1/*
2 * COOK compatible decoder
3 * Copyright (c) 2003 Sascha Sommer
4 * Copyright (c) 2005 Benjamin Larsson
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23/**
24 * @file
25 * Cook compatible decoder. Bastardization of the G.722.1 standard.
26 * This decoder handles RealNetworks, RealAudio G2 data.
27 * Cook is identified by the codec name cook in RM files.
28 *
29 * To use this decoder, a calling application must supply the extradata
30 * bytes provided from the RM container; 8+ bytes for mono streams and
31 * 16+ for stereo streams (maybe more).
32 *
33 * Codec technicalities (all this assume a buffer length of 1024):
34 * Cook works with several different techniques to achieve its compression.
35 * In the timedomain the buffer is divided into 8 pieces and quantized. If
36 * two neighboring pieces have different quantization index a smooth
37 * quantization curve is used to get a smooth overlap between the different
38 * pieces.
39 * To get to the transformdomain Cook uses a modulated lapped transform.
40 * The transform domain has 50 subbands with 20 elements each. This
41 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
42 * available.
43 */
44
45#include <math.h>
46#include <stddef.h>
47#include <stdio.h>
48
49#include "libavutil/lfg.h"
50#include "libavutil/random_seed.h"
51#include "avcodec.h"
52#include "get_bits.h"
53#include "dsputil.h"
54#include "bytestream.h"
55#include "fft.h"
56
57#include "cookdata.h"
58
59/* the different Cook versions */
60#define MONO            0x1000001
61#define STEREO          0x1000002
62#define JOINT_STEREO    0x1000003
63#define MC_COOK         0x2000000   //multichannel Cook, not supported
64
65#define SUBBAND_SIZE    20
66#define MAX_SUBPACKETS   5
67//#define COOKDEBUG
68
69typedef struct {
70    int *now;
71    int *previous;
72} cook_gains;
73
74typedef struct {
75    int                 ch_idx;
76    int                 size;
77    int                 num_channels;
78    int                 cookversion;
79    int                 samples_per_frame;
80    int                 subbands;
81    int                 js_subband_start;
82    int                 js_vlc_bits;
83    int                 samples_per_channel;
84    int                 log2_numvector_size;
85    unsigned int        channel_mask;
86    VLC                 ccpl;                 ///< channel coupling
87    int                 joint_stereo;
88    int                 bits_per_subpacket;
89    int                 bits_per_subpdiv;
90    int                 total_subbands;
91    int                 numvector_size;       ///< 1 << log2_numvector_size;
92
93    float               mono_previous_buffer1[1024];
94    float               mono_previous_buffer2[1024];
95    /** gain buffers */
96    cook_gains          gains1;
97    cook_gains          gains2;
98    int                 gain_1[9];
99    int                 gain_2[9];
100    int                 gain_3[9];
101    int                 gain_4[9];
102} COOKSubpacket;
103
104typedef struct cook {
105    /*
106     * The following 5 functions provide the lowlevel arithmetic on
107     * the internal audio buffers.
108     */
109    void (* scalar_dequant)(struct cook *q, int index, int quant_index,
110                            int* subband_coef_index, int* subband_coef_sign,
111                            float* mlt_p);
112
113    void (* decouple) (struct cook *q,
114                       COOKSubpacket *p,
115                       int subband,
116                       float f1, float f2,
117                       float *decode_buffer,
118                       float *mlt_buffer1, float *mlt_buffer2);
119
120    void (* imlt_window) (struct cook *q, float *buffer1,
121                          cook_gains *gains_ptr, float *previous_buffer);
122
123    void (* interpolate) (struct cook *q, float* buffer,
124                          int gain_index, int gain_index_next);
125
126    void (* saturate_output) (struct cook *q, int chan, int16_t *out);
127
128    AVCodecContext*     avctx;
129    GetBitContext       gb;
130    /* stream data */
131    int                 nb_channels;
132    int                 bit_rate;
133    int                 sample_rate;
134    int                 num_vectors;
135    int                 samples_per_channel;
136    /* states */
137    AVLFG               random_state;
138
139    /* transform data */
140    FFTContext          mdct_ctx;
141    float*              mlt_window;
142
143    /* VLC data */
144    VLC                 envelope_quant_index[13];
145    VLC                 sqvh[7];          //scalar quantization
146
147    /* generatable tables and related variables */
148    int                 gain_size_factor;
