /* Now that the inferior has stopped, do any bookkeeping like
848     loading shared libraries.  We want to do this before normal_stop,
849     so that the displayed frame is up to date.  */
850  post_create_inferior (&current_target, from_tty);
851
852  normal_stop ();
853}
854
855/* Initialize static vars when a new inferior begins.  */
856
857void
858init_wait_for_inferior (void)
859{
860  /* These are meaningless until the first time through wait_for_inferior.  */
861  prev_pc = 0;
862
863  breakpoints_inserted = 0;
864  breakpoint_init_inferior (inf_starting);
865
866  /* Don't confuse first call to proceed(). */
867  stop_signal = TARGET_SIGNAL_0;
868
869  /* The first resume is not following a fork/vfork/exec. */
870  pending_follow.kind = TARGET_WAITKIND_SPURIOUS;	/* I.e., none. */
871
872  clear_proceed_status ();
873
874  stepping_past_singlestep_breakpoint = 0;
875}
876
877/* This enum encodes possible reasons for doing a target_wait, so that
878   wfi can call target_wait in one place.  (Ultimately the call will be
879   moved out of the infinite loop entirely.) */
880
881enum infwait_states
882{
883  infwait_normal_state,
884  infwait_thread_hop_state,
885  infwait_nonstep_watch_state
886};
887
888/* Why did the inferior stop? Used to print the appropriate messages
889   to the interface from within handle_inferior_event(). */
890enum inferior_stop_reason
891{
892  /* Step, next, nexti, stepi finished. */
893  END_STEPPING_RANGE,
894  /* Inferior terminated by signal. */
895  SIGNAL_EXITED,
896  /* Inferior exited. */
897  EXITED,
898  /* Inferior received signal, and user asked to be notified. */
899  SIGNAL_RECEIVED
900};
901
902/* This structure contains what used to be local variables in
903   wait_for_inferior.  Probably many of them can return to being
904   locals in handle_inferior_event.  */
905
906struct execution_control_state
907{
908  struct target_waitstatus ws;
909  struct target_waitstatus *wp;
910  int another_trap;
911  int random_signal;
912  CORE_ADDR stop_func_start;
913  CORE_ADDR stop_func_end;
914  char *stop_func_name;
915  struct symtab_and_line sal;
916  int current_line;
917  struct symtab *current_symtab;
918  int handling_longjmp;		/* FIXME */
919  ptid_t ptid;
920  ptid_t saved_inferior_ptid;
921  int step_after_step_resume_breakpoint;
922  int stepping_through_solib_after_catch;
923  bpstat stepping_through_solib_catchpoints;
924  int new_thread_event;
925  struct target_waitstatus tmpstatus;
926  enum infwait_states infwait_state;
927  ptid_t waiton_ptid;
928  int wait_some_more;
929};
930
931void init_execution_control_state (struct execution_control_state *ecs);
932
933void handle_inferior_event (struct execution_control_state *ecs);
934
935static void step_into_function (struct execution_control_state *ecs);
936static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
937static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
938static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
939						  struct frame_id sr_id);
940static void stop_stepping (struct execution_control_state *ecs);
941static void prepare_to_wait (struct execution_control_state *ecs);
942static void keep_going (struct execution_control_state *ecs);
943static void print_stop_reason (enum inferior_stop_reason stop_reason,
944			       int stop_info);
945
946/* Wait for control to return from inferior to debugger.
947   If inferior gets a signal, we may decide to start it up again
948   instead of returning.  That is why there is a loop in this function.
949   When this function actually returns it means the inferior
950   should be left stopped and GDB should read more commands.  */
951
952void
953wait_for_inferior (void)
954{
955  struct cleanup *old_cleanups;
956  struct execution_control_state ecss;
957  struct execution_control_state *ecs;
958
959  if (debug_infrun)
960    fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
961
962  old_cleanups = make_cleanup (delete_step_resume_breakpoint,
963			       &step_resume_breakpoint);
964
965  /* wfi still stays in a loop, so it's OK just to take the address of
966     a local to get the ecs pointer.  */
967  ecs = &ecss;
968
969  /* Fill in with reasonable starting values.  */
970  init_execution_control_state (ecs);
971
972  /* We'll update this if & when we switch to a new thread. */
973  previous_inferior_ptid = inferior_ptid;
974
975  overlay_cache_invalid = 1;
976
977  /* We have to invalidate the registers BEFORE calling target_wait
978     because they can be loaded from the target while in target_wait.
979     This makes remote debugging a bit more efficient for those
980     targets that provide critical registers as part of their normal
981     status mechanism. */
982
983  registers_changed ();
984
985  while (1)
986    {
987      if (deprecated_target_wait_hook)
988	ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
989      else
990	ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
991
992      /* Now figure out what to do with the result of the result.  */
993      handle_inferior_event (ecs);
994
995      if (!ecs->wait_some_more)
996	break;
997    }
998  do_cleanups (old_cleanups);
999}
1000
1001/* Asynchronous version of wait_for_inferior. It is called by the
1002   event loop whenever a change of state is detected on the file
1003   descriptor corresponding to the target. It can be called more than
1004   once to complete a single execution command. In such cases we need
1005   to keep the state in a global variable ASYNC_ECSS. If it is the
1006   last time that this function is called for a single execution
1007   command, then report to the user that the inferior has stopped, and
1008   do the necessary cleanups. */
1009
1010struct execution_control_state async_ecss;
1011struct execution_control_state *async_ecs;
1012
1013void
1014fetch_inferior_event (void *client_data)
1015{
1016  static struct cleanup *old_cleanups;
1017
1018  async_ecs = &async_ecss;
1019
1020  if (!async_ecs->wait_some_more)
1021    {
1022      old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1023					&step_resume_breakpoint);
1024
1025      /* Fill in with reasonable starting values.  */
1026      init_execution_control_state (async_ecs);
1027
1028      /* We'll update this if & when we switch to a new thread. */
1029      previous_inferior_ptid = inferior_ptid;
1030
1031      overlay_cache_invalid = 1;
1032
1033      /* We have to invalidate the registers BEFORE calling target_wait
1034         because they can be loaded from the target while in target_wait.
1035         This makes remote debugging a bit more efficient for those
1036         targets that provide critical registers as part of their normal
1037         status mechanism. */
1038
1039      registers_changed ();
1040    }
1041
1042  if (deprecated_target_wait_hook)
1043    async_ecs->ptid =
1044      deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1045  else
1046    async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1047
1048  /* Now figure out what to do with the result of the result.  */
1049  handle_inferior_event (async_ecs);
1050
1051  if (!async_ecs->wait_some_more)
1052    {
1053      /* Do only the cleanups that have been added by this
1054         function. Let the continuations for the commands do the rest,
1055         if there are any. */
1056      do_exec_cleanups (old_cleanups);
1057      normal_stop ();
1058      if (step_multi && stop_step)
1059	inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1060      else
1061	inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1062    }
1063}
1064
1065/* Prepare an execution control state for looping through a
1066   wait_for_inferior-type loop.  */
1067
1068void
1069init_execution_control_state (struct execution_control_state *ecs)
1070{
1071  ecs->another_trap = 0;
1072  ecs->random_signal = 0;
1073  ecs->step_after_step_resume_breakpoint = 0;
1074  ecs->handling_longjmp = 0;	/* FIXME */
1075  ecs->stepping_through_solib_after_catch = 0;
1076  ecs->stepping_through_solib_catchpoints = NULL;
1077  ecs->sal = find_pc_line (prev_pc, 0);
1078  ecs->current_line = ecs->sal.line;
1079  ecs->current_symtab = ecs->sal.symtab;
1080  ecs->infwait_state = infwait_normal_state;
1081  ecs->waiton_ptid = pid_to_ptid (-1);
1082  ecs->wp = &(ecs->ws);
1083}
1084
1085/* Return the cached copy of the last pid/waitstatus returned by
1086   target_wait()/deprecated_target_wait_hook().  The data is actually
1087   cached by handle_inferior_event(), which gets called immediately
1088   after target_wait()/deprecated_target_wait_hook().  */
1089
1090void
1091get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1092{
1093  *ptidp = target_last_wait_ptid;
1094  *status = target_last_waitstatus;
1095}
1096
1097void
1098nullify_last_target_wait_ptid (void)
1099{
1100  target_last_wait_ptid = minus_one_ptid;
1101}
1102
1103/* Switch thread contexts, maintaining "infrun state". */
1104
1105static void
1106context_switch (struct execution_control_state *ecs)
1107{
1108  /* Caution: it may happen that the new thread (or the old one!)
1109     is not in the thread list.  In this case we must not attempt
1110     to "switch context", or we run the risk that our context may
1111     be lost.  This may happen as a result of the target module
1112     mishandling thread creation.  */
1113
1114  if (debug_infrun)
1115    {
1116      fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1117			  target_pid_to_str (inferior_ptid));
1118      fprintf_unfiltered (gdb_stdlog, "to %s\n",
1119			  target_pid_to_str (ecs->ptid));
1120    }
1121
1122  if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1123    {				/* Perform infrun state context switch: */
1124      /* Save infrun state for the old thread.  */
1125      save_infrun_state (inferior_ptid, prev_pc,
1126			 trap_expected, step_resume_breakpoint,
1127			 step_range_start,
1128			 step_range_end, &step_frame_id,
1129			 ecs->handling_longjmp, ecs->another_trap,
1130			 ecs->stepping_through_solib_after_catch,
1131			 ecs->stepping_through_solib_catchpoints,
1132			 ecs->current_line, ecs->current_symtab);
1133
1134      /* Load infrun state for the new thread.  */
1135      load_infrun_state (ecs->ptid, &prev_pc,
1136			 &trap_expected, &step_resume_breakpoint,
1137			 &step_range_start,
1138			 &step_range_end, &step_frame_id,
1139			 &ecs->handling_longjmp, &ecs->another_trap,
1140			 &ecs->stepping_through_solib_after_catch,
1141			 &ecs->stepping_through_solib_catchpoints,
1142			 &ecs->current_line, &ecs->current_symtab);
1143    }
1144  inferior_ptid = ecs->ptid;
1145  reinit_frame_cache ();
1146}
1147
1148static void
1149adjust_pc_after_break (struct execution_control_state *ecs)
1150{
1151  CORE_ADDR breakpoint_pc;
1152
1153  /* If this target does not decrement the PC after breakpoints, then
1154     we have nothing to do.  */
1155  if (gdbarch_decr_pc_after_break (current_gdbarch) == 0)
1156    return;
1157
1158  /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP.  If
1159     we aren't, just return.
1160
1161     We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1162     affected by gdbarch_decr_pc_after_break.  Other waitkinds which are
1163     implemented by software breakpoints should be handled through the normal
1164     breakpoint layer.
1165
1166     NOTE drow/2004-01-31: On some targets, breakpoints may generate
1167     different signals (SIGILL or SIGEMT for instance), but it is less
1168     clear where the PC is pointing afterwards.  It may not match
1169     gdbarch_decr_pc_after_break.  I don't know any specific target that
1170     generates these signals at breakpoints (the code has been in GDB since at
1171     least 1992) so I can not guess how to handle them here.
1172
1173     In earlier versions of GDB, a target with
1174     gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1175     watchpoint affected by gdbarch_decr_pc_after_break.  I haven't found any
1176     target with both of these set in GDB history, and it seems unlikely to be
1177     correct, so gdbarch_have_nonsteppable_watchpoint is not checked here.  */
1178
1179  if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1180    return;
1181
1182  if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1183    return;
1184
1185  /* Find the location where (if we've hit a breakpoint) the
1186     breakpoint would be.  */
1187  breakpoint_pc = read_pc_pid (ecs->ptid) - gdbarch_decr_pc_after_break
1188					    (current_gdbarch);
1189
1190  /* Check whether there actually is a software breakpoint inserted
1191     at that location.  */
1192  if (software_breakpoint_inserted_here_p (breakpoint_pc))
1193    {
1194      /* When using hardware single-step, a SIGTRAP is reported for both
1195	 a completed single-step and a software breakpoint.  Need to
1196	 differentiate between the two, as the latter needs adjusting
1197	 but the former does not.
1198
1199	 The SIGTRAP can be due to a completed hardware single-step only if
1200	  - we didn't insert software single-step breakpoints
1201	  - the thread to be examined is still the current thread
1202	  - this thread is currently being stepped
1203
1204	 If any of these events did not occur, we must have stopped due
1205	 to hitting a software breakpoint, and have to back up to the
1206	 breakpoint address.
