1/* GDB-specific functions for operating on agent expressions.
2
3   Copyright (C) 1998, 1999, 2000, 2001, 2003, 2007
4   Free Software Foundation, Inc.
5
6   This file is part of GDB.
7
8   This program is free software; you can redistribute it and/or modify
9   it under the terms of the GNU General Public License as published by
10   the Free Software Foundation; either version 3 of the License, or
11   (at your option) any later version.
12
13   This program is distributed in the hope that it will be useful,
14   but WITHOUT ANY WARRANTY; without even the implied warranty of
15   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16   GNU General Public License for more details.
17
18   You should have received a copy of the GNU General Public License
19   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20
21#include "defs.h"
22#include "symtab.h"
23#include "symfile.h"
24#include "gdbtypes.h"
25#include "value.h"
26#include "expression.h"
27#include "command.h"
28#include "gdbcmd.h"
29#include "frame.h"
30#include "target.h"
31#include "ax.h"
32#include "ax-gdb.h"
33#include "gdb_string.h"
34#include "block.h"
35#include "regcache.h"
36
37/* To make sense of this file, you should read doc/agentexpr.texi.
38   Then look at the types and enums in ax-gdb.h.  For the code itself,
39   look at gen_expr, towards the bottom; that's the main function that
40   looks at the GDB expressions and calls everything else to generate
41   code.
42
43   I'm beginning to wonder whether it wouldn't be nicer to internally
44   generate trees, with types, and then spit out the bytecode in
45   linear form afterwards; we could generate fewer `swap', `ext', and
46   `zero_ext' bytecodes that way; it would make good constant folding
47   easier, too.  But at the moment, I think we should be willing to
48   pay for the simplicity of this code with less-than-optimal bytecode
49   strings.
50
51   Remember, "GBD" stands for "Great Britain, Dammit!"  So be careful.  */
52
53
54
55/* Prototypes for local functions. */
56
57/* There's a standard order to the arguments of these functions:
58   union exp_element ** --- pointer into expression
59   struct agent_expr * --- agent expression buffer to generate code into
60   struct axs_value * --- describes value left on top of stack  */
61
62static struct value *const_var_ref (struct symbol *var);
63static struct value *const_expr (union exp_element **pc);
64static struct value *maybe_const_expr (union exp_element **pc);
65
66static void gen_traced_pop (struct agent_expr *, struct axs_value *);
67
68static void gen_sign_extend (struct agent_expr *, struct type *);
69static void gen_extend (struct agent_expr *, struct type *);
70static void gen_fetch (struct agent_expr *, struct type *);
71static void gen_left_shift (struct agent_expr *, int);
72
73
74static void gen_frame_args_address (struct agent_expr *);
75static void gen_frame_locals_address (struct agent_expr *);
76static void gen_offset (struct agent_expr *ax, int offset);
77static void gen_sym_offset (struct agent_expr *, struct symbol *);
78static void gen_var_ref (struct agent_expr *ax,
79			 struct axs_value *value, struct symbol *var);
80
81
82static void gen_int_literal (struct agent_expr *ax,
83			     struct axs_value *value,
84			     LONGEST k, struct type *type);
85
86
87static void require_rvalue (struct agent_expr *ax, struct axs_value *value);
88static void gen_usual_unary (struct agent_expr *ax, struct axs_value *value);
89static int type_wider_than (struct type *type1, struct type *type2);
90static struct type *max_type (struct type *type1, struct type *type2);
91static void gen_conversion (struct agent_expr *ax,
92			    struct type *from, struct type *to);
93static int is_nontrivial_conversion (struct type *from, struct type *to);
94static void gen_usual_arithmetic (struct agent_expr *ax,
95				  struct axs_value *value1,
96				  struct axs_value *value2);
97static void gen_integral_promotions (struct agent_expr *ax,
98				     struct axs_value *value);
99static void gen_cast (struct agent_expr *ax,
100		      struct axs_value *value, struct type *type);
101static void gen_scale (struct agent_expr *ax,
102		       enum agent_op op, struct type *type);
103static void gen_add (struct agent_expr *ax,
104		     struct axs_value *value,
105		     struct axs_value *value1,
106		     struct axs_value *value2, char *name);
107static void gen_sub (struct agent_expr *ax,
108		     struct axs_value *value,
109		     struct axs_value *value1, struct axs_value *value2);
110static void gen_binop (struct agent_expr *ax,
111		       struct axs_value *value,
112		       struct axs_value *value1,
113		       struct axs_value *value2,
114		       enum agent_op op,
115		       enum agent_op op_unsigned, int may_carry, char *name);
116static void gen_logical_not (struct agent_expr *ax, struct axs_value *value);
117static void gen_complement (struct agent_expr *ax, struct axs_value *value);
118static void gen_deref (struct agent_expr *, struct axs_value *);
119static void gen_address_of (struct agent_expr *, struct axs_value *);
120static int find_field (struct type *type, char *name);
121static void gen_bitfield_ref (struct agent_expr *ax,
122			      struct axs_value *value,
123			      struct type *type, int start, int end);
124static void gen_struct_ref (struct agent_expr *ax,
125			    struct axs_value *value,
126			    char *field,
127			    char *operator_name, char *operand_name);
128static void gen_repeat (union exp_element **pc,
129			struct agent_expr *ax, struct axs_value *value);
130static void gen_sizeof (union exp_element **pc,
131			struct agent_expr *ax, struct axs_value *value);
132static void gen_expr (union exp_element **pc,
133		      struct agent_expr *ax, struct axs_value *value);
134
135static void agent_command (char *exp, int from_tty);
136
137
138/* Detecting constant expressions.  */
139
140/* If the variable reference at *PC is a constant, return its value.
141   Otherwise, return zero.
142
143   Hey, Wally!  How can a variable reference be a constant?
144
145   Well, Beav, this function really handles the OP_VAR_VALUE operator,
146   not specifically variable references.  GDB uses OP_VAR_VALUE to
147   refer to any kind of symbolic reference: function names, enum
148   elements, and goto labels are all handled through the OP_VAR_VALUE
149   operator, even though they're constants.  It makes sense given the
150   situation.
151
152   Gee, Wally, don'cha wonder sometimes if data representations that
153   subvert commonly accepted definitions of terms in favor of heavily
154   context-specific interpretations are really just a tool of the
155   programming hegemony to preserve their power and exclude the
156   proletariat?  */
157
158static struct value *
159const_var_ref (struct symbol *var)
160{
161  struct type *type = SYMBOL_TYPE (var);
162
163  switch (SYMBOL_CLASS (var))
164    {
165    case LOC_CONST:
166      return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
167
168    case LOC_LABEL:
169      return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var));
170
171    default:
172      return 0;
173    }
174}
175
176
177/* If the expression starting at *PC has a constant value, return it.
178   Otherwise, return zero.  If we return a value, then *PC will be
179   advanced to the end of it.  If we return zero, *PC could be
180   anywhere.  */
181static struct value *
182const_expr (union exp_element **pc)
183{
184  enum exp_opcode op = (*pc)->opcode;
185  struct value *v1;
186
187  switch (op)
188    {
189    case OP_LONG:
190      {
191	struct type *type = (*pc)[1].type;
192	LONGEST k = (*pc)[2].longconst;
193	(*pc) += 4;
194	return value_from_longest (type, k);
195      }
196
197    case OP_VAR_VALUE:
198      {
199	struct value *v = const_var_ref ((*pc)[2].symbol);
200	(*pc) += 4;
201	return v;
202      }
203
204      /* We could add more operators in here.  */
205
206    case UNOP_NEG:
207      (*pc)++;
208      v1 = const_expr (pc);
209      if (v1)
210	return value_neg (v1);
211      else
212	return 0;
213
214    default:
215      return 0;
216    }
217}
218
219
220/* Like const_expr, but guarantee also that *PC is undisturbed if the
221   expression is not constant.  */
222static struct value *
223maybe_const_expr (union exp_element **pc)
224{
225  union exp_element *tentative_pc = *pc;
226  struct value *v = const_expr (&tentative_pc);
227
228  /* If we got a value, then update the real PC.  */
229  if (v)
230    *pc = tentative_pc;
231
232  return v;
233}
234
235
236/* Generating bytecode from GDB expressions: general assumptions */
237
238/* Here are a few general assumptions made throughout the code; if you
239   want to make a change that contradicts one of these, then you'd
240   better scan things pretty thoroughly.
