1/*
2 * VC-1 and WMV3 decoder
3 * Copyright (c) 2006-2007 Konstantin Shishkov
4 * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23/**
24 * @file
25 * VC-1 and WMV3 decoder
26 *
27 */
28#include "internal.h"
29#include "dsputil.h"
30#include "avcodec.h"
31#include "mpegvideo.h"
32#include "h263.h"
33#include "vc1.h"
34#include "vc1data.h"
35#include "vc1acdata.h"
36#include "msmpeg4data.h"
37#include "unary.h"
38#include "simple_idct.h"
39#include "mathops.h"
40#include "vdpau_internal.h"
41
42#undef NDEBUG
43#include <assert.h>
44
45#define MB_INTRA_VLC_BITS 9
46#define DC_VLC_BITS 9
47#define AC_VLC_BITS 9
48static const uint16_t table_mb_intra[64][2];
49
50
51static const uint16_t vlc_offs[] = {
52       0,   520,   552,   616,  1128,  1160, 1224, 1740, 1772, 1836, 1900, 2436,
53    2986,  3050,  3610,  4154,  4218,  4746, 5326, 5390, 5902, 6554, 7658, 8620,
54    9262, 10202, 10756, 11310, 12228, 15078
55};
56
57/**
58 * Init VC-1 specific tables and VC1Context members
59 * @param v The VC1Context to initialize
60 * @return Status
61 */
62static int vc1_init_common(VC1Context *v)
63{
64    static int done = 0;
65    int i = 0;
66    static VLC_TYPE vlc_table[15078][2];
67
68    v->hrd_rate = v->hrd_buffer = NULL;
69
70    /* VLC tables */
71    if(!done)
72    {
73        INIT_VLC_STATIC(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
74                 ff_vc1_bfraction_bits, 1, 1,
75                 ff_vc1_bfraction_codes, 1, 1, 1 << VC1_BFRACTION_VLC_BITS);
76        INIT_VLC_STATIC(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
77                 ff_vc1_norm2_bits, 1, 1,
78                 ff_vc1_norm2_codes, 1, 1, 1 << VC1_NORM2_VLC_BITS);
79        INIT_VLC_STATIC(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
80                 ff_vc1_norm6_bits, 1, 1,
81                 ff_vc1_norm6_codes, 2, 2, 556);
82        INIT_VLC_STATIC(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
83                 ff_vc1_imode_bits, 1, 1,
84                 ff_vc1_imode_codes, 1, 1, 1 << VC1_IMODE_VLC_BITS);
85        for (i=0; i<3; i++)
86        {
87            ff_vc1_ttmb_vlc[i].table = &vlc_table[vlc_offs[i*3+0]];
88            ff_vc1_ttmb_vlc[i].table_allocated = vlc_offs[i*3+1] - vlc_offs[i*3+0];
89            init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
90                     ff_vc1_ttmb_bits[i], 1, 1,
91                     ff_vc1_ttmb_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
92            ff_vc1_ttblk_vlc[i].table = &vlc_table[vlc_offs[i*3+1]];
93            ff_vc1_ttblk_vlc[i].table_allocated = vlc_offs[i*3+2] - vlc_offs[i*3+1];
94            init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
95                     ff_vc1_ttblk_bits[i], 1, 1,
96                     ff_vc1_ttblk_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
97            ff_vc1_subblkpat_vlc[i].table = &vlc_table[vlc_offs[i*3+2]];
98            ff_vc1_subblkpat_vlc[i].table_allocated = vlc_offs[i*3+3] - vlc_offs[i*3+2];
99            init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
100                     ff_vc1_subblkpat_bits[i], 1, 1,
101                     ff_vc1_subblkpat_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
102        }
103        for(i=0; i<4; i++)
104        {
105            ff_vc1_4mv_block_pattern_vlc[i].table = &vlc_table[vlc_offs[i*3+9]];
106            ff_vc1_4mv_block_pattern_vlc[i].table_allocated = vlc_offs[i*3+10] - vlc_offs[i*3+9];
107            init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
108                     ff_vc1_4mv_block_pattern_bits[i], 1, 1,
109                     ff_vc1_4mv_block_pattern_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
110            ff_vc1_cbpcy_p_vlc[i].table = &vlc_table[vlc_offs[i*3+10]];
111            ff_vc1_cbpcy_p_vlc[i].table_allocated = vlc_offs[i*3+11] - vlc_offs[i*3+10];
112            init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
113                     ff_vc1_cbpcy_p_bits[i], 1, 1,
114                     ff_vc1_cbpcy_p_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
115            ff_vc1_mv_diff_vlc[i].table = &vlc_table[vlc_offs[i*3+11]];
116            ff_vc1_mv_diff_vlc[i].table_allocated = vlc_offs[i*3+12] - vlc_offs[i*3+11];
117            init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
118                     ff_vc1_mv_diff_bits[i], 1, 1,
119                     ff_vc1_mv_diff_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
120        }
121        for(i=0; i<8; i++){
122            ff_vc1_ac_coeff_table[i].table = &vlc_table[vlc_offs[i+21]];
123            ff_vc1_ac_coeff_table[i].table_allocated = vlc_offs[i+22] - vlc_offs[i+21];
124            init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
125                     &vc1_ac_tables[i][0][1], 8, 4,
126                     &vc1_ac_tables[i][0][0], 8, 4, INIT_VLC_USE_NEW_STATIC);
127        }
128        done = 1;
129    }
130
131    /* Other defaults */
132    v->pq = -1;
133    v->mvrange = 0; /* 7.1.1.18, p80 */
134
135    return 0;
136}
137
138/***********************************************************************/
139/**
140 * @defgroup vc1bitplane VC-1 Bitplane decoding
141 * @see 8.7, p56
142 * @{
143 */
144
145/**
146 * Imode types
147 * @{
148 */
149enum Imode {
150    IMODE_RAW,
151    IMODE_NORM2,
152    IMODE_DIFF2,
153    IMODE_NORM6,
154    IMODE_DIFF6,
155    IMODE_ROWSKIP,
156    IMODE_COLSKIP
157};
158/** @} */ //imode defines
159
160
161/** @} */ //Bitplane group
162
163static void vc1_loop_filter_iblk(MpegEncContext *s, int pq)
164{
165    int i, j;
166    if(!s->first_slice_line)
167        s->dsp.vc1_v_loop_filter16(s->dest[0], s->linesize, pq);
168    s->dsp.vc1_v_loop_filter16(s->dest[0] + 8*s->linesize, s->linesize, pq);
169    for(i = !s->mb_x*8; i < 16; i += 8)
170        s->dsp.vc1_h_loop_filter16(s->dest[0] + i, s->linesize, pq);
171    for(j = 0; j < 2; j++){
172        if(!s->first_slice_line)
173            s->dsp.vc1_v_loop_filter8(s->dest[j+1], s->uvlinesize, pq);
174        if(s->mb_x)
175            s->dsp.vc1_h_loop_filter8(s->dest[j+1], s->uvlinesize, pq);
176    }
177}
178
179/** Put block onto picture
180 */
181static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
182{
183    uint8_t *Y;
184    int ys, us, vs;
185    DSPContext *dsp = &v->s.dsp;
186
187    if(v->rangeredfrm) {
188        int i, j, k;
189        for(k = 0; k < 6; k++)
190            for(j = 0; j < 8; j++)
191                for(i = 0; i < 8; i++)
192                    block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
193
194    }
195    ys = v->s.current_picture.linesize[0];
196    us = v->s.current_picture.linesize[1];
197    vs = v->s.current_picture.linesize[2];
198    Y = v->s.dest[0];
199
200    dsp->put_pixels_clamped(block[0], Y, ys);
201    dsp->put_pixels_clamped(block[1], Y + 8, ys);
202    Y += ys * 8;
203    dsp->put_pixels_clamped(block[2], Y, ys);
204    dsp->put_pixels_clamped(block[3], Y + 8, ys);
205
206    if(!(v->s.flags & CODEC_FLAG_GRAY)) {
207        dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
208        dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
209    }
210}
211
212/** Do motion compensation over 1 macroblock
213 * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
214 */
215static void vc1_mc_1mv(VC1Context *v, int dir)
216{
217    MpegEncContext *s = &v->s;
218    DSPContext *dsp = &v->s.dsp;
219    uint8_t *srcY, *srcU, *srcV;
220    int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
221
222    if(!v->s.last_picture.data[0])return;
223
224    mx = s->mv[dir][0][0];
225    my = s->mv[dir][0][1];
226
227    // store motion vectors for further use in B frames
228    if(s->pict_type == FF_P_TYPE) {
229        s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
230        s->current_picture.motion_val[1][s->block_index[0]][1] = my;
231    }
232    uvmx = (mx + ((mx & 3) == 3)) >> 1;
233    uvmy = (my + ((my & 3) == 3)) >> 1;
234    if(v->fastuvmc) {
235        uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
236        uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
237    }
238    if(!dir) {
239        srcY = s->last_picture.data[0];
240        srcU = s->last_picture.data[1];
241        srcV = s->last_picture.data[2];
242    } else {
243        srcY = s->next_picture.data[0];
244        srcU = s->next_picture.data[1];
245        srcV = s->next_picture.data[2];
246    }
247
248    src_x = s->mb_x * 16 + (mx >> 2);
249    src_y = s->mb_y * 16 + (my >> 2);
250    uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
251    uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
252
253    if(v->profile != PROFILE_ADVANCED){
254        src_x   = av_clip(  src_x, -16, s->mb_width  * 16);
255        src_y   = av_clip(  src_y, -16, s->mb_height * 16);
256        uvsrc_x = av_clip(uvsrc_x,  -8, s->mb_width  *  8);
257        uvsrc_y = av_clip(uvsrc_y,  -8, s->mb_height *  8);
258    }else{
259        src_x   = av_clip(  src_x, -17, s->avctx->coded_width);
260        src_y   = av_clip(  src_y, -18, s->avctx->coded_height + 1);
261        uvsrc_x = av_clip(uvsrc_x,  -8, s->avctx->coded_width  >> 1);
262        uvsrc_y = av_clip(uvsrc_y,  -8, s->avctx->coded_height >> 1);
263    }
264
265    srcY += src_y * s->linesize + src_x;
266    srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
267    srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
268
269    /* for grayscale we should not try to read from unknown area */
270    if(s->flags & CODEC_FLAG_GRAY) {
271        srcU = s->edge_emu_buffer + 18 * s->linesize;
272        srcV = s->edge_emu_buffer + 18 * s->linesize;
273    }
274
275    if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
276       || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
277       || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
278        uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
279
280        srcY -= s->mspel * (1 + s->linesize);
281        ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
282                            src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
283        srcY = s->edge_emu_buffer;
284        ff_emulated_edge_mc(uvbuf     , srcU, s->uvlinesize, 8+1, 8+1,
285                            uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
286        ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
287                            uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
288        srcU = uvbuf;
289        srcV = uvbuf + 16;
290        /* if we deal with range reduction we need to scale source blocks */
291        if(v->rangeredfrm) {
292            int i, j;
293            uint8_t *src, *src2;
294
295            src = srcY;
296            for(j = 0; j < 17 + s->mspel*2; j++) {
297                for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
298                src += s->linesize;
299            }
300            src = srcU; src2 = srcV;
301            for(j = 0; j < 9; j++) {
302                for(i = 0; i < 9; i++) {
303                    src[i] = ((src[i] - 128) >> 1) + 128;
304                    src2[i] = ((src2[i] - 128) >> 1) + 128;
305                }
306                src += s->uvlinesize;
307                src2 += s->uvlinesize;
308            }
309        }
310        /* if we deal with intensity compensation we need to scale source blocks */
311        if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
312            int i, j;
313            uint8_t *src, *src2;
314
315            src = srcY;
316            for(j = 0; j < 17 + s->mspel*2; j++) {
317                for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
318                src += s->linesize;
319            }
320            src = srcU; src2 = srcV;
321            for(j = 0; j < 9; j++) {
322                for(i = 0; i < 9; i++) {
323                    src[i] = v->lutuv[src[i]];
324                    src2[i] = v->lutuv[src2[i]];
325                }
326                src += s->uvlinesize;
327                src2 += s->uvlinesize;
328            }
329        }
330        srcY += s->mspel * (1 + s->linesize);
331    }
332
333    if(s->mspel) {
334        dxy = ((my & 3) << 2) | (mx & 3);
335        dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0]    , srcY    , s->linesize, v->rnd);
336        dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
337        srcY += s->linesize * 8;
338        dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize    , srcY    , s->linesize, v->rnd);
339        dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
340    } else { // hpel mc - always used for luma
341        dxy = (my & 2) | ((mx & 2) >> 1);
342
343        if(!v->rnd)
344            dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
345        else
346            dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
347    }
348
349    if(s->flags & CODEC_FLAG_GRAY) return;
350    /* Chroma MC always uses qpel bilinear */
351    uvmx = (uvmx&3)<<1;
352    uvmy = (uvmy&3)<<1;
353    if(!v->rnd){
354        dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
355        dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
356    }else{
357        dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
358        dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
359    }
360}
361
362/** Do motion compensation for 4-MV macroblock - luminance block
363 */
364static void vc1_mc_4mv_luma(VC1Context *v, int n)
365{
366    MpegEncContext *s = &v->s;
367    DSPContext *dsp = &v->s.dsp;
368    uint8_t *srcY;
369    int dxy, mx, my, src_x, src_y;
370    int off;
371
372    if(!v->s.last_picture.data[0])return;
373    mx = s->mv[0][n][0];
374    my = s->mv[0][n][1];
375    srcY = s->last_picture.data[0];
376
377    off = s->linesize * 4 * (n&2) + (n&1) * 8;
378
379    src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
380    src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
381
382    if(v->profile != PROFILE_ADVANCED){
383        src_x   = av_clip(  src_x, -16, s->mb_width  * 16);
384        src_y   = av_clip(  src_y, -16, s->mb_height * 16);
385    }else{
386        src_x   = av_clip(  src_x, -17, s->avctx->coded_width);
387        src_y   = av_clip(  src_y, -18, s->avctx->coded_height + 1);
388    }
389
390    srcY += src_y * s->linesize + src_x;
391
392    if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
393       || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
394       || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
395        srcY -= s->mspel * (1 + s->linesize);
396        ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
397                            src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
398        srcY = s->edge_emu_buffer;
399        /* if we deal with range reduction we need to scale source blocks */
400        if(v->rangeredfrm) {
401            int i, j;
402            uint8_t *src;
403
404            src = srcY;
405            for(j = 0; j < 9 + s->mspel*2; j++) {
406                for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
407                src += s->linesize;
408            }
409        }
410        /* if we deal with intensity compensation we need to scale source blocks */
411        if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
412            int i, j;
413            uint8_t *src;
414
415            src = srcY;
416            for(j = 0; j < 9 + s->mspel*2; j++) {
417                for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
418                src += s->linesize;
419            }
420        }
421        srcY += s->mspel * (1 + s->linesize);
422    }
423
424    if(s->mspel) {
425        dxy = ((my & 3) << 2) | (mx & 3);
426        dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
427    } else { // hpel mc - always used for luma
428        dxy = (my & 2) | ((mx & 2) >> 1);
429        if(!v->rnd)
430            dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
431        else
432            dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
433    }
434}
435
436static inline int median4(int a, int b, int c, int d)
437{
438    if(a < b) {
439        if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
440        else      return (FFMIN(b, c) + FFMAX(a, d)) / 2;
441    } else {
442        if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
443        else      return (FFMIN(a, c) + FFMAX(b, d)) / 2;
444    }
445}
446
447
448/** Do motion compensation for 4-MV macroblock - both chroma blocks