149    float               gain_table[23];
150
151    /* data buffers */
152
153    uint8_t*            decoded_bytes_buffer;
154    DECLARE_ALIGNED(16, float,mono_mdct_output)[2048];
155    float               decode_buffer_1[1024];
156    float               decode_buffer_2[1024];
157    float               decode_buffer_0[1060]; /* static allocation for joint decode */
158
159    const float         *cplscales[5];
160    int                 num_subpackets;
161    COOKSubpacket       subpacket[MAX_SUBPACKETS];
162} COOKContext;
163
164static float     pow2tab[127];
165static float rootpow2tab[127];
166
167/* debug functions */
168
169#ifdef COOKDEBUG
170static void dump_float_table(float* table, int size, int delimiter) {
171    int i=0;
172    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
173    for (i=0 ; i<size ; i++) {
174        av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
175        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
176    }
177}
178
179static void dump_int_table(int* table, int size, int delimiter) {
180    int i=0;
181    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
182    for (i=0 ; i<size ; i++) {
183        av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
184        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
185    }
186}
187
188static void dump_short_table(short* table, int size, int delimiter) {
189    int i=0;
190    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
191    for (i=0 ; i<size ; i++) {
192        av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
193        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
194    }
195}
196
197#endif
198
199/*************** init functions ***************/
200
201/* table generator */
202static av_cold void init_pow2table(void){
203    int i;
204    for (i=-63 ; i<64 ; i++){
205            pow2tab[63+i]=     pow(2, i);
206        rootpow2tab[63+i]=sqrt(pow(2, i));
207    }
208}
209
210/* table generator */
211static av_cold void init_gain_table(COOKContext *q) {
212    int i;
213    q->gain_size_factor = q->samples_per_channel/8;
214    for (i=0 ; i<23 ; i++) {
215        q->gain_table[i] = pow(pow2tab[i+52] ,
216                               (1.0/(double)q->gain_size_factor));
217    }
218}
219
220
221static av_cold int init_cook_vlc_tables(COOKContext *q) {
222    int i, result;
223
224    result = 0;
225    for (i=0 ; i<13 ; i++) {
226        result |= init_vlc (&q->envelope_quant_index[i], 9, 24,
227            envelope_quant_index_huffbits[i], 1, 1,
228            envelope_quant_index_huffcodes[i], 2, 2, 0);
229    }
230    av_log(q->avctx,AV_LOG_DEBUG,"sqvh VLC init\n");
231    for (i=0 ; i<7 ; i++) {
232        result |= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
233            cvh_huffbits[i], 1, 1,
234            cvh_huffcodes[i], 2, 2, 0);
235    }
236
237    for(i=0;i<q->num_subpackets;i++){
238        if (q->subpacket[i].joint_stereo==1){
239            result |= init_vlc (&q->subpacket[i].ccpl, 6, (1<<q->subpacket[i].js_vlc_bits)-1,
240                ccpl_huffbits[q->subpacket[i].js_vlc_bits-2], 1, 1,
241                ccpl_huffcodes[q->subpacket[i].js_vlc_bits-2], 2, 2, 0);
242            av_log(q->avctx,AV_LOG_DEBUG,"subpacket %i Joint-stereo VLC used.\n",i);
243        }
244    }
245
246    av_log(q->avctx,AV_LOG_DEBUG,"VLC tables initialized.\n");
247    return result;
248}
249
250static av_cold int init_cook_mlt(COOKContext *q) {
251    int j;
252    int mlt_size = q->samples_per_channel;
253
254    if ((q->mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0)
255      return -1;
256
257    /* Initialize the MLT window: simple sine window. */
258    ff_sine_window_init(q->mlt_window, mlt_size);
259    for(j=0 ; j<mlt_size ; j++)
260        q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
261
262    /* Initialize the MDCT. */
263    if (ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size)+1, 1, 1.0)) {
264      av_free(q->mlt_window);
265      return -1;
266    }
267    av_log(q->avctx,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n",
268           av_log2(mlt_size)+1);
269
270    return 0;
271}
272
273static const float *maybe_reformat_buffer32 (COOKContext *q, const float *ptr, int n)
274{
275    if (1)
276        return ptr;
277}
278
279static av_cold void init_cplscales_table (COOKContext *q) {
280    int i;
281    for (i=0;i<5;i++)
282        q->cplscales[i] = maybe_reformat_buffer32 (q, cplscales[i], (1<<(i+2))-1);
283}
284
285/*************** init functions end ***********/
286
287/**
288 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
289 * Why? No idea, some checksum/error detection method maybe.
