1/*
2 * jrevdct.c
3 *
4 * This file is part of the Independent JPEG Group's software.
5 *
6 * The authors make NO WARRANTY or representation, either express or implied,
7 * with respect to this software, its quality, accuracy, merchantability, or
8 * fitness for a particular purpose.  This software is provided "AS IS", and
9 * you, its user, assume the entire risk as to its quality and accuracy.
10 *
11 * This software is copyright (C) 1991, 1992, Thomas G. Lane.
12 * All Rights Reserved except as specified below.
13 *
14 * Permission is hereby granted to use, copy, modify, and distribute this
15 * software (or portions thereof) for any purpose, without fee, subject to
16 * these conditions:
17 * (1) If any part of the source code for this software is distributed, then
18 * this README file must be included, with this copyright and no-warranty
19 * notice unaltered; and any additions, deletions, or changes to the original
20 * files must be clearly indicated in accompanying documentation.
21 * (2) If only executable code is distributed, then the accompanying
22 * documentation must state that "this software is based in part on the work
23 * of the Independent JPEG Group".
24 * (3) Permission for use of this software is granted only if the user accepts
25 * full responsibility for any undesirable consequences; the authors accept
26 * NO LIABILITY for damages of any kind.
27 *
28 * These conditions apply to any software derived from or based on the IJG
29 * code, not just to the unmodified library.  If you use our work, you ought
30 * to acknowledge us.
31 *
32 * Permission is NOT granted for the use of any IJG author's name or company
33 * name in advertising or publicity relating to this software or products
34 * derived from it.  This software may be referred to only as "the Independent
35 * JPEG Group's software".
36 *
37 * We specifically permit and encourage the use of this software as the basis
38 * of commercial products, provided that all warranty or liability claims are
39 * assumed by the product vendor.
40 *
41 * This file contains the basic inverse-DCT transformation subroutine.
42 *
43 * This implementation is based on an algorithm described in
44 *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
45 *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
46 *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
47 * The primary algorithm described there uses 11 multiplies and 29 adds.
48 * We use their alternate method with 12 multiplies and 32 adds.
49 * The advantage of this method is that no data path contains more than one
50 * multiplication; this allows a very simple and accurate implementation in
51 * scaled fixed-point arithmetic, with a minimal number of shifts.
52 *
53 * I've made lots of modifications to attempt to take advantage of the
54 * sparse nature of the DCT matrices we're getting.  Although the logic
55 * is cumbersome, it's straightforward and the resulting code is much
56 * faster.
57 *
58 * A better way to do this would be to pass in the DCT block as a sparse
59 * matrix, perhaps with the difference cases encoded.
60 */
61
62/**
63 * @file
64 * Independent JPEG Group's LLM idct.
65 */
66
67#include "libavutil/common.h"
68#include "dsputil.h"
69
70#define EIGHT_BIT_SAMPLES
71
72#define DCTSIZE 8
73#define DCTSIZE2 64
74
75#define GLOBAL
76
77#define RIGHT_SHIFT(x, n) ((x) >> (n))
78
79typedef DCTELEM DCTBLOCK[DCTSIZE2];
80
81#define CONST_BITS 13
82
83/*
84 * This routine is specialized to the case DCTSIZE = 8.
85 */
86
87#if DCTSIZE != 8
88  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
89#endif
90
91
92/*
93 * A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT
94 * on each column.  Direct algorithms are also available, but they are
95 * much more complex and seem not to be any faster when reduced to code.
96 *
97 * The poop on this scaling stuff is as follows:
98 *
99 * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
100 * larger than the true IDCT outputs.  The final outputs are therefore
101 * a factor of N larger than desired; since N=8 this can be cured by
102 * a simple right shift at the end of the algorithm.  The advantage of
103 * this arrangement is that we save two multiplications per 1-D IDCT,
104 * because the y0 and y4 inputs need not be divided by sqrt(N).
105 *
106 * We have to do addition and subtraction of the integer inputs, which
107 * is no problem, and multiplication by fractional constants, which is
108 * a problem to do in integer arithmetic.  We multiply all the constants
109 * by CONST_SCALE and convert them to integer constants (thus retaining
110 * CONST_BITS bits of precision in the constants).  After doing a
111 * multiplication we have to divide the product by CONST_SCALE, with proper
112 * rounding, to produce the correct output.  This division can be done
113 * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
114 * as long as possible so that partial sums can be added together with
115 * full fractional precision.
116 *
117 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
118 * they are represented to better-than-integral precision.  These outputs
119 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
120 * with the recommended scaling.  (To scale up 12-bit sample data further, an
121 * intermediate int32 array would be needed.)
122 *
123 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
124 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
125 * shows that the values given below are the most effective.
126 */
127
128#ifdef EIGHT_BIT_SAMPLES
129#define PASS1_BITS  2
130#else
131#define PASS1_BITS  1   /* lose a little precision to avoid overflow */
132#endif
133
134#define ONE         ((int32_t) 1)
135
136#define CONST_SCALE (ONE << CONST_BITS)
137
138/* Convert a positive real constant to an integer scaled by CONST_SCALE.
139 * IMPORTANT: if your compiler doesn't do this arithmetic at compile time,
140 * you will pay a significant penalty in run time.  In that case, figure
141 * the correct integer constant values and insert them by hand.
142 */
143
144/* Actually FIX is no longer used, we precomputed them all */
145#define FIX(x)  ((int32_t) ((x) * CONST_SCALE + 0.5))
146
147/* Descale and correctly round an int32_t value that's scaled by N bits.
148 * We assume RIGHT_SHIFT rounds towards minus infinity, so adding
149 * the fudge factor is correct for either sign of X.
150 */
151
152#define DESCALE(x,n)  RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
153
154/* Multiply an int32_t variable by an int32_t constant to yield an int32_t result.
