1/*
2 * jfdctfst.c
3 *
4 * This file is part of the Independent JPEG Group's software.
5 *
6 * The authors make NO WARRANTY or representation, either express or implied,
7 * with respect to this software, its quality, accuracy, merchantability, or
8 * fitness for a particular purpose.  This software is provided "AS IS", and
9 * you, its user, assume the entire risk as to its quality and accuracy.
10 *
11 * This software is copyright (C) 1994-1996, Thomas G. Lane.
12 * All Rights Reserved except as specified below.
13 *
14 * Permission is hereby granted to use, copy, modify, and distribute this
15 * software (or portions thereof) for any purpose, without fee, subject to
16 * these conditions:
17 * (1) If any part of the source code for this software is distributed, then
18 * this README file must be included, with this copyright and no-warranty
19 * notice unaltered; and any additions, deletions, or changes to the original
20 * files must be clearly indicated in accompanying documentation.
21 * (2) If only executable code is distributed, then the accompanying
22 * documentation must state that "this software is based in part on the work
23 * of the Independent JPEG Group".
24 * (3) Permission for use of this software is granted only if the user accepts
25 * full responsibility for any undesirable consequences; the authors accept
26 * NO LIABILITY for damages of any kind.
27 *
28 * These conditions apply to any software derived from or based on the IJG
29 * code, not just to the unmodified library.  If you use our work, you ought
30 * to acknowledge us.
31 *
32 * Permission is NOT granted for the use of any IJG author's name or company
33 * name in advertising or publicity relating to this software or products
34 * derived from it.  This software may be referred to only as "the Independent
35 * JPEG Group's software".
36 *
37 * We specifically permit and encourage the use of this software as the basis
38 * of commercial products, provided that all warranty or liability claims are
39 * assumed by the product vendor.
40 *
41 * This file contains a fast, not so accurate integer implementation of the
42 * forward DCT (Discrete Cosine Transform).
43 *
44 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
45 * on each column.  Direct algorithms are also available, but they are
46 * much more complex and seem not to be any faster when reduced to code.
47 *
48 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
49 * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
50 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
51 * JPEG textbook (see REFERENCES section in file README).  The following code
52 * is based directly on figure 4-8 in P&M.
53 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
54 * possible to arrange the computation so that many of the multiplies are
55 * simple scalings of the final outputs.  These multiplies can then be
56 * folded into the multiplications or divisions by the JPEG quantization
57 * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
58 * to be done in the DCT itself.
59 * The primary disadvantage of this method is that with fixed-point math,
60 * accuracy is lost due to imprecise representation of the scaled
61 * quantization values.  The smaller the quantization table entry, the less
62 * precise the scaled value, so this implementation does worse with high-
63 * quality-setting files than with low-quality ones.
64 */
65
66/**
67 * @file
68 * Independent JPEG Group's fast AAN dct.
69 */
70
71#include <stdlib.h>
72#include <stdio.h>
73#include "libavutil/common.h"
74#include "dsputil.h"
75
76#define DCTSIZE 8
77#define GLOBAL(x) x
78#define RIGHT_SHIFT(x, n) ((x) >> (n))
79
80/*
81 * This module is specialized to the case DCTSIZE = 8.
82 */
83
84#if DCTSIZE != 8
85  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
86#endif
87
88
89/* Scaling decisions are generally the same as in the LL&M algorithm;
90 * see jfdctint.c for more details.  However, we choose to descale
91 * (right shift) multiplication products as soon as they are formed,
92 * rather than carrying additional fractional bits into subsequent additions.
93 * This compromises accuracy slightly, but it lets us save a few shifts.
94 * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
95 * everywhere except in the multiplications proper; this saves a good deal
96 * of work on 16-bit-int machines.
97 *
98 * Again to save a few shifts, the intermediate results between pass 1 and
99 * pass 2 are not upscaled, but are represented only to integral precision.