290 *
291 * Out buffer size: extra bytes are needed to cope with
292 * padding/misalignment.
293 * Subpackets passed to the decoder can contain two, consecutive
294 * half-subpackets, of identical but arbitrary size.
295 *          1234 1234 1234 1234  extraA extraB
296 * Case 1:  AAAA BBBB              0      0
297 * Case 2:  AAAA ABBB BB--         3      3
298 * Case 3:  AAAA AABB BBBB         2      2
299 * Case 4:  AAAA AAAB BBBB BB--    1      5
300 *
301 * Nice way to waste CPU cycles.
302 *
303 * @param inbuffer  pointer to byte array of indata
304 * @param out       pointer to byte array of outdata
305 * @param bytes     number of bytes
306 */
307#define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
308#define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
309
310static inline int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
311    int i, off;
312    uint32_t c;
313    const uint32_t* buf;
314    uint32_t* obuf = (uint32_t*) out;
315    /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
316     * I'm too lazy though, should be something like
317     * for(i=0 ; i<bitamount/64 ; i++)
318     *     (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
319     * Buffer alignment needs to be checked. */
320
321    off = (intptr_t)inbuffer & 3;
322    buf = (const uint32_t*) (inbuffer - off);
323    c = be2me_32((0x37c511f2 >> (off*8)) | (0x37c511f2 << (32-(off*8))));
324    bytes += 3 + off;
325    for (i = 0; i < bytes/4; i++)
326        obuf[i] = c ^ buf[i];
327
328    return off;
329}
330
331/**
332 * Cook uninit
333 */
334
335static av_cold int cook_decode_close(AVCodecContext *avctx)
336{
337    int i;
338    COOKContext *q = avctx->priv_data;
339    av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n");
340
341    /* Free allocated memory buffers. */
342    av_free(q->mlt_window);
343    av_free(q->decoded_bytes_buffer);
344
345    /* Free the transform. */
346    ff_mdct_end(&q->mdct_ctx);
347
348    /* Free the VLC tables. */
349    for (i=0 ; i<13 ; i++) {
350        free_vlc(&q->envelope_quant_index[i]);
351    }
352    for (i=0 ; i<7 ; i++) {
353        free_vlc(&q->sqvh[i]);
354    }
355    for (i=0 ; i<q->num_subpackets ; i++) {
356        free_vlc(&q->subpacket[i].ccpl);
357    }
358
359    av_log(avctx,AV_LOG_DEBUG,"Memory deallocated.\n");
360
361    return 0;
362}
363
364/**
365 * Fill the gain array for the timedomain quantization.
366 *
367 * @param q                 pointer to the COOKContext
368 * @param gaininfo[9]       array of gain indexes
369 */
370
371static void decode_gain_info(GetBitContext *gb, int *gaininfo)
372{
373    int i, n;
374
375    while (get_bits1(gb)) {}
376    n = get_bits_count(gb) - 1;     //amount of elements*2 to update
377
378    i = 0;
379    while (n--) {
380        int index = get_bits(gb, 3);
381        int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
382
383        while (i <= index) gaininfo[i++] = gain;
384    }
385    while (i <= 8) gaininfo[i++] = 0;
386}
387
388/**
389 * Create the quant index table needed for the envelope.
390 *
391 * @param q                 pointer to the COOKContext
392 * @param quant_index_table pointer to the array
393 */
394
395static void decode_envelope(COOKContext *q, COOKSubpacket *p, int* quant_index_table) {
396    int i,j, vlc_index;
397
398    quant_index_table[0]= get_bits(&q->gb,6) - 6;       //This is used later in categorize
399
400    for (i=1 ; i < p->total_subbands ; i++){
401        vlc_index=i;
402        if (i >= p->js_subband_start * 2) {
403            vlc_index-=p->js_subband_start;
404        } else {
405            vlc_index/=2;
406            if(vlc_index < 1) vlc_index = 1;
407        }
408        if (vlc_index>13) vlc_index = 13;           //the VLC tables >13 are identical to No. 13
409
410        j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
411                     q->envelope_quant_index[vlc_index-1].bits,2);
412        quant_index_table[i] = quant_index_table[i-1] + j - 12;    //differential encoding
413    }
414}
415
416/**
417 * Calculate the category and category_index vector.