449 */
450static void vc1_mc_4mv_chroma(VC1Context *v)
451{
452    MpegEncContext *s = &v->s;
453    DSPContext *dsp = &v->s.dsp;
454    uint8_t *srcU, *srcV;
455    int uvmx, uvmy, uvsrc_x, uvsrc_y;
456    int i, idx, tx = 0, ty = 0;
457    int mvx[4], mvy[4], intra[4];
458    static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
459
460    if(!v->s.last_picture.data[0])return;
461    if(s->flags & CODEC_FLAG_GRAY) return;
462
463    for(i = 0; i < 4; i++) {
464        mvx[i] = s->mv[0][i][0];
465        mvy[i] = s->mv[0][i][1];
466        intra[i] = v->mb_type[0][s->block_index[i]];
467    }
468
469    /* calculate chroma MV vector from four luma MVs */
470    idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
471    if(!idx) { // all blocks are inter
472        tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
473        ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
474    } else if(count[idx] == 1) { // 3 inter blocks
475        switch(idx) {
476        case 0x1:
477            tx = mid_pred(mvx[1], mvx[2], mvx[3]);
478            ty = mid_pred(mvy[1], mvy[2], mvy[3]);
479            break;
480        case 0x2:
481            tx = mid_pred(mvx[0], mvx[2], mvx[3]);
482            ty = mid_pred(mvy[0], mvy[2], mvy[3]);
483            break;
484        case 0x4:
485            tx = mid_pred(mvx[0], mvx[1], mvx[3]);
486            ty = mid_pred(mvy[0], mvy[1], mvy[3]);
487            break;
488        case 0x8:
489            tx = mid_pred(mvx[0], mvx[1], mvx[2]);
490            ty = mid_pred(mvy[0], mvy[1], mvy[2]);
491            break;
492        }
493    } else if(count[idx] == 2) {
494        int t1 = 0, t2 = 0;
495        for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
496        for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
497        tx = (mvx[t1] + mvx[t2]) / 2;
498        ty = (mvy[t1] + mvy[t2]) / 2;
499    } else {
500        s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
501        s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
502        return; //no need to do MC for inter blocks
503    }
504
505    s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
506    s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
507    uvmx = (tx + ((tx&3) == 3)) >> 1;
508    uvmy = (ty + ((ty&3) == 3)) >> 1;
509    if(v->fastuvmc) {
510        uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
511        uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
512    }
513
514    uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
515    uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
516
517    if(v->profile != PROFILE_ADVANCED){
518        uvsrc_x = av_clip(uvsrc_x,  -8, s->mb_width  *  8);
519        uvsrc_y = av_clip(uvsrc_y,  -8, s->mb_height *  8);
520    }else{
521        uvsrc_x = av_clip(uvsrc_x,  -8, s->avctx->coded_width  >> 1);
522        uvsrc_y = av_clip(uvsrc_y,  -8, s->avctx->coded_height >> 1);
523    }
524
525    srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
526    srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
527    if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
528       || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
529       || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
530        ff_emulated_edge_mc(s->edge_emu_buffer     , srcU, s->uvlinesize, 8+1, 8+1,
531                            uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
532        ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
533                            uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
534        srcU = s->edge_emu_buffer;
535        srcV = s->edge_emu_buffer + 16;
536
537        /* if we deal with range reduction we need to scale source blocks */
538        if(v->rangeredfrm) {
539            int i, j;
540            uint8_t *src, *src2;
541
542            src = srcU; src2 = srcV;
543            for(j = 0; j < 9; j++) {
544                for(i = 0; i < 9; i++) {
545                    src[i] = ((src[i] - 128) >> 1) + 128;
546                    src2[i] = ((src2[i] - 128) >> 1) + 128;
547                }
548                src += s->uvlinesize;
549                src2 += s->uvlinesize;
550            }
551        }
552        /* if we deal with intensity compensation we need to scale source blocks */
553        if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
554            int i, j;
555            uint8_t *src, *src2;
556
557            src = srcU; src2 = srcV;
558            for(j = 0; j < 9; j++) {
559                for(i = 0; i < 9; i++) {
560                    src[i] = v->lutuv[src[i]];
561                    src2[i] = v->lutuv[src2[i]];
562                }
563                src += s->uvlinesize;
564                src2 += s->uvlinesize;
565            }
566        }
567    }
568
569    /* Chroma MC always uses qpel bilinear */
570    uvmx = (uvmx&3)<<1;
571    uvmy = (uvmy&3)<<1;
572    if(!v->rnd){
573        dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
574        dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
575    }else{
576        dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
577        dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
578    }
579}
580
581/***********************************************************************/
582/**
583 * @defgroup vc1block VC-1 Block-level functions
584 * @see 7.1.4, p91 and 8.1.1.7, p(1)04
585 * @{
586 */
587
588/**
589 * @def GET_MQUANT
590 * @brief Get macroblock-level quantizer scale
591 */
592#define GET_MQUANT()                                           \
593  if (v->dquantfrm)                                            \
594  {                                                            \
595    int edges = 0;                                             \
596    if (v->dqprofile == DQPROFILE_ALL_MBS)                     \
597    {                                                          \
598      if (v->dqbilevel)                                        \
599      {                                                        \
600        mquant = (get_bits1(gb)) ? v->altpq : v->pq;           \
601      }                                                        \
602      else                                                     \
603      {                                                        \
604        mqdiff = get_bits(gb, 3);                              \
605        if (mqdiff != 7) mquant = v->pq + mqdiff;              \
606        else mquant = get_bits(gb, 5);                         \
607      }                                                        \
608    }                                                          \
609    if(v->dqprofile == DQPROFILE_SINGLE_EDGE)                  \
610        edges = 1 << v->dqsbedge;                              \
611    else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES)            \
612        edges = (3 << v->dqsbedge) % 15;                       \
613    else if(v->dqprofile == DQPROFILE_FOUR_EDGES)              \
614        edges = 15;                                            \
615    if((edges&1) && !s->mb_x)                                  \
616        mquant = v->altpq;                                     \
617    if((edges&2) && s->first_slice_line)                       \
618        mquant = v->altpq;                                     \
619    if((edges&4) && s->mb_x == (s->mb_width - 1))              \
620        mquant = v->altpq;                                     \
621    if((edges&8) && s->mb_y == (s->mb_height - 1))             \
622        mquant = v->altpq;                                     \
623  }
624
625/**
626 * @def GET_MVDATA(_dmv_x, _dmv_y)
627 * @brief Get MV differentials
628 * @see MVDATA decoding from 8.3.5.2, p(1)20
629 * @param _dmv_x Horizontal differential for decoded MV
630 * @param _dmv_y Vertical differential for decoded MV
631 */
632#define GET_MVDATA(_dmv_x, _dmv_y)                                  \
633  index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
634                       VC1_MV_DIFF_VLC_BITS, 2);                    \
635  if (index > 36)                                                   \
636  {                                                                 \
637    mb_has_coeffs = 1;                                              \
638    index -= 37;                                                    \
639  }                                                                 \
640  else mb_has_coeffs = 0;                                           \
641  s->mb_intra = 0;                                                  \
642  if (!index) { _dmv_x = _dmv_y = 0; }                              \
643  else if (index == 35)                                             \
644  {                                                                 \
645    _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample);          \
646    _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample);          \
647  }                                                                 \
648  else if (index == 36)                                             \
649  {                                                                 \
650    _dmv_x = 0;                                                     \
651    _dmv_y = 0;                                                     \
652    s->mb_intra = 1;                                                \
653  }                                                                 \
654  else                                                              \
655  {                                                                 \
656    index1 = index%6;                                               \
657    if (!s->quarter_sample && index1 == 5) val = 1;                 \
658    else                                   val = 0;                 \
659    if(size_table[index1] - val > 0)                                \
660        val = get_bits(gb, size_table[index1] - val);               \
661    else                                   val = 0;                 \
662    sign = 0 - (val&1);                                             \
663    _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign;     \
664                                                                    \
665    index1 = index/6;                                               \
666    if (!s->quarter_sample && index1 == 5) val = 1;                 \
667    else                                   val = 0;                 \
668    if(size_table[index1] - val > 0)                                \
669        val = get_bits(gb, size_table[index1] - val);               \
670    else                                   val = 0;                 \
671    sign = 0 - (val&1);                                             \
672    _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign;     \
673  }
674
675/** Predict and set motion vector
676 */
677static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
678{
679    int xy, wrap, off = 0;
680    int16_t *A, *B, *C;
681    int px, py;
682    int sum;
683
684    /* scale MV difference to be quad-pel */
685    dmv_x <<= 1 - s->quarter_sample;
686    dmv_y <<= 1 - s->quarter_sample;
687
688    wrap = s->b8_stride;
689    xy = s->block_index[n];
690
691    if(s->mb_intra){
692        s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
693        s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
694        s->current_picture.motion_val[1][xy][0] = 0;
695        s->current_picture.motion_val[1][xy][1] = 0;
696        if(mv1) { /* duplicate motion data for 1-MV block */
697            s->current_picture.motion_val[0][xy + 1][0] = 0;
698            s->current_picture.motion_val[0][xy + 1][1] = 0;
699            s->current_picture.motion_val[0][xy + wrap][0] = 0;
700            s->current_picture.motion_val[0][xy + wrap][1] = 0;
701            s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
702            s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
703            s->current_picture.motion_val[1][xy + 1][0] = 0;
704            s->current_picture.motion_val[1][xy + 1][1] = 0;
705            s->current_picture.motion_val[1][xy + wrap][0] = 0;
706            s->current_picture.motion_val[1][xy + wrap][1] = 0;
707            s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
708            s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
709        }
710        return;
711    }
712
713    C = s->current_picture.motion_val[0][xy - 1];
714    A = s->current_picture.motion_val[0][xy - wrap];
715    if(mv1)
716        off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
717    else {
718        //in 4-MV mode different blocks have different B predictor position
719        switch(n){
720        case 0:
721            off = (s->mb_x > 0) ? -1 : 1;
722            break;
723        case 1:
724            off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
725            break;
726        case 2:
727            off = 1;
728            break;
729        case 3:
730            off = -1;
731        }
732    }
733    B = s->current_picture.motion_val[0][xy - wrap + off];
734
735    if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
736        if(s->mb_width == 1) {
737            px = A[0];
738            py = A[1];
739        } else {
740            px = mid_pred(A[0], B[0], C[0]);
741            py = mid_pred(A[1], B[1], C[1]);
742        }
743    } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
744        px = C[0];
745        py = C[1];
746    } else {
747        px = py = 0;
748    }
749    /* Pullback MV as specified in 8.3.5.3.4 */
750    {
751        int qx, qy, X, Y;
752        qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
753        qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
754        X = (s->mb_width << 6) - 4;
755        Y = (s->mb_height << 6) - 4;
756        if(mv1) {
757            if(qx + px < -60) px = -60 - qx;
758            if(qy + py < -60) py = -60 - qy;
759        } else {
760            if(qx + px < -28) px = -28 - qx;
761            if(qy + py < -28) py = -28 - qy;
762        }
763        if(qx + px > X) px = X - qx;
764        if(qy + py > Y) py = Y - qy;
765    }
766    /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
767    if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
768        if(is_intra[xy - wrap])
769            sum = FFABS(px) + FFABS(py);
770        else
771            sum = FFABS(px - A[0]) + FFABS(py - A[1]);
772        if(sum > 32) {
773            if(get_bits1(&s->gb)) {
774                px = A[0];
775                py = A[1];
776            } else {
777                px = C[0];
778                py = C[1];
779            }
780        } else {
781            if(is_intra[xy - 1])
782                sum = FFABS(px) + FFABS(py);
783            else
784                sum = FFABS(px - C[0]) + FFABS(py - C[1]);
785            if(sum > 32) {
786                if(get_bits1(&s->gb)) {
787                    px = A[0];
788                    py = A[1];
789                } else {
790                    px = C[0];
791                    py = C[1];
792                }
793            }
794        }
795    }
796    /* store MV using signed modulus of MV range defined in 4.11 */
797    s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
798    s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
799    if(mv1) { /* duplicate motion data for 1-MV block */
800        s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
801        s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
802        s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
803        s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
804        s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
805        s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
806    }
807}
808
809/** Motion compensation for direct or interpolated blocks in B-frames
810 */
811static void vc1_interp_mc(VC1Context *v)
812{
813    MpegEncContext *s = &v->s;
814    DSPContext *dsp = &v->s.dsp;
815    uint8_t *srcY, *srcU, *srcV;
816    int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
817
818    if(!v->s.next_picture.data[0])return;
819
820    mx = s->mv[1][0][0];
821    my = s->mv[1][0][1];
822    uvmx = (mx + ((mx & 3) == 3)) >> 1;
823    uvmy = (my + ((my & 3) == 3)) >> 1;
824    if(v->fastuvmc) {
825        uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
826        uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