155 * For 8-bit samples with the recommended scaling, all the variable
156 * and constant values involved are no more than 16 bits wide, so a
157 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply;
158 * this provides a useful speedup on many machines.
159 * There is no way to specify a 16x16->32 multiply in portable C, but
160 * some C compilers will do the right thing if you provide the correct
161 * combination of casts.
162 * NB: for 12-bit samples, a full 32-bit multiplication will be needed.
163 */
164
165#ifdef EIGHT_BIT_SAMPLES
166#ifdef SHORTxSHORT_32           /* may work if 'int' is 32 bits */
167#define MULTIPLY(var,const)  (((int16_t) (var)) * ((int16_t) (const)))
168#endif
169#ifdef SHORTxLCONST_32          /* known to work with Microsoft C 6.0 */
170#define MULTIPLY(var,const)  (((int16_t) (var)) * ((int32_t) (const)))
171#endif
172#endif
173
174#ifndef MULTIPLY                /* default definition */
175#define MULTIPLY(var,const)  ((var) * (const))
176#endif
177
178
179/*
180  Unlike our decoder where we approximate the FIXes, we need to use exact
181ones here or successive P-frames will drift too much with Reference frame coding
182*/
183#define FIX_0_211164243 1730
184#define FIX_0_275899380 2260
185#define FIX_0_298631336 2446
186#define FIX_0_390180644 3196
187#define FIX_0_509795579 4176
188#define FIX_0_541196100 4433
189#define FIX_0_601344887 4926
190#define FIX_0_765366865 6270
191#define FIX_0_785694958 6436
192#define FIX_0_899976223 7373
193#define FIX_1_061594337 8697
194#define FIX_1_111140466 9102
195#define FIX_1_175875602 9633
196#define FIX_1_306562965 10703
197#define FIX_1_387039845 11363
198#define FIX_1_451774981 11893
199#define FIX_1_501321110 12299
200#define FIX_1_662939225 13623
201#define FIX_1_847759065 15137
202#define FIX_1_961570560 16069
203#define FIX_2_053119869 16819
204#define FIX_2_172734803 17799
205#define FIX_2_562915447 20995
206#define FIX_3_072711026 25172
207
208/*
209 * Perform the inverse DCT on one block of coefficients.
210 */
211
212void j_rev_dct(DCTBLOCK data)
213{
214  int32_t tmp0, tmp1, tmp2, tmp3;
215  int32_t tmp10, tmp11, tmp12, tmp13;
216  int32_t z1, z2, z3, z4, z5;
217  int32_t d0, d1, d2, d3, d4, d5, d6, d7;
218  register DCTELEM *dataptr;
219  int rowctr;
220
221  /* Pass 1: process rows. */
222  /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
223  /* furthermore, we scale the results by 2**PASS1_BITS. */
224
225  dataptr = data;
226
227  for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
228    /* Due to quantization, we will usually find that many of the input
229     * coefficients are zero, especially the AC terms.  We can exploit this
230     * by short-circuiting the IDCT calculation for any row in which all
231     * the AC terms are zero.  In that case each output is equal to the
232     * DC coefficient (with scale factor as needed).
233     * With typical images and quantization tables, half or more of the
234     * row DCT calculations can be simplified this way.
235     */
236
237    register int *idataptr = (int*)dataptr;
238
239    /* WARNING: we do the same permutation as MMX idct to simplify the
240       video core */
241    d0 = dataptr[0];
242    d2 = dataptr[1];
243    d4 = dataptr[2];
244    d6 = dataptr[3];
245    d1 = dataptr[4];
246    d3 = dataptr[5];
247    d5 = dataptr[6];
248    d7 = dataptr[7];
249
250    if ((d1 | d2 | d3 | d4 | d5 | d6 | d7) == 0) {
251      /* AC terms all zero */
252      if (d0) {
253          /* Compute a 32 bit value to assign. */
254          DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS);
255          register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000);
256
257          idataptr[0] = v;
258          idataptr[1] = v;
259          idataptr[2] = v;
260          idataptr[3] = v;
261      }
262
263      dataptr += DCTSIZE;       /* advance pointer to next row */
264      continue;
265    }
266
267    /* Even part: reverse the even part of the forward DCT. */
268    /* The rotator is sqrt(2)*c(-6). */
269{
270    if (d6) {
271            if (d2) {
272                    /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
273                    z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
274                    tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
275                    tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
276
277                    tmp0 = (d0 + d4) << CONST_BITS;
278                    tmp1 = (d0 - d4) << CONST_BITS;
279
280                    tmp10 = tmp0 + tmp3;
281                    tmp13 = tmp0 - tmp3;
282                    tmp11 = tmp1 + tmp2;
283                    tmp12 = tmp1 - tmp2;
284            } else {
285                    /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
286                    tmp2 = MULTIPLY(-d6, FIX_1_306562965);
287                    tmp3 = MULTIPLY(d6, FIX_0_541196100);
288
289                    tmp0 = (d0 + d4) << CONST_BITS;
290                    tmp1 = (d0 - d4) << CONST_BITS;
291
292                    tmp10 = tmp0 + tmp3;
293                    tmp13 = tmp0 - tmp3;
294                    tmp11 = tmp1 + tmp2;
295                    tmp12 = tmp1 - tmp2;
296            }
297    } else {
298            if (d2) {
299                    /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
300                    tmp2 = MULTIPLY(d2, FIX_0_541196100);
301                    tmp3 = MULTIPLY(d2, FIX_1_306562965);
302
303                    tmp0 = (d0 + d4) << CONST_BITS;
304                    tmp1 = (d0 - d4) << CONST_BITS;
305
306                    tmp10 = tmp0 + tmp3;
307                    tmp13 = tmp0 - tmp3;
308                    tmp11 = tmp1 + tmp2;
309                    tmp12 = tmp1 - tmp2;
310            } else {
311                    /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
312                    tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
313                    tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
314            }
315      }
316