100 *
101 * A final compromise is to represent the multiplicative constants to only
102 * 8 fractional bits, rather than 13.  This saves some shifting work on some
103 * machines, and may also reduce the cost of multiplication (since there
104 * are fewer one-bits in the constants).
105 */
106
107#define CONST_BITS  8
108
109
110/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
111 * causing a lot of useless floating-point operations at run time.
112 * To get around this we use the following pre-calculated constants.
113 * If you change CONST_BITS you may want to add appropriate values.
114 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
115 */
116
117#if CONST_BITS == 8
118#define FIX_0_382683433  ((int32_t)   98)       /* FIX(0.382683433) */
119#define FIX_0_541196100  ((int32_t)  139)       /* FIX(0.541196100) */
120#define FIX_0_707106781  ((int32_t)  181)       /* FIX(0.707106781) */
121#define FIX_1_306562965  ((int32_t)  334)       /* FIX(1.306562965) */
122#else
123#define FIX_0_382683433  FIX(0.382683433)
124#define FIX_0_541196100  FIX(0.541196100)
125#define FIX_0_707106781  FIX(0.707106781)
126#define FIX_1_306562965  FIX(1.306562965)
127#endif
128
129
130/* We can gain a little more speed, with a further compromise in accuracy,
131 * by omitting the addition in a descaling shift.  This yields an incorrectly
132 * rounded result half the time...
133 */
134
135#ifndef USE_ACCURATE_ROUNDING
136#undef DESCALE
137#define DESCALE(x,n)  RIGHT_SHIFT(x, n)
138#endif
139
140
141/* Multiply a DCTELEM variable by an int32_t constant, and immediately
142 * descale to yield a DCTELEM result.
143 */
144
145#define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
146
147static av_always_inline void row_fdct(DCTELEM * data){
148  int_fast16_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
149  int_fast16_t tmp10, tmp11, tmp12, tmp13;
150  int_fast16_t z1, z2, z3, z4, z5, z11, z13;
151  DCTELEM *dataptr;
152  int ctr;
153
154  /* Pass 1: process rows. */
155
156  dataptr = data;
157  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
158    tmp0 = dataptr[0] + dataptr[7];
159    tmp7 = dataptr[0] - dataptr[7];
160    tmp1 = dataptr[1] + dataptr[6];
161    tmp6 = dataptr[1] - dataptr[6];
162    tmp2 = dataptr[2] + dataptr[5];
163    tmp5 = dataptr[2] - dataptr[5];
164    tmp3 = dataptr[3] + dataptr[4];
165    tmp4 = dataptr[3] - dataptr[4];
166
167    /* Even part */
168
169    tmp10 = tmp0 + tmp3;        /* phase 2 */
170    tmp13 = tmp0 - tmp3;
171    tmp11 = tmp1 + tmp2;
172    tmp12 = tmp1 - tmp2;
173
174    dataptr[0] = tmp10 + tmp11; /* phase 3 */
175    dataptr[4] = tmp10 - tmp11;
176
177    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
178    dataptr[2] = tmp13 + z1;    /* phase 5 */
179    dataptr[6] = tmp13 - z1;
180
181    /* Odd part */
182
183    tmp10 = tmp4 + tmp5;        /* phase 2 */
184    tmp11 = tmp5 + tmp6;
185    tmp12 = tmp6 + tmp7;
186
187    /* The rotator is modified from fig 4-8 to avoid extra negations. */
188    z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
189    z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5;    /* c2-c6 */
190    z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5;    /* c2+c6 */
191    z3 = MULTIPLY(tmp11, FIX_0_707106781);         /* c4 */
192
193    z11 = tmp7 + z3;            /* phase 5 */
194    z13 = tmp7 - z3;
195
196    dataptr[5] = z13 + z2;      /* phase 6 */
197    dataptr[3] = z13 - z2;
198    dataptr[1] = z11 + z4;
199    dataptr[7] = z11 - z4;
200
201    dataptr += DCTSIZE;         /* advance pointer to next row */
202  }
203}
204
205/*
206 * Perform the forward DCT on one block of samples.