1207
1208	 As a special case, we could have hardware single-stepped a
1209	 software breakpoint.  In this case (prev_pc == breakpoint_pc),
1210	 we also need to back up to the breakpoint address.  */
1211
1212      if (singlestep_breakpoints_inserted_p
1213	  || !ptid_equal (ecs->ptid, inferior_ptid)
1214	  || !currently_stepping (ecs)
1215	  || prev_pc == breakpoint_pc)
1216	write_pc_pid (breakpoint_pc, ecs->ptid);
1217    }
1218}
1219
1220/* Given an execution control state that has been freshly filled in
1221   by an event from the inferior, figure out what it means and take
1222   appropriate action.  */
1223
1224int stepped_after_stopped_by_watchpoint;
1225
1226void
1227handle_inferior_event (struct execution_control_state *ecs)
1228{
1229  /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1230     that the variable stepped_after_stopped_by_watchpoint isn't used,
1231     then you're wrong!  See remote.c:remote_stopped_data_address.  */
1232
1233  int sw_single_step_trap_p = 0;
1234  int stopped_by_watchpoint = -1;	/* Mark as unknown.  */
1235
1236  /* Cache the last pid/waitstatus. */
1237  target_last_wait_ptid = ecs->ptid;
1238  target_last_waitstatus = *ecs->wp;
1239
1240  adjust_pc_after_break (ecs);
1241
1242  switch (ecs->infwait_state)
1243    {
1244    case infwait_thread_hop_state:
1245      if (debug_infrun)
1246        fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1247      /* Cancel the waiton_ptid. */
1248      ecs->waiton_ptid = pid_to_ptid (-1);
1249      break;
1250
1251    case infwait_normal_state:
1252      if (debug_infrun)
1253        fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1254      stepped_after_stopped_by_watchpoint = 0;
1255      break;
1256
1257    case infwait_nonstep_watch_state:
1258      if (debug_infrun)
1259        fprintf_unfiltered (gdb_stdlog,
1260			    "infrun: infwait_nonstep_watch_state\n");
1261      insert_breakpoints ();
1262
1263      /* FIXME-maybe: is this cleaner than setting a flag?  Does it
1264         handle things like signals arriving and other things happening
1265         in combination correctly?  */
1266      stepped_after_stopped_by_watchpoint = 1;
1267      break;
1268
1269    default:
1270      internal_error (__FILE__, __LINE__, _("bad switch"));
1271    }
1272  ecs->infwait_state = infwait_normal_state;
1273
1274  reinit_frame_cache ();
1275
1276  /* If it's a new process, add it to the thread database */
1277
1278  ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1279			   && !ptid_equal (ecs->ptid, minus_one_ptid)
1280			   && !in_thread_list (ecs->ptid));
1281
1282  if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1283      && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1284    {
1285      add_thread (ecs->ptid);
1286
1287      ui_out_text (uiout, "[New ");
1288      ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1289      ui_out_text (uiout, "]\n");
1290    }
1291
1292  switch (ecs->ws.kind)
1293    {
1294    case TARGET_WAITKIND_LOADED:
1295      if (debug_infrun)
1296        fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1297      /* Ignore gracefully during startup of the inferior, as it might
1298         be the shell which has just loaded some objects, otherwise
1299         add the symbols for the newly loaded objects.  Also ignore at
1300         the beginning of an attach or remote session; we will query
1301         the full list of libraries once the connection is
1302         established.  */
1303      if (stop_soon == NO_STOP_QUIETLY)
1304	{
1305	  int breakpoints_were_inserted;
1306
1307	  /* Remove breakpoints, SOLIB_ADD might adjust
1308	     breakpoint addresses via breakpoint_re_set.  */
1309	  breakpoints_were_inserted = breakpoints_inserted;
1310	  if (breakpoints_inserted)
1311	    remove_breakpoints ();
1312	  breakpoints_inserted = 0;
1313
1314	  /* Check for any newly added shared libraries if we're
1315	     supposed to be adding them automatically.  Switch
1316	     terminal for any messages produced by
1317	     breakpoint_re_set.  */
1318	  target_terminal_ours_for_output ();
1319	  /* NOTE: cagney/2003-11-25: Make certain that the target
1320	     stack's section table is kept up-to-date.  Architectures,
1321	     (e.g., PPC64), use the section table to perform
1322	     operations such as address => section name and hence
1323	     require the table to contain all sections (including
1324	     those found in shared libraries).  */
1325	  /* NOTE: cagney/2003-11-25: Pass current_target and not
1326	     exec_ops to SOLIB_ADD.  This is because current GDB is
1327	     only tooled to propagate section_table changes out from
1328	     the "current_target" (see target_resize_to_sections), and
1329	     not up from the exec stratum.  This, of course, isn't
1330	     right.  "infrun.c" should only interact with the
1331	     exec/process stratum, instead relying on the target stack
1332	     to propagate relevant changes (stop, section table
1333	     changed, ...) up to other layers.  */
1334#ifdef SOLIB_ADD
1335	  SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1336#else
1337	  solib_add (NULL, 0, &current_target, auto_solib_add);
1338#endif
1339	  target_terminal_inferior ();
1340
1341	  /* Try to reenable shared library breakpoints, additional
1342	     code segments in shared libraries might be mapped in now. */
1343	  re_enable_breakpoints_in_shlibs ();
1344
1345	  /* If requested, stop when the dynamic linker notifies
1346	     gdb of events.  This allows the user to get control
1347	     and place breakpoints in initializer routines for
1348	     dynamically loaded objects (among other things).  */
1349	  if (stop_on_solib_events)
1350	    {
1351	      stop_stepping (ecs);
1352	      return;
1353	    }
1354
1355	  /* NOTE drow/2007-05-11: This might be a good place to check
1356	     for "catch load".  */
1357
1358	  /* Reinsert breakpoints and continue.  */
1359	  if (breakpoints_were_inserted)
1360	    {
1361	      insert_breakpoints ();
1362	      breakpoints_inserted = 1;
1363	    }
1364	}
1365
1366      /* If we are skipping through a shell, or through shared library
1367	 loading that we aren't interested in, resume the program.  If
1368	 we're running the program normally, also resume.  But stop if
1369	 we're attaching or setting up a remote connection.  */
1370      if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1371	{
1372	  resume (0, TARGET_SIGNAL_0);
1373	  prepare_to_wait (ecs);
1374	  return;
1375	}
1376
1377      break;
1378
1379    case TARGET_WAITKIND_SPURIOUS:
1380      if (debug_infrun)
1381        fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1382      resume (0, TARGET_SIGNAL_0);
1383      prepare_to_wait (ecs);
1384      return;
1385
1386    case TARGET_WAITKIND_EXITED:
1387      if (debug_infrun)
1388        fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1389      target_terminal_ours ();	/* Must do this before mourn anyway */
1390      print_stop_reason (EXITED, ecs->ws.value.integer);
1391
1392      /* Record the exit code in the convenience variable $_exitcode, so
1393         that the user can inspect this again later.  */
1394      set_internalvar (lookup_internalvar ("_exitcode"),
1395		       value_from_longest (builtin_type_int,
1396					   (LONGEST) ecs->ws.value.integer));
1397      gdb_flush (gdb_stdout);
1398      target_mourn_inferior ();
1399      singlestep_breakpoints_inserted_p = 0;
1400      stop_print_frame = 0;
1401      stop_stepping (ecs);
1402      return;
1403
1404    case TARGET_WAITKIND_SIGNALLED:
1405      if (debug_infrun)
1406        fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1407      stop_print_frame = 0;
1408      stop_signal = ecs->ws.value.sig;
1409      target_terminal_ours ();	/* Must do this before mourn anyway */
1410
1411      /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1412         reach here unless the inferior is dead.  However, for years
1413         target_kill() was called here, which hints that fatal signals aren't
1414         really fatal on some systems.  If that's true, then some changes
1415         may be needed. */
1416      target_mourn_inferior ();
1417
1418      print_stop_reason (SIGNAL_EXITED, stop_signal);
1419      singlestep_breakpoints_inserted_p = 0;
1420      stop_stepping (ecs);
1421      return;
1422
1423      /* The following are the only cases in which we keep going;
1424         the above cases end in a continue or goto. */
1425    case TARGET_WAITKIND_FORKED:
1426    case TARGET_WAITKIND_VFORKED:
1427      if (debug_infrun)
1428        fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1429      stop_signal = TARGET_SIGNAL_TRAP;
1430      pending_follow.kind = ecs->ws.kind;
1431
1432      pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1433      pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1434
1435      if (!ptid_equal (ecs->ptid, inferior_ptid))
1436	{
1437	  context_switch (ecs);
1438	  reinit_frame_cache ();
1439	}
1440
1441      stop_pc = read_pc ();
1442
1443      stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1444
1445      ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1446
1447      /* If no catchpoint triggered for this, then keep going.  */
1448      if (ecs->random_signal)
1449	{
1450	  stop_signal = TARGET_SIGNAL_0;
1451	  keep_going (ecs);
1452	  return;
1453	}
1454      goto process_event_stop_test;
1455
1456    case TARGET_WAITKIND_EXECD:
1457      if (debug_infrun)
1458        fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1459      stop_signal = TARGET_SIGNAL_TRAP;
1460
1461      /* NOTE drow/2002-12-05: This code should be pushed down into the
1462         target_wait function.  Until then following vfork on HP/UX 10.20
1463         is probably broken by this.  Of course, it's broken anyway.  */
1464      /* Is this a target which reports multiple exec events per actual
1465         call to exec()?  (HP-UX using ptrace does, for example.)  If so,
1466         ignore all but the last one.  Just resume the exec'r, and wait
1467         for the next exec event. */
1468      if (inferior_ignoring_leading_exec_events)
1469	{
1470	  inferior_ignoring_leading_exec_events--;
1471	  target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1472	  prepare_to_wait (ecs);
1473	  return;
1474	}
1475      inferior_ignoring_leading_exec_events =
1476	target_reported_exec_events_per_exec_call () - 1;
1477
1478      pending_follow.execd_pathname =
1479	savestring (ecs->ws.value.execd_pathname,
1480		    strlen (ecs->ws.value.execd_pathname));
1481
1482      /* This causes the eventpoints and symbol table to be reset.  Must
1483         do this now, before trying to determine whether to stop. */
1484      follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1485      xfree (pending_follow.execd_pathname);
1486
1487      stop_pc = read_pc_pid (ecs->ptid);
1488      ecs->saved_inferior_ptid = inferior_ptid;
1489      inferior_ptid = ecs->ptid;
1490
1491      stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1492
1493      ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1494      inferior_ptid = ecs->saved_inferior_ptid;
1495
1496      if (!ptid_equal (ecs->ptid, inferior_ptid))
1497	{
1498	  context_switch (ecs);
1499	  reinit_frame_cache ();
1500	}
1501
1502      /* If no catchpoint triggered for this, then keep going.  */
1503      if (ecs->random_signal)
1504	{
1505	  stop_signal = TARGET_SIGNAL_0;
1506	  keep_going (ecs);
1507	  return;
1508	}
1509      goto process_event_stop_test;
1510
1511      /* Be careful not to try to gather much state about a thread
1512         that's in a syscall.  It's frequently a losing proposition.  */
1513    case TARGET_WAITKIND_SYSCALL_ENTRY:
1514      if (debug_infrun)
1515        fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1516      resume (0, TARGET_SIGNAL_0);
1517      prepare_to_wait (ecs);
1518      return;
1519
1520      /* Before examining the threads further, step this thread to
1521         get it entirely out of the syscall.  (We get notice of the
1522         event when the thread is just on the verge of exiting a
1523         syscall.  Stepping one instruction seems to get it back
1524         into user code.)  */
1525    case TARGET_WAITKIND_SYSCALL_RETURN:
1526      if (debug_infrun)
1527        fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1528      target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1529      prepare_to_wait (ecs);
1530      return;
1531
1532    case TARGET_WAITKIND_STOPPED:
1533      if (debug_infrun)
1534        fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1535      stop_signal = ecs->ws.value.sig;
1536      break;
1537
1538      /* We had an event in the inferior, but we are not interested
1539         in handling it at this level. The lower layers have already
1540         done what needs to be done, if anything.
1541
1542         One of the possible circumstances for this is when the
1543         inferior produces output for the console. The inferior has
1544         not stopped, and we are ignoring the event.  Another possible
1545         circumstance is any event which the lower level knows will be
1546         reported multiple times without an intervening resume.  */
1547    case TARGET_WAITKIND_IGNORE:
1548      if (debug_infrun)
1549        fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1550      prepare_to_wait (ecs);
1551      return;
1552    }
1553
1554  /* We may want to consider not doing a resume here in order to give
1555     the user a chance to play with the new thread.  It might be good
1556     to make that a user-settable option.  */
1557
1558  /* At this point, all threads are stopped (happens automatically in
1559     either the OS or the native code).  Therefore we need to continue
1560     all threads in order to make progress.  */
1561  if (ecs->new_thread_event)
1562    {
1563      target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1564      prepare_to_wait (ecs);
1565      return;
1566    }
1567
1568  stop_pc = read_pc_pid (ecs->ptid);
1569
1570  if (debug_infrun)
1571    fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1572
1573  if (stepping_past_singlestep_breakpoint)
1574    {
1575      gdb_assert (singlestep_breakpoints_inserted_p);
1576      gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1577      gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1578
1579      stepping_past_singlestep_breakpoint = 0;
1580
1581      /* We've either finished single-stepping past the single-step
1582         breakpoint, or stopped for some other reason.  It would be nice if
1583         we could tell, but we can't reliably.  */
1584      if (stop_signal == TARGET_SIGNAL_TRAP)
1585	{
1586	  if (debug_infrun)
1587	    fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1588	  /* Pull the single step breakpoints out of the target.  */
1589	  remove_single_step_breakpoints ();
1590	  singlestep_breakpoints_inserted_p = 0;
1591
1592	  ecs->random_signal = 0;
1593
1594	  ecs->ptid = saved_singlestep_ptid;
1595	  context_switch (ecs);
1596	  if (deprecated_context_hook)
1597	    deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1598
1599	  resume (1, TARGET_SIGNAL_0);
1600	  prepare_to_wait (ecs);
1601	  return;
1602	}
1603    }
1604
1605  stepping_past_singlestep_breakpoint = 0;
1606
1607  /* See if a thread hit a thread-specific breakpoint that was meant for
1608     another thread.  If so, then step that thread past the breakpoint,
1609     and continue it.  */
1610
1611  if (stop_signal == TARGET_SIGNAL_TRAP)
1612    {
1613      int thread_hop_needed = 0;
1614
1615      /* Check if a regular breakpoint has been hit before checking
1616         for a potential single step breakpoint. Otherwise, GDB will
1617         not see this breakpoint hit when stepping onto breakpoints.  */
1618      if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1619	{
1620	  ecs->random_signal = 0;
1621	  if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1622	    thread_hop_needed = 1;
1623	}
1624      else if (singlestep_breakpoints_inserted_p)
1625	{
1626	  /* We have not context switched yet, so this should be true
1627	     no matter which thread hit the singlestep breakpoint.  */
1628	  gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1629	  if (debug_infrun)
1630	    fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1631				"trap for %s\n",
1632				target_pid_to_str (ecs->ptid));
1633
1634	  ecs->random_signal = 0;
1635	  /* The call to in_thread_list is necessary because PTIDs sometimes
1636	     change when we go from single-threaded to multi-threaded.  If
1637	     the singlestep_ptid is still in the list, assume that it is
1638	     really different from ecs->ptid.  */
1639	  if (!ptid_equal (singlestep_ptid, ecs->ptid)
1640	      && in_thread_list (singlestep_ptid))
1641	    {
1642	      /* If the PC of the thread we were trying to single-step
1643		 has changed, discard this event (which we were going
1644		 to ignore anyway), and pretend we saw that thread
1645		 trap.  This prevents us continuously moving the
1646		 single-step breakpoint forward, one instruction at a
1647		 time.  If the PC has changed, then the thread we were
1648		 trying to single-step has trapped or been signalled,
1649		 but the event has not been reported to GDB yet.