317    /* Odd part per figure 8; the matrix is unitary and hence its
318     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
319     */
320
321    if (d7) {
322        if (d5) {
323            if (d3) {
324                if (d1) {
325                    /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
326                    z1 = d7 + d1;
327                    z2 = d5 + d3;
328                    z3 = d7 + d3;
329                    z4 = d5 + d1;
330                    z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
331
332                    tmp0 = MULTIPLY(d7, FIX_0_298631336);
333                    tmp1 = MULTIPLY(d5, FIX_2_053119869);
334                    tmp2 = MULTIPLY(d3, FIX_3_072711026);
335                    tmp3 = MULTIPLY(d1, FIX_1_501321110);
336                    z1 = MULTIPLY(-z1, FIX_0_899976223);
337                    z2 = MULTIPLY(-z2, FIX_2_562915447);
338                    z3 = MULTIPLY(-z3, FIX_1_961570560);
339                    z4 = MULTIPLY(-z4, FIX_0_390180644);
340
341                    z3 += z5;
342                    z4 += z5;
343
344                    tmp0 += z1 + z3;
345                    tmp1 += z2 + z4;
346                    tmp2 += z2 + z3;
347                    tmp3 += z1 + z4;
348                } else {
349                    /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
350                    z2 = d5 + d3;
351                    z3 = d7 + d3;
352                    z5 = MULTIPLY(z3 + d5, FIX_1_175875602);
353
354                    tmp0 = MULTIPLY(d7, FIX_0_298631336);
355                    tmp1 = MULTIPLY(d5, FIX_2_053119869);
356                    tmp2 = MULTIPLY(d3, FIX_3_072711026);
357                    z1 = MULTIPLY(-d7, FIX_0_899976223);
358                    z2 = MULTIPLY(-z2, FIX_2_562915447);
359                    z3 = MULTIPLY(-z3, FIX_1_961570560);
360                    z4 = MULTIPLY(-d5, FIX_0_390180644);
361
362                    z3 += z5;
363                    z4 += z5;
364
365                    tmp0 += z1 + z3;
366                    tmp1 += z2 + z4;
367                    tmp2 += z2 + z3;
368                    tmp3 = z1 + z4;
369                }
370            } else {
371                if (d1) {
372                    /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
373                    z1 = d7 + d1;
374                    z4 = d5 + d1;
375                    z5 = MULTIPLY(d7 + z4, FIX_1_175875602);
376
377                    tmp0 = MULTIPLY(d7, FIX_0_298631336);
378                    tmp1 = MULTIPLY(d5, FIX_2_053119869);
379                    tmp3 = MULTIPLY(d1, FIX_1_501321110);
380                    z1 = MULTIPLY(-z1, FIX_0_899976223);
381                    z2 = MULTIPLY(-d5, FIX_2_562915447);
382                    z3 = MULTIPLY(-d7, FIX_1_961570560);
383                    z4 = MULTIPLY(-z4, FIX_0_390180644);
384
385                    z3 += z5;
386                    z4 += z5;
387
388                    tmp0 += z1 + z3;
389                    tmp1 += z2 + z4;
390                    tmp2 = z2 + z3;
391                    tmp3 += z1 + z4;
392                } else {
393                    /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
394                    tmp0 = MULTIPLY(-d7, FIX_0_601344887);
395                    z1 = MULTIPLY(-d7, FIX_0_899976223);
396                    z3 = MULTIPLY(-d7, FIX_1_961570560);
397                    tmp1 = MULTIPLY(-d5, FIX_0_509795579);
398                    z2 = MULTIPLY(-d5, FIX_2_562915447);
399                    z4 = MULTIPLY(-d5, FIX_0_390180644);
400                    z5 = MULTIPLY(d5 + d7, FIX_1_175875602);
401
402                    z3 += z5;
403                    z4 += z5;
404
405                    tmp0 += z3;
406                    tmp1 += z4;
407                    tmp2 = z2 + z3;
408                    tmp3 = z1 + z4;
409                }
410            }
411        } else {
412            if (d3) {
413                if (d1) {
414                    /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
415                    z1 = d7 + d1;
416                    z3 = d7 + d3;
417                    z5 = MULTIPLY(z3 + d1, FIX_1_175875602);
418
419                    tmp0 = MULTIPLY(d7, FIX_0_298631336);
420                    tmp2 = MULTIPLY(d3, FIX_3_072711026);
421                    tmp3 = MULTIPLY(d1, FIX_1_501321110);
422                    z1 = MULTIPLY(-z1, FIX_0_899976223);
423                    z2 = MULTIPLY(-d3, FIX_2_562915447);
424                    z3 = MULTIPLY(-z3, FIX_1_961570560);
425                    z4 = MULTIPLY(-d1, FIX_0_390180644);
426
427                    z3 += z5;
428                    z4 += z5;
429
430                    tmp0 += z1 + z3;
431                    tmp1 = z2 + z4;
432                    tmp2 += z2 + z3;
433                    tmp3 += z1 + z4;
434                } else {
435                    /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
436                    z3 = d7 + d3;
437
438                    tmp0 = MULTIPLY(-d7, FIX_0_601344887);
439                    z1 = MULTIPLY(-d7, FIX_0_899976223);
440                    tmp2 = MULTIPLY(d3, FIX_0_509795579);
441                    z2 = MULTIPLY(-d3, FIX_2_562915447);
442                    z5 = MULTIPLY(z3, FIX_1_175875602);
443                    z3 = MULTIPLY(-z3, FIX_0_785694958);
444
445                    tmp0 += z3;
446                    tmp1 = z2 + z5;
447                    tmp2 += z3;
448                    tmp3 = z1 + z5;
449                }
450            } else {
451                if (d1) {
452                    /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
453                    z1 = d7 + d1;
454                    z5 = MULTIPLY(z1, FIX_1_175875602);
455
456                    z1 = MULTIPLY(z1, FIX_0_275899380);
457                    z3 = MULTIPLY(-d7, FIX_1_961570560);
458                    tmp0 = MULTIPLY(-d7, FIX_1_662939225);
459                    z4 = MULTIPLY(-d1, FIX_0_390180644);
460                    tmp3 = MULTIPLY(d1, FIX_1_111140466);
461