241
242   - We assume that all values occupy one stack element.  For example,
243   sometimes we'll swap to get at the left argument to a binary
244   operator.  If we decide that void values should occupy no stack
245   elements, or that synthetic arrays (whose size is determined at
246   run time, created by the `@' operator) should occupy two stack
247   elements (address and length), then this will cause trouble.
248
249   - We assume the stack elements are infinitely wide, and that we
250   don't have to worry what happens if the user requests an
251   operation that is wider than the actual interpreter's stack.
252   That is, it's up to the interpreter to handle directly all the
253   integer widths the user has access to.  (Woe betide the language
254   with bignums!)
255
256   - We don't support side effects.  Thus, we don't have to worry about
257   GCC's generalized lvalues, function calls, etc.
258
259   - We don't support floating point.  Many places where we switch on
260   some type don't bother to include cases for floating point; there
261   may be even more subtle ways this assumption exists.  For
262   example, the arguments to % must be integers.
263
264   - We assume all subexpressions have a static, unchanging type.  If
265   we tried to support convenience variables, this would be a
266   problem.
267
268   - All values on the stack should always be fully zero- or
269   sign-extended.
270
271   (I wasn't sure whether to choose this or its opposite --- that
272   only addresses are assumed extended --- but it turns out that
273   neither convention completely eliminates spurious extend
274   operations (if everything is always extended, then you have to
275   extend after add, because it could overflow; if nothing is
276   extended, then you end up producing extends whenever you change
277   sizes), and this is simpler.)  */
278
279
280/* Generating bytecode from GDB expressions: the `trace' kludge  */
281
282/* The compiler in this file is a general-purpose mechanism for
283   translating GDB expressions into bytecode.  One ought to be able to
284   find a million and one uses for it.
285
286   However, at the moment it is HOPELESSLY BRAIN-DAMAGED for the sake
287   of expediency.  Let he who is without sin cast the first stone.
288
289   For the data tracing facility, we need to insert `trace' bytecodes
290   before each data fetch; this records all the memory that the
291   expression touches in the course of evaluation, so that memory will
292   be available when the user later tries to evaluate the expression
293   in GDB.
294
295   This should be done (I think) in a post-processing pass, that walks
296   an arbitrary agent expression and inserts `trace' operations at the
297   appropriate points.  But it's much faster to just hack them
298   directly into the code.  And since we're in a crunch, that's what
299   I've done.
300
301   Setting the flag trace_kludge to non-zero enables the code that
302   emits the trace bytecodes at the appropriate points.  */
303static int trace_kludge;
304
305/* Trace the lvalue on the stack, if it needs it.  In either case, pop
306   the value.  Useful on the left side of a comma, and at the end of
307   an expression being used for tracing.  */
308static void
309gen_traced_pop (struct agent_expr *ax, struct axs_value *value)
310{
311  if (trace_kludge)
312    switch (value->kind)
313      {
314      case axs_rvalue:
315	/* We don't trace rvalues, just the lvalues necessary to
316	   produce them.  So just dispose of this value.  */
317	ax_simple (ax, aop_pop);
318	break;
319
320      case axs_lvalue_memory:
321	{
322	  int length = TYPE_LENGTH (value->type);
323
324	  /* There's no point in trying to use a trace_quick bytecode
325	     here, since "trace_quick SIZE pop" is three bytes, whereas
326	     "const8 SIZE trace" is also three bytes, does the same
327	     thing, and the simplest code which generates that will also
328	     work correctly for objects with large sizes.  */
329	  ax_const_l (ax, length);
330	  ax_simple (ax, aop_trace);
331	}
332	break;
333
334      case axs_lvalue_register:
335	/* We need to mention the register somewhere in the bytecode,
336	   so ax_reqs will pick it up and add it to the mask of
337	   registers used.  */
338	ax_reg (ax, value->u.reg);
339	ax_simple (ax, aop_pop);
340	break;
341      }
342  else
343    /* If we're not tracing, just pop the value.  */
344    ax_simple (ax, aop_pop);
345}
346
347
348
349/* Generating bytecode from GDB expressions: helper functions */
350
351/* Assume that the lower bits of the top of the stack is a value of
352   type TYPE, and the upper bits are zero.  Sign-extend if necessary.  */
353static void
354gen_sign_extend (struct agent_expr *ax, struct type *type)
355{
356  /* Do we need to sign-extend this?  */
357  if (!TYPE_UNSIGNED (type))
358    ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT);
359}
360
361
362/* Assume the lower bits of the top of the stack hold a value of type
363   TYPE, and the upper bits are garbage.  Sign-extend or truncate as
364   needed.  */
365static void
366gen_extend (struct agent_expr *ax, struct type *type)
367{
368  int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
369  /* I just had to.  */
370  ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
371}
372
373
374/* Assume that the top of the stack contains a value of type "pointer
375   to TYPE"; generate code to fetch its value.  Note that TYPE is the
376   target type, not the pointer type.  */
377static void
378gen_fetch (struct agent_expr *ax, struct type *type)
379{
380  if (trace_kludge)
381    {
382      /* Record the area of memory we're about to fetch.  */
383      ax_trace_quick (ax, TYPE_LENGTH (type));
384    }
385
386  switch (TYPE_CODE (type))
387    {
388    case TYPE_CODE_PTR:
389    case TYPE_CODE_ENUM:
390    case TYPE_CODE_INT:
391    case TYPE_CODE_CHAR:
392      /* It's a scalar value, so we know how to dereference it.  How
393         many bytes long is it?  */
394      switch (TYPE_LENGTH (type))
395	{
396	case 8 / TARGET_CHAR_BIT:
397	  ax_simple (ax, aop_ref8);
398	  break;
399	case 16 / TARGET_CHAR_BIT:
400	  ax_simple (ax, aop_ref16);
401	  break;
402	case 32 / TARGET_CHAR_BIT:
403	  ax_simple (ax, aop_ref32);
404	  break;
405	case 64 / TARGET_CHAR_BIT:
406	  ax_simple (ax, aop_ref64);
407	  break;
408
409	  /* Either our caller shouldn't have asked us to dereference
410	     that pointer (other code's fault), or we're not
411	     implementing something we should be (this code's fault).