1650
1651		 There might be some cases where this loses signal
1652		 information, if a signal has arrived at exactly the
1653		 same time that the PC changed, but this is the best
1654		 we can do with the information available.  Perhaps we
1655		 should arrange to report all events for all threads
1656		 when they stop, or to re-poll the remote looking for
1657		 this particular thread (i.e. temporarily enable
1658		 schedlock).  */
1659             if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1660	       {
1661		 if (debug_infrun)
1662		   fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1663				       " but expected thread advanced also\n");
1664
1665		 /* The current context still belongs to
1666		    singlestep_ptid.  Don't swap here, since that's
1667		    the context we want to use.  Just fudge our
1668		    state and continue.  */
1669                 ecs->ptid = singlestep_ptid;
1670                 stop_pc = read_pc_pid (ecs->ptid);
1671               }
1672             else
1673	       {
1674		 if (debug_infrun)
1675		   fprintf_unfiltered (gdb_stdlog,
1676				       "infrun: unexpected thread\n");
1677
1678		 thread_hop_needed = 1;
1679		 stepping_past_singlestep_breakpoint = 1;
1680		 saved_singlestep_ptid = singlestep_ptid;
1681	       }
1682	    }
1683	}
1684
1685      if (thread_hop_needed)
1686	{
1687	  int remove_status;
1688
1689	  if (debug_infrun)
1690	    fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1691
1692	  /* Saw a breakpoint, but it was hit by the wrong thread.
1693	     Just continue. */
1694
1695	  if (singlestep_breakpoints_inserted_p)
1696	    {
1697	      /* Pull the single step breakpoints out of the target. */
1698	      remove_single_step_breakpoints ();
1699	      singlestep_breakpoints_inserted_p = 0;
1700	    }
1701
1702	  remove_status = remove_breakpoints ();
1703	  /* Did we fail to remove breakpoints?  If so, try
1704	     to set the PC past the bp.  (There's at least
1705	     one situation in which we can fail to remove
1706	     the bp's: On HP-UX's that use ttrace, we can't
1707	     change the address space of a vforking child
1708	     process until the child exits (well, okay, not
1709	     then either :-) or execs. */
1710	  if (remove_status != 0)
1711	    {
1712	      /* FIXME!  This is obviously non-portable! */
1713	      write_pc_pid (stop_pc + 4, ecs->ptid);
1714	      /* We need to restart all the threads now,
1715	       * unles we're running in scheduler-locked mode.
1716	       * Use currently_stepping to determine whether to
1717	       * step or continue.
1718	       */
1719	      /* FIXME MVS: is there any reason not to call resume()? */
1720	      if (scheduler_mode == schedlock_on)
1721		target_resume (ecs->ptid,
1722			       currently_stepping (ecs), TARGET_SIGNAL_0);
1723	      else
1724		target_resume (RESUME_ALL,
1725			       currently_stepping (ecs), TARGET_SIGNAL_0);
1726	      prepare_to_wait (ecs);
1727	      return;
1728	    }
1729	  else
1730	    {			/* Single step */
1731	      breakpoints_inserted = 0;
1732	      if (!ptid_equal (inferior_ptid, ecs->ptid))
1733		context_switch (ecs);
1734	      ecs->waiton_ptid = ecs->ptid;
1735	      ecs->wp = &(ecs->ws);
1736	      ecs->another_trap = 1;
1737
1738	      ecs->infwait_state = infwait_thread_hop_state;
1739	      keep_going (ecs);
1740	      registers_changed ();
1741	      return;
1742	    }
1743	}
1744      else if (singlestep_breakpoints_inserted_p)
1745	{
1746	  sw_single_step_trap_p = 1;
1747	  ecs->random_signal = 0;
1748	}
1749    }
1750  else
1751    ecs->random_signal = 1;
1752
1753  /* See if something interesting happened to the non-current thread.  If
1754     so, then switch to that thread.  */
1755  if (!ptid_equal (ecs->ptid, inferior_ptid))
1756    {
1757      if (debug_infrun)
1758	fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1759
1760      context_switch (ecs);
1761
1762      if (deprecated_context_hook)
1763	deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1764    }
1765
1766  if (singlestep_breakpoints_inserted_p)
1767    {
1768      /* Pull the single step breakpoints out of the target. */
1769      remove_single_step_breakpoints ();
1770      singlestep_breakpoints_inserted_p = 0;
1771    }
1772
1773  /* It may not be necessary to disable the watchpoint to stop over
1774     it.  For example, the PA can (with some kernel cooperation)
1775     single step over a watchpoint without disabling the watchpoint.  */
1776  if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1777    {
1778      if (debug_infrun)
1779	fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1780      resume (1, 0);
1781      prepare_to_wait (ecs);
1782      return;
1783    }
1784
1785  /* It is far more common to need to disable a watchpoint to step
1786     the inferior over it.  FIXME.  What else might a debug
1787     register or page protection watchpoint scheme need here?  */
1788  if (gdbarch_have_nonsteppable_watchpoint (current_gdbarch)
1789      && STOPPED_BY_WATCHPOINT (ecs->ws))
1790    {
1791      /* At this point, we are stopped at an instruction which has
1792         attempted to write to a piece of memory under control of
1793         a watchpoint.  The instruction hasn't actually executed
1794         yet.  If we were to evaluate the watchpoint expression
1795         now, we would get the old value, and therefore no change
1796         would seem to have occurred.
1797
1798         In order to make watchpoints work `right', we really need
1799         to complete the memory write, and then evaluate the
1800         watchpoint expression.  The following code does that by
1801         removing the watchpoint (actually, all watchpoints and
1802         breakpoints), single-stepping the target, re-inserting
1803         watchpoints, and then falling through to let normal
1804         single-step processing handle proceed.  Since this
1805         includes evaluating watchpoints, things will come to a
1806         stop in the correct manner.  */
1807
1808      if (debug_infrun)
1809	fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1810      remove_breakpoints ();
1811      registers_changed ();
1812      target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);	/* Single step */
1813
1814      ecs->waiton_ptid = ecs->ptid;
1815      ecs->wp = &(ecs->ws);
1816      ecs->infwait_state = infwait_nonstep_watch_state;
1817      prepare_to_wait (ecs);
1818      return;
1819    }
1820
1821  /* It may be possible to simply continue after a watchpoint.  */
1822  if (HAVE_CONTINUABLE_WATCHPOINT)
1823    stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1824
1825  ecs->stop_func_start = 0;
1826  ecs->stop_func_end = 0;
1827  ecs->stop_func_name = 0;
1828  /* Don't care about return value; stop_func_start and stop_func_name
1829     will both be 0 if it doesn't work.  */
1830  find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1831			    &ecs->stop_func_start, &ecs->stop_func_end);
1832  ecs->stop_func_start
1833    += gdbarch_deprecated_function_start_offset (current_gdbarch);
1834  ecs->another_trap = 0;
1835  bpstat_clear (&stop_bpstat);
1836  stop_step = 0;
1837  stop_stack_dummy = 0;
1838  stop_print_frame = 1;
1839  ecs->random_signal = 0;
1840  stopped_by_random_signal = 0;
1841
1842  if (stop_signal == TARGET_SIGNAL_TRAP
1843      && trap_expected
1844      && gdbarch_single_step_through_delay_p (current_gdbarch)
1845      && currently_stepping (ecs))
1846    {
1847      /* We're trying to step of a breakpoint.  Turns out that we're
1848	 also on an instruction that needs to be stepped multiple
1849	 times before it's been fully executing. E.g., architectures
1850	 with a delay slot.  It needs to be stepped twice, once for
1851	 the instruction and once for the delay slot.  */
1852      int step_through_delay
1853	= gdbarch_single_step_through_delay (current_gdbarch,
1854					     get_current_frame ());
1855      if (debug_infrun && step_through_delay)
1856	fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1857      if (step_range_end == 0 && step_through_delay)
1858	{
1859	  /* The user issued a continue when stopped at a breakpoint.
1860	     Set up for another trap and get out of here.  */
1861         ecs->another_trap = 1;
1862         keep_going (ecs);
1863         return;
1864	}
1865      else if (step_through_delay)
1866	{
1867	  /* The user issued a step when stopped at a breakpoint.
1868	     Maybe we should stop, maybe we should not - the delay
1869	     slot *might* correspond to a line of source.  In any
1870	     case, don't decide that here, just set ecs->another_trap,
1871	     making sure we single-step again before breakpoints are
1872	     re-inserted.  */
1873	  ecs->another_trap = 1;
1874	}
1875    }
1876
1877  /* Look at the cause of the stop, and decide what to do.
1878     The alternatives are:
1879     1) break; to really stop and return to the debugger,
1880     2) drop through to start up again
1881     (set ecs->another_trap to 1 to single step once)
1882     3) set ecs->random_signal to 1, and the decision between 1 and 2
1883     will be made according to the signal handling tables.  */
1884
1885  /* First, distinguish signals caused by the debugger from signals
1886     that have to do with the program's own actions.  Note that
1887     breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1888     on the operating system version.  Here we detect when a SIGILL or
1889     SIGEMT is really a breakpoint and change it to SIGTRAP.  We do
1890     something similar for SIGSEGV, since a SIGSEGV will be generated
1891     when we're trying to execute a breakpoint instruction on a
1892     non-executable stack.  This happens for call dummy breakpoints
1893     for architectures like SPARC that place call dummies on the
1894     stack.  */
1895
1896  if (stop_signal == TARGET_SIGNAL_TRAP
1897      || (breakpoints_inserted
1898	  && (stop_signal == TARGET_SIGNAL_ILL
1899	      || stop_signal == TARGET_SIGNAL_SEGV
1900	      || stop_signal == TARGET_SIGNAL_EMT))
1901      || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
1902      || stop_soon == STOP_QUIETLY_REMOTE)
1903    {
1904      if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1905	{
1906          if (debug_infrun)
1907	    fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1908	  stop_print_frame = 0;
1909	  stop_stepping (ecs);
1910	  return;
1911	}
1912
1913      /* This is originated from start_remote(), start_inferior() and
1914         shared libraries hook functions.  */
1915      if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
1916	{
1917          if (debug_infrun)
1918	    fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1919	  stop_stepping (ecs);
1920	  return;
1921	}
1922
1923      /* This originates from attach_command().  We need to overwrite
1924         the stop_signal here, because some kernels don't ignore a
1925         SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1926         See more comments in inferior.h.  */
1927      if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1928	{
1929	  stop_stepping (ecs);
1930	  if (stop_signal == TARGET_SIGNAL_STOP)
1931	    stop_signal = TARGET_SIGNAL_0;
1932	  return;
1933	}
1934
1935      /* Don't even think about breakpoints if just proceeded over a
1936         breakpoint.  */
1937      if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1938	{
1939          if (debug_infrun)
1940	    fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
1941	  bpstat_clear (&stop_bpstat);
1942	}
1943      else
1944	{
1945	  /* See if there is a breakpoint at the current PC.  */
1946	  stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1947					    stopped_by_watchpoint);
1948
1949	  /* Following in case break condition called a
1950	     function.  */
1951	  stop_print_frame = 1;
1952	}
1953
1954      /* NOTE: cagney/2003-03-29: These two checks for a random signal
1955         at one stage in the past included checks for an inferior
1956         function call's call dummy's return breakpoint.  The original
1957         comment, that went with the test, read:
1958
1959         ``End of a stack dummy.  Some systems (e.g. Sony news) give
1960         another signal besides SIGTRAP, so check here as well as
1961         above.''
1962
1963         If someone ever tries to get get call dummys on a
1964         non-executable stack to work (where the target would stop
1965         with something like a SIGSEGV), then those tests might need
1966         to be re-instated.  Given, however, that the tests were only
1967         enabled when momentary breakpoints were not being used, I
1968         suspect that it won't be the case.
1969
1970         NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1971         be necessary for call dummies on a non-executable stack on
1972         SPARC.  */
1973
1974      if (stop_signal == TARGET_SIGNAL_TRAP)
1975	ecs->random_signal
1976	  = !(bpstat_explains_signal (stop_bpstat)
1977	      || trap_expected
1978	      || (step_range_end && step_resume_breakpoint == NULL));
1979      else
1980	{
1981	  ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1982	  if (!ecs->random_signal)
1983	    stop_signal = TARGET_SIGNAL_TRAP;
1984	}
1985    }
1986
1987  /* When we reach this point, we've pretty much decided
1988     that the reason for stopping must've been a random
1989     (unexpected) signal. */
1990
1991  else
1992    ecs->random_signal = 1;
1993
1994process_event_stop_test:
1995  /* For the program's own signals, act according to
1996     the signal handling tables.  */
1997
1998  if (ecs->random_signal)
1999    {
2000      /* Signal not for debugging purposes.  */
2001      int printed = 0;
2002
2003      if (debug_infrun)
2004	 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
2005
2006      stopped_by_random_signal = 1;
2007
2008      if (signal_print[stop_signal])
2009	{
2010	  printed = 1;
2011	  target_terminal_ours_for_output ();
2012	  print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2013	}
2014      if (signal_stop[stop_signal])
2015	{
2016	  stop_stepping (ecs);
2017	  return;
2018	}
2019      /* If not going to stop, give terminal back
2020         if we took it away.  */
2021      else if (printed)
2022	target_terminal_inferior ();
2023
2024      /* Clear the signal if it should not be passed.  */
2025      if (signal_program[stop_signal] == 0)
2026	stop_signal = TARGET_SIGNAL_0;
2027
2028      if (prev_pc == read_pc ()
2029	  && !breakpoints_inserted
2030	  && breakpoint_here_p (read_pc ())
2031	  && step_resume_breakpoint == NULL)
2032	{
2033	  /* We were just starting a new sequence, attempting to
2034	     single-step off of a breakpoint and expecting a SIGTRAP.
2035	     Intead this signal arrives.  This signal will take us out
2036	     of the stepping range so GDB needs to remember to, when
2037	     the signal handler returns, resume stepping off that
2038	     breakpoint.  */
2039	  /* To simplify things, "continue" is forced to use the same
2040	     code paths as single-step - set a breakpoint at the
2041	     signal return address and then, once hit, step off that
2042	     breakpoint.  */
2043
2044	  insert_step_resume_breakpoint_at_frame (get_current_frame ());
2045	  ecs->step_after_step_resume_breakpoint = 1;
2046	  keep_going (ecs);
2047	  return;
2048	}
2049
2050      if (step_range_end != 0
2051	  && stop_signal != TARGET_SIGNAL_0
2052	  && stop_pc >= step_range_start && stop_pc < step_range_end
2053	  && frame_id_eq (get_frame_id (get_current_frame ()),
2054			  step_frame_id)
2055	  && step_resume_breakpoint == NULL)
2056	{
2057	  /* The inferior is about to take a signal that will take it
2058	     out of the single step range.  Set a breakpoint at the
2059	     current PC (which is presumably where the signal handler
2060	     will eventually return) and then allow the inferior to
2061	     run free.