462                    tmp0 += z1;
463                    tmp1 = z4 + z5;
464                    tmp2 = z3 + z5;
465                    tmp3 += z1;
466                } else {
467                    /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
468                    tmp0 = MULTIPLY(-d7, FIX_1_387039845);
469                    tmp1 = MULTIPLY(d7, FIX_1_175875602);
470                    tmp2 = MULTIPLY(-d7, FIX_0_785694958);
471                    tmp3 = MULTIPLY(d7, FIX_0_275899380);
472                }
473            }
474        }
475    } else {
476        if (d5) {
477            if (d3) {
478                if (d1) {
479                    /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
480                    z2 = d5 + d3;
481                    z4 = d5 + d1;
482                    z5 = MULTIPLY(d3 + z4, FIX_1_175875602);
483
484                    tmp1 = MULTIPLY(d5, FIX_2_053119869);
485                    tmp2 = MULTIPLY(d3, FIX_3_072711026);
486                    tmp3 = MULTIPLY(d1, FIX_1_501321110);
487                    z1 = MULTIPLY(-d1, FIX_0_899976223);
488                    z2 = MULTIPLY(-z2, FIX_2_562915447);
489                    z3 = MULTIPLY(-d3, FIX_1_961570560);
490                    z4 = MULTIPLY(-z4, FIX_0_390180644);
491
492                    z3 += z5;
493                    z4 += z5;
494
495                    tmp0 = z1 + z3;
496                    tmp1 += z2 + z4;
497                    tmp2 += z2 + z3;
498                    tmp3 += z1 + z4;
499                } else {
500                    /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
501                    z2 = d5 + d3;
502
503                    z5 = MULTIPLY(z2, FIX_1_175875602);
504                    tmp1 = MULTIPLY(d5, FIX_1_662939225);
505                    z4 = MULTIPLY(-d5, FIX_0_390180644);
506                    z2 = MULTIPLY(-z2, FIX_1_387039845);
507                    tmp2 = MULTIPLY(d3, FIX_1_111140466);
508                    z3 = MULTIPLY(-d3, FIX_1_961570560);
509
510                    tmp0 = z3 + z5;
511                    tmp1 += z2;
512                    tmp2 += z2;
513                    tmp3 = z4 + z5;
514                }
515            } else {
516                if (d1) {
517                    /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
518                    z4 = d5 + d1;
519
520                    z5 = MULTIPLY(z4, FIX_1_175875602);
521                    z1 = MULTIPLY(-d1, FIX_0_899976223);
522                    tmp3 = MULTIPLY(d1, FIX_0_601344887);
523                    tmp1 = MULTIPLY(-d5, FIX_0_509795579);
524                    z2 = MULTIPLY(-d5, FIX_2_562915447);
525                    z4 = MULTIPLY(z4, FIX_0_785694958);
526
527                    tmp0 = z1 + z5;
528                    tmp1 += z4;
529                    tmp2 = z2 + z5;
530                    tmp3 += z4;
531                } else {
532                    /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
533                    tmp0 = MULTIPLY(d5, FIX_1_175875602);
534                    tmp1 = MULTIPLY(d5, FIX_0_275899380);
535                    tmp2 = MULTIPLY(-d5, FIX_1_387039845);
536                    tmp3 = MULTIPLY(d5, FIX_0_785694958);
537                }
538            }
539        } else {
540            if (d3) {
541                if (d1) {
542                    /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
543                    z5 = d1 + d3;
544                    tmp3 = MULTIPLY(d1, FIX_0_211164243);
545                    tmp2 = MULTIPLY(-d3, FIX_1_451774981);
546                    z1 = MULTIPLY(d1, FIX_1_061594337);
547                    z2 = MULTIPLY(-d3, FIX_2_172734803);
548                    z4 = MULTIPLY(z5, FIX_0_785694958);
549                    z5 = MULTIPLY(z5, FIX_1_175875602);
550
551                    tmp0 = z1 - z4;
552                    tmp1 = z2 + z4;
553                    tmp2 += z5;
554                    tmp3 += z5;
555                } else {
556                    /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
557                    tmp0 = MULTIPLY(-d3, FIX_0_785694958);
558                    tmp1 = MULTIPLY(-d3, FIX_1_387039845);
559                    tmp2 = MULTIPLY(-d3, FIX_0_275899380);
560                    tmp3 = MULTIPLY(d3, FIX_1_175875602);
561                }
562            } else {
563                if (d1) {
564                    /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
565                    tmp0 = MULTIPLY(d1, FIX_0_275899380);
566                    tmp1 = MULTIPLY(d1, FIX_0_785694958);
567                    tmp2 = MULTIPLY(d1, FIX_1_175875602);
568                    tmp3 = MULTIPLY(d1, FIX_1_387039845);
569                } else {
570                    /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
571                    tmp0 = tmp1 = tmp2 = tmp3 = 0;
572                }
573            }
574        }
575    }
576}
577    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
578
579    dataptr[0] = (DCTELEM) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
580    dataptr[7] = (DCTELEM) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
581    dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
582    dataptr[6] = (DCTELEM) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
583    dataptr[2] = (DCTELEM) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
584    dataptr[5] = (DCTELEM) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
585    dataptr[3] = (DCTELEM) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
586    dataptr[4] = (DCTELEM) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
587
588    dataptr += DCTSIZE;         /* advance pointer to next row */
589  }
590
591  /* Pass 2: process columns. */
592  /* Note that we must descale the results by a factor of 8 == 2**3, */
593  /* and also undo the PASS1_BITS scaling. */
594
595  dataptr = data;
596  for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
597    /* Columns of zeroes can be exploited in the same way as we did with rows.