827    }
828    srcY = s->next_picture.data[0];
829    srcU = s->next_picture.data[1];
830    srcV = s->next_picture.data[2];
831
832    src_x = s->mb_x * 16 + (mx >> 2);
833    src_y = s->mb_y * 16 + (my >> 2);
834    uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
835    uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
836
837    if(v->profile != PROFILE_ADVANCED){
838        src_x   = av_clip(  src_x, -16, s->mb_width  * 16);
839        src_y   = av_clip(  src_y, -16, s->mb_height * 16);
840        uvsrc_x = av_clip(uvsrc_x,  -8, s->mb_width  *  8);
841        uvsrc_y = av_clip(uvsrc_y,  -8, s->mb_height *  8);
842    }else{
843        src_x   = av_clip(  src_x, -17, s->avctx->coded_width);
844        src_y   = av_clip(  src_y, -18, s->avctx->coded_height + 1);
845        uvsrc_x = av_clip(uvsrc_x,  -8, s->avctx->coded_width  >> 1);
846        uvsrc_y = av_clip(uvsrc_y,  -8, s->avctx->coded_height >> 1);
847    }
848
849    srcY += src_y * s->linesize + src_x;
850    srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
851    srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
852
853    /* for grayscale we should not try to read from unknown area */
854    if(s->flags & CODEC_FLAG_GRAY) {
855        srcU = s->edge_emu_buffer + 18 * s->linesize;
856        srcV = s->edge_emu_buffer + 18 * s->linesize;
857    }
858
859    if(v->rangeredfrm
860       || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
861       || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
862        uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
863
864        srcY -= s->mspel * (1 + s->linesize);
865        ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
866                            src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
867        srcY = s->edge_emu_buffer;
868        ff_emulated_edge_mc(uvbuf     , srcU, s->uvlinesize, 8+1, 8+1,
869                            uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
870        ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
871                            uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
872        srcU = uvbuf;
873        srcV = uvbuf + 16;
874        /* if we deal with range reduction we need to scale source blocks */
875        if(v->rangeredfrm) {
876            int i, j;
877            uint8_t *src, *src2;
878
879            src = srcY;
880            for(j = 0; j < 17 + s->mspel*2; j++) {
881                for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
882                src += s->linesize;
883            }
884            src = srcU; src2 = srcV;
885            for(j = 0; j < 9; j++) {
886                for(i = 0; i < 9; i++) {
887                    src[i] = ((src[i] - 128) >> 1) + 128;
888                    src2[i] = ((src2[i] - 128) >> 1) + 128;
889                }
890                src += s->uvlinesize;
891                src2 += s->uvlinesize;
892            }
893        }
894        srcY += s->mspel * (1 + s->linesize);
895    }
896
897    if(s->mspel) {
898        dxy = ((my & 3) << 2) | (mx & 3);
899        dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0]    , srcY    , s->linesize, v->rnd);
900        dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
901        srcY += s->linesize * 8;
902        dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize    , srcY    , s->linesize, v->rnd);
903        dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
904    } else { // hpel mc
905        dxy = (my & 2) | ((mx & 2) >> 1);
906
907        if(!v->rnd)
908            dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
909        else
910            dsp->avg_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
911    }
912
913    if(s->flags & CODEC_FLAG_GRAY) return;
914    /* Chroma MC always uses qpel blilinear */
915    uvmx = (uvmx&3)<<1;
916    uvmy = (uvmy&3)<<1;
917    if(!v->rnd){
918        dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
919        dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
920    }else{
921        dsp->avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
922        dsp->avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
923    }
924}
925
926static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
927{
928    int n = bfrac;
929
930#if B_FRACTION_DEN==256
931    if(inv)
932        n -= 256;
933    if(!qs)
934        return 2 * ((value * n + 255) >> 9);
935    return (value * n + 128) >> 8;
936#else
937    if(inv)
938        n -= B_FRACTION_DEN;
939    if(!qs)
940        return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
941    return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
942#endif
943}
944
945/** Reconstruct motion vector for B-frame and do motion compensation
946 */
947static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
948{
949    if(v->use_ic) {
950        v->mv_mode2 = v->mv_mode;
951        v->mv_mode = MV_PMODE_INTENSITY_COMP;
952    }
953    if(direct) {
954        vc1_mc_1mv(v, 0);
955        vc1_interp_mc(v);
956        if(v->use_ic) v->mv_mode = v->mv_mode2;
957        return;
958    }
959    if(mode == BMV_TYPE_INTERPOLATED) {
960        vc1_mc_1mv(v, 0);
961        vc1_interp_mc(v);
962        if(v->use_ic) v->mv_mode = v->mv_mode2;
963        return;
964    }
965
966    if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
967    vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
968    if(v->use_ic) v->mv_mode = v->mv_mode2;
969}
970
971static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
972{
973    MpegEncContext *s = &v->s;
974    int xy, wrap, off = 0;
975    int16_t *A, *B, *C;
976    int px, py;
977    int sum;
978    int r_x, r_y;
979    const uint8_t *is_intra = v->mb_type[0];
980
981    r_x = v->range_x;
982    r_y = v->range_y;
983    /* scale MV difference to be quad-pel */
984    dmv_x[0] <<= 1 - s->quarter_sample;
985    dmv_y[0] <<= 1 - s->quarter_sample;
986    dmv_x[1] <<= 1 - s->quarter_sample;
987    dmv_y[1] <<= 1 - s->quarter_sample;
988
989    wrap = s->b8_stride;
990    xy = s->block_index[0];
991
992    if(s->mb_intra) {
993        s->current_picture.motion_val[0][xy][0] =
994        s->current_picture.motion_val[0][xy][1] =
995        s->current_picture.motion_val[1][xy][0] =
996        s->current_picture.motion_val[1][xy][1] = 0;
997        return;
998    }
999    s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
1000    s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
1001    s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
1002    s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
1003
1004    /* Pullback predicted motion vectors as specified in 8.4.5.4 */
1005    s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width  << 6) - 4 - (s->mb_x << 6));
1006    s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
1007    s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width  << 6) - 4 - (s->mb_x << 6));
1008    s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
1009    if(direct) {
1010        s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
1011        s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
1012        s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
1013        s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
1014        return;
1015    }
1016
1017    if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
1018        C = s->current_picture.motion_val[0][xy - 2];
1019        A = s->current_picture.motion_val[0][xy - wrap*2];
1020        off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
1021        B = s->current_picture.motion_val[0][xy - wrap*2 + off];
1022
1023        if(!s->mb_x) C[0] = C[1] = 0;
1024        if(!s->first_slice_line) { // predictor A is not out of bounds
1025            if(s->mb_width == 1) {
1026                px = A[0];
1027                py = A[1];
1028            } else {
1029                px = mid_pred(A[0], B[0], C[0]);
1030                py = mid_pred(A[1], B[1], C[1]);
1031            }
1032        } else if(s->mb_x) { // predictor C is not out of bounds
1033            px = C[0];
1034            py = C[1];
1035        } else {
1036            px = py = 0;
1037        }
1038        /* Pullback MV as specified in 8.3.5.3.4 */
1039        {
1040            int qx, qy, X, Y;
1041            if(v->profile < PROFILE_ADVANCED) {
1042                qx = (s->mb_x << 5);
1043                qy = (s->mb_y << 5);
1044                X = (s->mb_width << 5) - 4;
1045                Y = (s->mb_height << 5) - 4;
1046                if(qx + px < -28) px = -28 - qx;
1047                if(qy + py < -28) py = -28 - qy;
1048                if(qx + px > X) px = X - qx;
1049                if(qy + py > Y) py = Y - qy;
1050            } else {
1051                qx = (s->mb_x << 6);
1052                qy = (s->mb_y << 6);
1053                X = (s->mb_width << 6) - 4;
1054                Y = (s->mb_height << 6) - 4;
1055                if(qx + px < -60) px = -60 - qx;
1056                if(qy + py < -60) py = -60 - qy;
1057                if(qx + px > X) px = X - qx;
1058                if(qy + py > Y) py = Y - qy;
1059            }
1060        }
1061        /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
1062        if(0 && !s->first_slice_line && s->mb_x) {
1063            if(is_intra[xy - wrap])
1064                sum = FFABS(px) + FFABS(py);
1065            else
1066                sum = FFABS(px - A[0]) + FFABS(py - A[1]);
1067            if(sum > 32) {
1068                if(get_bits1(&s->gb)) {
1069                    px = A[0];
1070                    py = A[1];
1071                } else {
1072                    px = C[0];
1073                    py = C[1];
1074                }
1075            } else {
1076                if(is_intra[xy - 2])
1077                    sum = FFABS(px) + FFABS(py);
1078                else
1079                    sum = FFABS(px - C[0]) + FFABS(py - C[1]);
1080                if(sum > 32) {
1081                    if(get_bits1(&s->gb)) {
1082                        px = A[0];
1083                        py = A[1];
1084                    } else {
1085                        px = C[0];
1086                        py = C[1];
1087                    }
1088                }
1089            }
1090        }
1091        /* store MV using signed modulus of MV range defined in 4.11 */
1092        s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
1093        s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
1094    }
1095    if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
1096        C = s->current_picture.motion_val[1][xy - 2];
1097        A = s->current_picture.motion_val[1][xy - wrap*2];
1098        off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
1099        B = s->current_picture.motion_val[1][xy - wrap*2 + off];
1100
1101        if(!s->mb_x) C[0] = C[1] = 0;
1102        if(!s->first_slice_line) { // predictor A is not out of bounds
1103            if(s->mb_width == 1) {
1104                px = A[0];
1105                py = A[1];
1106            } else {
1107                px = mid_pred(A[0], B[0], C[0]);
1108                py = mid_pred(A[1], B[1], C[1]);
1109            }
1110        } else if(s->mb_x) { // predictor C is not out of bounds
1111            px = C[0];
1112            py = C[1];
1113        } else {
1114            px = py = 0;
1115        }
1116        /* Pullback MV as specified in 8.3.5.3.4 */
1117        {
1118            int qx, qy, X, Y;
1119            if(v->profile < PROFILE_ADVANCED) {
1120                qx = (s->mb_x << 5);
1121                qy = (s->mb_y << 5);
1122                X = (s->mb_width << 5) - 4;
1123                Y = (s->mb_height << 5) - 4;
1124                if(qx + px < -28) px = -28 - qx;
1125                if(qy + py < -28) py = -28 - qy;
1126                if(qx + px > X) px = X - qx;
1127                if(qy + py > Y) py = Y - qy;
1128            } else {
1129                qx = (s->mb_x << 6);
1130                qy = (s->mb_y << 6);
1131                X = (s->mb_width << 6) - 4;
1132                Y = (s->mb_height << 6) - 4;
1133                if(qx + px < -60) px = -60 - qx;
1134                if(qy + py < -60) py = -60 - qy;
1135                if(qx + px > X) px = X - qx;
1136                if(qy + py > Y) py = Y - qy;
1137            }
1138        }
1139        /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
1140        if(0 && !s->first_slice_line && s->mb_x) {
1141            if(is_intra[xy - wrap])
1142                sum = FFABS(px) + FFABS(py);
1143            else
1144                sum = FFABS(px - A[0]) + FFABS(py - A[1]);
1145            if(sum > 32) {
1146                if(get_bits1(&s->gb)) {
1147                    px = A[0];
1148                    py = A[1];
1149                } else {
1150                    px = C[0];
1151                    py = C[1];
1152                }
1153            } else {
1154                if(is_intra[xy - 2])
1155                    sum = FFABS(px) + FFABS(py);
1156                else
1157                    sum = FFABS(px - C[0]) + FFABS(py - C[1]);
1158                if(sum > 32) {
1159                    if(get_bits1(&s->gb)) {
1160                        px = A[0];
1161                        py = A[1];
1162                    } else {
1163                        px = C[0];
1164                        py = C[1];
1165                    }
1166                }
1167            }
1168        }
1169        /* store MV using signed modulus of MV range defined in 4.11 */
1170
1171        s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
1172        s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
1173    }
1174    s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
1175    s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
1176    s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
1177    s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
1178}
1179
1180/** Get predicted DC value for I-frames only
1181 * prediction dir: left=0, top=1
1182 * @param s MpegEncContext
1183 * @param overlap flag indicating that overlap filtering is used
1184 * @param pq integer part of picture quantizer
1185 * @param[in] n block index in the current MB
1186 * @param dc_val_ptr Pointer to DC predictor
1187 * @param dir_ptr Prediction direction for use in AC prediction
1188 */
1189static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
1190                              int16_t **dc_val_ptr, int *dir_ptr)
1191{
1192    int a, b, c, wrap, pred, scale;
1193    int16_t *dc_val;
1194    static const uint16_t dcpred[32] = {
1195    -1, 1024,  512,  341,  256,  205,  171,  146,  128,
1196         114,  102,   93,   85,   79,   73,   68,   64,
1197          60,   57,   54,   51,   49,   47,   45,   43,
1198          41,   39,   38,   37,   35,   34,   33
1199    };
1200
1201    /* find prediction - wmv3_dc_scale always used here in fact */
1202    if (n < 4)     scale = s->y_dc_scale;
1203    else           scale = s->c_dc_scale;
1204
1205    wrap = s->block_wrap[n];
1206    dc_val= s->dc_val[0] + s->block_index[n];
1207
1208    /* B A
1209     * C X
1210     */
1211    c = dc_val[ - 1];
1212    b = dc_val[ - 1 - wrap];
1213    a = dc_val[ - wrap];
1214
1215    if (pq < 9 || !overlap)
1216    {
1217        /* Set outer values */
1218        if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
1219        if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
1220    }
1221    else
1222    {
1223        /* Set outer values */
1224        if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
1225        if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
1226    }
1227
1228    if (abs(a - b) <= abs(b - c)) {
1229        pred = c;
1230        *dir_ptr = 1;//left
1231    } else {
1232        pred = a;
1233        *dir_ptr = 0;//top
1234    }
1235
1236    /* update predictor */
1237    *dc_val_ptr = &dc_val[0];
1238    return pred;
1239}
1240
1241
1242/** Get predicted DC value
1243 * prediction dir: left=0, top=1
1244 * @param s MpegEncContext
1245 * @param overlap flag indicating that overlap filtering is used
1246 * @param pq integer part of picture quantizer
1247 * @param[in] n block index in the current MB
1248 * @param a_avail flag indicating top block availability
1249 * @param c_avail flag indicating left block availability
1250 * @param dc_val_ptr Pointer to DC predictor
1251 * @param dir_ptr Prediction direction for use in AC prediction
1252 */
1253static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