2062
2063	     Note that this is only needed for a signal delivered
2064	     while in the single-step range.  Nested signals aren't a
2065	     problem as they eventually all return.  */
2066	  insert_step_resume_breakpoint_at_frame (get_current_frame ());
2067	  keep_going (ecs);
2068	  return;
2069	}
2070
2071      /* Note: step_resume_breakpoint may be non-NULL.  This occures
2072	 when either there's a nested signal, or when there's a
2073	 pending signal enabled just as the signal handler returns
2074	 (leaving the inferior at the step-resume-breakpoint without
2075	 actually executing it).  Either way continue until the
2076	 breakpoint is really hit.  */
2077      keep_going (ecs);
2078      return;
2079    }
2080
2081  /* Handle cases caused by hitting a breakpoint.  */
2082  {
2083    CORE_ADDR jmp_buf_pc;
2084    struct bpstat_what what;
2085
2086    what = bpstat_what (stop_bpstat);
2087
2088    if (what.call_dummy)
2089      {
2090	stop_stack_dummy = 1;
2091      }
2092
2093    switch (what.main_action)
2094      {
2095      case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2096	/* If we hit the breakpoint at longjmp, disable it for the
2097	   duration of this command.  Then, install a temporary
2098	   breakpoint at the target of the jmp_buf. */
2099        if (debug_infrun)
2100	  fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2101	disable_longjmp_breakpoint ();
2102	remove_breakpoints ();
2103	breakpoints_inserted = 0;
2104	if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2105	    || !gdbarch_get_longjmp_target (current_gdbarch,
2106					    get_current_frame (), &jmp_buf_pc))
2107	  {
2108	    keep_going (ecs);
2109	    return;
2110	  }
2111
2112	/* Need to blow away step-resume breakpoint, as it
2113	   interferes with us */
2114	if (step_resume_breakpoint != NULL)
2115	  {
2116	    delete_step_resume_breakpoint (&step_resume_breakpoint);
2117	  }
2118
2119	set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2120	ecs->handling_longjmp = 1;	/* FIXME */
2121	keep_going (ecs);
2122	return;
2123
2124      case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2125      case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2126        if (debug_infrun)
2127	  fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2128	remove_breakpoints ();
2129	breakpoints_inserted = 0;
2130	disable_longjmp_breakpoint ();
2131	ecs->handling_longjmp = 0;	/* FIXME */
2132	if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2133	  break;
2134	/* else fallthrough */
2135
2136      case BPSTAT_WHAT_SINGLE:
2137        if (debug_infrun)
2138	  fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2139	if (breakpoints_inserted)
2140	  remove_breakpoints ();
2141	breakpoints_inserted = 0;
2142	ecs->another_trap = 1;
2143	/* Still need to check other stuff, at least the case
2144	   where we are stepping and step out of the right range.  */
2145	break;
2146
2147      case BPSTAT_WHAT_STOP_NOISY:
2148        if (debug_infrun)
2149	  fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2150	stop_print_frame = 1;
2151
2152	/* We are about to nuke the step_resume_breakpointt via the
2153	   cleanup chain, so no need to worry about it here.  */
2154
2155	stop_stepping (ecs);
2156	return;
2157
2158      case BPSTAT_WHAT_STOP_SILENT:
2159        if (debug_infrun)
2160	  fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2161	stop_print_frame = 0;
2162
2163	/* We are about to nuke the step_resume_breakpoin via the
2164	   cleanup chain, so no need to worry about it here.  */
2165
2166	stop_stepping (ecs);
2167	return;
2168
2169      case BPSTAT_WHAT_STEP_RESUME:
2170	/* This proably demands a more elegant solution, but, yeah
2171	   right...
2172
2173	   This function's use of the simple variable
2174	   step_resume_breakpoint doesn't seem to accomodate
2175	   simultaneously active step-resume bp's, although the
2176	   breakpoint list certainly can.
2177
2178	   If we reach here and step_resume_breakpoint is already
2179	   NULL, then apparently we have multiple active
2180	   step-resume bp's.  We'll just delete the breakpoint we
2181	   stopped at, and carry on.
2182
2183	   Correction: what the code currently does is delete a
2184	   step-resume bp, but it makes no effort to ensure that
2185	   the one deleted is the one currently stopped at.  MVS  */
2186
2187        if (debug_infrun)
2188	  fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2189
2190	if (step_resume_breakpoint == NULL)
2191	  {
2192	    step_resume_breakpoint =
2193	      bpstat_find_step_resume_breakpoint (stop_bpstat);
2194	  }
2195	delete_step_resume_breakpoint (&step_resume_breakpoint);
2196	if (ecs->step_after_step_resume_breakpoint)
2197	  {
2198	    /* Back when the step-resume breakpoint was inserted, we
2199	       were trying to single-step off a breakpoint.  Go back
2200	       to doing that.  */
2201	    ecs->step_after_step_resume_breakpoint = 0;
2202	    remove_breakpoints ();
2203	    breakpoints_inserted = 0;
2204	    ecs->another_trap = 1;
2205	    keep_going (ecs);
2206	    return;
2207	  }
2208	break;
2209
2210      case BPSTAT_WHAT_CHECK_SHLIBS:
2211      case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2212	{
2213          if (debug_infrun)
2214	    fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2215	  /* Remove breakpoints, we eventually want to step over the
2216	     shlib event breakpoint, and SOLIB_ADD might adjust
2217	     breakpoint addresses via breakpoint_re_set.  */
2218	  if (breakpoints_inserted)
2219	    remove_breakpoints ();
2220	  breakpoints_inserted = 0;
2221
2222	  /* Check for any newly added shared libraries if we're
2223	     supposed to be adding them automatically.  Switch
2224	     terminal for any messages produced by
2225	     breakpoint_re_set.  */
2226	  target_terminal_ours_for_output ();
2227	  /* NOTE: cagney/2003-11-25: Make certain that the target
2228	     stack's section table is kept up-to-date.  Architectures,
2229	     (e.g., PPC64), use the section table to perform
2230	     operations such as address => section name and hence
2231	     require the table to contain all sections (including
2232	     those found in shared libraries).  */
2233	  /* NOTE: cagney/2003-11-25: Pass current_target and not
2234	     exec_ops to SOLIB_ADD.  This is because current GDB is
2235	     only tooled to propagate section_table changes out from
2236	     the "current_target" (see target_resize_to_sections), and
2237	     not up from the exec stratum.  This, of course, isn't
2238	     right.  "infrun.c" should only interact with the
2239	     exec/process stratum, instead relying on the target stack
2240	     to propagate relevant changes (stop, section table
2241	     changed, ...) up to other layers.  */
2242#ifdef SOLIB_ADD
2243	  SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2244#else
2245	  solib_add (NULL, 0, &current_target, auto_solib_add);
2246#endif
2247	  target_terminal_inferior ();
2248
2249	  /* Try to reenable shared library breakpoints, additional
2250	     code segments in shared libraries might be mapped in now. */
2251	  re_enable_breakpoints_in_shlibs ();
2252
2253	  /* If requested, stop when the dynamic linker notifies
2254	     gdb of events.  This allows the user to get control
2255	     and place breakpoints in initializer routines for
2256	     dynamically loaded objects (among other things).  */
2257	  if (stop_on_solib_events || stop_stack_dummy)
2258	    {
2259	      stop_stepping (ecs);
2260	      return;
2261	    }
2262
2263	  /* If we stopped due to an explicit catchpoint, then the
2264	     (see above) call to SOLIB_ADD pulled in any symbols
2265	     from a newly-loaded library, if appropriate.
2266
2267	     We do want the inferior to stop, but not where it is
2268	     now, which is in the dynamic linker callback.  Rather,
2269	     we would like it stop in the user's program, just after
2270	     the call that caused this catchpoint to trigger.  That
2271	     gives the user a more useful vantage from which to
2272	     examine their program's state. */
2273	  else if (what.main_action
2274		   == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2275	    {
2276	      /* ??rehrauer: If I could figure out how to get the
2277	         right return PC from here, we could just set a temp
2278	         breakpoint and resume.  I'm not sure we can without
2279	         cracking open the dld's shared libraries and sniffing
2280	         their unwind tables and text/data ranges, and that's
2281	         not a terribly portable notion.
2282
2283	         Until that time, we must step the inferior out of the
2284	         dld callback, and also out of the dld itself (and any
2285	         code or stubs in libdld.sl, such as "shl_load" and
2286	         friends) until we reach non-dld code.  At that point,
2287	         we can stop stepping. */
2288	      bpstat_get_triggered_catchpoints (stop_bpstat,
2289						&ecs->
2290						stepping_through_solib_catchpoints);
2291	      ecs->stepping_through_solib_after_catch = 1;
2292
2293	      /* Be sure to lift all breakpoints, so the inferior does
2294	         actually step past this point... */
2295	      ecs->another_trap = 1;
2296	      break;
2297	    }
2298	  else
2299	    {
2300	      /* We want to step over this breakpoint, then keep going.  */
2301	      ecs->another_trap = 1;
2302	      break;
2303	    }
2304	}
2305	break;
2306
2307      case BPSTAT_WHAT_LAST:
2308	/* Not a real code, but listed here to shut up gcc -Wall.  */
2309
2310      case BPSTAT_WHAT_KEEP_CHECKING:
2311	break;
2312      }
2313  }
2314
2315  /* We come here if we hit a breakpoint but should not
2316     stop for it.  Possibly we also were stepping
2317     and should stop for that.  So fall through and
2318     test for stepping.  But, if not stepping,
2319     do not stop.  */
2320
2321  /* Are we stepping to get the inferior out of the dynamic linker's
2322     hook (and possibly the dld itself) after catching a shlib
2323     event?  */
2324  if (ecs->stepping_through_solib_after_catch)
2325    {
2326#if defined(SOLIB_ADD)
2327      /* Have we reached our destination?  If not, keep going. */
2328      if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2329	{
2330          if (debug_infrun)
2331	    fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2332	  ecs->another_trap = 1;
2333	  keep_going (ecs);
2334	  return;
2335	}
2336#endif
2337      if (debug_infrun)
2338	 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2339      /* Else, stop and report the catchpoint(s) whose triggering
2340         caused us to begin stepping. */
2341      ecs->stepping_through_solib_after_catch = 0;
2342      bpstat_clear (&stop_bpstat);
2343      stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2344      bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2345      stop_print_frame = 1;
2346      stop_stepping (ecs);
2347      return;
2348    }
2349
2350  if (step_resume_breakpoint)
2351    {
2352      if (debug_infrun)
2353	 fprintf_unfiltered (gdb_stdlog,
2354			     "infrun: step-resume breakpoint is inserted\n");
2355
2356      /* Having a step-resume breakpoint overrides anything
2357         else having to do with stepping commands until
2358         that breakpoint is reached.  */
2359      keep_going (ecs);
2360      return;
2361    }
2362
2363  if (step_range_end == 0)
2364    {
2365      if (debug_infrun)
2366	 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2367      /* Likewise if we aren't even stepping.  */
2368      keep_going (ecs);
2369      return;
2370    }
2371
2372  /* If stepping through a line, keep going if still within it.
2373
2374     Note that step_range_end is the address of the first instruction
2375     beyond the step range, and NOT the address of the last instruction
2376     within it! */
2377  if (stop_pc >= step_range_start && stop_pc < step_range_end)
2378    {
2379      if (debug_infrun)
2380	 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2381			    paddr_nz (step_range_start),
2382			    paddr_nz (step_range_end));
2383      keep_going (ecs);
2384      return;
2385    }
2386
2387  /* We stepped out of the stepping range.  */
2388
2389  /* If we are stepping at the source level and entered the runtime
2390     loader dynamic symbol resolution code, we keep on single stepping
2391     until we exit the run time loader code and reach the callee's
2392     address.  */
2393  if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2394#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2395      && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2396#else
2397      && in_solib_dynsym_resolve_code (stop_pc)
2398#endif
2399      )
2400    {
2401      CORE_ADDR pc_after_resolver =
2402	gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2403
2404      if (debug_infrun)
2405	 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2406
2407      if (pc_after_resolver)
2408	{
2409	  /* Set up a step-resume breakpoint at the address
2410	     indicated by SKIP_SOLIB_RESOLVER.  */
2411	  struct symtab_and_line sr_sal;
2412	  init_sal (&sr_sal);
2413	  sr_sal.pc = pc_after_resolver;
2414
2415	  insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2416	}
2417
2418      keep_going (ecs);
2419      return;
2420    }
2421
2422  if (step_range_end != 1
2423      && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2424	  || step_over_calls == STEP_OVER_ALL)
2425      && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2426    {
2427      if (debug_infrun)
2428	 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2429      /* The inferior, while doing a "step" or "next", has ended up in
2430         a signal trampoline (either by a signal being delivered or by
2431         the signal handler returning).  Just single-step until the
2432         inferior leaves the trampoline (either by calling the handler
2433         or returning).  */
2434      keep_going (ecs);
2435      return;
2436    }
2437
2438  /* Check for subroutine calls.  The check for the current frame
2439     equalling the step ID is not necessary - the check of the
2440     previous frame's ID is sufficient - but it is a common case and
2441     cheaper than checking the previous frame's ID.