598     * However, the row calculation has created many nonzero AC terms, so the
599     * simplification applies less often (typically 5% to 10% of the time).
600     * On machines with very fast multiplication, it's possible that the
601     * test takes more time than it's worth.  In that case this section
602     * may be commented out.
603     */
604
605    d0 = dataptr[DCTSIZE*0];
606    d1 = dataptr[DCTSIZE*1];
607    d2 = dataptr[DCTSIZE*2];
608    d3 = dataptr[DCTSIZE*3];
609    d4 = dataptr[DCTSIZE*4];
610    d5 = dataptr[DCTSIZE*5];
611    d6 = dataptr[DCTSIZE*6];
612    d7 = dataptr[DCTSIZE*7];
613
614    /* Even part: reverse the even part of the forward DCT. */
615    /* The rotator is sqrt(2)*c(-6). */
616    if (d6) {
617            if (d2) {
618                    /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
619                    z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
620                    tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
621                    tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
622
623                    tmp0 = (d0 + d4) << CONST_BITS;
624                    tmp1 = (d0 - d4) << CONST_BITS;
625
626                    tmp10 = tmp0 + tmp3;
627                    tmp13 = tmp0 - tmp3;
628                    tmp11 = tmp1 + tmp2;
629                    tmp12 = tmp1 - tmp2;
630            } else {
631                    /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
632                    tmp2 = MULTIPLY(-d6, FIX_1_306562965);
633                    tmp3 = MULTIPLY(d6, FIX_0_541196100);
634
635                    tmp0 = (d0 + d4) << CONST_BITS;
636                    tmp1 = (d0 - d4) << CONST_BITS;
637
638                    tmp10 = tmp0 + tmp3;
639                    tmp13 = tmp0 - tmp3;
640                    tmp11 = tmp1 + tmp2;
641                    tmp12 = tmp1 - tmp2;
642            }
643    } else {
644            if (d2) {
645                    /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
646                    tmp2 = MULTIPLY(d2, FIX_0_541196100);
647                    tmp3 = MULTIPLY(d2, FIX_1_306562965);
648
649                    tmp0 = (d0 + d4) << CONST_BITS;
650                    tmp1 = (d0 - d4) << CONST_BITS;
651
652                    tmp10 = tmp0 + tmp3;
653                    tmp13 = tmp0 - tmp3;
654                    tmp11 = tmp1 + tmp2;
655                    tmp12 = tmp1 - tmp2;
656            } else {
657                    /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
658                    tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
659                    tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
660            }
661    }
662
663    /* Odd part per figure 8; the matrix is unitary and hence its
664     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
665     */
666    if (d7) {
667        if (d5) {
668            if (d3) {
669                if (d1) {
670                    /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
671                    z1 = d7 + d1;
672                    z2 = d5 + d3;
673                    z3 = d7 + d3;
674                    z4 = d5 + d1;
675                    z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
676
677                    tmp0 = MULTIPLY(d7, FIX_0_298631336);
678                    tmp1 = MULTIPLY(d5, FIX_2_053119869);
679                    tmp2 = MULTIPLY(d3, FIX_3_072711026);
680                    tmp3 = MULTIPLY(d1, FIX_1_501321110);
681                    z1 = MULTIPLY(-z1, FIX_0_899976223);
682                    z2 = MULTIPLY(-z2, FIX_2_562915447);
683                    z3 = MULTIPLY(-z3, FIX_1_961570560);
684                    z4 = MULTIPLY(-z4, FIX_0_390180644);
685
686                    z3 += z5;
687                    z4 += z5;
688
689                    tmp0 += z1 + z3;
690                    tmp1 += z2 + z4;
691                    tmp2 += z2 + z3;
692                    tmp3 += z1 + z4;
693                } else {
694                    /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
695                    z2 = d5 + d3;
696                    z3 = d7 + d3;
697                    z5 = MULTIPLY(z3 + d5, FIX_1_175875602);
698
699                    tmp0 = MULTIPLY(d7, FIX_0_298631336);
700                    tmp1 = MULTIPLY(d5, FIX_2_053119869);
701                    tmp2 = MULTIPLY(d3, FIX_3_072711026);
702                    z1 = MULTIPLY(-d7, FIX_0_899976223);
703                    z2 = MULTIPLY(-z2, FIX_2_562915447);
704                    z3 = MULTIPLY(-z3, FIX_1_961570560);
705                    z4 = MULTIPLY(-d5, FIX_0_390180644);
706
707                    z3 += z5;
708                    z4 += z5;
709
710                    tmp0 += z1 + z3;
711                    tmp1 += z2 + z4;
712                    tmp2 += z2 + z3;
713                    tmp3 = z1 + z4;
714                }
715            } else {
716                if (d1) {
717                    /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
718                    z1 = d7 + d1;
719                    z3 = d7;
720                    z4 = d5 + d1;
721                    z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
722
723                    tmp0 = MULTIPLY(d7, FIX_0_298631336);
724                    tmp1 = MULTIPLY(d5, FIX_2_053119869);