207 */
208
209GLOBAL(void)
210fdct_ifast (DCTELEM * data)
211{
212  int_fast16_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
213  int_fast16_t tmp10, tmp11, tmp12, tmp13;
214  int_fast16_t z1, z2, z3, z4, z5, z11, z13;
215  DCTELEM *dataptr;
216  int ctr;
217
218  row_fdct(data);
219
220  /* Pass 2: process columns. */
221
222  dataptr = data;
223  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
224    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
225    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
226    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
227    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
228    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
229    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
230    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
231    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
232
233    /* Even part */
234
235    tmp10 = tmp0 + tmp3;        /* phase 2 */
236    tmp13 = tmp0 - tmp3;
237    tmp11 = tmp1 + tmp2;
238    tmp12 = tmp1 - tmp2;
239
240    dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
241    dataptr[DCTSIZE*4] = tmp10 - tmp11;
242
243    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
244    dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
245    dataptr[DCTSIZE*6] = tmp13 - z1;
246
247    /* Odd part */
248
249    tmp10 = tmp4 + tmp5;        /* phase 2 */
250    tmp11 = tmp5 + tmp6;
251    tmp12 = tmp6 + tmp7;
252
253    /* The rotator is modified from fig 4-8 to avoid extra negations. */
254    z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
255    z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
256    z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
257    z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
258
259    z11 = tmp7 + z3;            /* phase 5 */
260    z13 = tmp7 - z3;
261
262    dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
263    dataptr[DCTSIZE*3] = z13 - z2;
264    dataptr[DCTSIZE*1] = z11 + z4;
265    dataptr[DCTSIZE*7] = z11 - z4;
266
267    dataptr++;                  /* advance pointer to next column */
268  }
269}
270
271/*
272 * Perform the forward 2-4-8 DCT on one block of samples.
273 */
274
275GLOBAL(void)
276fdct_ifast248 (DCTELEM * data)
277{
278  int_fast16_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
279  int_fast16_t tmp10, tmp11, tmp12, tmp13;
280  int_fast16_t z1;
281  DCTELEM *dataptr;
282  int ctr;
283
284  row_fdct(data);
285
286  /* Pass 2: process columns. */
287
288  dataptr = data;
289  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
290    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*1];
291    tmp1 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
292    tmp2 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];
293    tmp3 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];
294    tmp4 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*1];
295    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
296    tmp6 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];
297    tmp7 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];
298
299    /* Even part */
300
301    tmp10 = tmp0 + tmp3;
302    tmp11 = tmp1 + tmp2;
303    tmp12 = tmp1 - tmp2;
304    tmp13 = tmp0 - tmp3;
305
306    dataptr[DCTSIZE*0] = tmp10 + tmp11;
307    dataptr[DCTSIZE*4] = tmp10 - tmp11;
308
309    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781);
310    dataptr[DCTSIZE*2] = tmp13 + z1;
311    dataptr[DCTSIZE*6] = tmp13 - z1;
312
313    tmp10 = tmp4 + tmp7;
314    tmp11 = tmp5 + tmp6;
315    tmp12 = tmp5 - tmp6;
316    tmp13 = tmp4 - tmp7;
317
318    dataptr[DCTSIZE*1] = tmp10 + tmp11;
319    dataptr[DCTSIZE*5] = tmp10 - tmp11;
320
321    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781);
322    dataptr[DCTSIZE*3] = tmp13 + z1;
323    dataptr[DCTSIZE*7] = tmp13 - z1;
324
325    dataptr++;                        /* advance pointer to next column */
326  }
327}
328
329
330#undef GLOBAL
331#undef CONST_BITS
332#undef DESCALE
333#undef FIX_0_541196100
334#undef FIX_1_306562965
335