2442
2443     NOTE: frame_id_eq will never report two invalid frame IDs as
2444     being equal, so to get into this block, both the current and
2445     previous frame must have valid frame IDs.  */
2446  if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2447      && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2448    {
2449      CORE_ADDR real_stop_pc;
2450
2451      if (debug_infrun)
2452	 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2453
2454      if ((step_over_calls == STEP_OVER_NONE)
2455	  || ((step_range_end == 1)
2456	      && in_prologue (prev_pc, ecs->stop_func_start)))
2457	{
2458	  /* I presume that step_over_calls is only 0 when we're
2459	     supposed to be stepping at the assembly language level
2460	     ("stepi").  Just stop.  */
2461	  /* Also, maybe we just did a "nexti" inside a prolog, so we
2462	     thought it was a subroutine call but it was not.  Stop as
2463	     well.  FENN */
2464	  stop_step = 1;
2465	  print_stop_reason (END_STEPPING_RANGE, 0);
2466	  stop_stepping (ecs);
2467	  return;
2468	}
2469
2470      if (step_over_calls == STEP_OVER_ALL)
2471	{
2472	  /* We're doing a "next", set a breakpoint at callee's return
2473	     address (the address at which the caller will
2474	     resume).  */
2475	  insert_step_resume_breakpoint_at_caller (get_current_frame ());
2476	  keep_going (ecs);
2477	  return;
2478	}
2479
2480      /* If we are in a function call trampoline (a stub between the
2481         calling routine and the real function), locate the real
2482         function.  That's what tells us (a) whether we want to step
2483         into it at all, and (b) what prologue we want to run to the
2484         end of, if we do step into it.  */
2485      real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
2486      if (real_stop_pc == 0)
2487	real_stop_pc = gdbarch_skip_trampoline_code
2488			 (current_gdbarch, get_current_frame (), stop_pc);
2489      if (real_stop_pc != 0)
2490	ecs->stop_func_start = real_stop_pc;
2491
2492      if (
2493#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2494	  IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2495#else
2496	  in_solib_dynsym_resolve_code (ecs->stop_func_start)
2497#endif
2498)
2499	{
2500	  struct symtab_and_line sr_sal;
2501	  init_sal (&sr_sal);
2502	  sr_sal.pc = ecs->stop_func_start;
2503
2504	  insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2505	  keep_going (ecs);
2506	  return;
2507	}
2508
2509      /* If we have line number information for the function we are
2510         thinking of stepping into, step into it.
2511
2512         If there are several symtabs at that PC (e.g. with include
2513         files), just want to know whether *any* of them have line
2514         numbers.  find_pc_line handles this.  */
2515      {
2516	struct symtab_and_line tmp_sal;
2517
2518	tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2519	if (tmp_sal.line != 0)
2520	  {
2521	    step_into_function (ecs);
2522	    return;
2523	  }
2524      }
2525
2526      /* If we have no line number and the step-stop-if-no-debug is
2527         set, we stop the step so that the user has a chance to switch
2528         in assembly mode.  */
2529      if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2530	{
2531	  stop_step = 1;
2532	  print_stop_reason (END_STEPPING_RANGE, 0);
2533	  stop_stepping (ecs);
2534	  return;
2535	}
2536
2537      /* Set a breakpoint at callee's return address (the address at
2538         which the caller will resume).  */
2539      insert_step_resume_breakpoint_at_caller (get_current_frame ());
2540      keep_going (ecs);
2541      return;
2542    }
2543
2544  /* If we're in the return path from a shared library trampoline,
2545     we want to proceed through the trampoline when stepping.  */
2546  if (gdbarch_in_solib_return_trampoline (current_gdbarch,
2547					  stop_pc, ecs->stop_func_name))
2548    {
2549      /* Determine where this trampoline returns.  */
2550      CORE_ADDR real_stop_pc;
2551      real_stop_pc = gdbarch_skip_trampoline_code
2552		       (current_gdbarch, get_current_frame (), stop_pc);
2553
2554      if (debug_infrun)
2555	 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2556
2557      /* Only proceed through if we know where it's going.  */
2558      if (real_stop_pc)
2559	{
2560	  /* And put the step-breakpoint there and go until there. */
2561	  struct symtab_and_line sr_sal;
2562
2563	  init_sal (&sr_sal);	/* initialize to zeroes */
2564	  sr_sal.pc = real_stop_pc;
2565	  sr_sal.section = find_pc_overlay (sr_sal.pc);
2566
2567	  /* Do not specify what the fp should be when we stop since
2568	     on some machines the prologue is where the new fp value
2569	     is established.  */
2570	  insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2571
2572	  /* Restart without fiddling with the step ranges or
2573	     other state.  */
2574	  keep_going (ecs);
2575	  return;
2576	}
2577    }
2578
2579  ecs->sal = find_pc_line (stop_pc, 0);
2580
2581  /* NOTE: tausq/2004-05-24: This if block used to be done before all
2582     the trampoline processing logic, however, there are some trampolines
2583     that have no names, so we should do trampoline handling first.  */
2584  if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2585      && ecs->stop_func_name == NULL
2586      && ecs->sal.line == 0)
2587    {
2588      if (debug_infrun)
2589	 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2590
2591      /* The inferior just stepped into, or returned to, an
2592         undebuggable function (where there is no debugging information
2593         and no line number corresponding to the address where the
2594         inferior stopped).  Since we want to skip this kind of code,
2595         we keep going until the inferior returns from this
2596         function - unless the user has asked us not to (via
2597         set step-mode) or we no longer know how to get back
2598         to the call site.  */
2599      if (step_stop_if_no_debug
2600	  || !frame_id_p (frame_unwind_id (get_current_frame ())))
2601	{
2602	  /* If we have no line number and the step-stop-if-no-debug
2603	     is set, we stop the step so that the user has a chance to
2604	     switch in assembly mode.  */
2605	  stop_step = 1;
2606	  print_stop_reason (END_STEPPING_RANGE, 0);
2607	  stop_stepping (ecs);
2608	  return;
2609	}
2610      else
2611	{
2612	  /* Set a breakpoint at callee's return address (the address
2613	     at which the caller will resume).  */
2614	  insert_step_resume_breakpoint_at_caller (get_current_frame ());
2615	  keep_going (ecs);
2616	  return;
2617	}
2618    }
2619
2620  if (step_range_end == 1)
2621    {
2622      /* It is stepi or nexti.  We always want to stop stepping after
2623         one instruction.  */
2624      if (debug_infrun)
2625	 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2626      stop_step = 1;
2627      print_stop_reason (END_STEPPING_RANGE, 0);
2628      stop_stepping (ecs);
2629      return;
2630    }
2631
2632  if (ecs->sal.line == 0)
2633    {
2634      /* We have no line number information.  That means to stop
2635         stepping (does this always happen right after one instruction,
2636         when we do "s" in a function with no line numbers,
2637         or can this happen as a result of a return or longjmp?).  */
2638      if (debug_infrun)
2639	 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2640      stop_step = 1;
2641      print_stop_reason (END_STEPPING_RANGE, 0);
2642      stop_stepping (ecs);
2643      return;
2644    }
2645
2646  if ((stop_pc == ecs->sal.pc)
2647      && (ecs->current_line != ecs->sal.line
2648	  || ecs->current_symtab != ecs->sal.symtab))
2649    {
2650      /* We are at the start of a different line.  So stop.  Note that
2651         we don't stop if we step into the middle of a different line.
2652         That is said to make things like for (;;) statements work
2653         better.  */
2654      if (debug_infrun)
2655	 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2656      stop_step = 1;
2657      print_stop_reason (END_STEPPING_RANGE, 0);
2658      stop_stepping (ecs);
2659      return;
2660    }
2661
2662  /* We aren't done stepping.
2663
2664     Optimize by setting the stepping range to the line.
2665     (We might not be in the original line, but if we entered a
2666     new line in mid-statement, we continue stepping.  This makes
2667     things like for(;;) statements work better.)  */
2668
2669  if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2670    {
2671      /* If this is the last line of the function, don't keep stepping
2672         (it would probably step us out of the function).
2673         This is particularly necessary for a one-line function,
2674         in which after skipping the prologue we better stop even though
2675         we will be in mid-line.  */
2676      if (debug_infrun)
2677	 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
2678      stop_step = 1;
2679      print_stop_reason (END_STEPPING_RANGE, 0);
2680      stop_stepping (ecs);
2681      return;
2682    }
2683  step_range_start = ecs->sal.pc;
2684  step_range_end = ecs->sal.end;
2685  step_frame_id = get_frame_id (get_current_frame ());
2686  ecs->current_line = ecs->sal.line;
2687  ecs->current_symtab = ecs->sal.symtab;
2688
2689  /* In the case where we just stepped out of a function into the
2690     middle of a line of the caller, continue stepping, but
2691     step_frame_id must be modified to current frame */
2692#if 0
2693  /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2694     generous.  It will trigger on things like a step into a frameless
2695     stackless leaf function.  I think the logic should instead look
2696     at the unwound frame ID has that should give a more robust
2697     indication of what happened.  */
2698  if (step - ID == current - ID)
2699    still stepping in same function;
2700  else if (step - ID == unwind (current - ID))
2701    stepped into a function;
2702  else
2703    stepped out of a function;
2704  /* Of course this assumes that the frame ID unwind code is robust
2705     and we're willing to introduce frame unwind logic into this
2706     function.  Fortunately, those days are nearly upon us.  */
2707#endif
2708  {
2709    struct frame_id current_frame = get_frame_id (get_current_frame ());
2710    if (!(frame_id_inner (current_frame, step_frame_id)))
2711      step_frame_id = current_frame;
2712  }
2713
2714  if (debug_infrun)
2715     fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2716  keep_going (ecs);
2717}
2718
2719/* Are we in the middle of stepping?  */
2720
2721static int
2722currently_stepping (struct execution_control_state *ecs)
2723{
2724  return ((!ecs->handling_longjmp
2725	   && ((step_range_end && step_resume_breakpoint == NULL)
2726	       || trap_expected))
2727	  || ecs->stepping_through_solib_after_catch
2728	  || bpstat_should_step ());
2729}
2730
2731/* Subroutine call with source code we should not step over.  Do step
2732   to the first line of code in it.  */
2733
2734static void
2735step_into_function (struct execution_control_state *ecs)
2736{
2737  struct symtab *s;
2738  struct symtab_and_line sr_sal;
2739
2740  s = find_pc_symtab (stop_pc);
2741  if (s && s->language != language_asm)
2742    ecs->stop_func_start = gdbarch_skip_prologue
2743			     (current_gdbarch, ecs->stop_func_start);
2744
2745  ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2746  /* Use the step_resume_break to step until the end of the prologue,
2747     even if that involves jumps (as it seems to on the vax under
2748     4.2).  */
2749  /* If the prologue ends in the middle of a source line, continue to
2750     the end of that source line (if it is still within the function).
2751     Otherwise, just go to end of prologue.  */
2752  if (ecs->sal.end
2753      && ecs->sal.pc != ecs->stop_func_start
2754      && ecs->sal.end < ecs->stop_func_end)
2755    ecs->stop_func_start = ecs->sal.end;
2756
2757  /* Architectures which require breakpoint adjustment might not be able
2758     to place a breakpoint at the computed address.  If so, the test
2759     ``ecs->stop_func_start == stop_pc'' will never succeed.  Adjust
2760     ecs->stop_func_start to an address at which a breakpoint may be
2761     legitimately placed.
2762
2763     Note:  kevinb/2004-01-19:  On FR-V, if this adjustment is not
2764     made, GDB will enter an infinite loop when stepping through
2765     optimized code consisting of VLIW instructions which contain
2766     subinstructions corresponding to different source lines.  On
2767     FR-V, it's not permitted to place a breakpoint on any but the
2768     first subinstruction of a VLIW instruction.  When a breakpoint is
2769     set, GDB will adjust the breakpoint address to the beginning of
2770     the VLIW instruction.  Thus, we need to make the corresponding
2771     adjustment here when computing the stop address.  */
2772
2773  if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2774    {
2775      ecs->stop_func_start
2776	= gdbarch_adjust_breakpoint_address (current_gdbarch,
2777					     ecs->stop_func_start);
2778    }
2779
2780  if (ecs->stop_func_start == stop_pc)
2781    {
2782      /* We are already there: stop now.  */
2783      stop_step = 1;
2784      print_stop_reason (END_STEPPING_RANGE, 0);
2785      stop_stepping (ecs);
2786      return;
2787    }
2788  else
2789    {
2790      /* Put the step-breakpoint there and go until there.  */
2791      init_sal (&sr_sal);	/* initialize to zeroes */
2792      sr_sal.pc = ecs->stop_func_start;
2793      sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2794
2795      /* Do not specify what the fp should be when we stop since on
2796         some machines the prologue is where the new fp value is
2797         established.  */
2798      insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2799
2800      /* And make sure stepping stops right away then.  */
2801      step_range_end = step_range_start;
2802    }
2803  keep_going (ecs);
2804}
2805
2806/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
2807   This is used to both functions and to skip over code.  */
2808
2809static void
2810insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2811				      struct frame_id sr_id)
2812{
2813  /* There should never be more than one step-resume breakpoint per
2814     thread, so we should never be setting a new
2815     step_resume_breakpoint when one is already active.  */
2816  gdb_assert (step_resume_breakpoint == NULL);
2817
2818  if (debug_infrun)
2819    fprintf_unfiltered (gdb_stdlog,
2820			"infrun: inserting step-resume breakpoint at 0x%s\n",
2821			paddr_nz (sr_sal.pc));
2822
2823  step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2824						     bp_step_resume);
2825  if (breakpoints_inserted)
2826    insert_breakpoints ();
2827}
2828
2829/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc.  This is used
2830   to skip a potential signal handler.
2831
2832   This is called with the interrupted function's frame.  The signal
2833   handler, when it returns, will resume the interrupted function at
2834   RETURN_FRAME.pc.  */
2835
2836static void
2837insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2838{
2839  struct symtab_and_line sr_sal;
2840
2841  init_sal (&sr_sal);		/* initialize to zeros */
2842
2843  sr_sal.pc = gdbarch_addr_bits_remove
2844		(current_gdbarch, get_frame_pc (return_frame));
2845  sr_sal.section = find_pc_overlay (sr_sal.pc);
2846
2847  insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2848}
2849
2850/* Similar to insert_step_resume_breakpoint_at_frame, except
2851   but a breakpoint at the previous frame's PC.  This is used to
2852   skip a function after stepping into it (for "next" or if the called
2853   function has no debugging information).
2854
2855   The current function has almost always been reached by single
2856   stepping a call or return instruction.  NEXT_FRAME belongs to the
2857   current function, and the breakpoint will be set at the caller's
2858   resume address.