412	     In any case, it's a bug the user shouldn't see.  */
413	default:
414	  internal_error (__FILE__, __LINE__,
415			  _("gen_fetch: strange size"));
416	}
417
418      gen_sign_extend (ax, type);
419      break;
420
421    default:
422      /* Either our caller shouldn't have asked us to dereference that
423         pointer (other code's fault), or we're not implementing
424         something we should be (this code's fault).  In any case,
425         it's a bug the user shouldn't see.  */
426      internal_error (__FILE__, __LINE__,
427		      _("gen_fetch: bad type code"));
428    }
429}
430
431
432/* Generate code to left shift the top of the stack by DISTANCE bits, or
433   right shift it by -DISTANCE bits if DISTANCE < 0.  This generates
434   unsigned (logical) right shifts.  */
435static void
436gen_left_shift (struct agent_expr *ax, int distance)
437{
438  if (distance > 0)
439    {
440      ax_const_l (ax, distance);
441      ax_simple (ax, aop_lsh);
442    }
443  else if (distance < 0)
444    {
445      ax_const_l (ax, -distance);
446      ax_simple (ax, aop_rsh_unsigned);
447    }
448}
449
450
451
452/* Generating bytecode from GDB expressions: symbol references */
453
454/* Generate code to push the base address of the argument portion of
455   the top stack frame.  */
456static void
457gen_frame_args_address (struct agent_expr *ax)
458{
459  int frame_reg;
460  LONGEST frame_offset;
461
462  gdbarch_virtual_frame_pointer (current_gdbarch,
463				 ax->scope, &frame_reg, &frame_offset);
464  ax_reg (ax, frame_reg);
465  gen_offset (ax, frame_offset);
466}
467
468
469/* Generate code to push the base address of the locals portion of the
470   top stack frame.  */
471static void
472gen_frame_locals_address (struct agent_expr *ax)
473{
474  int frame_reg;
475  LONGEST frame_offset;
476
477  gdbarch_virtual_frame_pointer (current_gdbarch,
478				 ax->scope, &frame_reg, &frame_offset);
479  ax_reg (ax, frame_reg);
480  gen_offset (ax, frame_offset);
481}
482
483
484/* Generate code to add OFFSET to the top of the stack.  Try to
485   generate short and readable code.  We use this for getting to
486   variables on the stack, and structure members.  If we were
487   programming in ML, it would be clearer why these are the same
488   thing.  */
489static void
490gen_offset (struct agent_expr *ax, int offset)
491{
492  /* It would suffice to simply push the offset and add it, but this
493     makes it easier to read positive and negative offsets in the
494     bytecode.  */
495  if (offset > 0)
496    {
497      ax_const_l (ax, offset);
498      ax_simple (ax, aop_add);
499    }
500  else if (offset < 0)
501    {
502      ax_const_l (ax, -offset);
503      ax_simple (ax, aop_sub);
504    }
505}
506
507
508/* In many cases, a symbol's value is the offset from some other
509   address (stack frame, base register, etc.)  Generate code to add
510   VAR's value to the top of the stack.  */
511static void
512gen_sym_offset (struct agent_expr *ax, struct symbol *var)
513{
514  gen_offset (ax, SYMBOL_VALUE (var));
515}
516
517
518/* Generate code for a variable reference to AX.  The variable is the
519   symbol VAR.  Set VALUE to describe the result.  */
520
521static void
522gen_var_ref (struct agent_expr *ax, struct axs_value *value, struct symbol *var)
523{
524  /* Dereference any typedefs. */
525  value->type = check_typedef (SYMBOL_TYPE (var));
526
527  /* I'm imitating the code in read_var_value.  */
528  switch (SYMBOL_CLASS (var))
529    {
530    case LOC_CONST:		/* A constant, like an enum value.  */
531      ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
532      value->kind = axs_rvalue;
533      break;
534
535    case LOC_LABEL:		/* A goto label, being used as a value.  */
536      ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
537      value->kind = axs_rvalue;
538      break;
539
540    case LOC_CONST_BYTES:
541      internal_error (__FILE__, __LINE__,
542		      _("gen_var_ref: LOC_CONST_BYTES symbols are not supported"));
543
544      /* Variable at a fixed location in memory.  Easy.  */
545    case LOC_STATIC:
546      /* Push the address of the variable.  */
547      ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
548      value->kind = axs_lvalue_memory;
549      break;
550
551    case LOC_ARG:		/* var lives in argument area of frame */
552      gen_frame_args_address (ax);
553      gen_sym_offset (ax, var);
554      value->kind = axs_lvalue_memory;
555      break;
556
557    case LOC_REF_ARG:		/* As above, but the frame slot really
558				   holds the address of the variable.  */
559      gen_frame_args_address (ax);
560      gen_sym_offset (ax, var);
561      /* Don't assume any particular pointer size.  */
562      gen_fetch (ax, lookup_pointer_type (builtin_type_void));
563      value->kind = axs_lvalue_memory;
564      break;
565
566    case LOC_LOCAL:		/* var lives in locals area of frame */
567    case LOC_LOCAL_ARG:
568      gen_frame_locals_address (ax);
569      gen_sym_offset (ax, var);
570      value->kind = axs_lvalue_memory;
571      break;
572
573    case LOC_BASEREG:		/* relative to some base register */
574    case LOC_BASEREG_ARG:
575      ax_reg (ax, SYMBOL_BASEREG (var));
576      gen_sym_offset (ax, var);
577      value->kind = axs_lvalue_memory;
578      break;
579
580    case LOC_TYPEDEF:
581      error (_("Cannot compute value of typedef `%s'."),
582	     SYMBOL_PRINT_NAME (var));
583      break;
584
585    case LOC_BLOCK:
586      ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var)));
587      value->kind = axs_rvalue;
588      break;
589
590    case LOC_REGISTER:
591    case LOC_REGPARM:
592      /* Don't generate any code at all; in the process of treating
593         this as an lvalue or rvalue, the caller will generate the
594         right code.  */
595      value->kind = axs_lvalue_register;
596      value->u.reg = SYMBOL_VALUE (var);
597      break;
598
599      /* A lot like LOC_REF_ARG, but the pointer lives directly in a
600         register, not on the stack.  Simpler than LOC_REGISTER and
601         LOC_REGPARM, because it's just like any other case where the
602         thing has a real address.  */
603    case LOC_REGPARM_ADDR:
604      ax_reg (ax, SYMBOL_VALUE (var));
605      value->kind = axs_lvalue_memory;
606      break;
607
608    case LOC_UNRESOLVED:
609      {
610	struct minimal_symbol *msym
611	= lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (var), NULL, NULL);
612	if (!msym)
613	  error (_("Couldn't resolve symbol `%s'."), SYMBOL_PRINT_NAME (var));
614
615	/* Push the address of the variable.  */
616	ax_const_l (ax, SYMBOL_VALUE_ADDRESS (msym));
617	value->kind = axs_lvalue_memory;
618      }
619      break;
620
621    case LOC_COMPUTED:
622    case LOC_COMPUTED_ARG:
623      /* FIXME: cagney/2004-01-26: It should be possible to
624	 unconditionally call the SYMBOL_OPS method when available.
625	 Unfortunately DWARF 2 stores the frame-base (instead of the
626	 function) location in a function's symbol.  Oops!  For the
627	 moment enable this when/where applicable.  */
628      SYMBOL_OPS (var)->tracepoint_var_ref (var, ax, value);
629      break;
630
631    case LOC_OPTIMIZED_OUT:
632      error (_("The variable `%s' has been optimized out."),
633	     SYMBOL_PRINT_NAME (var));
634      break;
635
636    default:
637      error (_("Cannot find value of botched symbol `%s'."),
638	     SYMBOL_PRINT_NAME (var));
639      break;
640    }
641}
642
643
644
645/* Generating bytecode from GDB expressions: literals */
646
647static void
648gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k,
649		 struct type *type)
650{
651  ax_const_l (ax, k);
652  value->kind = axs_rvalue;
653  value->type = type;
654}
655
656
657
658/* Generating bytecode from GDB expressions: unary conversions, casts */
659
660/* Take what's on the top of the stack (as described by VALUE), and
661   try to make an rvalue out of it.  Signal an error if we can't do
662   that.  */
663static void
664require_rvalue (struct agent_expr *ax, struct axs_value *value)
665{
666  switch (value->kind)
667    {
668    case axs_rvalue:
669      /* It's already an rvalue.  */
670      break;
671
672    case axs_lvalue_memory:
673      /* The top of stack is the address of the object.  Dereference.  */
674      gen_fetch (ax, value->type);
675      break;
676
677    case axs_lvalue_register:
678      /* There's nothing on the stack, but value->u.reg is the
679         register number containing the value.
680
681         When we add floating-point support, this is going to have to
682         change.  What about SPARC register pairs, for example?  */
683      ax_reg (ax, value->u.reg);
684      gen_extend (ax, value->type);
685      break;
686    }
687
688  value->kind = axs_rvalue;
689}
690
691
692/* Assume the top of the stack is described by VALUE, and perform the
693   usual unary conversions.  This is motivated by ANSI 6.2.2, but of
694   course GDB expressions are not ANSI; they're the mishmash union of
695   a bunch of languages.  Rah.
696
697   NOTE!  This function promises to produce an rvalue only when the
698   incoming value is of an appropriate type.  In other words, the
699   consumer of the value this function produces may assume the value
700   is an rvalue only after checking its type.