1254                              int a_avail, int c_avail,
1255                              int16_t **dc_val_ptr, int *dir_ptr)
1256{
1257    int a, b, c, wrap, pred;
1258    int16_t *dc_val;
1259    int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
1260    int q1, q2 = 0;
1261
1262    wrap = s->block_wrap[n];
1263    dc_val= s->dc_val[0] + s->block_index[n];
1264
1265    /* B A
1266     * C X
1267     */
1268    c = dc_val[ - 1];
1269    b = dc_val[ - 1 - wrap];
1270    a = dc_val[ - wrap];
1271    /* scale predictors if needed */
1272    q1 = s->current_picture.qscale_table[mb_pos];
1273    if(c_avail && (n!= 1 && n!=3)) {
1274        q2 = s->current_picture.qscale_table[mb_pos - 1];
1275        if(q2 && q2 != q1)
1276            c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
1277    }
1278    if(a_avail && (n!= 2 && n!=3)) {
1279        q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
1280        if(q2 && q2 != q1)
1281            a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
1282    }
1283    if(a_avail && c_avail && (n!=3)) {
1284        int off = mb_pos;
1285        if(n != 1) off--;
1286        if(n != 2) off -= s->mb_stride;
1287        q2 = s->current_picture.qscale_table[off];
1288        if(q2 && q2 != q1)
1289            b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
1290    }
1291
1292    if(a_avail && c_avail) {
1293        if(abs(a - b) <= abs(b - c)) {
1294            pred = c;
1295            *dir_ptr = 1;//left
1296        } else {
1297            pred = a;
1298            *dir_ptr = 0;//top
1299        }
1300    } else if(a_avail) {
1301        pred = a;
1302        *dir_ptr = 0;//top
1303    } else if(c_avail) {
1304        pred = c;
1305        *dir_ptr = 1;//left
1306    } else {
1307        pred = 0;
1308        *dir_ptr = 1;//left
1309    }
1310
1311    /* update predictor */
1312    *dc_val_ptr = &dc_val[0];
1313    return pred;
1314}
1315
1316/** @} */ // Block group
1317
1318/**
1319 * @defgroup vc1_std_mb VC1 Macroblock-level functions in Simple/Main Profiles
1320 * @see 7.1.4, p91 and 8.1.1.7, p(1)04
1321 * @{
1322 */
1323
1324static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
1325{
1326    int xy, wrap, pred, a, b, c;
1327
1328    xy = s->block_index[n];
1329    wrap = s->b8_stride;
1330
1331    /* B C
1332     * A X
1333     */
1334    a = s->coded_block[xy - 1       ];
1335    b = s->coded_block[xy - 1 - wrap];
1336    c = s->coded_block[xy     - wrap];
1337
1338    if (b == c) {
1339        pred = a;
1340    } else {
1341        pred = c;
1342    }
1343
1344    /* store value */
1345    *coded_block_ptr = &s->coded_block[xy];
1346
1347    return pred;
1348}
1349
1350/**
1351 * Decode one AC coefficient
1352 * @param v The VC1 context
1353 * @param last Last coefficient
1354 * @param skip How much zero coefficients to skip
1355 * @param value Decoded AC coefficient value
1356 * @param codingset set of VLC to decode data
1357 * @see 8.1.3.4
1358 */
1359static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
1360{
1361    GetBitContext *gb = &v->s.gb;
1362    int index, escape, run = 0, level = 0, lst = 0;
1363
1364    index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
1365    if (index != vc1_ac_sizes[codingset] - 1) {
1366        run = vc1_index_decode_table[codingset][index][0];
1367        level = vc1_index_decode_table[codingset][index][1];
1368        lst = index >= vc1_last_decode_table[codingset];
1369        if(get_bits1(gb))
1370            level = -level;
1371    } else {
1372        escape = decode210(gb);
1373        if (escape != 2) {
1374            index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
1375            run = vc1_index_decode_table[codingset][index][0];
1376            level = vc1_index_decode_table[codingset][index][1];
1377            lst = index >= vc1_last_decode_table[codingset];
1378            if(escape == 0) {
1379                if(lst)
1380                    level += vc1_last_delta_level_table[codingset][run];
1381                else
1382                    level += vc1_delta_level_table[codingset][run];
1383            } else {
1384                if(lst)
1385                    run += vc1_last_delta_run_table[codingset][level] + 1;
1386                else
1387                    run += vc1_delta_run_table[codingset][level] + 1;
1388            }
1389            if(get_bits1(gb))
1390                level = -level;
1391        } else {
1392            int sign;
1393            lst = get_bits1(gb);
1394            if(v->s.esc3_level_length == 0) {
1395                if(v->pq < 8 || v->dquantfrm) { // table 59
1396                    v->s.esc3_level_length = get_bits(gb, 3);
1397                    if(!v->s.esc3_level_length)
1398                        v->s.esc3_level_length = get_bits(gb, 2) + 8;
1399                } else { //table 60
1400                    v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
1401                }
1402                v->s.esc3_run_length = 3 + get_bits(gb, 2);
1403            }
1404            run = get_bits(gb, v->s.esc3_run_length);
1405            sign = get_bits1(gb);
1406            level = get_bits(gb, v->s.esc3_level_length);
1407            if(sign)
1408                level = -level;
1409        }
1410    }
1411
1412    *last = lst;
1413    *skip = run;
1414    *value = level;
1415}
1416
1417/** Decode intra block in intra frames - should be faster than decode_intra_block
1418 * @param v VC1Context
1419 * @param block block to decode
1420 * @param[in] n subblock index
1421 * @param coded are AC coeffs present or not
1422 * @param codingset set of VLC to decode data
1423 */
1424static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
1425{
1426    GetBitContext *gb = &v->s.gb;
1427    MpegEncContext *s = &v->s;
1428    int dc_pred_dir = 0; /* Direction of the DC prediction used */
1429    int i;
1430    int16_t *dc_val;
1431    int16_t *ac_val, *ac_val2;
1432    int dcdiff;
1433
1434    /* Get DC differential */
1435    if (n < 4) {
1436        dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
1437    } else {
1438        dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
1439    }
1440    if (dcdiff < 0){
1441        av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
1442        return -1;
1443    }
1444    if (dcdiff)
1445    {
1446        if (dcdiff == 119 /* ESC index value */)
1447        {
1448            /* TODO: Optimize */
1449            if (v->pq == 1) dcdiff = get_bits(gb, 10);
1450            else if (v->pq == 2) dcdiff = get_bits(gb, 9);
1451            else dcdiff = get_bits(gb, 8);
1452        }
1453        else
1454        {
1455            if (v->pq == 1)
1456                dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
1457            else if (v->pq == 2)
1458                dcdiff = (dcdiff<<1) + get_bits1(gb)   - 1;
1459        }
1460        if (get_bits1(gb))
1461            dcdiff = -dcdiff;
1462    }
1463
1464    /* Prediction */
1465    dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
1466    *dc_val = dcdiff;
1467
1468    /* Store the quantized DC coeff, used for prediction */
1469    if (n < 4) {
1470        block[0] = dcdiff * s->y_dc_scale;
1471    } else {
1472        block[0] = dcdiff * s->c_dc_scale;
1473    }
1474    /* Skip ? */
1475    if (!coded) {
1476        goto not_coded;
1477    }
1478
1479    //AC Decoding
1480    i = 1;
1481
1482    {
1483        int last = 0, skip, value;
1484        const int8_t *zz_table;
1485        int scale;
1486        int k;
1487
1488        scale = v->pq * 2 + v->halfpq;
1489
1490        if(v->s.ac_pred) {
1491            if(!dc_pred_dir)
1492                zz_table = wmv1_scantable[2];
1493            else
1494                zz_table = wmv1_scantable[3];
1495        } else
1496            zz_table = wmv1_scantable[1];
1497
1498        ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
1499        ac_val2 = ac_val;
1500        if(dc_pred_dir) //left
1501            ac_val -= 16;
1502        else //top
1503            ac_val -= 16 * s->block_wrap[n];
1504
1505        while (!last) {
1506            vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
1507            i += skip;
1508            if(i > 63)
1509                break;
1510            block[zz_table[i++]] = value;
1511        }
1512
1513        /* apply AC prediction if needed */
1514        if(s->ac_pred) {
1515            if(dc_pred_dir) { //left
1516                for(k = 1; k < 8; k++)
1517                    block[k << 3] += ac_val[k];
1518            } else { //top
1519                for(k = 1; k < 8; k++)
1520                    block[k] += ac_val[k + 8];
1521            }
1522        }
1523        /* save AC coeffs for further prediction */
1524        for(k = 1; k < 8; k++) {
1525            ac_val2[k] = block[k << 3];
1526            ac_val2[k + 8] = block[k];
1527        }
1528
1529        /* scale AC coeffs */
1530        for(k = 1; k < 64; k++)
1531            if(block[k]) {
1532                block[k] *= scale;
1533                if(!v->pquantizer)
1534                    block[k] += (block[k] < 0) ? -v->pq : v->pq;
1535            }
1536
1537        if(s->ac_pred) i = 63;
1538    }
1539
1540not_coded:
1541    if(!coded) {
1542        int k, scale;
1543        ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
1544        ac_val2 = ac_val;
1545
1546        i = 0;
1547        scale = v->pq * 2 + v->halfpq;
1548        memset(ac_val2, 0, 16 * 2);
1549        if(dc_pred_dir) {//left
1550            ac_val -= 16;
1551            if(s->ac_pred)
1552                memcpy(ac_val2, ac_val, 8 * 2);
1553        } else {//top
1554            ac_val -= 16 * s->block_wrap[n];
1555            if(s->ac_pred)
1556                memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
1557        }
1558
1559        /* apply AC prediction if needed */
1560        if(s->ac_pred) {
1561            if(dc_pred_dir) { //left
1562                for(k = 1; k < 8; k++) {
1563                    block[k << 3] = ac_val[k] * scale;
1564                    if(!v->pquantizer && block[k << 3])
1565                        block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
1566                }
1567            } else { //top
1568                for(k = 1; k < 8; k++) {
1569                    block[k] = ac_val[k + 8] * scale;
1570                    if(!v->pquantizer && block[k])
1571                        block[k] += (block[k] < 0) ? -v->pq : v->pq;
1572                }
1573            }
1574            i = 63;
1575        }
1576    }
1577    s->block_last_index[n] = i;
1578
1579    return 0;
1580}
1581
1582/** Decode intra block in intra frames - should be faster than decode_intra_block
1583 * @param v VC1Context
1584 * @param block block to decode
1585 * @param[in] n subblock number
1586 * @param coded are AC coeffs present or not
1587 * @param codingset set of VLC to decode data
1588 * @param mquant quantizer value for this macroblock
1589 */
1590static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
1591{
1592    GetBitContext *gb = &v->s.gb;
1593    MpegEncContext *s = &v->s;
1594    int dc_pred_dir = 0; /* Direction of the DC prediction used */
1595    int i;
1596    int16_t *dc_val;
1597    int16_t *ac_val, *ac_val2;
1598    int dcdiff;
1599    int a_avail = v->a_avail, c_avail = v->c_avail;
1600    int use_pred = s->ac_pred;
1601    int scale;
1602    int q1, q2 = 0;
1603    int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
1604
1605    /* Get DC differential */
1606    if (n < 4) {
1607        dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
1608    } else {
1609        dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
1610    }
1611    if (dcdiff < 0){
1612        av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
1613        return -1;
1614    }
1615    if (dcdiff)
1616    {
1617        if (dcdiff == 119 /* ESC index value */)
1618        {
1619            /* TODO: Optimize */
1620            if (mquant == 1) dcdiff = get_bits(gb, 10);
1621            else if (mquant == 2) dcdiff = get_bits(gb, 9);
1622            else dcdiff = get_bits(gb, 8);
1623        }
1624        else
1625        {
1626            if (mquant == 1)
1627                dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
1628            else if (mquant == 2)
1629                dcdiff = (dcdiff<<1) + get_bits1(gb)   - 1;
1630        }
1631        if (get_bits1(gb))
1632            dcdiff = -dcdiff;
1633    }
1634
1635    /* Prediction */
1636    dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
1637    *dc_val = dcdiff;
1638
1639    /* Store the quantized DC coeff, used for prediction */
1640    if (n < 4) {
1641        block[0] = dcdiff * s->y_dc_scale;
1642    } else {
1643        block[0] = dcdiff * s->c_dc_scale;
1644    }
1645
1646    //AC Decoding
1647    i = 1;
1648
1649    /* check if AC is needed at all */
1650    if(!a_avail && !c_avail) use_pred = 0;
1651    ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
1652    ac_val2 = ac_val;
1653
1654    scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
1655
1656    if(dc_pred_dir) //left
1657        ac_val -= 16;
1658    else //top
1659        ac_val -= 16 * s->block_wrap[n];
1660
1661    q1 = s->current_picture.qscale_table[mb_pos];
1662    if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
1663    if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
1664    if(dc_pred_dir && n==1) q2 = q1;
1665    if(!dc_pred_dir && n==2) q2 = q1;
1666    if(n==3) q2 = q1;
1667
1668    if(coded) {
1669        int last = 0, skip, value;
1670        const int8_t *zz_table;
1671        int k;
1672
1673        if(v->s.ac_pred) {
1674            if(!dc_pred_dir)
1675                zz_table = wmv1_scantable[2];
1676            else
1677                zz_table = wmv1_scantable[3];
1678        } else
1679            zz_table = wmv1_scantable[1];
1680
1681        while (!last) {
1682            vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
1683            i += skip;
1684            if(i > 63)
1685                break;
1686            block[zz_table[i++]] = value;
1687        }
1688
1689        /* apply AC prediction if needed */
1690        if(use_pred) {
1691            /* scale predictors if needed*/
1692            if(q2 && q1!=q2) {
1693                q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
1694                q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
1695
1696                if(dc_pred_dir) { //left
1697                    for(k = 1; k < 8; k++)
1698                        block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
1699                } else { //top
1700                    for(k = 1; k < 8; k++)
1701                        block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
1702                }
1703            } else {
1704                if(dc_pred_dir) { //left
1705                    for(k = 1; k < 8; k++)
1706                        block[k << 3] += ac_val[k];
1707                } else { //top
1708                    for(k = 1; k < 8; k++)
1709                        block[k] += ac_val[k + 8];
1710                }
1711            }
1712        }
1713        /* save AC coeffs for further prediction */
1714        for(k = 1; k < 8; k++) {
1715            ac_val2[k] = block[k << 3];
1716            ac_val2[k + 8] = block[k];
1717        }
1718
1719        /* scale AC coeffs */
1720        for(k = 1; k < 64; k++)
1721            if(block[k]) {
1722                block[k] *= scale;
1723                if(!v->pquantizer)
1724                    block[k] += (block[k] < 0) ? -mquant : mquant;
1725            }
1726
1727        if(use_pred) i = 63;
1728    } else { // no AC coeffs
1729        int k;
1730
1731        memset(ac_val2, 0, 16 * 2);
1732        if(dc_pred_dir) {//left
1733            if(use_pred) {
1734                memcpy(ac_val2, ac_val, 8 * 2);
1735                if(q2 && q1!=q2) {
1736                    q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
1737                    q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
1738                    for(k = 1; k < 8; k++)
1739                        ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
1740                }
1741            }
1742        } else {//top
1743            if(use_pred) {
1744                memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
1745                if(q2 && q1!=q2) {
1746                    q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