2859
2860   This is a separate function rather than reusing
2861   insert_step_resume_breakpoint_at_frame in order to avoid
2862   get_prev_frame, which may stop prematurely (see the implementation
2863   of frame_unwind_id for an example).  */
2864
2865static void
2866insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2867{
2868  struct symtab_and_line sr_sal;
2869
2870  /* We shouldn't have gotten here if we don't know where the call site
2871     is.  */
2872  gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2873
2874  init_sal (&sr_sal);		/* initialize to zeros */
2875
2876  sr_sal.pc = gdbarch_addr_bits_remove
2877		(current_gdbarch, frame_pc_unwind (next_frame));
2878  sr_sal.section = find_pc_overlay (sr_sal.pc);
2879
2880  insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2881}
2882
2883static void
2884stop_stepping (struct execution_control_state *ecs)
2885{
2886  if (debug_infrun)
2887    fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2888
2889  /* Let callers know we don't want to wait for the inferior anymore.  */
2890  ecs->wait_some_more = 0;
2891}
2892
2893/* This function handles various cases where we need to continue
2894   waiting for the inferior.  */
2895/* (Used to be the keep_going: label in the old wait_for_inferior) */
2896
2897static void
2898keep_going (struct execution_control_state *ecs)
2899{
2900  /* Save the pc before execution, to compare with pc after stop.  */
2901  prev_pc = read_pc ();		/* Might have been DECR_AFTER_BREAK */
2902
2903  /* If we did not do break;, it means we should keep running the
2904     inferior and not return to debugger.  */
2905
2906  if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2907    {
2908      /* We took a signal (which we are supposed to pass through to
2909         the inferior, else we'd have done a break above) and we
2910         haven't yet gotten our trap.  Simply continue.  */
2911      resume (currently_stepping (ecs), stop_signal);
2912    }
2913  else
2914    {
2915      /* Either the trap was not expected, but we are continuing
2916         anyway (the user asked that this signal be passed to the
2917         child)
2918         -- or --
2919         The signal was SIGTRAP, e.g. it was our signal, but we
2920         decided we should resume from it.
2921
2922         We're going to run this baby now!  */
2923
2924      if (!breakpoints_inserted && !ecs->another_trap)
2925	{
2926	  /* Stop stepping when inserting breakpoints
2927	     has failed.  */
2928	  if (insert_breakpoints () != 0)
2929	    {
2930	      stop_stepping (ecs);
2931	      return;
2932	    }
2933	  breakpoints_inserted = 1;
2934	}
2935
2936      trap_expected = ecs->another_trap;
2937
2938      /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2939         specifies that such a signal should be delivered to the
2940         target program).
2941
2942         Typically, this would occure when a user is debugging a
2943         target monitor on a simulator: the target monitor sets a
2944         breakpoint; the simulator encounters this break-point and
2945         halts the simulation handing control to GDB; GDB, noteing
2946         that the break-point isn't valid, returns control back to the
2947         simulator; the simulator then delivers the hardware
2948         equivalent of a SIGNAL_TRAP to the program being debugged. */
2949
2950      if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2951	stop_signal = TARGET_SIGNAL_0;
2952
2953
2954      resume (currently_stepping (ecs), stop_signal);
2955    }
2956
2957  prepare_to_wait (ecs);
2958}
2959
2960/* This function normally comes after a resume, before
2961   handle_inferior_event exits.  It takes care of any last bits of
2962   housekeeping, and sets the all-important wait_some_more flag.  */
2963
2964static void
2965prepare_to_wait (struct execution_control_state *ecs)
2966{
2967  if (debug_infrun)
2968    fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2969  if (ecs->infwait_state == infwait_normal_state)
2970    {
2971      overlay_cache_invalid = 1;
2972
2973      /* We have to invalidate the registers BEFORE calling
2974         target_wait because they can be loaded from the target while
2975         in target_wait.  This makes remote debugging a bit more
2976         efficient for those targets that provide critical registers
2977         as part of their normal status mechanism. */
2978
2979      registers_changed ();
2980      ecs->waiton_ptid = pid_to_ptid (-1);
2981      ecs->wp = &(ecs->ws);
2982    }
2983  /* This is the old end of the while loop.  Let everybody know we
2984     want to wait for the inferior some more and get called again
2985     soon.  */
2986  ecs->wait_some_more = 1;
2987}
2988
2989/* Print why the inferior has stopped. We always print something when
2990   the inferior exits, or receives a signal. The rest of the cases are
2991   dealt with later on in normal_stop() and print_it_typical().  Ideally
2992   there should be a call to this function from handle_inferior_event()
2993   each time stop_stepping() is called.*/
2994static void
2995print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2996{
2997  switch (stop_reason)
2998    {
2999    case END_STEPPING_RANGE:
3000      /* We are done with a step/next/si/ni command. */
3001      /* For now print nothing. */
3002      /* Print a message only if not in the middle of doing a "step n"
3003         operation for n > 1 */
3004      if (!step_multi || !stop_step)
3005	if (ui_out_is_mi_like_p (uiout))
3006	  ui_out_field_string
3007	    (uiout, "reason",
3008	     async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
3009      break;
3010    case SIGNAL_EXITED:
3011      /* The inferior was terminated by a signal. */
3012      annotate_signalled ();
3013      if (ui_out_is_mi_like_p (uiout))
3014	ui_out_field_string
3015	  (uiout, "reason",
3016	   async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3017      ui_out_text (uiout, "\nProgram terminated with signal ");
3018      annotate_signal_name ();
3019      ui_out_field_string (uiout, "signal-name",
3020			   target_signal_to_name (stop_info));
3021      annotate_signal_name_end ();
3022      ui_out_text (uiout, ", ");
3023      annotate_signal_string ();
3024      ui_out_field_string (uiout, "signal-meaning",
3025			   target_signal_to_string (stop_info));
3026      annotate_signal_string_end ();
3027      ui_out_text (uiout, ".\n");
3028      ui_out_text (uiout, "The program no longer exists.\n");
3029      break;
3030    case EXITED:
3031      /* The inferior program is finished. */
3032      annotate_exited (stop_info);
3033      if (stop_info)
3034	{
3035	  if (ui_out_is_mi_like_p (uiout))
3036	    ui_out_field_string (uiout, "reason",
3037				 async_reason_lookup (EXEC_ASYNC_EXITED));
3038	  ui_out_text (uiout, "\nProgram exited with code ");
3039	  ui_out_field_fmt (uiout, "exit-code", "0%o",
3040			    (unsigned int) stop_info);
3041	  ui_out_text (uiout, ".\n");
3042	}
3043      else
3044	{
3045	  if (ui_out_is_mi_like_p (uiout))
3046	    ui_out_field_string
3047	      (uiout, "reason",
3048	       async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3049	  ui_out_text (uiout, "\nProgram exited normally.\n");
3050	}
3051      /* Support the --return-child-result option.  */
3052      return_child_result_value = stop_info;
3053      break;
3054    case SIGNAL_RECEIVED:
3055      /* Signal received. The signal table tells us to print about
3056         it. */
3057      annotate_signal ();
3058      ui_out_text (uiout, "\nProgram received signal ");
3059      annotate_signal_name ();
3060      if (ui_out_is_mi_like_p (uiout))
3061	ui_out_field_string
3062	  (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3063      ui_out_field_string (uiout, "signal-name",
3064			   target_signal_to_name (stop_info));
3065      annotate_signal_name_end ();
3066      ui_out_text (uiout, ", ");
3067      annotate_signal_string ();
3068      ui_out_field_string (uiout, "signal-meaning",
3069			   target_signal_to_string (stop_info));
3070      annotate_signal_string_end ();
3071      ui_out_text (uiout, ".\n");
3072      break;
3073    default:
3074      internal_error (__FILE__, __LINE__,
3075		      _("print_stop_reason: unrecognized enum value"));
3076      break;
3077    }
3078}
3079
3080
3081/* Here to return control to GDB when the inferior stops for real.
3082   Print appropriate messages, remove breakpoints, give terminal our modes.
3083
3084   STOP_PRINT_FRAME nonzero means print the executing frame
3085   (pc, function, args, file, line number and line text).
3086   BREAKPOINTS_FAILED nonzero means stop was due to error
3087   attempting to insert breakpoints.  */
3088
3089void
3090normal_stop (void)
3091{
3092  struct target_waitstatus last;
3093  ptid_t last_ptid;
3094
3095  get_last_target_status (&last_ptid, &last);
3096
3097  /* As with the notification of thread events, we want to delay
3098     notifying the user that we've switched thread context until
3099     the inferior actually stops.
3100
3101     There's no point in saying anything if the inferior has exited.
3102     Note that SIGNALLED here means "exited with a signal", not
3103     "received a signal".  */
3104  if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3105      && target_has_execution
3106      && last.kind != TARGET_WAITKIND_SIGNALLED
3107      && last.kind != TARGET_WAITKIND_EXITED)
3108    {
3109      target_terminal_ours_for_output ();
3110      printf_filtered (_("[Switching to %s]\n"),
3111		       target_pid_or_tid_to_str (inferior_ptid));
3112      previous_inferior_ptid = inferior_ptid;
3113    }
3114
3115  /* NOTE drow/2004-01-17: Is this still necessary?  */
3116  /* Make sure that the current_frame's pc is correct.  This
3117     is a correction for setting up the frame info before doing
3118     gdbarch_decr_pc_after_break */
3119  if (target_has_execution)
3120    /* FIXME: cagney/2002-12-06: Has the PC changed?  Thanks to
3121       gdbarch_decr_pc_after_break, the program counter can change.  Ask the
3122       frame code to check for this and sort out any resultant mess.
3123       gdbarch_decr_pc_after_break needs to just go away.  */
3124    deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3125
3126  if (target_has_execution && breakpoints_inserted)
3127    {
3128      if (remove_breakpoints ())
3129	{
3130	  target_terminal_ours_for_output ();
3131	  printf_filtered (_("\
3132Cannot remove breakpoints because program is no longer writable.\n\
3133It might be running in another process.\n\
3134Further execution is probably impossible.\n"));
3135	}
3136    }
3137  breakpoints_inserted = 0;
3138
3139  /* Delete the breakpoint we stopped at, if it wants to be deleted.
3140     Delete any breakpoint that is to be deleted at the next stop.  */
3141
3142  breakpoint_auto_delete (stop_bpstat);
3143
3144  /* If an auto-display called a function and that got a signal,
3145     delete that auto-display to avoid an infinite recursion.  */
3146
3147  if (stopped_by_random_signal)
3148    disable_current_display ();
3149
3150  /* Don't print a message if in the middle of doing a "step n"
3151     operation for n > 1 */
3152  if (step_multi && stop_step)
3153    goto done;
3154
3155  target_terminal_ours ();
3156
3157  /* Set the current source location.  This will also happen if we
3158     display the frame below, but the current SAL will be incorrect
3159     during a user hook-stop function.  */
3160  if (target_has_stack && !stop_stack_dummy)
3161    set_current_sal_from_frame (get_current_frame (), 1);
3162
3163  /* Look up the hook_stop and run it (CLI internally handles problem
3164     of stop_command's pre-hook not existing).  */
3165  if (stop_command)
3166    catch_errors (hook_stop_stub, stop_command,
3167		  "Error while running hook_stop:\n", RETURN_MASK_ALL);
3168
3169  if (!target_has_stack)
3170    {
3171
3172      goto done;
3173    }
3174
3175  /* Select innermost stack frame - i.e., current frame is frame 0,
3176     and current location is based on that.
3177     Don't do this on return from a stack dummy routine,
3178     or if the program has exited. */
3179
3180  if (!stop_stack_dummy)
3181    {
3182      select_frame (get_current_frame ());
3183
3184      /* Print current location without a level number, if
3185         we have changed functions or hit a breakpoint.
3186         Print source line if we have one.
3187         bpstat_print() contains the logic deciding in detail
3188         what to print, based on the event(s) that just occurred. */
3189
3190      if (stop_print_frame)
3191	{
3192	  int bpstat_ret;
3193	  int source_flag;
3194	  int do_frame_printing = 1;
3195
3196	  bpstat_ret = bpstat_print (stop_bpstat);
3197	  switch (bpstat_ret)
3198	    {
3199	    case PRINT_UNKNOWN:
3200	      /* If we had hit a shared library event breakpoint,
3201		 bpstat_print would print out this message.  If we hit
3202		 an OS-level shared library event, do the same
3203		 thing.  */
3204	      if (last.kind == TARGET_WAITKIND_LOADED)
3205		{
3206		  printf_filtered (_("Stopped due to shared library event\n"));
3207		  source_flag = SRC_LINE;	/* something bogus */
3208		  do_frame_printing = 0;
3209		  break;
3210		}
3211
3212	      /* FIXME: cagney/2002-12-01: Given that a frame ID does
3213	         (or should) carry around the function and does (or
3214	         should) use that when doing a frame comparison.  */
3215	      if (stop_step
3216		  && frame_id_eq (step_frame_id,
3217				  get_frame_id (get_current_frame ()))
3218		  && step_start_function == find_pc_function (stop_pc))
3219		source_flag = SRC_LINE;	/* finished step, just print source line */
3220	      else
3221		source_flag = SRC_AND_LOC;	/* print location and source line */
3222	      break;
3223	    case PRINT_SRC_AND_LOC:
3224	      source_flag = SRC_AND_LOC;	/* print location and source line */
3225	      break;
3226	    case PRINT_SRC_ONLY:
3227	      source_flag = SRC_LINE;
3228	      break;
3229	    case PRINT_NOTHING:
3230	      source_flag = SRC_LINE;	/* something bogus */
3231	      do_frame_printing = 0;
3232	      break;
3233	    default:
3234	      internal_error (__FILE__, __LINE__, _("Unknown value."));
3235	    }
3236
3237	  if (ui_out_is_mi_like_p (uiout))
3238	    ui_out_field_int (uiout, "thread-id",
3239			      pid_to_thread_id (inferior_ptid));
3240	  /* The behavior of this routine with respect to the source
3241	     flag is:
3242	     SRC_LINE: Print only source line
3243	     LOCATION: Print only location
3244	     SRC_AND_LOC: Print location and source line */
3245	  if (do_frame_printing)
3246	    print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3247
3248	  /* Display the auto-display expressions.  */
3249	  do_displays ();
3250	}
3251    }
3252
3253  /* Save the function value return registers, if we care.
3254     We might be about to restore their previous contents.  */
3255  if (proceed_to_finish)
3256    {
3257      /* This should not be necessary.  */
3258      if (stop_registers)
3259	regcache_xfree (stop_registers);
3260
3261      /* NB: The copy goes through to the target picking up the value of
3262	 all the registers.  */
3263      stop_registers = regcache_dup (get_current_regcache ());
3264    }
3265
3266  if (stop_stack_dummy)
3267    {
3268      /* Pop the empty frame that contains the stack dummy.  POP_FRAME
3269         ends with a setting of the current frame, so we can use that
3270         next. */
3271      frame_pop (get_current_frame ());
3272      /* Set stop_pc to what it was before we called the function.