725                    tmp3 = MULTIPLY(d1, FIX_1_501321110);
726                    z1 = MULTIPLY(-z1, FIX_0_899976223);
727                    z2 = MULTIPLY(-d5, FIX_2_562915447);
728                    z3 = MULTIPLY(-d7, FIX_1_961570560);
729                    z4 = MULTIPLY(-z4, FIX_0_390180644);
730
731                    z3 += z5;
732                    z4 += z5;
733
734                    tmp0 += z1 + z3;
735                    tmp1 += z2 + z4;
736                    tmp2 = z2 + z3;
737                    tmp3 += z1 + z4;
738                } else {
739                    /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
740                    tmp0 = MULTIPLY(-d7, FIX_0_601344887);
741                    z1 = MULTIPLY(-d7, FIX_0_899976223);
742                    z3 = MULTIPLY(-d7, FIX_1_961570560);
743                    tmp1 = MULTIPLY(-d5, FIX_0_509795579);
744                    z2 = MULTIPLY(-d5, FIX_2_562915447);
745                    z4 = MULTIPLY(-d5, FIX_0_390180644);
746                    z5 = MULTIPLY(d5 + d7, FIX_1_175875602);
747
748                    z3 += z5;
749                    z4 += z5;
750
751                    tmp0 += z3;
752                    tmp1 += z4;
753                    tmp2 = z2 + z3;
754                    tmp3 = z1 + z4;
755                }
756            }
757        } else {
758            if (d3) {
759                if (d1) {
760                    /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
761                    z1 = d7 + d1;
762                    z3 = d7 + d3;
763                    z5 = MULTIPLY(z3 + d1, FIX_1_175875602);
764
765                    tmp0 = MULTIPLY(d7, FIX_0_298631336);
766                    tmp2 = MULTIPLY(d3, FIX_3_072711026);
767                    tmp3 = MULTIPLY(d1, FIX_1_501321110);
768                    z1 = MULTIPLY(-z1, FIX_0_899976223);
769                    z2 = MULTIPLY(-d3, FIX_2_562915447);
770                    z3 = MULTIPLY(-z3, FIX_1_961570560);
771                    z4 = MULTIPLY(-d1, FIX_0_390180644);
772
773                    z3 += z5;
774                    z4 += z5;
775
776                    tmp0 += z1 + z3;
777                    tmp1 = z2 + z4;
778                    tmp2 += z2 + z3;
779                    tmp3 += z1 + z4;
780                } else {
781                    /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
782                    z3 = d7 + d3;
783
784                    tmp0 = MULTIPLY(-d7, FIX_0_601344887);
785                    z1 = MULTIPLY(-d7, FIX_0_899976223);
786                    tmp2 = MULTIPLY(d3, FIX_0_509795579);
787                    z2 = MULTIPLY(-d3, FIX_2_562915447);
788                    z5 = MULTIPLY(z3, FIX_1_175875602);
789                    z3 = MULTIPLY(-z3, FIX_0_785694958);
790
791                    tmp0 += z3;
792                    tmp1 = z2 + z5;
793                    tmp2 += z3;
794                    tmp3 = z1 + z5;
795                }
796            } else {
797                if (d1) {
798                    /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
799                    z1 = d7 + d1;
800                    z5 = MULTIPLY(z1, FIX_1_175875602);
801
802                    z1 = MULTIPLY(z1, FIX_0_275899380);
803                    z3 = MULTIPLY(-d7, FIX_1_961570560);
804                    tmp0 = MULTIPLY(-d7, FIX_1_662939225);
805                    z4 = MULTIPLY(-d1, FIX_0_390180644);
806                    tmp3 = MULTIPLY(d1, FIX_1_111140466);
807
808                    tmp0 += z1;
809                    tmp1 = z4 + z5;
810                    tmp2 = z3 + z5;
811                    tmp3 += z1;
812                } else {
813                    /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
814                    tmp0 = MULTIPLY(-d7, FIX_1_387039845);
815                    tmp1 = MULTIPLY(d7, FIX_1_175875602);
816                    tmp2 = MULTIPLY(-d7, FIX_0_785694958);
817                    tmp3 = MULTIPLY(d7, FIX_0_275899380);
818                }
819            }
820        }
821    } else {
822        if (d5) {
823            if (d3) {
824                if (d1) {
825                    /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
826                    z2 = d5 + d3;
827                    z4 = d5 + d1;
828                    z5 = MULTIPLY(d3 + z4, FIX_1_175875602);
829
830                    tmp1 = MULTIPLY(d5, FIX_2_053119869);
831                    tmp2 = MULTIPLY(d3, FIX_3_072711026);
832                    tmp3 = MULTIPLY(d1, FIX_1_501321110);
833                    z1 = MULTIPLY(-d1, FIX_0_899976223);
834                    z2 = MULTIPLY(-z2, FIX_2_562915447);
835                    z3 = MULTIPLY(-d3, FIX_1_961570560);
836                    z4 = MULTIPLY(-z4, FIX_0_390180644);
837
838                    z3 += z5;
839                    z4 += z5;
840
841                    tmp0 = z1 + z3;
842                    tmp1 += z2 + z4;
843                    tmp2 += z2 + z3;
844                    tmp3 += z1 + z4;
845                } else {
846                    /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
847                    z2 = d5 + d3;
848
849                    z5 = MULTIPLY(z2, FIX_1_175875602);
850                    tmp1 = MULTIPLY(d5, FIX_1_662939225);
851                    z4 = MULTIPLY(-d5, FIX_0_390180644);
852                    z2 = MULTIPLY(-z2, FIX_1_387039845);