1747                    q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
1748                    for(k = 1; k < 8; k++)
1749                        ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
1750                }
1751            }
1752        }
1753
1754        /* apply AC prediction if needed */
1755        if(use_pred) {
1756            if(dc_pred_dir) { //left
1757                for(k = 1; k < 8; k++) {
1758                    block[k << 3] = ac_val2[k] * scale;
1759                    if(!v->pquantizer && block[k << 3])
1760                        block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
1761                }
1762            } else { //top
1763                for(k = 1; k < 8; k++) {
1764                    block[k] = ac_val2[k + 8] * scale;
1765                    if(!v->pquantizer && block[k])
1766                        block[k] += (block[k] < 0) ? -mquant : mquant;
1767                }
1768            }
1769            i = 63;
1770        }
1771    }
1772    s->block_last_index[n] = i;
1773
1774    return 0;
1775}
1776
1777/** Decode intra block in inter frames - more generic version than vc1_decode_i_block
1778 * @param v VC1Context
1779 * @param block block to decode
1780 * @param[in] n subblock index
1781 * @param coded are AC coeffs present or not
1782 * @param mquant block quantizer
1783 * @param codingset set of VLC to decode data
1784 */
1785static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
1786{
1787    GetBitContext *gb = &v->s.gb;
1788    MpegEncContext *s = &v->s;
1789    int dc_pred_dir = 0; /* Direction of the DC prediction used */
1790    int i;
1791    int16_t *dc_val;
1792    int16_t *ac_val, *ac_val2;
1793    int dcdiff;
1794    int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
1795    int a_avail = v->a_avail, c_avail = v->c_avail;
1796    int use_pred = s->ac_pred;
1797    int scale;
1798    int q1, q2 = 0;
1799
1800    s->dsp.clear_block(block);
1801
1802    /* XXX: Guard against dumb values of mquant */
1803    mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
1804
1805    /* Set DC scale - y and c use the same */
1806    s->y_dc_scale = s->y_dc_scale_table[mquant];
1807    s->c_dc_scale = s->c_dc_scale_table[mquant];
1808
1809    /* Get DC differential */
1810    if (n < 4) {
1811        dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
1812    } else {
1813        dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
1814    }
1815    if (dcdiff < 0){
1816        av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
1817        return -1;
1818    }
1819    if (dcdiff)
1820    {
1821        if (dcdiff == 119 /* ESC index value */)
1822        {
1823            /* TODO: Optimize */
1824            if (mquant == 1) dcdiff = get_bits(gb, 10);
1825            else if (mquant == 2) dcdiff = get_bits(gb, 9);
1826            else dcdiff = get_bits(gb, 8);
1827        }
1828        else
1829        {
1830            if (mquant == 1)
1831                dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
1832            else if (mquant == 2)
1833                dcdiff = (dcdiff<<1) + get_bits1(gb)   - 1;
1834        }
1835        if (get_bits1(gb))
1836            dcdiff = -dcdiff;
1837    }
1838
1839    /* Prediction */
1840    dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
1841    *dc_val = dcdiff;
1842
1843    /* Store the quantized DC coeff, used for prediction */
1844
1845    if (n < 4) {
1846        block[0] = dcdiff * s->y_dc_scale;
1847    } else {
1848        block[0] = dcdiff * s->c_dc_scale;
1849    }
1850
1851    //AC Decoding
1852    i = 1;
1853
1854    /* check if AC is needed at all and adjust direction if needed */
1855    if(!a_avail) dc_pred_dir = 1;
1856    if(!c_avail) dc_pred_dir = 0;
1857    if(!a_avail && !c_avail) use_pred = 0;
1858    ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
1859    ac_val2 = ac_val;
1860
1861    scale = mquant * 2 + v->halfpq;
1862
1863    if(dc_pred_dir) //left
1864        ac_val -= 16;
1865    else //top
1866        ac_val -= 16 * s->block_wrap[n];
1867
1868    q1 = s->current_picture.qscale_table[mb_pos];
1869    if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
1870    if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
1871    if(dc_pred_dir && n==1) q2 = q1;
1872    if(!dc_pred_dir && n==2) q2 = q1;
1873    if(n==3) q2 = q1;
1874
1875    if(coded) {
1876        int last = 0, skip, value;
1877        const int8_t *zz_table;
1878        int k;
1879
1880        zz_table = wmv1_scantable[0];
1881
1882        while (!last) {
1883            vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
1884            i += skip;
1885            if(i > 63)
1886                break;
1887            block[zz_table[i++]] = value;
1888        }
1889
1890        /* apply AC prediction if needed */
1891        if(use_pred) {
1892            /* scale predictors if needed*/
1893            if(q2 && q1!=q2) {
1894                q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
1895                q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
1896
1897                if(dc_pred_dir) { //left
1898                    for(k = 1; k < 8; k++)
1899                        block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
1900                } else { //top
1901                    for(k = 1; k < 8; k++)
1902                        block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
1903                }
1904            } else {
1905                if(dc_pred_dir) { //left
1906                    for(k = 1; k < 8; k++)
1907                        block[k << 3] += ac_val[k];
1908                } else { //top
1909                    for(k = 1; k < 8; k++)
1910                        block[k] += ac_val[k + 8];
1911                }
1912            }
1913        }
1914        /* save AC coeffs for further prediction */
1915        for(k = 1; k < 8; k++) {
1916            ac_val2[k] = block[k << 3];
1917            ac_val2[k + 8] = block[k];
1918        }
1919
1920        /* scale AC coeffs */
1921        for(k = 1; k < 64; k++)
1922            if(block[k]) {
1923                block[k] *= scale;
1924                if(!v->pquantizer)
1925                    block[k] += (block[k] < 0) ? -mquant : mquant;
1926            }
1927
1928        if(use_pred) i = 63;
1929    } else { // no AC coeffs
1930        int k;
1931
1932        memset(ac_val2, 0, 16 * 2);
1933        if(dc_pred_dir) {//left
1934            if(use_pred) {
1935                memcpy(ac_val2, ac_val, 8 * 2);
1936                if(q2 && q1!=q2) {
1937                    q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
1938                    q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
1939                    for(k = 1; k < 8; k++)
1940                        ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
1941                }
1942            }
1943        } else {//top
1944            if(use_pred) {
1945                memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
1946                if(q2 && q1!=q2) {
1947                    q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
1948                    q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
1949                    for(k = 1; k < 8; k++)
1950                        ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
1951                }
1952            }
1953        }
1954
1955        /* apply AC prediction if needed */
1956        if(use_pred) {
1957            if(dc_pred_dir) { //left
1958                for(k = 1; k < 8; k++) {
1959                    block[k << 3] = ac_val2[k] * scale;
1960                    if(!v->pquantizer && block[k << 3])
1961                        block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
1962                }
1963            } else { //top
1964                for(k = 1; k < 8; k++) {
1965                    block[k] = ac_val2[k + 8] * scale;
1966                    if(!v->pquantizer && block[k])
1967                        block[k] += (block[k] < 0) ? -mquant : mquant;
1968                }
1969            }
1970            i = 63;
1971        }
1972    }
1973    s->block_last_index[n] = i;
1974
1975    return 0;
1976}
1977
1978/** Decode P block
1979 */
1980static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block,
1981                              uint8_t *dst, int linesize, int skip_block, int apply_filter, int cbp_top, int cbp_left)
1982{
1983    MpegEncContext *s = &v->s;
1984    GetBitContext *gb = &s->gb;
1985    int i, j;
1986    int subblkpat = 0;
1987    int scale, off, idx, last, skip, value;
1988    int ttblk = ttmb & 7;
1989    int pat = 0;
1990
1991    s->dsp.clear_block(block);
1992
1993    if(ttmb == -1) {
1994        ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
1995    }
1996    if(ttblk == TT_4X4) {
1997        subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
1998    }
1999    if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
2000        subblkpat = decode012(gb);
2001        if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
2002        if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
2003        if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
2004    }
2005    scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
2006
2007    // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
2008    if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
2009        subblkpat = 2 - (ttblk == TT_8X4_TOP);
2010        ttblk = TT_8X4;
2011    }
2012    if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
2013        subblkpat = 2 - (ttblk == TT_4X8_LEFT);
2014        ttblk = TT_4X8;
2015    }
2016    switch(ttblk) {
2017    case TT_8X8:
2018        pat = 0xF;
2019        i = 0;
2020        last = 0;
2021        while (!last) {
2022            vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
2023            i += skip;
2024            if(i > 63)
2025                break;
2026            idx = wmv1_scantable[0][i++];
2027            block[idx] = value * scale;
2028            if(!v->pquantizer)
2029                block[idx] += (block[idx] < 0) ? -mquant : mquant;
2030        }
2031        if(!skip_block){
2032            if(i==1)
2033                s->dsp.vc1_inv_trans_8x8_dc(dst, linesize, block);
2034            else{
2035                s->dsp.vc1_inv_trans_8x8(block);
2036                s->dsp.add_pixels_clamped(block, dst, linesize);
2037            }
2038            if(apply_filter && cbp_top  & 0xC)
2039                s->dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
2040            if(apply_filter && cbp_left & 0xA)
2041                s->dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
2042        }
2043        break;
2044    case TT_4X4:
2045        pat = ~subblkpat & 0xF;
2046        for(j = 0; j < 4; j++) {
2047            last = subblkpat & (1 << (3 - j));
2048            i = 0;
2049            off = (j & 1) * 4 + (j & 2) * 16;
2050            while (!last) {
2051                vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
2052                i += skip;
2053                if(i > 15)
2054                    break;
2055                idx = ff_vc1_simple_progressive_4x4_zz[i++];
2056                block[idx + off] = value * scale;
2057                if(!v->pquantizer)
2058                    block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
2059            }
2060            if(!(subblkpat & (1 << (3 - j))) && !skip_block){
2061                if(i==1)
2062                    s->dsp.vc1_inv_trans_4x4_dc(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
2063                else
2064                    s->dsp.vc1_inv_trans_4x4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
2065                if(apply_filter && (j&2 ? pat & (1<<(j-2)) : (cbp_top & (1 << (j + 2)))))
2066                    s->dsp.vc1_v_loop_filter4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, v->pq);
2067                if(apply_filter && (j&1 ? pat & (1<<(j-1)) : (cbp_left & (1 << (j + 1)))))
2068                    s->dsp.vc1_h_loop_filter4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, v->pq);
2069            }
2070        }
2071        break;
2072    case TT_8X4:
2073        pat = ~((subblkpat & 2)*6 + (subblkpat & 1)*3) & 0xF;
2074        for(j = 0; j < 2; j++) {
2075            last = subblkpat & (1 << (1 - j));
2076            i = 0;
2077            off = j * 32;
2078            while (!last) {
2079                vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
2080                i += skip;
2081                if(i > 31)
2082                    break;
2083                idx = v->zz_8x4[i++]+off;
2084                block[idx] = value * scale;
2085                if(!v->pquantizer)
2086                    block[idx] += (block[idx] < 0) ? -mquant : mquant;
2087            }
2088            if(!(subblkpat & (1 << (1 - j))) && !skip_block){
2089                if(i==1)
2090                    s->dsp.vc1_inv_trans_8x4_dc(dst + j*4*linesize, linesize, block + off);
2091                else
2092                    s->dsp.vc1_inv_trans_8x4(dst + j*4*linesize, linesize, block + off);
2093                if(apply_filter && j ? pat & 0x3 : (cbp_top & 0xC))
2094                    s->dsp.vc1_v_loop_filter8(dst + j*4*linesize, linesize, v->pq);
2095                if(apply_filter && cbp_left & (2 << j))
2096                    s->dsp.vc1_h_loop_filter4(dst + j*4*linesize, linesize, v->pq);
2097            }
2098        }
2099        break;
2100    case TT_4X8:
2101        pat = ~(subblkpat*5) & 0xF;
2102        for(j = 0; j < 2; j++) {
2103            last = subblkpat & (1 << (1 - j));
2104            i = 0;
2105            off = j * 4;
2106            while (!last) {
2107                vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
2108                i += skip;
2109                if(i > 31)
2110                    break;
2111                idx = v->zz_4x8[i++]+off;
2112                block[idx] = value * scale;
2113                if(!v->pquantizer)
2114                    block[idx] += (block[idx] < 0) ? -mquant : mquant;
2115            }
2116            if(!(subblkpat & (1 << (1 - j))) && !skip_block){
2117                if(i==1)
2118                    s->dsp.vc1_inv_trans_4x8_dc(dst + j*4, linesize, block + off);
2119                else
2120                    s->dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
2121                if(apply_filter && cbp_top & (2 << j))
2122                    s->dsp.vc1_v_loop_filter4(dst + j*4, linesize, v->pq);
2123                if(apply_filter && j ? pat & 0x5 : (cbp_left & 0xA))
2124                    s->dsp.vc1_h_loop_filter8(dst + j*4, linesize, v->pq);
2125            }
2126        }
2127        break;
2128    }
2129    return pat;
2130}
2131
2132/** @} */ // Macroblock group
2133
2134static const int size_table  [6] = { 0, 2, 3, 4,  5,  8 };
2135static const int offset_table[6] = { 0, 1, 3, 7, 15, 31 };
2136
2137/** Decode one P-frame MB (in Simple/Main profile)
2138 */
2139static int vc1_decode_p_mb(VC1Context *v)
2140{
2141    MpegEncContext *s = &v->s;
2142    GetBitContext *gb = &s->gb;
2143    int i, j;
2144    int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2145    int cbp; /* cbp decoding stuff */
2146    int mqdiff, mquant; /* MB quantization */
2147    int ttmb = v->ttfrm; /* MB Transform type */
2148
2149    int mb_has_coeffs = 1; /* last_flag */
2150    int dmv_x, dmv_y; /* Differential MV components */
2151    int index, index1; /* LUT indexes */
2152    int val, sign; /* temp values */
2153    int first_block = 1;
2154    int dst_idx, off;
2155    int skipped, fourmv;
2156    int block_cbp = 0, pat;
2157    int apply_loop_filter;
2158
2159    mquant = v->pq; /* Loosy initialization */
2160
2161    if (v->mv_type_is_raw)
2162        fourmv = get_bits1(gb);
2163    else
2164        fourmv = v->mv_type_mb_plane[mb_pos];
2165    if (v->skip_is_raw)
2166        skipped = get_bits1(gb);
2167    else
2168        skipped = v->s.mbskip_table[mb_pos];
2169
2170    apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY);
2171    if (!fourmv) /* 1MV mode */
2172    {
2173        if (!skipped)
2174        {
2175            GET_MVDATA(dmv_x, dmv_y);
2176
2177            if (s->mb_intra) {
2178                s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
2179                s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
2180            }
2181            s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