3273         Can't rely on restore_inferior_status because that only gets
3274         called if we don't stop in the called function.  */
3275      stop_pc = read_pc ();
3276      select_frame (get_current_frame ());
3277    }
3278
3279done:
3280  annotate_stopped ();
3281  observer_notify_normal_stop (stop_bpstat);
3282}
3283
3284static int
3285hook_stop_stub (void *cmd)
3286{
3287  execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3288  return (0);
3289}
3290
3291int
3292signal_stop_state (int signo)
3293{
3294  return signal_stop[signo];
3295}
3296
3297int
3298signal_print_state (int signo)
3299{
3300  return signal_print[signo];
3301}
3302
3303int
3304signal_pass_state (int signo)
3305{
3306  return signal_program[signo];
3307}
3308
3309int
3310signal_stop_update (int signo, int state)
3311{
3312  int ret = signal_stop[signo];
3313  signal_stop[signo] = state;
3314  return ret;
3315}
3316
3317int
3318signal_print_update (int signo, int state)
3319{
3320  int ret = signal_print[signo];
3321  signal_print[signo] = state;
3322  return ret;
3323}
3324
3325int
3326signal_pass_update (int signo, int state)
3327{
3328  int ret = signal_program[signo];
3329  signal_program[signo] = state;
3330  return ret;
3331}
3332
3333static void
3334sig_print_header (void)
3335{
3336  printf_filtered (_("\
3337Signal        Stop\tPrint\tPass to program\tDescription\n"));
3338}
3339
3340static void
3341sig_print_info (enum target_signal oursig)
3342{
3343  char *name = target_signal_to_name (oursig);
3344  int name_padding = 13 - strlen (name);
3345
3346  if (name_padding <= 0)
3347    name_padding = 0;
3348
3349  printf_filtered ("%s", name);
3350  printf_filtered ("%*.*s ", name_padding, name_padding, "                 ");
3351  printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3352  printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3353  printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3354  printf_filtered ("%s\n", target_signal_to_string (oursig));
3355}
3356
3357/* Specify how various signals in the inferior should be handled.  */
3358
3359static void
3360handle_command (char *args, int from_tty)
3361{
3362  char **argv;
3363  int digits, wordlen;
3364  int sigfirst, signum, siglast;
3365  enum target_signal oursig;
3366  int allsigs;
3367  int nsigs;
3368  unsigned char *sigs;
3369  struct cleanup *old_chain;
3370
3371  if (args == NULL)
3372    {
3373      error_no_arg (_("signal to handle"));
3374    }
3375
3376  /* Allocate and zero an array of flags for which signals to handle. */
3377
3378  nsigs = (int) TARGET_SIGNAL_LAST;
3379  sigs = (unsigned char *) alloca (nsigs);
3380  memset (sigs, 0, nsigs);
3381
3382  /* Break the command line up into args. */
3383
3384  argv = buildargv (args);
3385  if (argv == NULL)
3386    {
3387      nomem (0);
3388    }
3389  old_chain = make_cleanup_freeargv (argv);
3390
3391  /* Walk through the args, looking for signal oursigs, signal names, and
3392     actions.  Signal numbers and signal names may be interspersed with
3393     actions, with the actions being performed for all signals cumulatively
3394     specified.  Signal ranges can be specified as <LOW>-<HIGH>. */
3395
3396  while (*argv != NULL)
3397    {
3398      wordlen = strlen (*argv);
3399      for (digits = 0; isdigit ((*argv)[digits]); digits++)
3400	{;
3401	}
3402      allsigs = 0;
3403      sigfirst = siglast = -1;
3404
3405      if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3406	{
3407	  /* Apply action to all signals except those used by the
3408	     debugger.  Silently skip those. */
3409	  allsigs = 1;
3410	  sigfirst = 0;
3411	  siglast = nsigs - 1;
3412	}
3413      else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3414	{
3415	  SET_SIGS (nsigs, sigs, signal_stop);
3416	  SET_SIGS (nsigs, sigs, signal_print);
3417	}
3418      else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3419	{
3420	  UNSET_SIGS (nsigs, sigs, signal_program);
3421	}
3422      else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3423	{
3424	  SET_SIGS (nsigs, sigs, signal_print);
3425	}
3426      else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3427	{
3428	  SET_SIGS (nsigs, sigs, signal_program);
3429	}
3430      else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3431	{
3432	  UNSET_SIGS (nsigs, sigs, signal_stop);
3433	}
3434      else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3435	{
3436	  SET_SIGS (nsigs, sigs, signal_program);
3437	}
3438      else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3439	{
3440	  UNSET_SIGS (nsigs, sigs, signal_print);
3441	  UNSET_SIGS (nsigs, sigs, signal_stop);
3442	}
3443      else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3444	{
3445	  UNSET_SIGS (nsigs, sigs, signal_program);
3446	}
3447      else if (digits > 0)
3448	{
3449	  /* It is numeric.  The numeric signal refers to our own
3450	     internal signal numbering from target.h, not to host/target
3451	     signal  number.  This is a feature; users really should be
3452	     using symbolic names anyway, and the common ones like
3453	     SIGHUP, SIGINT, SIGALRM, etc. will work right anyway.  */
3454
3455	  sigfirst = siglast = (int)
3456	    target_signal_from_command (atoi (*argv));
3457	  if ((*argv)[digits] == '-')
3458	    {
3459	      siglast = (int)
3460		target_signal_from_command (atoi ((*argv) + digits + 1));
3461	    }
3462	  if (sigfirst > siglast)
3463	    {
3464	      /* Bet he didn't figure we'd think of this case... */
3465	      signum = sigfirst;
3466	      sigfirst = siglast;
3467	      siglast = signum;
3468	    }
3469	}
3470      else
3471	{
3472	  oursig = target_signal_from_name (*argv);
3473	  if (oursig != TARGET_SIGNAL_UNKNOWN)
3474	    {
3475	      sigfirst = siglast = (int) oursig;
3476	    }
3477	  else
3478	    {
3479	      /* Not a number and not a recognized flag word => complain.  */
3480	      error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3481	    }
3482	}
3483
3484      /* If any signal numbers or symbol names were found, set flags for
3485         which signals to apply actions to. */
3486
3487      for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3488	{
3489	  switch ((enum target_signal) signum)
3490	    {
3491	    case TARGET_SIGNAL_TRAP:
3492	    case TARGET_SIGNAL_INT:
3493	      if (!allsigs && !sigs[signum])
3494		{
3495		  if (query ("%s is used by the debugger.\n\
3496Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3497		    {
3498		      sigs[signum] = 1;
3499		    }
3500		  else
3501		    {
3502		      printf_unfiltered (_("Not confirmed, unchanged.\n"));
3503		      gdb_flush (gdb_stdout);
3504		    }
3505		}
3506	      break;
3507	    case TARGET_SIGNAL_0:
3508	    case TARGET_SIGNAL_DEFAULT:
3509	    case TARGET_SIGNAL_UNKNOWN:
3510	      /* Make sure that "all" doesn't print these.  */
3511	      break;
3512	    default:
3513	      sigs[signum] = 1;
3514	      break;
3515	    }
3516	}
3517
3518      argv++;
3519    }
3520
3521  target_notice_signals (inferior_ptid);
3522
3523  if (from_tty)
3524    {
3525      /* Show the results.  */
3526      sig_print_header ();
3527      for (signum = 0; signum < nsigs; signum++)
3528	{
3529	  if (sigs[signum])
3530	    {
3531	      sig_print_info (signum);
3532	    }
3533	}
3534    }
3535
3536  do_cleanups (old_chain);
3537}
3538
3539static void
3540xdb_handle_command (char *args, int from_tty)
3541{
3542  char **argv;
3543  struct cleanup *old_chain;
3544
3545  /* Break the command line up into args. */
3546
3547  argv = buildargv (args);
3548  if (argv == NULL)
3549    {
3550      nomem (0);
3551    }
3552  old_chain = make_cleanup_freeargv (argv);
3553  if (argv[1] != (char *) NULL)
3554    {
3555      char *argBuf;
3556      int bufLen;
3557
3558      bufLen = strlen (argv[0]) + 20;
3559      argBuf = (char *) xmalloc (bufLen);
3560      if (argBuf)
3561	{
3562	  int validFlag = 1;
3563	  enum target_signal oursig;
3564
3565	  oursig = target_signal_from_name (argv[0]);
3566	  memset (argBuf, 0, bufLen);
3567	  if (strcmp (argv[1], "Q") == 0)
3568	    sprintf (argBuf, "%s %s", argv[0], "noprint");
3569	  else
3570	    {
3571	      if (strcmp (argv[1], "s") == 0)
3572		{
3573		  if (!signal_stop[oursig])
3574		    sprintf (argBuf, "%s %s", argv[0], "stop");
3575		  else
3576		    sprintf (argBuf, "%s %s", argv[0], "nostop");
3577		}
3578	      else if (strcmp (argv[1], "i") == 0)
3579		{
3580		  if (!signal_program[oursig])
3581		    sprintf (argBuf, "%s %s", argv[0], "pass");
3582		  else
3583		    sprintf (argBuf, "%s %s", argv[0], "nopass");
3584		}
3585	      else if (strcmp (argv[1], "r") == 0)
3586		{
3587		  if (!signal_print[oursig])
3588		    sprintf (argBuf, "%s %s", argv[0], "print");
3589		  else
3590		    sprintf (argBuf, "%s %s", argv[0], "noprint");
3591		}
3592	      else
3593		validFlag = 0;
3594	    }
3595	  if (validFlag)
3596	    handle_command (argBuf, from_tty);
3597	  else
3598	    printf_filtered (_("Invalid signal handling flag.\n"));
3599	  if (argBuf)
3600	    xfree (argBuf);
3601	}
3602    }
3603  do_cleanups (old_chain);
3604}
3605
3606/* Print current contents of the tables set by the handle command.
3607   It is possible we should just be printing signals actually used
3608   by the current target (but for things to work right when switching
3609   targets, all signals should be in the signal tables).  */
3610
3611static void
3612signals_info (char *signum_exp, int from_tty)
3613{
3614  enum target_signal oursig;
3615  sig_print_header ();
3616
3617  if (signum_exp)
3618    {
3619      /* First see if this is a symbol name.  */
3620      oursig = target_signal_from_name (signum_exp);
3621      if (oursig == TARGET_SIGNAL_UNKNOWN)
3622	{
3623	  /* No, try numeric.  */
3624	  oursig =
3625	    target_signal_from_command (parse_and_eval_long (signum_exp));
3626	}
3627      sig_print_info (oursig);
3628      return;
3629    }
3630
3631  printf_filtered ("\n");
3632  /* These ugly casts brought to you by the native VAX compiler.  */
3633  for (oursig = TARGET_SIGNAL_FIRST;
3634       (int) oursig < (int) TARGET_SIGNAL_LAST;
3635       oursig = (enum target_signal) ((int) oursig + 1))
3636    {
3637      QUIT;
3638
3639      if (oursig != TARGET_SIGNAL_UNKNOWN
3640	  && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3641	sig_print_info (oursig);
3642    }
3643
3644  printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3645}
3646
3647struct inferior_status
3648{
3649  enum target_signal stop_signal;
3650  CORE_ADDR stop_pc;
3651  bpstat stop_bpstat;
3652  int stop_step;
3653  int stop_stack_dummy;
3654  int stopped_by_random_signal;
3655  int trap_expected;
3656  CORE_ADDR step_range_start;
3657  CORE_ADDR step_range_end;
3658  struct frame_id step_frame_id;
3659  enum step_over_calls_kind step_over_calls;
3660  CORE_ADDR step_resume_break_address;
3661  int stop_after_trap;
3662  int stop_soon;
3663
3664  /* These are here because if call_function_by_hand has written some
3665     registers and then decides to call error(), we better not have changed
3666     any registers.  */
3667  struct regcache *registers;
3668
3669  /* A frame unique identifier.  */
3670  struct frame_id selected_frame_id;
3671
3672  int breakpoint_proceeded;
3673  int restore_stack_info;
3674  int proceed_to_finish;
3675};
3676
3677void
3678write_inferior_status_register (struct inferior_status *inf_status, int regno,
3679				LONGEST val)
3680{
3681  int size = register_size (current_gdbarch, regno);
3682  void *buf = alloca (size);
3683  store_signed_integer (buf, size, val);
3684  regcache_raw_write (inf_status->registers, regno, buf);
3685}
3686
3687/* Save all of the information associated with the inferior<==>gdb
3688   connection.  INF_STATUS is a pointer to a "struct inferior_status"
3689   (defined in inferior.h).  */
3690
3691struct inferior_status *
3692save_inferior_status (int restore_stack_info)
3693{
3694  struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3695
3696  inf_status->stop_signal = stop_signal;
3697  inf_status->stop_pc = stop_pc;
3698  inf_status->stop_step = stop_step;
3699  inf_status->stop_stack_dummy = stop_stack_dummy;
3700  inf_status->stopped_by_random_signal = stopped_by_random_signal;
3701  inf_status->trap_expected = trap_expected;
3702  inf_status->step_range_start = step_range_start;
3703  inf_status->step_range_end = step_range_end;
3704  inf_status->step_frame_id = step_frame_id;
3705  inf_status->step_over_calls = step_over_calls;
3706  inf_status->stop_after_trap = stop_after_trap;
3707  inf_status->stop_soon = stop_soon;
3708  /* Save original bpstat chain here; replace it with copy of chain.