701
702   The immediate issue is that if the user tries to use a structure or
703   union as an operand of, say, the `+' operator, we don't want to try
704   to convert that structure to an rvalue; require_rvalue will bomb on
705   structs and unions.  Rather, we want to simply pass the struct
706   lvalue through unchanged, and let `+' raise an error.  */
707
708static void
709gen_usual_unary (struct agent_expr *ax, struct axs_value *value)
710{
711  /* We don't have to generate any code for the usual integral
712     conversions, since values are always represented as full-width on
713     the stack.  Should we tweak the type?  */
714
715  /* Some types require special handling.  */
716  switch (TYPE_CODE (value->type))
717    {
718      /* Functions get converted to a pointer to the function.  */
719    case TYPE_CODE_FUNC:
720      value->type = lookup_pointer_type (value->type);
721      value->kind = axs_rvalue;	/* Should always be true, but just in case.  */
722      break;
723
724      /* Arrays get converted to a pointer to their first element, and
725         are no longer an lvalue.  */
726    case TYPE_CODE_ARRAY:
727      {
728	struct type *elements = TYPE_TARGET_TYPE (value->type);
729	value->type = lookup_pointer_type (elements);
730	value->kind = axs_rvalue;
731	/* We don't need to generate any code; the address of the array
732	   is also the address of its first element.  */
733      }
734      break;
735
736      /* Don't try to convert structures and unions to rvalues.  Let the
737         consumer signal an error.  */
738    case TYPE_CODE_STRUCT:
739    case TYPE_CODE_UNION:
740      return;
741
742      /* If the value is an enum, call it an integer.  */
743    case TYPE_CODE_ENUM:
744      value->type = builtin_type_int;
745      break;
746    }
747
748  /* If the value is an lvalue, dereference it.  */
749  require_rvalue (ax, value);
750}
751
752
753/* Return non-zero iff the type TYPE1 is considered "wider" than the
754   type TYPE2, according to the rules described in gen_usual_arithmetic.  */
755static int
756type_wider_than (struct type *type1, struct type *type2)
757{
758  return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
759	  || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
760	      && TYPE_UNSIGNED (type1)
761	      && !TYPE_UNSIGNED (type2)));
762}
763
764
765/* Return the "wider" of the two types TYPE1 and TYPE2.  */
766static struct type *
767max_type (struct type *type1, struct type *type2)
768{
769  return type_wider_than (type1, type2) ? type1 : type2;
770}
771
772
773/* Generate code to convert a scalar value of type FROM to type TO.  */
774static void
775gen_conversion (struct agent_expr *ax, struct type *from, struct type *to)
776{
777  /* Perhaps there is a more graceful way to state these rules.  */
778
779  /* If we're converting to a narrower type, then we need to clear out
780     the upper bits.  */
781  if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
782    gen_extend (ax, from);
783
784  /* If the two values have equal width, but different signednesses,
785     then we need to extend.  */
786  else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
787    {
788      if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
789	gen_extend (ax, to);
790    }
791
792  /* If we're converting to a wider type, and becoming unsigned, then
793     we need to zero out any possible sign bits.  */
794  else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
795    {
796      if (TYPE_UNSIGNED (to))
797	gen_extend (ax, to);
798    }
799}
800
801
802/* Return non-zero iff the type FROM will require any bytecodes to be
803   emitted to be converted to the type TO.  */
804static int
805is_nontrivial_conversion (struct type *from, struct type *to)
806{
807  struct agent_expr *ax = new_agent_expr (0);
808  int nontrivial;
809
810  /* Actually generate the code, and see if anything came out.  At the
811     moment, it would be trivial to replicate the code in
812     gen_conversion here, but in the future, when we're supporting
813     floating point and the like, it may not be.  Doing things this
814     way allows this function to be independent of the logic in
815     gen_conversion.  */
816  gen_conversion (ax, from, to);
817  nontrivial = ax->len > 0;
818  free_agent_expr (ax);
819  return nontrivial;
820}
821
822
823/* Generate code to perform the "usual arithmetic conversions" (ANSI C
824   6.2.1.5) for the two operands of an arithmetic operator.  This
825   effectively finds a "least upper bound" type for the two arguments,
826   and promotes each argument to that type.  *VALUE1 and *VALUE2
827   describe the values as they are passed in, and as they are left.  */
828static void
829gen_usual_arithmetic (struct agent_expr *ax, struct axs_value *value1,
830		      struct axs_value *value2)
831{
832  /* Do the usual binary conversions.  */
833  if (TYPE_CODE (value1->type) == TYPE_CODE_INT
834      && TYPE_CODE (value2->type) == TYPE_CODE_INT)
835    {
836      /* The ANSI integral promotions seem to work this way: Order the
837         integer types by size, and then by signedness: an n-bit
838         unsigned type is considered "wider" than an n-bit signed
839         type.  Promote to the "wider" of the two types, and always
840         promote at least to int.  */
841      struct type *target = max_type (builtin_type_int,
842				      max_type (value1->type, value2->type));
843
844      /* Deal with value2, on the top of the stack.  */
845      gen_conversion (ax, value2->type, target);
846
847      /* Deal with value1, not on the top of the stack.  Don't
848         generate the `swap' instructions if we're not actually going
849         to do anything.  */
850      if (is_nontrivial_conversion (value1->type, target))
851	{
852	  ax_simple (ax, aop_swap);
853	  gen_conversion (ax, value1->type, target);
854	  ax_simple (ax, aop_swap);
855	}
856
857      value1->type = value2->type = target;
858    }
859}
860
861
862/* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
863   the value on the top of the stack, as described by VALUE.  Assume
864   the value has integral type.  */
865static void
866gen_integral_promotions (struct agent_expr *ax, struct axs_value *value)
867{
868  if (!type_wider_than (value->type, builtin_type_int))
869    {
870      gen_conversion (ax, value->type, builtin_type_int);
871      value->type = builtin_type_int;
872    }
873  else if (!type_wider_than (value->type, builtin_type_unsigned_int))
874    {
875      gen_conversion (ax, value->type, builtin_type_unsigned_int);
876      value->type = builtin_type_unsigned_int;
877    }
878}
879
880
881/* Generate code for a cast to TYPE.  */
882static void
883gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type)
884{
885  /* GCC does allow casts to yield lvalues, so this should be fixed
886     before merging these changes into the trunk.  */
887  require_rvalue (ax, value);
888  /* Dereference typedefs. */
889  type = check_typedef (type);
890
891  switch (TYPE_CODE (type))
892    {
893    case TYPE_CODE_PTR:
894      /* It's implementation-defined, and I'll bet this is what GCC
895         does.  */
896      break;
897
898    case TYPE_CODE_ARRAY:
899    case TYPE_CODE_STRUCT:
900    case TYPE_CODE_UNION:
901    case TYPE_CODE_FUNC:
902      error (_("Invalid type cast: intended type must be scalar."));
903
904    case TYPE_CODE_ENUM:
905      /* We don't have to worry about the size of the value, because
906         all our integral values are fully sign-extended, and when
907         casting pointers we can do anything we like.  Is there any
908         way for us to actually know what GCC actually does with a
909         cast like this?  */
910      value->type = type;
911      break;
912
913    case TYPE_CODE_INT:
914      gen_conversion (ax, value->type, type);
915      break;
916
917    case TYPE_CODE_VOID:
918      /* We could pop the value, and rely on everyone else to check
919         the type and notice that this value doesn't occupy a stack
920         slot.  But for now, leave the value on the stack, and
921         preserve the "value == stack element" assumption.  */
922      break;
923
924    default:
925      error (_("Casts to requested type are not yet implemented."));
926    }
927
928  value->type = type;
929}
930
931
932
933/* Generating bytecode from GDB expressions: arithmetic */
934
935/* Scale the integer on the top of the stack by the size of the target
936   of the pointer type TYPE.  */
937static void
938gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type)
939{
940  struct type *element = TYPE_TARGET_TYPE (type);
941
942  if (TYPE_LENGTH (element) != 1)
943    {
944      ax_const_l (ax, TYPE_LENGTH (element));
945      ax_simple (ax, op);
946    }
947}
948
949
950/* Generate code for an addition; non-trivial because we deal with
951   pointer arithmetic.  We set VALUE to describe the result value; we
952   assume VALUE1 and VALUE2 describe the two operands, and that
953   they've undergone the usual binary conversions.  Used by both
954   BINOP_ADD and BINOP_SUBSCRIPT.  NAME is used in error messages.  */
955static void