2182            vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
2183
2184            /* FIXME Set DC val for inter block ? */
2185            if (s->mb_intra && !mb_has_coeffs)
2186            {
2187                GET_MQUANT();
2188                s->ac_pred = get_bits1(gb);
2189                cbp = 0;
2190            }
2191            else if (mb_has_coeffs)
2192            {
2193                if (s->mb_intra) s->ac_pred = get_bits1(gb);
2194                cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
2195                GET_MQUANT();
2196            }
2197            else
2198            {
2199                mquant = v->pq;
2200                cbp = 0;
2201            }
2202            s->current_picture.qscale_table[mb_pos] = mquant;
2203
2204            if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
2205                ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
2206                                VC1_TTMB_VLC_BITS, 2);
2207            if(!s->mb_intra) vc1_mc_1mv(v, 0);
2208            dst_idx = 0;
2209            for (i=0; i<6; i++)
2210            {
2211                s->dc_val[0][s->block_index[i]] = 0;
2212                dst_idx += i >> 2;
2213                val = ((cbp >> (5 - i)) & 1);
2214                off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
2215                v->mb_type[0][s->block_index[i]] = s->mb_intra;
2216                if(s->mb_intra) {
2217                    /* check if prediction blocks A and C are available */
2218                    v->a_avail = v->c_avail = 0;
2219                    if(i == 2 || i == 3 || !s->first_slice_line)
2220                        v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
2221                    if(i == 1 || i == 3 || s->mb_x)
2222                        v->c_avail = v->mb_type[0][s->block_index[i] - 1];
2223
2224                    vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
2225                    if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
2226                    s->dsp.vc1_inv_trans_8x8(s->block[i]);
2227                    if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
2228                    s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
2229                    if(v->pq >= 9 && v->overlap) {
2230                        if(v->c_avail)
2231                            s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
2232                        if(v->a_avail)
2233                            s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
2234                    }
2235                    if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
2236                        int left_cbp, top_cbp;
2237                        if(i & 4){
2238                            left_cbp = v->cbp[s->mb_x - 1]            >> (i * 4);
2239                            top_cbp  = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
2240                        }else{
2241                            left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1]           >> ((i+1)*4));
2242                            top_cbp  = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
2243                        }
2244                        if(left_cbp & 0xC)
2245                            s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
2246                        if(top_cbp  & 0xA)
2247                            s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
2248                    }
2249                    block_cbp |= 0xF << (i << 2);
2250                } else if(val) {
2251                    int left_cbp = 0, top_cbp = 0, filter = 0;
2252                    if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
2253                        filter = 1;
2254                        if(i & 4){
2255                            left_cbp = v->cbp[s->mb_x - 1]            >> (i * 4);
2256                            top_cbp  = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
2257                        }else{
2258                            left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1]           >> ((i+1)*4));
2259                            top_cbp  = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
2260                        }
2261                        if(left_cbp & 0xC)
2262                            s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
2263                        if(top_cbp  & 0xA)
2264                            s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
2265                    }
2266                    pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
2267                    block_cbp |= pat << (i << 2);
2268                    if(!v->ttmbf && ttmb < 8) ttmb = -1;
2269                    first_block = 0;
2270                }
2271            }
2272        }
2273        else //Skipped
2274        {
2275            s->mb_intra = 0;
2276            for(i = 0; i < 6; i++) {
2277                v->mb_type[0][s->block_index[i]] = 0;
2278                s->dc_val[0][s->block_index[i]] = 0;
2279            }
2280            s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
2281            s->current_picture.qscale_table[mb_pos] = 0;
2282            vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
2283            vc1_mc_1mv(v, 0);
2284            return 0;
2285        }
2286    } //1MV mode
2287    else //4MV mode
2288    {
2289        if (!skipped /* unskipped MB */)
2290        {
2291            int intra_count = 0, coded_inter = 0;
2292            int is_intra[6], is_coded[6];
2293            /* Get CBPCY */
2294            cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
2295            for (i=0; i<6; i++)
2296            {
2297                val = ((cbp >> (5 - i)) & 1);
2298                s->dc_val[0][s->block_index[i]] = 0;
2299                s->mb_intra = 0;
2300                if(i < 4) {
2301                    dmv_x = dmv_y = 0;
2302                    s->mb_intra = 0;
2303                    mb_has_coeffs = 0;
2304                    if(val) {
2305                        GET_MVDATA(dmv_x, dmv_y);
2306                    }
2307                    vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
2308                    if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
2309                    intra_count += s->mb_intra;
2310                    is_intra[i] = s->mb_intra;
2311                    is_coded[i] = mb_has_coeffs;
2312                }
2313                if(i&4){
2314                    is_intra[i] = (intra_count >= 3);
2315                    is_coded[i] = val;
2316                }
2317                if(i == 4) vc1_mc_4mv_chroma(v);
2318                v->mb_type[0][s->block_index[i]] = is_intra[i];
2319                if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
2320            }
2321            // if there are no coded blocks then don't do anything more
2322            if(!intra_count && !coded_inter) return 0;
2323            dst_idx = 0;
2324            GET_MQUANT();
2325            s->current_picture.qscale_table[mb_pos] = mquant;
2326            /* test if block is intra and has pred */
2327            {
2328                int intrapred = 0;
2329                for(i=0; i<6; i++)
2330                    if(is_intra[i]) {
2331                        if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
2332                            || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
2333                            intrapred = 1;
2334                            break;
2335                        }
2336                    }
2337                if(intrapred)s->ac_pred = get_bits1(gb);
2338                else s->ac_pred = 0;
2339            }
2340            if (!v->ttmbf && coded_inter)
2341                ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
2342            for (i=0; i<6; i++)
2343            {
2344                dst_idx += i >> 2;
2345                off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
2346                s->mb_intra = is_intra[i];
2347                if (is_intra[i]) {
2348                    /* check if prediction blocks A and C are available */
2349                    v->a_avail = v->c_avail = 0;
2350                    if(i == 2 || i == 3 || !s->first_slice_line)
2351                        v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
2352                    if(i == 1 || i == 3 || s->mb_x)
2353                        v->c_avail = v->mb_type[0][s->block_index[i] - 1];
2354
2355                    vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
2356                    if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
2357                    s->dsp.vc1_inv_trans_8x8(s->block[i]);
2358                    if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
2359                    s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
2360                    if(v->pq >= 9 && v->overlap) {
2361                        if(v->c_avail)
2362                            s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
2363                        if(v->a_avail)
2364                            s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
2365                    }
2366                    if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
2367                        int left_cbp, top_cbp;
2368                        if(i & 4){
2369                            left_cbp = v->cbp[s->mb_x - 1]            >> (i * 4);
2370                            top_cbp  = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
2371                        }else{
2372                            left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1]           >> ((i+1)*4));
2373                            top_cbp  = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
2374                        }
2375                        if(left_cbp & 0xC)
2376                            s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
2377                        if(top_cbp  & 0xA)
2378                            s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
2379                    }
2380                    block_cbp |= 0xF << (i << 2);
2381                } else if(is_coded[i]) {
2382                    int left_cbp = 0, top_cbp = 0, filter = 0;
2383                    if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
2384                        filter = 1;
2385                        if(i & 4){
2386                            left_cbp = v->cbp[s->mb_x - 1]            >> (i * 4);
2387                            top_cbp  = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
2388                        }else{
2389                            left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1]           >> ((i+1)*4));
2390                            top_cbp  = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
2391                        }
2392                        if(left_cbp & 0xC)
2393                            s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
2394                        if(top_cbp  & 0xA)
2395                            s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
2396                    }
2397                    pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
2398                    block_cbp |= pat << (i << 2);
2399                    if(!v->ttmbf && ttmb < 8) ttmb = -1;
2400                    first_block = 0;
2401                }
2402            }
2403            return 0;
2404        }
2405        else //Skipped MB
2406        {
2407            s->mb_intra = 0;
2408            s->current_picture.qscale_table[mb_pos] = 0;
2409            for (i=0; i<6; i++) {
2410                v->mb_type[0][s->block_index[i]] = 0;
2411                s->dc_val[0][s->block_index[i]] = 0;
2412            }
2413            for (i=0; i<4; i++)
2414            {
2415                vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
2416                vc1_mc_4mv_luma(v, i);
2417            }
2418            vc1_mc_4mv_chroma(v);
2419            s->current_picture.qscale_table[mb_pos] = 0;
2420            return 0;
2421        }
2422    }
2423    v->cbp[s->mb_x] = block_cbp;
2424
2425    /* Should never happen */
2426    return -1;
2427}
2428
2429/** Decode one B-frame MB (in Main profile)
2430 */
2431static void vc1_decode_b_mb(VC1Context *v)
2432{
2433    MpegEncContext *s = &v->s;
2434    GetBitContext *gb = &s->gb;
2435    int i, j;
2436    int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2437    int cbp = 0; /* cbp decoding stuff */
2438    int mqdiff, mquant; /* MB quantization */
2439    int ttmb = v->ttfrm; /* MB Transform type */
2440    int mb_has_coeffs = 0; /* last_flag */
2441    int index, index1; /* LUT indexes */
2442    int val, sign; /* temp values */
2443    int first_block = 1;
2444    int dst_idx, off;
2445    int skipped, direct;
2446    int dmv_x[2], dmv_y[2];
2447    int bmvtype = BMV_TYPE_BACKWARD;
2448
2449    mquant = v->pq; /* Loosy initialization */
2450    s->mb_intra = 0;
2451
2452    if (v->dmb_is_raw)
2453        direct = get_bits1(gb);
2454    else
2455        direct = v->direct_mb_plane[mb_pos];
2456    if (v->skip_is_raw)
2457        skipped = get_bits1(gb);
2458    else
2459        skipped = v->s.mbskip_table[mb_pos];
2460
2461    dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
2462    for(i = 0; i < 6; i++) {
2463        v->mb_type[0][s->block_index[i]] = 0;
2464        s->dc_val[0][s->block_index[i]] = 0;
2465    }
2466    s->current_picture.qscale_table[mb_pos] = 0;
2467
2468    if (!direct) {
2469        if (!skipped) {
2470            GET_MVDATA(dmv_x[0], dmv_y[0]);
2471            dmv_x[1] = dmv_x[0];
2472            dmv_y[1] = dmv_y[0];
2473        }
2474        if(skipped || !s->mb_intra) {
2475            bmvtype = decode012(gb);
2476            switch(bmvtype) {
2477            case 0:
2478                bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
2479                break;
2480            case 1:
2481                bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
2482                break;
2483            case 2:
2484                bmvtype = BMV_TYPE_INTERPOLATED;
2485                dmv_x[0] = dmv_y[0] = 0;
2486            }
2487        }
2488    }
2489    for(i = 0; i < 6; i++)
2490        v->mb_type[0][s->block_index[i]] = s->mb_intra;
2491
2492    if (skipped) {
2493        if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
2494        vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
2495        vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
2496        return;
2497    }
2498    if (direct) {
2499        cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
2500        GET_MQUANT();
2501        s->mb_intra = 0;
2502        s->current_picture.qscale_table[mb_pos] = mquant;
2503        if(!v->ttmbf)
2504            ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
2505        dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
2506        vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
2507        vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
2508    } else {
2509        if(!mb_has_coeffs && !s->mb_intra) {
2510            /* no coded blocks - effectively skipped */
2511            vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
2512            vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
2513            return;
2514        }
2515        if(s->mb_intra && !mb_has_coeffs) {
2516            GET_MQUANT();
2517            s->current_picture.qscale_table[mb_pos] = mquant;
2518            s->ac_pred = get_bits1(gb);
2519            cbp = 0;
2520            vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
2521        } else {
2522            if(bmvtype == BMV_TYPE_INTERPOLATED) {
2523                GET_MVDATA(dmv_x[0], dmv_y[0]);
2524                if(!mb_has_coeffs) {
2525                    /* interpolated skipped block */
2526                    vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
2527                    vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
2528                    return;
2529                }
2530            }
2531            vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
2532            if(!s->mb_intra) {
2533                vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
2534            }
2535            if(s->mb_intra)
2536                s->ac_pred = get_bits1(gb);