3709     If caller's caller is walking the chain, they'll be happier if we
3710     hand them back the original chain when restore_inferior_status is
3711     called.  */
3712  inf_status->stop_bpstat = stop_bpstat;
3713  stop_bpstat = bpstat_copy (stop_bpstat);
3714  inf_status->breakpoint_proceeded = breakpoint_proceeded;
3715  inf_status->restore_stack_info = restore_stack_info;
3716  inf_status->proceed_to_finish = proceed_to_finish;
3717
3718  inf_status->registers = regcache_dup (get_current_regcache ());
3719
3720  inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
3721  return inf_status;
3722}
3723
3724static int
3725restore_selected_frame (void *args)
3726{
3727  struct frame_id *fid = (struct frame_id *) args;
3728  struct frame_info *frame;
3729
3730  frame = frame_find_by_id (*fid);
3731
3732  /* If inf_status->selected_frame_id is NULL, there was no previously
3733     selected frame.  */
3734  if (frame == NULL)
3735    {
3736      warning (_("Unable to restore previously selected frame."));
3737      return 0;
3738    }
3739
3740  select_frame (frame);
3741
3742  return (1);
3743}
3744
3745void
3746restore_inferior_status (struct inferior_status *inf_status)
3747{
3748  stop_signal = inf_status->stop_signal;
3749  stop_pc = inf_status->stop_pc;
3750  stop_step = inf_status->stop_step;
3751  stop_stack_dummy = inf_status->stop_stack_dummy;
3752  stopped_by_random_signal = inf_status->stopped_by_random_signal;
3753  trap_expected = inf_status->trap_expected;
3754  step_range_start = inf_status->step_range_start;
3755  step_range_end = inf_status->step_range_end;
3756  step_frame_id = inf_status->step_frame_id;
3757  step_over_calls = inf_status->step_over_calls;
3758  stop_after_trap = inf_status->stop_after_trap;
3759  stop_soon = inf_status->stop_soon;
3760  bpstat_clear (&stop_bpstat);
3761  stop_bpstat = inf_status->stop_bpstat;
3762  breakpoint_proceeded = inf_status->breakpoint_proceeded;
3763  proceed_to_finish = inf_status->proceed_to_finish;
3764
3765  /* The inferior can be gone if the user types "print exit(0)"
3766     (and perhaps other times).  */
3767  if (target_has_execution)
3768    /* NB: The register write goes through to the target.  */
3769    regcache_cpy (get_current_regcache (), inf_status->registers);
3770  regcache_xfree (inf_status->registers);
3771
3772  /* FIXME: If we are being called after stopping in a function which
3773     is called from gdb, we should not be trying to restore the
3774     selected frame; it just prints a spurious error message (The
3775     message is useful, however, in detecting bugs in gdb (like if gdb
3776     clobbers the stack)).  In fact, should we be restoring the
3777     inferior status at all in that case?  .  */
3778
3779  if (target_has_stack && inf_status->restore_stack_info)
3780    {
3781      /* The point of catch_errors is that if the stack is clobbered,
3782         walking the stack might encounter a garbage pointer and
3783         error() trying to dereference it.  */
3784      if (catch_errors
3785	  (restore_selected_frame, &inf_status->selected_frame_id,
3786	   "Unable to restore previously selected frame:\n",
3787	   RETURN_MASK_ERROR) == 0)
3788	/* Error in restoring the selected frame.  Select the innermost
3789	   frame.  */
3790	select_frame (get_current_frame ());
3791
3792    }
3793
3794  xfree (inf_status);
3795}
3796
3797static void
3798do_restore_inferior_status_cleanup (void *sts)
3799{
3800  restore_inferior_status (sts);
3801}
3802
3803struct cleanup *
3804make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3805{
3806  return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3807}
3808
3809void
3810discard_inferior_status (struct inferior_status *inf_status)
3811{
3812  /* See save_inferior_status for info on stop_bpstat. */
3813  bpstat_clear (&inf_status->stop_bpstat);
3814  regcache_xfree (inf_status->registers);
3815  xfree (inf_status);
3816}
3817
3818int
3819inferior_has_forked (int pid, int *child_pid)
3820{
3821  struct target_waitstatus last;
3822  ptid_t last_ptid;
3823
3824  get_last_target_status (&last_ptid, &last);
3825
3826  if (last.kind != TARGET_WAITKIND_FORKED)
3827    return 0;
3828
3829  if (ptid_get_pid (last_ptid) != pid)
3830    return 0;
3831
3832  *child_pid = last.value.related_pid;
3833  return 1;
3834}
3835
3836int
3837inferior_has_vforked (int pid, int *child_pid)
3838{
3839  struct target_waitstatus last;
3840  ptid_t last_ptid;
3841
3842  get_last_target_status (&last_ptid, &last);
3843
3844  if (last.kind != TARGET_WAITKIND_VFORKED)
3845    return 0;
3846
3847  if (ptid_get_pid (last_ptid) != pid)
3848    return 0;
3849
3850  *child_pid = last.value.related_pid;
3851  return 1;
3852}
3853
3854int
3855inferior_has_execd (int pid, char **execd_pathname)
3856{
3857  struct target_waitstatus last;
3858  ptid_t last_ptid;
3859
3860  get_last_target_status (&last_ptid, &last);
3861
3862  if (last.kind != TARGET_WAITKIND_EXECD)
3863    return 0;
3864
3865  if (ptid_get_pid (last_ptid) != pid)
3866    return 0;
3867
3868  *execd_pathname = xstrdup (last.value.execd_pathname);
3869  return 1;
3870}
3871
3872/* Oft used ptids */
3873ptid_t null_ptid;
3874ptid_t minus_one_ptid;
3875
3876/* Create a ptid given the necessary PID, LWP, and TID components.  */
3877
3878ptid_t
3879ptid_build (int pid, long lwp, long tid)
3880{
3881  ptid_t ptid;
3882
3883  ptid.pid = pid;
3884  ptid.lwp = lwp;
3885  ptid.tid = tid;
3886  return ptid;
3887}
3888
3889/* Create a ptid from just a pid.  */
3890
3891ptid_t
3892pid_to_ptid (int pid)
3893{
3894  return ptid_build (pid, 0, 0);
3895}
3896
3897/* Fetch the pid (process id) component from a ptid.  */
3898
3899int
3900ptid_get_pid (ptid_t ptid)
3901{
3902  return ptid.pid;
3903}
3904
3905/* Fetch the lwp (lightweight process) component from a ptid.  */
3906
3907long
3908ptid_get_lwp (ptid_t ptid)
3909{
3910  return ptid.lwp;
3911}
3912
3913/* Fetch the tid (thread id) component from a ptid.  */
3914
3915long
3916ptid_get_tid (ptid_t ptid)
3917{
3918  return ptid.tid;
3919}
3920
3921/* ptid_equal() is used to test equality of two ptids.  */
3922
3923int
3924ptid_equal (ptid_t ptid1, ptid_t ptid2)
3925{
3926  return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3927	  && ptid1.tid == ptid2.tid);
3928}
3929
3930/* restore_inferior_ptid() will be used by the cleanup machinery
3931   to restore the inferior_ptid value saved in a call to
3932   save_inferior_ptid().  */
3933
3934static void
3935restore_inferior_ptid (void *arg)
3936{
3937  ptid_t *saved_ptid_ptr = arg;
3938  inferior_ptid = *saved_ptid_ptr;
3939  xfree (arg);
3940}
3941
3942/* Save the value of inferior_ptid so that it may be restored by a
3943   later call to do_cleanups().  Returns the struct cleanup pointer
3944   needed for later doing the cleanup.  */
3945
3946struct cleanup *
3947save_inferior_ptid (void)
3948{
3949  ptid_t *saved_ptid_ptr;
3950
3951  saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3952  *saved_ptid_ptr = inferior_ptid;
3953  return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3954}
3955
3956
3957void
3958_initialize_infrun (void)
3959{
3960  int i;
3961  int numsigs;
3962  struct cmd_list_element *c;
3963
3964  add_info ("signals", signals_info, _("\
3965What debugger does when program gets various signals.\n\
3966Specify a signal as argument to print info on that signal only."));
3967  add_info_alias ("handle", "signals", 0);
3968
3969  add_com ("handle", class_run, handle_command, _("\
3970Specify how to handle a signal.\n\
3971Args are signals and actions to apply to those signals.\n\
3972Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3973from 1-15 are allowed for compatibility with old versions of GDB.\n\
3974Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3975The special arg \"all\" is recognized to mean all signals except those\n\
3976used by the debugger, typically SIGTRAP and SIGINT.\n\
3977Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3978\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3979Stop means reenter debugger if this signal happens (implies print).\n\
3980Print means print a message if this signal happens.\n\
3981Pass means let program see this signal; otherwise program doesn't know.\n\
3982Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3983Pass and Stop may be combined."));
3984  if (xdb_commands)
3985    {
3986      add_com ("lz", class_info, signals_info, _("\
3987What debugger does when program gets various signals.\n\
3988Specify a signal as argument to print info on that signal only."));
3989      add_com ("z", class_run, xdb_handle_command, _("\
3990Specify how to handle a signal.\n\
3991Args are signals and actions to apply to those signals.\n\
3992Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3993from 1-15 are allowed for compatibility with old versions of GDB.\n\
3994Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3995The special arg \"all\" is recognized to mean all signals except those\n\
3996used by the debugger, typically SIGTRAP and SIGINT.\n\
3997Recognized actions include \"s\" (toggles between stop and nostop), \n\
3998\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3999nopass), \"Q\" (noprint)\n\
4000Stop means reenter debugger if this signal happens (implies print).\n\
4001Print means print a message if this signal happens.\n\
4002Pass means let program see this signal; otherwise program doesn't know.\n\
4003Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4004Pass and Stop may be combined."));
4005    }
4006
4007  if (!dbx_commands)
4008    stop_command = add_cmd ("stop", class_obscure,
4009			    not_just_help_class_command, _("\
4010There is no `stop' command, but you can set a hook on `stop'.\n\
4011This allows you to set a list of commands to be run each time execution\n\
4012of the program stops."), &cmdlist);
4013
4014  add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4015Set inferior debugging."), _("\
4016Show inferior debugging."), _("\
4017When non-zero, inferior specific debugging is enabled."),
4018			    NULL,
4019			    show_debug_infrun,
4020			    &setdebuglist, &showdebuglist);
4021
4022  numsigs = (int) TARGET_SIGNAL_LAST;
4023  signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4024  signal_print = (unsigned char *)
4025    xmalloc (sizeof (signal_print[0]) * numsigs);
4026  signal_program = (unsigned char *)
4027    xmalloc (sizeof (signal_program[0]) * numsigs);
4028  for (i = 0; i < numsigs; i++)
4029    {
4030      signal_stop[i] = 1;
4031      signal_print[i] = 1;
4032      signal_program[i] = 1;
4033    }
4034
4035  /* Signals caused by debugger's own actions
4036     should not be given to the program afterwards.  */
4037  signal_program[TARGET_SIGNAL_TRAP] = 0;
4038  signal_program[TARGET_SIGNAL_INT] = 0;
4039
4040  /* Signals that are not errors should not normally enter the debugger.  */
4041  signal_stop[TARGET_SIGNAL_ALRM] = 0;
4042  signal_print[TARGET_SIGNAL_ALRM] = 0;
4043  signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4044  signal_print[TARGET_SIGNAL_VTALRM] = 0;
4045  signal_stop[TARGET_SIGNAL_PROF] = 0;
4046  signal_print[TARGET_SIGNAL_PROF] = 0;
4047  signal_stop[TARGET_SIGNAL_CHLD] = 0;
4048  signal_print[TARGET_SIGNAL_CHLD] = 0;
4049  signal_stop[TARGET_SIGNAL_IO] = 0;
4050  signal_print[TARGET_SIGNAL_IO] = 0;
4051  signal_stop[TARGET_SIGNAL_POLL] = 0;
4052  signal_print[TARGET_SIGNAL_POLL] = 0;
4053  signal_stop[TARGET_SIGNAL_URG] = 0;
4054  signal_print[TARGET_SIGNAL_URG] = 0;
4055  signal_stop[TARGET_SIGNAL_WINCH] = 0;
4056  signal_print[TARGET_SIGNAL_WINCH] = 0;
4057
4058  /* These signals are used internally by user-level thread
4059     implementations.  (See signal(5) on Solaris.)  Like the above
4060     signals, a healthy program receives and handles them as part of
4061     its normal operation.  */
4062  signal_stop[TARGET_SIGNAL_LWP] = 0;
4063  signal_print[TARGET_SIGNAL_LWP] = 0;
4064  signal_stop[TARGET_SIGNAL_WAITING] = 0;
4065  signal_print[TARGET_SIGNAL_WAITING] = 0;
4066  signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4067  signal_print[TARGET_SIGNAL_CANCEL] = 0;
4068
4069  add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4070			    &stop_on_solib_events, _("\
4071Set stopping for shared library events."), _("\
4072Show stopping for shared library events."), _("\
4073If nonzero, gdb will give control to the user when the dynamic linker\n\
4074notifies gdb of shared library events.  The most common event of interest\n\
4075to the user would be loading/unloading of a new library."),
4076			    NULL,
4077			    show_stop_on_solib_events,
4078			    &setlist, &showlist);
4079
4080  add_setshow_enum_cmd ("follow-fork-mode", class_run,
4081			follow_fork_mode_kind_names,
4082			&follow_fork_mode_string, _("\
4083Set debugger response to a program call of fork or vfork."), _("\
4084Show debugger response to a program call of fork or vfork."), _("\
4085A fork or vfork creates a new process.  follow-fork-mode can be:\n\
4086  parent  - the original process is debugged after a fork\n\
4087  child   - the new process is debugged after a fork\n\
4088The unfollowed process will continue to run.\n\
4089By default, the debugger will follow the parent process."),
4090			NULL,
4091			show_follow_fork_mode_string,
4092			&setlist, &showlist);
4093
4094  add_setshow_enum_cmd ("scheduler-locking", class_run,
4095			scheduler_enums, &scheduler_mode, _("\
4096Set mode for locking scheduler during execution."), _("\
4097Show mode for locking scheduler during execution."), _("\
4098off  == no locking (threads may preempt at any time)\n\
4099on   == full locking (no thread except the current thread may run)\n\
4100step == scheduler locked during every single-step operation.\n\
4101	In this mode, no other thread may run during a step command.\n\
4102	Other threads may run while stepping over a function call ('next')."),
4103			set_schedlock_func,	/* traps on target vector */
4104			show_scheduler_mode,
4105			&setlist, &showlist);
4106
4107  add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4108Set mode of the step operation."), _("\
4109Show mode of the step operation."), _("\
4110When set, doing a step over a function without debug line information\n\
4111will stop at the first instruction of that function. Otherwise, the\n\
4112function is skipped and the step command stops at a different source line."),
4113			   NULL,
4114			   show_step_stop_if_no_debug,
4115			   &setlist, &showlist);
4116
4117  /* ptid initializations */
4118  null_ptid = ptid_build (0, 0, 0);
4119  minus_one_ptid = ptid_build (-1, 0, 0);
4120  inferior_ptid = null_ptid;
4121  target_last_wait_ptid = minus_one_ptid;
4122}
4123