956gen_add (struct agent_expr *ax, struct axs_value *value,
957	 struct axs_value *value1, struct axs_value *value2, char *name)
958{
959  /* Is it INT+PTR?  */
960  if (TYPE_CODE (value1->type) == TYPE_CODE_INT
961      && TYPE_CODE (value2->type) == TYPE_CODE_PTR)
962    {
963      /* Swap the values and proceed normally.  */
964      ax_simple (ax, aop_swap);
965      gen_scale (ax, aop_mul, value2->type);
966      ax_simple (ax, aop_add);
967      gen_extend (ax, value2->type);	/* Catch overflow.  */
968      value->type = value2->type;
969    }
970
971  /* Is it PTR+INT?  */
972  else if (TYPE_CODE (value1->type) == TYPE_CODE_PTR
973	   && TYPE_CODE (value2->type) == TYPE_CODE_INT)
974    {
975      gen_scale (ax, aop_mul, value1->type);
976      ax_simple (ax, aop_add);
977      gen_extend (ax, value1->type);	/* Catch overflow.  */
978      value->type = value1->type;
979    }
980
981  /* Must be number + number; the usual binary conversions will have
982     brought them both to the same width.  */
983  else if (TYPE_CODE (value1->type) == TYPE_CODE_INT
984	   && TYPE_CODE (value2->type) == TYPE_CODE_INT)
985    {
986      ax_simple (ax, aop_add);
987      gen_extend (ax, value1->type);	/* Catch overflow.  */
988      value->type = value1->type;
989    }
990
991  else
992    error (_("Invalid combination of types in %s."), name);
993
994  value->kind = axs_rvalue;
995}
996
997
998/* Generate code for an addition; non-trivial because we have to deal
999   with pointer arithmetic.  We set VALUE to describe the result
1000   value; we assume VALUE1 and VALUE2 describe the two operands, and
1001   that they've undergone the usual binary conversions.  */
1002static void
1003gen_sub (struct agent_expr *ax, struct axs_value *value,
1004	 struct axs_value *value1, struct axs_value *value2)
1005{
1006  if (TYPE_CODE (value1->type) == TYPE_CODE_PTR)
1007    {
1008      /* Is it PTR - INT?  */
1009      if (TYPE_CODE (value2->type) == TYPE_CODE_INT)
1010	{
1011	  gen_scale (ax, aop_mul, value1->type);
1012	  ax_simple (ax, aop_sub);
1013	  gen_extend (ax, value1->type);	/* Catch overflow.  */
1014	  value->type = value1->type;
1015	}
1016
1017      /* Is it PTR - PTR?  Strictly speaking, the types ought to
1018         match, but this is what the normal GDB expression evaluator
1019         tests for.  */
1020      else if (TYPE_CODE (value2->type) == TYPE_CODE_PTR
1021	       && (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
1022		   == TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type))))
1023	{
1024	  ax_simple (ax, aop_sub);
1025	  gen_scale (ax, aop_div_unsigned, value1->type);
1026	  value->type = builtin_type_long;	/* FIXME --- should be ptrdiff_t */
1027	}
1028      else
1029	error (_("\
1030First argument of `-' is a pointer, but second argument is neither\n\
1031an integer nor a pointer of the same type."));
1032    }
1033
1034  /* Must be number + number.  */
1035  else if (TYPE_CODE (value1->type) == TYPE_CODE_INT
1036	   && TYPE_CODE (value2->type) == TYPE_CODE_INT)
1037    {
1038      ax_simple (ax, aop_sub);
1039      gen_extend (ax, value1->type);	/* Catch overflow.  */
1040      value->type = value1->type;
1041    }
1042
1043  else
1044    error (_("Invalid combination of types in subtraction."));
1045
1046  value->kind = axs_rvalue;
1047}
1048
1049/* Generate code for a binary operator that doesn't do pointer magic.
1050   We set VALUE to describe the result value; we assume VALUE1 and
1051   VALUE2 describe the two operands, and that they've undergone the
1052   usual binary conversions.  MAY_CARRY should be non-zero iff the
1053   result needs to be extended.  NAME is the English name of the
1054   operator, used in error messages */
1055static void
1056gen_binop (struct agent_expr *ax, struct axs_value *value,
1057	   struct axs_value *value1, struct axs_value *value2, enum agent_op op,
1058	   enum agent_op op_unsigned, int may_carry, char *name)
1059{
1060  /* We only handle INT op INT.  */
1061  if ((TYPE_CODE (value1->type) != TYPE_CODE_INT)
1062      || (TYPE_CODE (value2->type) != TYPE_CODE_INT))
1063    error (_("Invalid combination of types in %s."), name);
1064
1065  ax_simple (ax,
1066	     TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
1067  if (may_carry)
1068    gen_extend (ax, value1->type);	/* catch overflow */
1069  value->type = value1->type;
1070  value->kind = axs_rvalue;
1071}
1072
1073
1074static void
1075gen_logical_not (struct agent_expr *ax, struct axs_value *value)
1076{
1077  if (TYPE_CODE (value->type) != TYPE_CODE_INT
1078      && TYPE_CODE (value->type) != TYPE_CODE_PTR)
1079    error (_("Invalid type of operand to `!'."));
1080
1081  gen_usual_unary (ax, value);
1082  ax_simple (ax, aop_log_not);
1083  value->type = builtin_type_int;
1084}
1085
1086
1087static void
1088gen_complement (struct agent_expr *ax, struct axs_value *value)
1089{
1090  if (TYPE_CODE (value->type) != TYPE_CODE_INT)
1091    error (_("Invalid type of operand to `~'."));
1092
1093  gen_usual_unary (ax, value);
1094  gen_integral_promotions (ax, value);
1095  ax_simple (ax, aop_bit_not);
1096  gen_extend (ax, value->type);
1097}
1098
1099
1100
1101/* Generating bytecode from GDB expressions: * & . -> @ sizeof */
1102
1103/* Dereference the value on the top of the stack.  */
1104static void
1105gen_deref (struct agent_expr *ax, struct axs_value *value)
1106{
1107  /* The caller should check the type, because several operators use
1108     this, and we don't know what error message to generate.  */
1109  if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1110    internal_error (__FILE__, __LINE__,
1111		    _("gen_deref: expected a pointer"));
1112
1113  /* We've got an rvalue now, which is a pointer.  We want to yield an
1114     lvalue, whose address is exactly that pointer.  So we don't
1115     actually emit any code; we just change the type from "Pointer to
1116     T" to "T", and mark the value as an lvalue in memory.  Leave it
1117     to the consumer to actually dereference it.  */
1118  value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
1119  value->kind = ((TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1120		 ? axs_rvalue : axs_lvalue_memory);
1121}
1122
1123
1124/* Produce the address of the lvalue on the top of the stack.  */
1125static void
1126gen_address_of (struct agent_expr *ax, struct axs_value *value)
1127{
1128  /* Special case for taking the address of a function.  The ANSI
1129     standard describes this as a special case, too, so this
1130     arrangement is not without motivation.  */
1131  if (TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1132    /* The value's already an rvalue on the stack, so we just need to
1133       change the type.  */
1134    value->type = lookup_pointer_type (value->type);
1135  else
1136    switch (value->kind)
1137      {
1138      case axs_rvalue:
1139	error (_("Operand of `&' is an rvalue, which has no address."));
1140
1141      case axs_lvalue_register:
1142	error (_("Operand of `&' is in a register, and has no address."));
1143
1144      case axs_lvalue_memory:
1145	value->kind = axs_rvalue;
1146	value->type = lookup_pointer_type (value->type);
1147	break;
1148      }
1149}
1150
1151
1152/* A lot of this stuff will have to change to support C++.  But we're
1153   not going to deal with that at the moment.  */
1154
1155/* Find the field in the structure type TYPE named NAME, and return
1156   its index in TYPE's field array.  */
1157static int
1158find_field (struct type *type, char *name)
1159{
1160  int i;
1161
1162  CHECK_TYPEDEF (type);
1163
1164  /* Make sure this isn't C++.  */
1165  if (TYPE_N_BASECLASSES (type) != 0)
1166    internal_error (__FILE__, __LINE__,
1167		    _("find_field: derived classes supported"));
1168
1169  for (i = 0; i < TYPE_NFIELDS (type); i++)
1170    {
1171      char *this_name = TYPE_FIELD_NAME (type, i);
1172
1173      if (this_name)
1174	{
1175	  if (strcmp (name, this_name) == 0)
1176	    return i;
1177
1178	  if (this_name[0] == '\0')
1179	    internal_error (__FILE__, __LINE__,
1180			    _("find_field: anonymous unions not supported"));
1181	}
1182    }
1183
1184  error (_("Couldn't find member named `%s' in struct/union `%s'"),
1185	 name, TYPE_TAG_NAME (type));
1186
1187  return 0;
1188}
1189
1190
1191/* Generate code to push the value of a bitfield of a structure whose
1192   address is on the top of the stack.  START and END give the
1193   starting and one-past-ending *bit* numbers of the field within the
1194   structure.  */
1195static void
1196gen_bitfield_ref (struct agent_expr *ax, struct axs_value *value,
1197		  struct type *type, int start, int end)
1198{
1199  /* Note that ops[i] fetches 8 << i bits.  */
1200  static enum agent_op ops[]
1201  =
1202  {aop_ref8, aop_ref16, aop_ref32, aop_ref64};
1203  static int num_ops = (sizeof (ops) / sizeof (ops[0]));
1204
1205  /* We don't want to touch any byte that the bitfield doesn't
1206     actually occupy; we shouldn't make any accesses we're not
1207     explicitly permitted to.  We rely here on the fact that the
1208     bytecode `ref' operators work on unaligned addresses.