418 *
419 * @param q                     pointer to the COOKContext
420 * @param quant_index_table     pointer to the array
421 * @param category              pointer to the category array
422 * @param category_index        pointer to the category_index array
423 */
424
425static void categorize(COOKContext *q, COOKSubpacket *p, int* quant_index_table,
426                       int* category, int* category_index){
427    int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
428    int exp_index2[102];
429    int exp_index1[102];
430
431    int tmp_categorize_array[128*2];
432    int tmp_categorize_array1_idx=p->numvector_size;
433    int tmp_categorize_array2_idx=p->numvector_size;
434
435    bits_left =  p->bits_per_subpacket - get_bits_count(&q->gb);
436
437    if(bits_left > q->samples_per_channel) {
438        bits_left = q->samples_per_channel +
439                    ((bits_left - q->samples_per_channel)*5)/8;
440        //av_log(q->avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
441    }
442
443    memset(&exp_index1,0,102*sizeof(int));
444    memset(&exp_index2,0,102*sizeof(int));
445    memset(&tmp_categorize_array,0,128*2*sizeof(int));
446
447    bias=-32;
448
449    /* Estimate bias. */
450    for (i=32 ; i>0 ; i=i/2){
451        num_bits = 0;
452        index = 0;
453        for (j=p->total_subbands ; j>0 ; j--){
454            exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
455            index++;
456            num_bits+=expbits_tab[exp_idx];
457        }
458        if(num_bits >= bits_left - 32){
459            bias+=i;
460        }
461    }
462
463    /* Calculate total number of bits. */
464    num_bits=0;
465    for (i=0 ; i<p->total_subbands ; i++) {
466        exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
467        num_bits += expbits_tab[exp_idx];
468        exp_index1[i] = exp_idx;
469        exp_index2[i] = exp_idx;
470    }
471    tmpbias1 = tmpbias2 = num_bits;
472
473    for (j = 1 ; j < p->numvector_size ; j++) {
474        if (tmpbias1 + tmpbias2 > 2*bits_left) {  /* ---> */
475            int max = -999999;
476            index=-1;
477            for (i=0 ; i<p->total_subbands ; i++){
478                if (exp_index1[i] < 7) {
479                    v = (-2*exp_index1[i]) - quant_index_table[i] + bias;
480                    if ( v >= max) {
481                        max = v;
482                        index = i;
483                    }
484                }
485            }
486            if(index==-1)break;
487            tmp_categorize_array[tmp_categorize_array1_idx++] = index;
488            tmpbias1 -= expbits_tab[exp_index1[index]] -
489                        expbits_tab[exp_index1[index]+1];
490            ++exp_index1[index];
491        } else {  /* <--- */
492            int min = 999999;
493            index=-1;
494            for (i=0 ; i<p->total_subbands ; i++){
495                if(exp_index2[i] > 0){
496                    v = (-2*exp_index2[i])-quant_index_table[i]+bias;
497                    if ( v < min) {
498                        min = v;
499                        index = i;
500                    }
501                }
502            }
503            if(index == -1)break;
504            tmp_categorize_array[--tmp_categorize_array2_idx] = index;
505            tmpbias2 -= expbits_tab[exp_index2[index]] -
506                        expbits_tab[exp_index2[index]-1];
507            --exp_index2[index];
508        }
509    }
510
511    for(i=0 ; i<p->total_subbands ; i++)
512        category[i] = exp_index2[i];
513
514    for(i=0 ; i<p->numvector_size-1 ; i++)
515        category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
516
517}
518
519
520/**
521 * Expand the category vector.
522 *
523 * @param q                     pointer to the COOKContext
524 * @param category              pointer to the category array
525 * @param category_index        pointer to the category_index array
526 */
527
528static inline void expand_category(COOKContext *q, int* category,
529                                   int* category_index){
530    int i;
531    for(i=0 ; i<q->num_vectors ; i++){
532        ++category[category_index[i]];
533    }
534}
535
536/**
537 * The real requantization of the mltcoefs
538 *
539 * @param q                     pointer to the COOKContext
540 * @param index                 index
541 * @param quant_index           quantisation index
542 * @param subband_coef_index    array of indexes to quant_centroid_tab
543 * @param subband_coef_sign     signs of coefficients
544 * @param mlt_p                 pointer into the mlt buffer
545 */
546
547static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
548                           int* subband_coef_index, int* subband_coef_sign,
549                           float* mlt_p){
550    int i;
551    float f1;
552
553    for(i=0 ; i<SUBBAND_SIZE ; i++) {
554        if (subband_coef_index[i]) {
555            f1 = quant_centroid_tab[index][subband_coef_index[i]];
556            if (subband_coef_sign[i]) f1 = -f1;
557        } else {
558            /* noise coding if subband_coef_index[i] == 0 */
559            f1 = dither_tab[index];
560            if (av_lfg_get(&q->random_state) < 0x80000000) f1 = -f1;
561        }
562        mlt_p[i] = f1 * rootpow2tab[quant_index+63];
563    }
564}
565/**
566 * Unpack the subband_coef_index and subband_coef_sign vectors.