2537            cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
2538            GET_MQUANT();
2539            s->current_picture.qscale_table[mb_pos] = mquant;
2540            if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
2541                ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
2542        }
2543    }
2544    dst_idx = 0;
2545    for (i=0; i<6; i++)
2546    {
2547        s->dc_val[0][s->block_index[i]] = 0;
2548        dst_idx += i >> 2;
2549        val = ((cbp >> (5 - i)) & 1);
2550        off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
2551        v->mb_type[0][s->block_index[i]] = s->mb_intra;
2552        if(s->mb_intra) {
2553            /* check if prediction blocks A and C are available */
2554            v->a_avail = v->c_avail = 0;
2555            if(i == 2 || i == 3 || !s->first_slice_line)
2556                v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
2557            if(i == 1 || i == 3 || s->mb_x)
2558                v->c_avail = v->mb_type[0][s->block_index[i] - 1];
2559
2560            vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
2561            if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
2562            s->dsp.vc1_inv_trans_8x8(s->block[i]);
2563            if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
2564            s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
2565        } else if(val) {
2566            vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), 0, 0, 0);
2567            if(!v->ttmbf && ttmb < 8) ttmb = -1;
2568            first_block = 0;
2569        }
2570    }
2571}
2572
2573/** Decode blocks of I-frame
2574 */
2575static void vc1_decode_i_blocks(VC1Context *v)
2576{
2577    int k, j;
2578    MpegEncContext *s = &v->s;
2579    int cbp, val;
2580    uint8_t *coded_val;
2581    int mb_pos;
2582
2583    /* select codingmode used for VLC tables selection */
2584    switch(v->y_ac_table_index){
2585    case 0:
2586        v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
2587        break;
2588    case 1:
2589        v->codingset = CS_HIGH_MOT_INTRA;
2590        break;
2591    case 2:
2592        v->codingset = CS_MID_RATE_INTRA;
2593        break;
2594    }
2595
2596    switch(v->c_ac_table_index){
2597    case 0:
2598        v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
2599        break;
2600    case 1:
2601        v->codingset2 = CS_HIGH_MOT_INTER;
2602        break;
2603    case 2:
2604        v->codingset2 = CS_MID_RATE_INTER;
2605        break;
2606    }
2607
2608    /* Set DC scale - y and c use the same */
2609    s->y_dc_scale = s->y_dc_scale_table[v->pq];
2610    s->c_dc_scale = s->c_dc_scale_table[v->pq];
2611
2612    //do frame decode
2613    s->mb_x = s->mb_y = 0;
2614    s->mb_intra = 1;
2615    s->first_slice_line = 1;
2616    for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
2617        s->mb_x = 0;
2618        ff_init_block_index(s);
2619        for(; s->mb_x < s->mb_width; s->mb_x++) {
2620            ff_update_block_index(s);
2621            s->dsp.clear_blocks(s->block[0]);
2622            mb_pos = s->mb_x + s->mb_y * s->mb_width;
2623            s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
2624            s->current_picture.qscale_table[mb_pos] = v->pq;
2625            s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
2626            s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
2627
2628            // do actual MB decoding and displaying
2629            cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
2630            v->s.ac_pred = get_bits1(&v->s.gb);
2631
2632            for(k = 0; k < 6; k++) {
2633                val = ((cbp >> (5 - k)) & 1);
2634
2635                if (k < 4) {
2636                    int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
2637                    val = val ^ pred;
2638                    *coded_val = val;
2639                }
2640                cbp |= val << (5 - k);
2641
2642                vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
2643
2644                s->dsp.vc1_inv_trans_8x8(s->block[k]);
2645                if(v->pq >= 9 && v->overlap) {
2646                    for(j = 0; j < 64; j++) s->block[k][j] += 128;
2647                }
2648            }
2649
2650            vc1_put_block(v, s->block);
2651            if(v->pq >= 9 && v->overlap) {
2652                if(s->mb_x) {
2653                    s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
2654                    s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
2655                    if(!(s->flags & CODEC_FLAG_GRAY)) {
2656                        s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
2657                        s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
2658                    }
2659                }
2660                s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
2661                s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
2662                if(!s->first_slice_line) {
2663                    s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
2664                    s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
2665                    if(!(s->flags & CODEC_FLAG_GRAY)) {
2666                        s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
2667                        s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
2668                    }
2669                }
2670                s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
2671                s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
2672            }
2673            if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq);
2674
2675            if(get_bits_count(&s->gb) > v->bits) {
2676                ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
2677                av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
2678                return;
2679            }
2680        }
2681        ff_draw_horiz_band(s, s->mb_y * 16, 16);
2682        s->first_slice_line = 0;
2683    }
2684    ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
2685}
2686
2687/** Decode blocks of I-frame for advanced profile
2688 */
2689static void vc1_decode_i_blocks_adv(VC1Context *v)
2690{
2691    int k, j;
2692    MpegEncContext *s = &v->s;
2693    int cbp, val;
2694    uint8_t *coded_val;
2695    int mb_pos;
2696    int mquant = v->pq;
2697    int mqdiff;
2698    int overlap;
2699    GetBitContext *gb = &s->gb;
2700
2701    /* select codingmode used for VLC tables selection */
2702    switch(v->y_ac_table_index){
2703    case 0:
2704        v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
2705        break;
2706    case 1:
2707        v->codingset = CS_HIGH_MOT_INTRA;
2708        break;
2709    case 2:
2710        v->codingset = CS_MID_RATE_INTRA;
2711        break;
2712    }
2713
2714    switch(v->c_ac_table_index){
2715    case 0:
2716        v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
2717        break;
2718    case 1:
2719        v->codingset2 = CS_HIGH_MOT_INTER;
2720        break;
2721    case 2:
2722        v->codingset2 = CS_MID_RATE_INTER;
2723        break;
2724    }
2725
2726    //do frame decode
2727    s->mb_x = s->mb_y = 0;
2728    s->mb_intra = 1;
2729    s->first_slice_line = 1;
2730    for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
2731        s->mb_x = 0;
2732        ff_init_block_index(s);
2733        for(;s->mb_x < s->mb_width; s->mb_x++) {
2734            ff_update_block_index(s);
2735            s->dsp.clear_blocks(s->block[0]);
2736            mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2737            s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
2738            s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
2739            s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
2740
2741            // do actual MB decoding and displaying
2742            cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
2743            if(v->acpred_is_raw)
2744                v->s.ac_pred = get_bits1(&v->s.gb);
2745            else
2746                v->s.ac_pred = v->acpred_plane[mb_pos];
2747
2748            if(v->condover == CONDOVER_SELECT) {
2749                if(v->overflg_is_raw)
2750                    overlap = get_bits1(&v->s.gb);
2751                else
2752                    overlap = v->over_flags_plane[mb_pos];
2753            } else
2754                overlap = (v->condover == CONDOVER_ALL);
2755
2756            GET_MQUANT();
2757
2758            s->current_picture.qscale_table[mb_pos] = mquant;
2759            /* Set DC scale - y and c use the same */
2760            s->y_dc_scale = s->y_dc_scale_table[mquant];
2761            s->c_dc_scale = s->c_dc_scale_table[mquant];
2762
2763            for(k = 0; k < 6; k++) {
2764                val = ((cbp >> (5 - k)) & 1);
2765
2766                if (k < 4) {
2767                    int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
2768                    val = val ^ pred;
2769                    *coded_val = val;
2770                }
2771                cbp |= val << (5 - k);
2772
2773                v->a_avail = !s->first_slice_line || (k==2 || k==3);
2774                v->c_avail = !!s->mb_x || (k==1 || k==3);
2775
2776                vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
2777
2778                s->dsp.vc1_inv_trans_8x8(s->block[k]);
2779                for(j = 0; j < 64; j++) s->block[k][j] += 128;
2780            }
2781
2782            vc1_put_block(v, s->block);
2783            if(overlap) {
2784                if(s->mb_x) {
2785                    s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
2786                    s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
2787                    if(!(s->flags & CODEC_FLAG_GRAY)) {
2788                        s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
2789                        s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
2790                    }
2791                }
2792                s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
2793                s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
2794                if(!s->first_slice_line) {
2795                    s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
2796                    s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
2797                    if(!(s->flags & CODEC_FLAG_GRAY)) {
2798                        s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
2799                        s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
2800                    }
2801                }
2802                s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
2803                s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
2804            }
2805            if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq);
2806
2807            if(get_bits_count(&s->gb) > v->bits) {
2808                ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
2809                av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
2810                return;
2811            }
2812        }
2813        ff_draw_horiz_band(s, s->mb_y * 16, 16);
2814        s->first_slice_line = 0;
2815    }
2816    ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
2817}
2818
2819static void vc1_decode_p_blocks(VC1Context *v)
2820{
2821    MpegEncContext *s = &v->s;
2822
2823    /* select codingmode used for VLC tables selection */
2824    switch(v->c_ac_table_index){
2825    case 0:
2826        v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
2827        break;
2828    case 1:
2829        v->codingset = CS_HIGH_MOT_INTRA;
2830        break;
2831    case 2:
2832        v->codingset = CS_MID_RATE_INTRA;
2833        break;
2834    }
2835
2836    switch(v->c_ac_table_index){
2837    case 0:
2838        v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
2839        break;
2840    case 1:
2841        v->codingset2 = CS_HIGH_MOT_INTER;
2842        break;
2843    case 2:
2844        v->codingset2 = CS_MID_RATE_INTER;
2845        break;
2846    }
2847
2848    s->first_slice_line = 1;
2849    memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
2850    for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
2851        s->mb_x = 0;
2852        ff_init_block_index(s);
2853        for(; s->mb_x < s->mb_width; s->mb_x++) {
2854            ff_update_block_index(s);
2855
2856            vc1_decode_p_mb(v);
2857            if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
2858                ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
2859                av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
2860                return;
2861            }
2862        }
2863        memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0])*s->mb_stride);
2864        ff_draw_horiz_band(s, s->mb_y * 16, 16);
2865        s->first_slice_line = 0;
2866    }
2867    ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
2868}
2869
2870static void vc1_decode_b_blocks(VC1Context *v)
2871{
2872    MpegEncContext *s = &v->s;
2873
2874    /* select codingmode used for VLC tables selection */
2875    switch(v->c_ac_table_index){
2876    case 0:
2877        v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
2878        break;
2879    case 1:
2880        v->codingset = CS_HIGH_MOT_INTRA;
2881        break;
2882    case 2:
2883        v->codingset = CS_MID_RATE_INTRA;
2884        break;
2885    }
2886
2887    switch(v->c_ac_table_index){
2888    case 0:
2889        v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
2890        break;
2891    case 1:
2892        v->codingset2 = CS_HIGH_MOT_INTER;
2893        break;
2894    case 2:
2895        v->codingset2 = CS_MID_RATE_INTER;
2896        break;
2897    }
2898
2899    s->first_slice_line = 1;
2900    for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
2901        s->mb_x = 0;
2902        ff_init_block_index(s);
2903        for(; s->mb_x < s->mb_width; s->mb_x++) {
2904            ff_update_block_index(s);
2905
2906            vc1_decode_b_mb(v);
2907            if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
2908                ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
2909                av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
2910                return;
2911            }
2912            if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq);
2913        }
2914        ff_draw_horiz_band(s, s->mb_y * 16, 16);
2915        s->first_slice_line = 0;
2916    }
2917    ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
2918}
2919
2920static void vc1_decode_skip_blocks(VC1Context *v)
2921{
2922    MpegEncContext *s = &v->s;
2923
2924    ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
2925    s->first_slice_line = 1;
2926    for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
2927        s->mb_x = 0;
2928        ff_init_block_index(s);
2929        ff_update_block_index(s);
2930        memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
2931        memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
2932        memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
2933        ff_draw_horiz_band(s, s->mb_y * 16, 16);
2934        s->first_slice_line = 0;
2935    }
2936    s->pict_type = FF_P_TYPE;
2937}
2938
2939static void vc1_decode_blocks(VC1Context *v)
2940{
2941
2942    v->s.esc3_level_length = 0;
2943    if(v->x8_type){
2944        ff_intrax8_decode_picture(&v->x8, 2*v->pq+v->halfpq, v->pq*(!v->pquantizer) );
2945    }else{
2946
2947        switch(v->s.pict_type) {
2948        case FF_I_TYPE:
2949            if(v->profile == PROFILE_ADVANCED)
2950                vc1_decode_i_blocks_adv(v);
2951            else
2952                vc1_decode_i_blocks(v);
2953            break;
2954        case FF_P_TYPE:
2955            if(v->p_frame_skipped)
2956                vc1_decode_skip_blocks(v);
2957            else
2958                vc1_decode_p_blocks(v);
2959            break;
2960        case FF_B_TYPE:
2961            if(v->bi_type){
2962                if(v->profile == PROFILE_ADVANCED)
2963                    vc1_decode_i_blocks_adv(v);
2964                else
2965                    vc1_decode_i_blocks(v);
2966            }else
2967                vc1_decode_b_blocks(v);
2968            break;
2969        }
2970    }
2971}
2972
2973/** Initialize a VC1/WMV3 decoder
2974 * @todo TODO: Handle VC-1 IDUs (Transport level?)