1209
1210     It takes some fancy footwork to get the stack to work the way
1211     we'd like.  Say we're retrieving a bitfield that requires three
1212     fetches.  Initially, the stack just contains the address:
1213     addr
1214     For the first fetch, we duplicate the address
1215     addr addr
1216     then add the byte offset, do the fetch, and shift and mask as
1217     needed, yielding a fragment of the value, properly aligned for
1218     the final bitwise or:
1219     addr frag1
1220     then we swap, and repeat the process:
1221     frag1 addr                    --- address on top
1222     frag1 addr addr               --- duplicate it
1223     frag1 addr frag2              --- get second fragment
1224     frag1 frag2 addr              --- swap again
1225     frag1 frag2 frag3             --- get third fragment
1226     Notice that, since the third fragment is the last one, we don't
1227     bother duplicating the address this time.  Now we have all the
1228     fragments on the stack, and we can simply `or' them together,
1229     yielding the final value of the bitfield.  */
1230
1231  /* The first and one-after-last bits in the field, but rounded down
1232     and up to byte boundaries.  */
1233  int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
1234  int bound_end = (((end + TARGET_CHAR_BIT - 1)
1235		    / TARGET_CHAR_BIT)
1236		   * TARGET_CHAR_BIT);
1237
1238  /* current bit offset within the structure */
1239  int offset;
1240
1241  /* The index in ops of the opcode we're considering.  */
1242  int op;
1243
1244  /* The number of fragments we generated in the process.  Probably
1245     equal to the number of `one' bits in bytesize, but who cares?  */
1246  int fragment_count;
1247
1248  /* Dereference any typedefs. */
1249  type = check_typedef (type);
1250
1251  /* Can we fetch the number of bits requested at all?  */
1252  if ((end - start) > ((1 << num_ops) * 8))
1253    internal_error (__FILE__, __LINE__,
1254		    _("gen_bitfield_ref: bitfield too wide"));
1255
1256  /* Note that we know here that we only need to try each opcode once.
1257     That may not be true on machines with weird byte sizes.  */
1258  offset = bound_start;
1259  fragment_count = 0;
1260  for (op = num_ops - 1; op >= 0; op--)
1261    {
1262      /* number of bits that ops[op] would fetch */
1263      int op_size = 8 << op;
1264
1265      /* The stack at this point, from bottom to top, contains zero or
1266         more fragments, then the address.  */
1267
1268      /* Does this fetch fit within the bitfield?  */
1269      if (offset + op_size <= bound_end)
1270	{
1271	  /* Is this the last fragment?  */
1272	  int last_frag = (offset + op_size == bound_end);
1273
1274	  if (!last_frag)
1275	    ax_simple (ax, aop_dup);	/* keep a copy of the address */
1276
1277	  /* Add the offset.  */
1278	  gen_offset (ax, offset / TARGET_CHAR_BIT);
1279
1280	  if (trace_kludge)
1281	    {
1282	      /* Record the area of memory we're about to fetch.  */
1283	      ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
1284	    }
1285
1286	  /* Perform the fetch.  */
1287	  ax_simple (ax, ops[op]);
1288
1289	  /* Shift the bits we have to their proper position.
1290	     gen_left_shift will generate right shifts when the operand
1291	     is negative.
1292
1293	     A big-endian field diagram to ponder:
1294	     byte 0  byte 1  byte 2  byte 3  byte 4  byte 5  byte 6  byte 7
1295	     +------++------++------++------++------++------++------++------+
1296	     xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
1297	     ^               ^               ^    ^
1298	     bit number      16              32              48   53
1299	     These are bit numbers as supplied by GDB.  Note that the
1300	     bit numbers run from right to left once you've fetched the
1301	     value!
1302
1303	     A little-endian field diagram to ponder:
1304	     byte 7  byte 6  byte 5  byte 4  byte 3  byte 2  byte 1  byte 0
1305	     +------++------++------++------++------++------++------++------+
1306	     xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
1307	     ^               ^               ^           ^   ^
1308	     bit number     48              32              16          4   0
1309
1310	     In both cases, the most significant end is on the left
1311	     (i.e. normal numeric writing order), which means that you
1312	     don't go crazy thinking about `left' and `right' shifts.
1313
1314	     We don't have to worry about masking yet:
1315	     - If they contain garbage off the least significant end, then we
1316	     must be looking at the low end of the field, and the right
1317	     shift will wipe them out.
1318	     - If they contain garbage off the most significant end, then we
1319	     must be looking at the most significant end of the word, and
1320	     the sign/zero extension will wipe them out.
1321	     - If we're in the interior of the word, then there is no garbage
1322	     on either end, because the ref operators zero-extend.  */
1323	  if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1324	    gen_left_shift (ax, end - (offset + op_size));
1325	  else
1326	    gen_left_shift (ax, offset - start);
1327
1328	  if (!last_frag)
1329	    /* Bring the copy of the address up to the top.  */
1330	    ax_simple (ax, aop_swap);
1331
1332	  offset += op_size;
1333	  fragment_count++;
1334	}
1335    }
1336
1337  /* Generate enough bitwise `or' operations to combine all the
1338     fragments we left on the stack.  */
1339  while (fragment_count-- > 1)
1340    ax_simple (ax, aop_bit_or);
1341
1342  /* Sign- or zero-extend the value as appropriate.  */
1343  ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
1344
1345  /* This is *not* an lvalue.  Ugh.  */
1346  value->kind = axs_rvalue;
1347  value->type = type;
1348}
1349
1350
1351/* Generate code to reference the member named FIELD of a structure or
1352   union.  The top of the stack, as described by VALUE, should have
1353   type (pointer to a)* struct/union.  OPERATOR_NAME is the name of
1354   the operator being compiled, and OPERAND_NAME is the kind of thing
1355   it operates on; we use them in error messages.  */
1356static void
1357gen_struct_ref (struct agent_expr *ax, struct axs_value *value, char *field,
1358		char *operator_name, char *operand_name)
1359{
1360  struct type *type;
1361  int i;
1362
1363  /* Follow pointers until we reach a non-pointer.  These aren't the C
1364     semantics, but they're what the normal GDB evaluator does, so we
1365     should at least be consistent.  */
1366  while (TYPE_CODE (value->type) == TYPE_CODE_PTR)
1367    {
1368      gen_usual_unary (ax, value);
1369      gen_deref (ax, value);
1370    }
1371  type = check_typedef (value->type);
1372
1373  /* This must yield a structure or a union.  */
1374  if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1375      && TYPE_CODE (type) != TYPE_CODE_UNION)
1376    error (_("The left operand of `%s' is not a %s."),
1377	   operator_name, operand_name);
1378
1379  /* And it must be in memory; we don't deal with structure rvalues,
1380     or structures living in registers.  */
1381  if (value->kind != axs_lvalue_memory)
1382    error (_("Structure does not live in memory."));
1383
1384  i = find_field (type, field);
1385
1386  /* Is this a bitfield?  */
1387  if (TYPE_FIELD_PACKED (type, i))
1388    gen_bitfield_ref (ax, value, TYPE_FIELD_TYPE (type, i),
1389		      TYPE_FIELD_BITPOS (type, i),
1390		      (TYPE_FIELD_BITPOS (type, i)
1391		       + TYPE_FIELD_BITSIZE (type, i)));
1392  else
1393    {
1394      gen_offset (ax, TYPE_FIELD_BITPOS (type, i) / TARGET_CHAR_BIT);
1395      value->kind = axs_lvalue_memory;
1396      value->type = TYPE_FIELD_TYPE (type, i);
1397    }
1398}
1399
1400
1401/* Generate code for GDB's magical `repeat' operator.
1402   LVALUE @ INT creates an array INT elements long, and whose elements
1403   have the same type as LVALUE, located in memory so that LVALUE is
1404   its first element.  For example, argv[0]@argc gives you the array
1405   of command-line arguments.