853                    tmp2 = MULTIPLY(d3, FIX_1_111140466);
854                    z3 = MULTIPLY(-d3, FIX_1_961570560);
855
856                    tmp0 = z3 + z5;
857                    tmp1 += z2;
858                    tmp2 += z2;
859                    tmp3 = z4 + z5;
860                }
861            } else {
862                if (d1) {
863                    /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
864                    z4 = d5 + d1;
865
866                    z5 = MULTIPLY(z4, FIX_1_175875602);
867                    z1 = MULTIPLY(-d1, FIX_0_899976223);
868                    tmp3 = MULTIPLY(d1, FIX_0_601344887);
869                    tmp1 = MULTIPLY(-d5, FIX_0_509795579);
870                    z2 = MULTIPLY(-d5, FIX_2_562915447);
871                    z4 = MULTIPLY(z4, FIX_0_785694958);
872
873                    tmp0 = z1 + z5;
874                    tmp1 += z4;
875                    tmp2 = z2 + z5;
876                    tmp3 += z4;
877                } else {
878                    /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
879                    tmp0 = MULTIPLY(d5, FIX_1_175875602);
880                    tmp1 = MULTIPLY(d5, FIX_0_275899380);
881                    tmp2 = MULTIPLY(-d5, FIX_1_387039845);
882                    tmp3 = MULTIPLY(d5, FIX_0_785694958);
883                }
884            }
885        } else {
886            if (d3) {
887                if (d1) {
888                    /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
889                    z5 = d1 + d3;
890                    tmp3 = MULTIPLY(d1, FIX_0_211164243);
891                    tmp2 = MULTIPLY(-d3, FIX_1_451774981);
892                    z1 = MULTIPLY(d1, FIX_1_061594337);
893                    z2 = MULTIPLY(-d3, FIX_2_172734803);
894                    z4 = MULTIPLY(z5, FIX_0_785694958);
895                    z5 = MULTIPLY(z5, FIX_1_175875602);
896
897                    tmp0 = z1 - z4;
898                    tmp1 = z2 + z4;
899                    tmp2 += z5;
900                    tmp3 += z5;
901                } else {
902                    /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
903                    tmp0 = MULTIPLY(-d3, FIX_0_785694958);
904                    tmp1 = MULTIPLY(-d3, FIX_1_387039845);
905                    tmp2 = MULTIPLY(-d3, FIX_0_275899380);
906                    tmp3 = MULTIPLY(d3, FIX_1_175875602);
907                }
908            } else {
909                if (d1) {
910                    /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
911                    tmp0 = MULTIPLY(d1, FIX_0_275899380);
912                    tmp1 = MULTIPLY(d1, FIX_0_785694958);
913                    tmp2 = MULTIPLY(d1, FIX_1_175875602);
914                    tmp3 = MULTIPLY(d1, FIX_1_387039845);
915                } else {
916                    /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
917                    tmp0 = tmp1 = tmp2 = tmp3 = 0;
918                }
919            }
920        }
921    }
922
923    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
924
925    dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp3,
926                                           CONST_BITS+PASS1_BITS+3);
927    dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp10 - tmp3,
928                                           CONST_BITS+PASS1_BITS+3);
929    dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp11 + tmp2,
930                                           CONST_BITS+PASS1_BITS+3);
931    dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(tmp11 - tmp2,
932                                           CONST_BITS+PASS1_BITS+3);
933    dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp12 + tmp1,
934                                           CONST_BITS+PASS1_BITS+3);
935    dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12 - tmp1,
936                                           CONST_BITS+PASS1_BITS+3);
937    dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp13 + tmp0,
938                                           CONST_BITS+PASS1_BITS+3);
939    dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp13 - tmp0,
940                                           CONST_BITS+PASS1_BITS+3);
941
942    dataptr++;                  /* advance pointer to next column */
943  }
944}
945
946#undef DCTSIZE
947#define DCTSIZE 4
948#define DCTSTRIDE 8
949
950void j_rev_dct4(DCTBLOCK data)
951{
952  int32_t tmp0, tmp1, tmp2, tmp3;
953  int32_t tmp10, tmp11, tmp12, tmp13;
954  int32_t z1;
955  int32_t d0, d2, d4, d6;
956  register DCTELEM *dataptr;
957  int rowctr;
958
959  /* Pass 1: process rows. */
960  /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
961  /* furthermore, we scale the results by 2**PASS1_BITS. */
962
963  data[0] += 4;
964
965  dataptr = data;
966
967  for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
968    /* Due to quantization, we will usually find that many of the input
969     * coefficients are zero, especially the AC terms.  We can exploit this
970     * by short-circuiting the IDCT calculation for any row in which all
971     * the AC terms are zero.  In that case each output is equal to the
972     * DC coefficient (with scale factor as needed).
973     * With typical images and quantization tables, half or more of the
974     * row DCT calculations can be simplified this way.