2975 * @todo TODO: Decypher remaining bits in extra_data
2976 */
2977static av_cold int vc1_decode_init(AVCodecContext *avctx)
2978{
2979    VC1Context *v = avctx->priv_data;
2980    MpegEncContext *s = &v->s;
2981    GetBitContext gb;
2982
2983    if (!avctx->extradata_size || !avctx->extradata) return -1;
2984    if (!(avctx->flags & CODEC_FLAG_GRAY))
2985        avctx->pix_fmt = avctx->get_format(avctx, avctx->codec->pix_fmts);
2986    else
2987        avctx->pix_fmt = PIX_FMT_GRAY8;
2988    avctx->hwaccel = ff_find_hwaccel(avctx->codec->id, avctx->pix_fmt);
2989    v->s.avctx = avctx;
2990    avctx->flags |= CODEC_FLAG_EMU_EDGE;
2991    v->s.flags |= CODEC_FLAG_EMU_EDGE;
2992
2993    if(avctx->idct_algo==FF_IDCT_AUTO){
2994        avctx->idct_algo=FF_IDCT_WMV2;
2995    }
2996
2997    if(ff_msmpeg4_decode_init(avctx) < 0)
2998        return -1;
2999    if (vc1_init_common(v) < 0) return -1;
3000
3001    avctx->coded_width = avctx->width;
3002    avctx->coded_height = avctx->height;
3003    if (avctx->codec_id == CODEC_ID_WMV3)
3004    {
3005        int count = 0;
3006
3007        // looks like WMV3 has a sequence header stored in the extradata
3008        // advanced sequence header may be before the first frame
3009        // the last byte of the extradata is a version number, 1 for the
3010        // samples we can decode
3011
3012        init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
3013
3014        if (vc1_decode_sequence_header(avctx, v, &gb) < 0)
3015          return -1;
3016
3017        count = avctx->extradata_size*8 - get_bits_count(&gb);
3018        if (count>0)
3019        {
3020            av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
3021                   count, get_bits(&gb, count));
3022        }
3023        else if (count < 0)
3024        {
3025            av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
3026        }
3027    } else { // VC1/WVC1
3028        const uint8_t *start = avctx->extradata;
3029        uint8_t *end = avctx->extradata + avctx->extradata_size;
3030        const uint8_t *next;
3031        int size, buf2_size;
3032        uint8_t *buf2 = NULL;
3033        int seq_initialized = 0, ep_initialized = 0;
3034
3035        if(avctx->extradata_size < 16) {
3036            av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
3037            return -1;
3038        }
3039
3040        buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
3041        start = find_next_marker(start, end); // in WVC1 extradata first byte is its size, but can be 0 in mkv
3042        next = start;
3043        for(; next < end; start = next){
3044            next = find_next_marker(start + 4, end);
3045            size = next - start - 4;
3046            if(size <= 0) continue;
3047            buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
3048            init_get_bits(&gb, buf2, buf2_size * 8);
3049            switch(AV_RB32(start)){
3050            case VC1_CODE_SEQHDR:
3051                if(vc1_decode_sequence_header(avctx, v, &gb) < 0){
3052                    av_free(buf2);
3053                    return -1;
3054                }
3055                seq_initialized = 1;
3056                break;
3057            case VC1_CODE_ENTRYPOINT:
3058                if(vc1_decode_entry_point(avctx, v, &gb) < 0){
3059                    av_free(buf2);
3060                    return -1;
3061                }
3062                ep_initialized = 1;
3063                break;
3064            }
3065        }
3066        av_free(buf2);
3067        if(!seq_initialized || !ep_initialized){
3068            av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
3069            return -1;
3070        }
3071    }
3072    avctx->has_b_frames= !!(avctx->max_b_frames);
3073    s->low_delay = !avctx->has_b_frames;
3074
3075    s->mb_width = (avctx->coded_width+15)>>4;
3076    s->mb_height = (avctx->coded_height+15)>>4;
3077
3078    /* Allocate mb bitplanes */
3079    v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
3080    v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
3081    v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
3082    v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
3083
3084    v->cbp_base = av_malloc(sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
3085    v->cbp = v->cbp_base + s->mb_stride;
3086
3087    /* allocate block type info in that way so it could be used with s->block_index[] */
3088    v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
3089    v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
3090    v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
3091    v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
3092
3093    /* Init coded blocks info */
3094    if (v->profile == PROFILE_ADVANCED)
3095    {
3096//        if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
3097//            return -1;
3098//        if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
3099//            return -1;
3100    }
3101
3102    ff_intrax8_common_init(&v->x8,s);
3103    return 0;
3104}
3105
3106
3107/** Decode a VC1/WMV3 frame
3108 * @todo TODO: Handle VC-1 IDUs (Transport level?)
3109 */
3110static int vc1_decode_frame(AVCodecContext *avctx,
3111                            void *data, int *data_size,
3112                            AVPacket *avpkt)
3113{
3114    const uint8_t *buf = avpkt->data;
3115    int buf_size = avpkt->size;
3116    VC1Context *v = avctx->priv_data;
3117    MpegEncContext *s = &v->s;
3118    AVFrame *pict = data;
3119    uint8_t *buf2 = NULL;
3120    const uint8_t *buf_start = buf;
3121
3122    /* no supplementary picture */
3123    if (buf_size == 0) {
3124        /* special case for last picture */
3125        if (s->low_delay==0 && s->next_picture_ptr) {
3126            *pict= *(AVFrame*)s->next_picture_ptr;
3127            s->next_picture_ptr= NULL;
3128
3129            *data_size = sizeof(AVFrame);
3130        }
3131
3132        return 0;
3133    }
3134
3135    /* We need to set current_picture_ptr before reading the header,
3136     * otherwise we cannot store anything in there. */
3137    if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
3138        int i= ff_find_unused_picture(s, 0);
3139        s->current_picture_ptr= &s->picture[i];
3140    }
3141
3142    if (s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){
3143        if (v->profile < PROFILE_ADVANCED)
3144            avctx->pix_fmt = PIX_FMT_VDPAU_WMV3;
3145        else
3146            avctx->pix_fmt = PIX_FMT_VDPAU_VC1;
3147    }
3148
3149    //for advanced profile we may need to parse and unescape data
3150    if (avctx->codec_id == CODEC_ID_VC1) {
3151        int buf_size2 = 0;
3152        buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
3153
3154        if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
3155            const uint8_t *start, *end, *next;
3156            int size;
3157
3158            next = buf;
3159            for(start = buf, end = buf + buf_size; next < end; start = next){
3160                next = find_next_marker(start + 4, end);
3161                size = next - start - 4;
3162                if(size <= 0) continue;
3163                switch(AV_RB32(start)){
3164                case VC1_CODE_FRAME:
3165                    if (avctx->hwaccel ||
3166                        s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
3167                        buf_start = start;
3168                    buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
3169                    break;
3170                case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
3171                    buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
3172                    init_get_bits(&s->gb, buf2, buf_size2*8);
3173                    vc1_decode_entry_point(avctx, v, &s->gb);
3174                    break;
3175                case VC1_CODE_SLICE:
3176                    av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
3177                    av_free(buf2);
3178                    return -1;
3179                }
3180            }
3181        }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
3182            const uint8_t *divider;
3183
3184            divider = find_next_marker(buf, buf + buf_size);
3185            if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
3186                av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
3187                av_free(buf2);
3188                return -1;
3189            }
3190
3191            buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
3192            // TODO
3193            if(!v->warn_interlaced++)
3194                av_log(v->s.avctx, AV_LOG_ERROR, "Interlaced WVC1 support is not implemented\n");
3195            av_free(buf2);return -1;
3196        }else{
3197            buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
3198        }
3199        init_get_bits(&s->gb, buf2, buf_size2*8);
3200    } else
3201        init_get_bits(&s->gb, buf, buf_size*8);
3202    // do parse frame header
3203    if(v->profile < PROFILE_ADVANCED) {
3204        if(vc1_parse_frame_header(v, &s->gb) == -1) {
3205            av_free(buf2);
3206            return -1;
3207        }
3208    } else {
3209        if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
3210            av_free(buf2);
3211            return -1;
3212        }
3213    }
3214
3215    if(s->pict_type != FF_I_TYPE && !v->res_rtm_flag){
3216        av_free(buf2);
3217        return -1;
3218    }
3219
3220    // for hurry_up==5
3221    s->current_picture.pict_type= s->pict_type;
3222    s->current_picture.key_frame= s->pict_type == FF_I_TYPE;
3223
3224    /* skip B-frames if we don't have reference frames */
3225    if(s->last_picture_ptr==NULL && (s->pict_type==FF_B_TYPE || s->dropable)){
3226        av_free(buf2);
3227        return -1;//buf_size;
3228    }
3229    /* skip b frames if we are in a hurry */
3230    if(avctx->hurry_up && s->pict_type==FF_B_TYPE) return -1;//buf_size;
3231    if(   (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==FF_B_TYPE)
3232       || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=FF_I_TYPE)
3233       ||  avctx->skip_frame >= AVDISCARD_ALL) {
3234        av_free(buf2);
3235        return buf_size;
3236    }
3237    /* skip everything if we are in a hurry>=5 */
3238    if(avctx->hurry_up>=5) {
3239        av_free(buf2);
3240        return -1;//buf_size;
3241    }
3242
3243    if(s->next_p_frame_damaged){
3244        if(s->pict_type==FF_B_TYPE)
3245            return buf_size;
3246        else
3247            s->next_p_frame_damaged=0;
3248    }
3249
3250    if(MPV_frame_start(s, avctx) < 0) {
3251        av_free(buf2);
3252        return -1;
3253    }
3254
3255    s->me.qpel_put= s->dsp.put_qpel_pixels_tab;
3256    s->me.qpel_avg= s->dsp.avg_qpel_pixels_tab;
3257
3258    if ((CONFIG_VC1_VDPAU_DECODER)
3259        &&s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
3260        ff_vdpau_vc1_decode_picture(s, buf_start, (buf + buf_size) - buf_start);
3261    else if (avctx->hwaccel) {
3262        if (avctx->hwaccel->start_frame(avctx, buf, buf_size) < 0)
3263            return -1;
3264        if (avctx->hwaccel->decode_slice(avctx, buf_start, (buf + buf_size) - buf_start) < 0)
3265            return -1;
3266        if (avctx->hwaccel->end_frame(avctx) < 0)
3267            return -1;
3268    } else {
3269        ff_er_frame_start(s);
3270
3271        v->bits = buf_size * 8;
3272        vc1_decode_blocks(v);
3273//av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
3274//  if(get_bits_count(&s->gb) > buf_size * 8)
3275//      return -1;
3276        ff_er_frame_end(s);
3277    }
3278
3279    MPV_frame_end(s);
3280
3281assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
3282assert(s->current_picture.pict_type == s->pict_type);
3283    if (s->pict_type == FF_B_TYPE || s->low_delay) {
3284        *pict= *(AVFrame*)s->current_picture_ptr;
3285    } else if (s->last_picture_ptr != NULL) {
3286        *pict= *(AVFrame*)s->last_picture_ptr;
3287    }
3288
3289    if(s->last_picture_ptr || s->low_delay){
3290        *data_size = sizeof(AVFrame);
3291        ff_print_debug_info(s, pict);
3292    }
3293
3294    av_free(buf2);
3295    return buf_size;
3296}
3297
3298
3299/** Close a VC1/WMV3 decoder
3300 * @warning Initial try at using MpegEncContext stuff
3301 */
3302static av_cold int vc1_decode_end(AVCodecContext *avctx)
3303{
3304    VC1Context *v = avctx->priv_data;
3305
3306    av_freep(&v->hrd_rate);
3307    av_freep(&v->hrd_buffer);
3308    MPV_common_end(&v->s);
3309    av_freep(&v->mv_type_mb_plane);
3310    av_freep(&v->direct_mb_plane);
3311    av_freep(&v->acpred_plane);
3312    av_freep(&v->over_flags_plane);
3313    av_freep(&v->mb_type_base);
3314    av_freep(&v->cbp_base);
3315    ff_intrax8_common_end(&v->x8);
3316    return 0;
3317}
3318
3319
3320AVCodec vc1_decoder = {
3321    "vc1",
3322    AVMEDIA_TYPE_VIDEO,
3323    CODEC_ID_VC1,
3324    sizeof(VC1Context),
3325    vc1_decode_init,
3326    NULL,
3327    vc1_decode_end,
3328    vc1_decode_frame,
3329    CODEC_CAP_DR1 | CODEC_CAP_DELAY,
3330    NULL,
3331    .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1"),
3332    .pix_fmts = ff_hwaccel_pixfmt_list_420
3333};
3334
3335#if CONFIG_WMV3_DECODER
3336AVCodec wmv3_decoder = {
3337    "wmv3",
3338    AVMEDIA_TYPE_VIDEO,
3339    CODEC_ID_WMV3,
3340    sizeof(VC1Context),
3341    vc1_decode_init,
3342    NULL,
3343    vc1_decode_end,
3344    vc1_decode_frame,
3345    CODEC_CAP_DR1 | CODEC_CAP_DELAY,
3346    NULL,
3347    .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9"),
3348    .pix_fmts = ff_hwaccel_pixfmt_list_420
3349};
3350#endif
3351
3352#if CONFIG_WMV3_VDPAU_DECODER
3353AVCodec wmv3_vdpau_decoder = {
3354    "wmv3_vdpau",
3355    AVMEDIA_TYPE_VIDEO,
3356    CODEC_ID_WMV3,
3357    sizeof(VC1Context),
3358    vc1_decode_init,
3359    NULL,
3360    vc1_decode_end,
3361    vc1_decode_frame,
3362    CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
3363    NULL,
3364    .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 VDPAU"),
3365    .pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_WMV3, PIX_FMT_NONE}
3366};
3367#endif
3368
3369#if CONFIG_VC1_VDPAU_DECODER
3370AVCodec vc1_vdpau_decoder = {
3371    "vc1_vdpau",
3372    AVMEDIA_TYPE_VIDEO,
3373    CODEC_ID_VC1,
3374    sizeof(VC1Context),
3375    vc1_decode_init,
3376    NULL,
3377    vc1_decode_end,
3378    vc1_decode_frame,
3379    CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
3380    NULL,
3381    .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1 VDPAU"),
3382    .pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_VC1, PIX_FMT_NONE}
3383};
3384#endif
3385