1406
1407   Unfortunately, because we have to know the types before we actually
1408   have a value for the expression, we can't implement this perfectly
1409   without changing the type system, having values that occupy two
1410   stack slots, doing weird things with sizeof, etc.  So we require
1411   the right operand to be a constant expression.  */
1412static void
1413gen_repeat (union exp_element **pc, struct agent_expr *ax,
1414	    struct axs_value *value)
1415{
1416  struct axs_value value1;
1417  /* We don't want to turn this into an rvalue, so no conversions
1418     here.  */
1419  gen_expr (pc, ax, &value1);
1420  if (value1.kind != axs_lvalue_memory)
1421    error (_("Left operand of `@' must be an object in memory."));
1422
1423  /* Evaluate the length; it had better be a constant.  */
1424  {
1425    struct value *v = const_expr (pc);
1426    int length;
1427
1428    if (!v)
1429      error (_("Right operand of `@' must be a constant, in agent expressions."));
1430    if (TYPE_CODE (value_type (v)) != TYPE_CODE_INT)
1431      error (_("Right operand of `@' must be an integer."));
1432    length = value_as_long (v);
1433    if (length <= 0)
1434      error (_("Right operand of `@' must be positive."));
1435
1436    /* The top of the stack is already the address of the object, so
1437       all we need to do is frob the type of the lvalue.  */
1438    {
1439      /* FIXME-type-allocation: need a way to free this type when we are
1440         done with it.  */
1441      struct type *range
1442      = create_range_type (0, builtin_type_int, 0, length - 1);
1443      struct type *array = create_array_type (0, value1.type, range);
1444
1445      value->kind = axs_lvalue_memory;
1446      value->type = array;
1447    }
1448  }
1449}
1450
1451
1452/* Emit code for the `sizeof' operator.
1453   *PC should point at the start of the operand expression; we advance it
1454   to the first instruction after the operand.  */
1455static void
1456gen_sizeof (union exp_element **pc, struct agent_expr *ax,
1457	    struct axs_value *value)
1458{
1459  /* We don't care about the value of the operand expression; we only
1460     care about its type.  However, in the current arrangement, the
1461     only way to find an expression's type is to generate code for it.
1462     So we generate code for the operand, and then throw it away,
1463     replacing it with code that simply pushes its size.  */
1464  int start = ax->len;
1465  gen_expr (pc, ax, value);
1466
1467  /* Throw away the code we just generated.  */
1468  ax->len = start;
1469
1470  ax_const_l (ax, TYPE_LENGTH (value->type));
1471  value->kind = axs_rvalue;
1472  value->type = builtin_type_int;
1473}
1474
1475
1476/* Generating bytecode from GDB expressions: general recursive thingy  */
1477
1478/* XXX: i18n */
1479/* A gen_expr function written by a Gen-X'er guy.
1480   Append code for the subexpression of EXPR starting at *POS_P to AX.  */
1481static void
1482gen_expr (union exp_element **pc, struct agent_expr *ax,
1483	  struct axs_value *value)
1484{
1485  /* Used to hold the descriptions of operand expressions.  */
1486  struct axs_value value1, value2;
1487  enum exp_opcode op = (*pc)[0].opcode;
1488
1489  /* If we're looking at a constant expression, just push its value.  */
1490  {
1491    struct value *v = maybe_const_expr (pc);
1492
1493    if (v)
1494      {
1495	ax_const_l (ax, value_as_long (v));
1496	value->kind = axs_rvalue;
1497	value->type = check_typedef (value_type (v));
1498	return;
1499      }
1500  }
1501
1502  /* Otherwise, go ahead and generate code for it.  */
1503  switch (op)
1504    {
1505      /* Binary arithmetic operators.  */
1506    case BINOP_ADD:
1507    case BINOP_SUB:
1508    case BINOP_MUL:
1509    case BINOP_DIV:
1510    case BINOP_REM:
1511    case BINOP_SUBSCRIPT:
1512    case BINOP_BITWISE_AND:
1513    case BINOP_BITWISE_IOR:
1514    case BINOP_BITWISE_XOR:
1515      (*pc)++;
1516      gen_expr (pc, ax, &value1);
1517      gen_usual_unary (ax, &value1);
1518      gen_expr (pc, ax, &value2);
1519      gen_usual_unary (ax, &value2);
1520      gen_usual_arithmetic (ax, &value1, &value2);
1521      switch (op)
1522	{
1523	case BINOP_ADD:
1524	  gen_add (ax, value, &value1, &value2, "addition");
1525	  break;
1526	case BINOP_SUB:
1527	  gen_sub (ax, value, &value1, &value2);
1528	  break;
1529	case BINOP_MUL:
1530	  gen_binop (ax, value, &value1, &value2,
1531		     aop_mul, aop_mul, 1, "multiplication");
1532	  break;
1533	case BINOP_DIV:
1534	  gen_binop (ax, value, &value1, &value2,
1535		     aop_div_signed, aop_div_unsigned, 1, "division");
1536	  break;
1537	case BINOP_REM:
1538	  gen_binop (ax, value, &value1, &value2,
1539		     aop_rem_signed, aop_rem_unsigned, 1, "remainder");
1540	  break;
1541	case BINOP_SUBSCRIPT:
1542	  gen_add (ax, value, &value1, &value2, "array subscripting");
1543	  if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1544	    error (_("Invalid combination of types in array subscripting."));
1545	  gen_deref (ax, value);
1546	  break;
1547	case BINOP_BITWISE_AND:
1548	  gen_binop (ax, value, &value1, &value2,
1549		     aop_bit_and, aop_bit_and, 0, "bitwise and");
1550	  break;
1551
1552	case BINOP_BITWISE_IOR:
1553	  gen_binop (ax, value, &value1, &value2,
1554		     aop_bit_or, aop_bit_or, 0, "bitwise or");
1555	  break;
1556
1557	case BINOP_BITWISE_XOR:
1558	  gen_binop (ax, value, &value1, &value2,
1559		     aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
1560	  break;
1561
1562	default:
1563	  /* We should only list operators in the outer case statement
1564	     that we actually handle in the inner case statement.  */
1565	  internal_error (__FILE__, __LINE__,
1566			  _("gen_expr: op case sets don't match"));
1567	}
1568      break;
1569
1570      /* Note that we need to be a little subtle about generating code
1571         for comma.  In C, we can do some optimizations here because
1572         we know the left operand is only being evaluated for effect.