567 *
568 * @param q                     pointer to the COOKContext
569 * @param category              pointer to the category array
570 * @param subband_coef_index    array of indexes to quant_centroid_tab
571 * @param subband_coef_sign     signs of coefficients
572 */
573
574static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category, int* subband_coef_index,
575                       int* subband_coef_sign) {
576    int i,j;
577    int vlc, vd ,tmp, result;
578
579    vd = vd_tab[category];
580    result = 0;
581    for(i=0 ; i<vpr_tab[category] ; i++){
582        vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
583        if (p->bits_per_subpacket < get_bits_count(&q->gb)){
584            vlc = 0;
585            result = 1;
586        }
587        for(j=vd-1 ; j>=0 ; j--){
588            tmp = (vlc * invradix_tab[category])/0x100000;
589            subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
590            vlc = tmp;
591        }
592        for(j=0 ; j<vd ; j++){
593            if (subband_coef_index[i*vd + j]) {
594                if(get_bits_count(&q->gb) < p->bits_per_subpacket){
595                    subband_coef_sign[i*vd+j] = get_bits1(&q->gb);
596                } else {
597                    result=1;
598                    subband_coef_sign[i*vd+j]=0;
599                }
600            } else {
601                subband_coef_sign[i*vd+j]=0;
602            }
603        }
604    }
605    return result;
606}
607
608
609/**
610 * Fill the mlt_buffer with mlt coefficients.
611 *
612 * @param q                 pointer to the COOKContext
613 * @param category          pointer to the category array
614 * @param quant_index_table pointer to the array
615 * @param mlt_buffer        pointer to mlt coefficients
616 */
617
618
619static void decode_vectors(COOKContext* q, COOKSubpacket* p, int* category,
620                           int *quant_index_table, float* mlt_buffer){
621    /* A zero in this table means that the subband coefficient is
622       random noise coded. */
623    int subband_coef_index[SUBBAND_SIZE];
624    /* A zero in this table means that the subband coefficient is a
625       positive multiplicator. */
626    int subband_coef_sign[SUBBAND_SIZE];
627    int band, j;
628    int index=0;
629
630    for(band=0 ; band<p->total_subbands ; band++){
631        index = category[band];
632        if(category[band] < 7){
633            if(unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)){
634                index=7;
635                for(j=0 ; j<p->total_subbands ; j++) category[band+j]=7;
636            }
637        }
638        if(index>=7) {
639            memset(subband_coef_index, 0, sizeof(subband_coef_index));
640            memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
641        }
642        q->scalar_dequant(q, index, quant_index_table[band],
643                          subband_coef_index, subband_coef_sign,
644                          &mlt_buffer[band * SUBBAND_SIZE]);
645    }
646
647    if(p->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
648        return;
649    } /* FIXME: should this be removed, or moved into loop above? */
650}
651
652
653/**
654 * function for decoding mono data
655 *
656 * @param q                 pointer to the COOKContext
657 * @param mlt_buffer        pointer to mlt coefficients
658 */
659
660static void mono_decode(COOKContext *q, COOKSubpacket *p, float* mlt_buffer) {
661
662    int category_index[128];
663    int quant_index_table[102];
664    int category[128];
665
666    memset(&category, 0, 128*sizeof(int));
667    memset(&category_index, 0, 128*sizeof(int));
668
669    decode_envelope(q, p, quant_index_table);
670    q->num_vectors = get_bits(&q->gb,p->log2_numvector_size);
671    categorize(q, p, quant_index_table, category, category_index);
672    expand_category(q, category, category_index);
673    decode_vectors(q, p, category, quant_index_table, mlt_buffer);
674}
675
676
677/**
678 * the actual requantization of the timedomain samples
679 *
680 * @param q                 pointer to the COOKContext
681 * @param buffer            pointer to the timedomain buffer
682 * @param gain_index        index for the block multiplier
683 * @param gain_index_next   index for the next block multiplier
684 */
685
686static void interpolate_float(COOKContext *q, float* buffer,
687                        int gain_index, int gain_index_next){
688    int i;
689    float fc1, fc2;
690    fc1 = pow2tab[gain_index+63];
691
692    if(gain_index == gain_index_next){              //static gain
693        for(i=0 ; i<q->gain_size_factor ; i++){
694            buffer[i]*=fc1;
695        }
696        return;
697    } else {                                        //smooth gain
698        fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
699        for(i=0 ; i<q->gain_size_factor ; i++){
700            buffer[i]*=fc1;
701            fc1*=fc2;
702        }
703        return;
704    }
705}
706
707/**
708 * Apply transform window, overlap buffers.