975     */
976
977    register int *idataptr = (int*)dataptr;
978
979    d0 = dataptr[0];
980    d2 = dataptr[1];
981    d4 = dataptr[2];
982    d6 = dataptr[3];
983
984    if ((d2 | d4 | d6) == 0) {
985      /* AC terms all zero */
986      if (d0) {
987          /* Compute a 32 bit value to assign. */
988          DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS);
989          register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000);
990
991          idataptr[0] = v;
992          idataptr[1] = v;
993      }
994
995      dataptr += DCTSTRIDE;     /* advance pointer to next row */
996      continue;
997    }
998
999    /* Even part: reverse the even part of the forward DCT. */
1000    /* The rotator is sqrt(2)*c(-6). */
1001    if (d6) {
1002            if (d2) {
1003                    /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
1004                    z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
1005                    tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
1006                    tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
1007
1008                    tmp0 = (d0 + d4) << CONST_BITS;
1009                    tmp1 = (d0 - d4) << CONST_BITS;
1010
1011                    tmp10 = tmp0 + tmp3;
1012                    tmp13 = tmp0 - tmp3;
1013                    tmp11 = tmp1 + tmp2;
1014                    tmp12 = tmp1 - tmp2;
1015            } else {
1016                    /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
1017                    tmp2 = MULTIPLY(-d6, FIX_1_306562965);
1018                    tmp3 = MULTIPLY(d6, FIX_0_541196100);
1019
1020                    tmp0 = (d0 + d4) << CONST_BITS;
1021                    tmp1 = (d0 - d4) << CONST_BITS;
1022
1023                    tmp10 = tmp0 + tmp3;
1024                    tmp13 = tmp0 - tmp3;
1025                    tmp11 = tmp1 + tmp2;
1026                    tmp12 = tmp1 - tmp2;
1027            }
1028    } else {
1029            if (d2) {
1030                    /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
1031                    tmp2 = MULTIPLY(d2, FIX_0_541196100);
1032                    tmp3 = MULTIPLY(d2, FIX_1_306562965);
1033
1034                    tmp0 = (d0 + d4) << CONST_BITS;
1035                    tmp1 = (d0 - d4) << CONST_BITS;
1036
1037                    tmp10 = tmp0 + tmp3;
1038                    tmp13 = tmp0 - tmp3;
1039                    tmp11 = tmp1 + tmp2;
1040                    tmp12 = tmp1 - tmp2;
1041            } else {
1042                    /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
1043                    tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
1044                    tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
1045            }
1046      }
1047
1048    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
1049
1050    dataptr[0] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS);
1051    dataptr[1] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS);
1052    dataptr[2] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS);
1053    dataptr[3] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS);
1054
1055    dataptr += DCTSTRIDE;       /* advance pointer to next row */
1056  }
1057
1058  /* Pass 2: process columns. */
1059  /* Note that we must descale the results by a factor of 8 == 2**3, */
1060  /* and also undo the PASS1_BITS scaling. */
1061
1062  dataptr = data;
1063  for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
1064    /* Columns of zeroes can be exploited in the same way as we did with rows.
1065     * However, the row calculation has created many nonzero AC terms, so the
1066     * simplification applies less often (typically 5% to 10% of the time).
1067     * On machines with very fast multiplication, it's possible that the
1068     * test takes more time than it's worth.  In that case this section
1069     * may be commented out.
1070     */
1071
1072    d0 = dataptr[DCTSTRIDE*0];
1073    d2 = dataptr[DCTSTRIDE*1];
1074    d4 = dataptr[DCTSTRIDE*2];
1075    d6 = dataptr[DCTSTRIDE*3];
1076
1077    /* Even part: reverse the even part of the forward DCT. */
1078    /* The rotator is sqrt(2)*c(-6). */
1079    if (d6) {
1080            if (d2) {
1081                    /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
1082                    z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
1083                    tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
1084                    tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
1085
1086                    tmp0 = (d0 + d4) << CONST_BITS;
1087                    tmp1 = (d0 - d4) << CONST_BITS;
1088
1089                    tmp10 = tmp0 + tmp3;
1090                    tmp13 = tmp0 - tmp3;
1091                    tmp11 = tmp1 + tmp2;
1092                    tmp12 = tmp1 - tmp2;
1093            } else {
1094                    /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
1095                    tmp2 = MULTIPLY(-d6, FIX_1_306562965);
1096                    tmp3 = MULTIPLY(d6, FIX_0_541196100);
1097
1098                    tmp0 = (d0 + d4) << CONST_BITS;
1099                    tmp1 = (d0 - d4) << CONST_BITS;
1100
1101                    tmp10 = tmp0 + tmp3;
1102                    tmp13 = tmp0 - tmp3;
1103                    tmp11 = tmp1 + tmp2;
1104                    tmp12 = tmp1 - tmp2;
1105            }
1106    } else {
1107            if (d2) {
1108                    /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
1109                    tmp2 = MULTIPLY(d2, FIX_0_541196100);
1110                    tmp3 = MULTIPLY(d2, FIX_1_306562965);
1111
1112                    tmp0 = (d0 + d4) << CONST_BITS;
1113                    tmp1 = (d0 - d4) << CONST_BITS;
1114
1115                    tmp10 = tmp0 + tmp3;
1116                    tmp13 = tmp0 - tmp3;
1117                    tmp11 = tmp1 + tmp2;
1118                    tmp12 = tmp1 - tmp2;
1119            } else {
1120                    /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
1121                    tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
1122                    tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
1123            }
1124    }
1125
1126    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
1127
1128    dataptr[DCTSTRIDE*0] = tmp10 >> (CONST_BITS+PASS1_BITS+3);
1129    dataptr[DCTSTRIDE*1] = tmp11 >> (CONST_BITS+PASS1_BITS+3);
1130    dataptr[DCTSTRIDE*2] = tmp12 >> (CONST_BITS+PASS1_BITS+3);
1131    dataptr[DCTSTRIDE*3] = tmp13 >> (CONST_BITS+PASS1_BITS+3);
1132
1133    dataptr++;                  /* advance pointer to next column */
1134  }
1135}
1136
1137void j_rev_dct2(DCTBLOCK data){
1138  int d00, d01, d10, d11;
1139
1140  data[0] += 4;
1141  d00 = data[0+0*DCTSTRIDE] + data[1+0*DCTSTRIDE];
1142  d01 = data[0+0*DCTSTRIDE] - data[1+0*DCTSTRIDE];
1143  d10 = data[0+1*DCTSTRIDE] + data[1+1*DCTSTRIDE];
1144  d11 = data[0+1*DCTSTRIDE] - data[1+1*DCTSTRIDE];
1145
1146  data[0+0*DCTSTRIDE]= (d00 + d10)>>3;
1147  data[1+0*DCTSTRIDE]= (d01 + d11)>>3;
1148  data[0+1*DCTSTRIDE]= (d00 - d10)>>3;
1149  data[1+1*DCTSTRIDE]= (d01 - d11)>>3;
1150}
1151
1152void j_rev_dct1(DCTBLOCK data){
1153  data[0] = (data[0] + 4)>>3;
1154}
1155
1156#undef FIX
1157#undef CONST_BITS
1158