1573         However, if the tracing kludge is in effect, then we always
1574         need to evaluate the left hand side fully, so that all the
1575         variables it mentions get traced.  */
1576    case BINOP_COMMA:
1577      (*pc)++;
1578      gen_expr (pc, ax, &value1);
1579      /* Don't just dispose of the left operand.  We might be tracing,
1580         in which case we want to emit code to trace it if it's an
1581         lvalue.  */
1582      gen_traced_pop (ax, &value1);
1583      gen_expr (pc, ax, value);
1584      /* It's the consumer's responsibility to trace the right operand.  */
1585      break;
1586
1587    case OP_LONG:		/* some integer constant */
1588      {
1589	struct type *type = (*pc)[1].type;
1590	LONGEST k = (*pc)[2].longconst;
1591	(*pc) += 4;
1592	gen_int_literal (ax, value, k, type);
1593      }
1594      break;
1595
1596    case OP_VAR_VALUE:
1597      gen_var_ref (ax, value, (*pc)[2].symbol);
1598      (*pc) += 4;
1599      break;
1600
1601    case OP_REGISTER:
1602      {
1603	const char *name = &(*pc)[2].string;
1604	int reg;
1605	(*pc) += 4 + BYTES_TO_EXP_ELEM ((*pc)[1].longconst + 1);
1606	reg = frame_map_name_to_regnum (deprecated_safe_get_selected_frame (),
1607					name, strlen (name));
1608	if (reg == -1)
1609	  internal_error (__FILE__, __LINE__,
1610			  _("Register $%s not available"), name);
1611	value->kind = axs_lvalue_register;
1612	value->u.reg = reg;
1613	value->type = register_type (current_gdbarch, reg);
1614      }
1615      break;
1616
1617    case OP_INTERNALVAR:
1618      error (_("GDB agent expressions cannot use convenience variables."));
1619
1620      /* Weirdo operator: see comments for gen_repeat for details.  */
1621    case BINOP_REPEAT:
1622      /* Note that gen_repeat handles its own argument evaluation.  */
1623      (*pc)++;
1624      gen_repeat (pc, ax, value);
1625      break;
1626
1627    case UNOP_CAST:
1628      {
1629	struct type *type = (*pc)[1].type;
1630	(*pc) += 3;
1631	gen_expr (pc, ax, value);
1632	gen_cast (ax, value, type);
1633      }
1634      break;
1635
1636    case UNOP_MEMVAL:
1637      {
1638	struct type *type = check_typedef ((*pc)[1].type);
1639	(*pc) += 3;
1640	gen_expr (pc, ax, value);
1641	/* I'm not sure I understand UNOP_MEMVAL entirely.  I think
1642	   it's just a hack for dealing with minsyms; you take some
1643	   integer constant, pretend it's the address of an lvalue of
1644	   the given type, and dereference it.  */
1645	if (value->kind != axs_rvalue)
1646	  /* This would be weird.  */
1647	  internal_error (__FILE__, __LINE__,
1648			  _("gen_expr: OP_MEMVAL operand isn't an rvalue???"));
1649	value->type = type;
1650	value->kind = axs_lvalue_memory;
1651      }
1652      break;
1653
1654    case UNOP_PLUS:
1655      (*pc)++;
1656      /* + FOO is equivalent to 0 + FOO, which can be optimized. */
1657      gen_expr (pc, ax, value);
1658      gen_usual_unary (ax, value);
1659      break;
1660
1661    case UNOP_NEG:
1662      (*pc)++;
1663      /* -FOO is equivalent to 0 - FOO.  */
1664      gen_int_literal (ax, &value1, (LONGEST) 0, builtin_type_int);
1665      gen_usual_unary (ax, &value1);	/* shouldn't do much */
1666      gen_expr (pc, ax, &value2);
1667      gen_usual_unary (ax, &value2);
1668      gen_usual_arithmetic (ax, &value1, &value2);
1669      gen_sub (ax, value, &value1, &value2);
1670      break;
1671
1672    case UNOP_LOGICAL_NOT:
1673      (*pc)++;
1674      gen_expr (pc, ax, value);
1675      gen_logical_not (ax, value);
1676      break;
1677
1678    case UNOP_COMPLEMENT:
1679      (*pc)++;
1680      gen_expr (pc, ax, value);
1681      gen_complement (ax, value);
1682      break;
1683
1684    case UNOP_IND:
1685      (*pc)++;
1686      gen_expr (pc, ax, value);
1687      gen_usual_unary (ax, value);
1688      if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1689	error (_("Argument of unary `*' is not a pointer."));
1690      gen_deref (ax, value);
1691      break;
1692
1693    case UNOP_ADDR:
1694      (*pc)++;
1695      gen_expr (pc, ax, value);
1696      gen_address_of (ax, value);
1697      break;
1698
1699    case UNOP_SIZEOF:
1700      (*pc)++;
1701      /* Notice that gen_sizeof handles its own operand, unlike most
1702         of the other unary operator functions.  This is because we
1703         have to throw away the code we generate.  */
1704      gen_sizeof (pc, ax, value);
1705      break;
1706
1707    case STRUCTOP_STRUCT:
1708    case STRUCTOP_PTR:
1709      {
1710	int length = (*pc)[1].longconst;
1711	char *name = &(*pc)[2].string;
1712
1713	(*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
1714	gen_expr (pc, ax, value);
1715	if (op == STRUCTOP_STRUCT)
1716	  gen_struct_ref (ax, value, name, ".", "structure or union");
1717	else if (op == STRUCTOP_PTR)
1718	  gen_struct_ref (ax, value, name, "->",
1719			  "pointer to a structure or union");
1720	else
1721	  /* If this `if' chain doesn't handle it, then the case list
1722	     shouldn't mention it, and we shouldn't be here.  */
1723	  internal_error (__FILE__, __LINE__,
1724			  _("gen_expr: unhandled struct case"));
1725      }
1726      break;
1727
1728    case OP_TYPE:
1729      error (_("Attempt to use a type name as an expression."));
1730
1731    default:
1732      error (_("Unsupported operator in expression."));
1733    }
1734}
1735
1736
1737
1738/* Generating bytecode from GDB expressions: driver */
1739
1740/* Given a GDB expression EXPR, produce a string of agent bytecode
1741   which computes its value.  Return the agent expression, and set
1742   *VALUE to describe its type, and whether it's an lvalue or rvalue.  */
1743struct agent_expr *
1744expr_to_agent (struct expression *expr, struct axs_value *value)
1745{
1746  struct cleanup *old_chain = 0;
1747  struct agent_expr *ax = new_agent_expr (0);
1748  union exp_element *pc;
1749
1750  old_chain = make_cleanup_free_agent_expr (ax);
1751
1752  pc = expr->elts;
1753  trace_kludge = 0;
1754  gen_expr (&pc, ax, value);
1755
1756  /* We have successfully built the agent expr, so cancel the cleanup
1757     request.  If we add more cleanups that we always want done, this
1758     will have to get more complicated.  */
1759  discard_cleanups (old_chain);
1760  return ax;
1761}
1762
1763
1764#if 0				/* not used */
1765/* Given a GDB expression EXPR denoting an lvalue in memory, produce a
1766   string of agent bytecode which will leave its address and size on
1767   the top of stack.  Return the agent expression.
1768
1769   Not sure this function is useful at all.  */
1770struct agent_expr *
1771expr_to_address_and_size (struct expression *expr)
1772{
1773  struct axs_value value;
1774  struct agent_expr *ax = expr_to_agent (expr, &value);
1775
1776  /* Complain if the result is not a memory lvalue.  */
1777  if (value.kind != axs_lvalue_memory)
1778    {
1779      free_agent_expr (ax);
1780      error (_("Expression does not denote an object in memory."));
1781    }
1782
1783  /* Push the object's size on the stack.  */
1784  ax_const_l (ax, TYPE_LENGTH (value.type));
1785
1786  return ax;
1787}
1788#endif
1789
1790/* Given a GDB expression EXPR, return bytecode to trace its value.
1791   The result will use the `trace' and `trace_quick' bytecodes to
1792   record the value of all memory touched by the expression.  The
1793   caller can then use the ax_reqs function to discover which
1794   registers it relies upon.  */
1795struct agent_expr *
1796gen_trace_for_expr (CORE_ADDR scope, struct expression *expr)
1797{
1798  struct cleanup *old_chain = 0;
1799  struct agent_expr *ax = new_agent_expr (scope);
1800  union exp_element *pc;
1801  struct axs_value value;
1802
1803  old_chain = make_cleanup_free_agent_expr (ax);
1804
1805  pc = expr->elts;
1806  trace_kludge = 1;
1807  gen_expr (&pc, ax, &value);
1808
1809  /* Make sure we record the final object, and get rid of it.  */
1810  gen_traced_pop (ax, &value);
1811
1812  /* Oh, and terminate.  */
1813  ax_simple (ax, aop_end);
1814
1815  /* We have successfully built the agent expr, so cancel the cleanup
1816     request.  If we add more cleanups that we always want done, this
1817     will have to get more complicated.  */
1818  discard_cleanups (old_chain);
1819  return ax;
1820}
1821
1822static void
1823agent_command (char *exp, int from_tty)
1824{
1825  struct cleanup *old_chain = 0;
1826  struct expression *expr;
1827  struct agent_expr *agent;
1828  struct frame_info *fi = get_current_frame ();	/* need current scope */
1829
1830  /* We don't deal with overlay debugging at the moment.  We need to
1831     think more carefully about this.  If you copy this code into
1832     another command, change the error message; the user shouldn't
1833     have to know anything about agent expressions.  */
1834  if (overlay_debugging)
1835    error (_("GDB can't do agent expression translation with overlays."));
1836
1837  if (exp == 0)
1838    error_no_arg (_("expression to translate"));
1839
1840  expr = parse_expression (exp);
1841  old_chain = make_cleanup (free_current_contents, &expr);
1842  agent = gen_trace_for_expr (get_frame_pc (fi), expr);
1843  make_cleanup_free_agent_expr (agent);
1844  ax_print (gdb_stdout, agent);
1845
1846  /* It would be nice to call ax_reqs here to gather some general info
1847     about the expression, and then print out the result.  */
1848
1849  do_cleanups (old_chain);
1850  dont_repeat ();
1851}
1852
1853
1854/* Initialization code.  */
1855
1856void _initialize_ax_gdb (void);
1857void
1858_initialize_ax_gdb (void)
1859{
1860  add_cmd ("agent", class_maintenance, agent_command,
1861	   _("Translate an expression into remote agent bytecode."),
1862	   &maintenancelist);
1863}
1864