709 *
710 * @param q                 pointer to the COOKContext
711 * @param inbuffer          pointer to the mltcoefficients
712 * @param gains_ptr         current and previous gains
713 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
714 */
715
716static void imlt_window_float (COOKContext *q, float *buffer1,
717                               cook_gains *gains_ptr, float *previous_buffer)
718{
719    const float fc = pow2tab[gains_ptr->previous[0] + 63];
720    int i;
721    /* The weird thing here, is that the two halves of the time domain
722     * buffer are swapped. Also, the newest data, that we save away for
723     * next frame, has the wrong sign. Hence the subtraction below.
724     * Almost sounds like a complex conjugate/reverse data/FFT effect.
725     */
726
727    /* Apply window and overlap */
728    for(i = 0; i < q->samples_per_channel; i++){
729        buffer1[i] = buffer1[i] * fc * q->mlt_window[i] -
730          previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
731    }
732}
733
734/**
735 * The modulated lapped transform, this takes transform coefficients
736 * and transforms them into timedomain samples.
737 * Apply transform window, overlap buffers, apply gain profile
738 * and buffer management.
739 *
740 * @param q                 pointer to the COOKContext
741 * @param inbuffer          pointer to the mltcoefficients
742 * @param gains_ptr         current and previous gains
743 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
744 */
745
746static void imlt_gain(COOKContext *q, float *inbuffer,
747                      cook_gains *gains_ptr, float* previous_buffer)
748{
749    float *buffer0 = q->mono_mdct_output;
750    float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
751    int i;
752
753    /* Inverse modified discrete cosine transform */
754    ff_imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
755
756    q->imlt_window (q, buffer1, gains_ptr, previous_buffer);
757
758    /* Apply gain profile */
759    for (i = 0; i < 8; i++) {
760        if (gains_ptr->now[i] || gains_ptr->now[i + 1])
761            q->interpolate(q, &buffer1[q->gain_size_factor * i],
762                           gains_ptr->now[i], gains_ptr->now[i + 1]);
763    }
764
765    /* Save away the current to be previous block. */
766    memcpy(previous_buffer, buffer0, sizeof(float)*q->samples_per_channel);
767}
768
769
770/**
771 * function for getting the jointstereo coupling information
772 *
773 * @param q                 pointer to the COOKContext
774 * @param decouple_tab      decoupling array
775 *
776 */
777
778static void decouple_info(COOKContext *q, COOKSubpacket *p, int* decouple_tab){
779    int length, i;
780
781    if(get_bits1(&q->gb)) {
782        if(cplband[p->js_subband_start] > cplband[p->subbands-1]) return;
783
784        length = cplband[p->subbands-1] - cplband[p->js_subband_start] + 1;
785        for (i=0 ; i<length ; i++) {
786            decouple_tab[cplband[p->js_subband_start] + i] = get_vlc2(&q->gb, p->ccpl.table, p->ccpl.bits, 2);
787        }
788        return;
789    }
790
791    if(cplband[p->js_subband_start] > cplband[p->subbands-1]) return;
792
793    length = cplband[p->subbands-1] - cplband[p->js_subband_start] + 1;
794    for (i=0 ; i<length ; i++) {
795       decouple_tab[cplband[p->js_subband_start] + i] = get_bits(&q->gb, p->js_vlc_bits);
796    }
797    return;
798}
799
800/*
801 * function decouples a pair of signals from a single signal via multiplication.
802 *
803 * @param q                 pointer to the COOKContext
804 * @param subband           index of the current subband
805 * @param f1                multiplier for channel 1 extraction
806 * @param f2                multiplier for channel 2 extraction
807 * @param decode_buffer     input buffer
808 * @param mlt_buffer1       pointer to left channel mlt coefficients
809 * @param mlt_buffer2       pointer to right channel mlt coefficients
810 */
811static void decouple_float (COOKContext *q,
812                            COOKSubpacket *p,
813                            int subband,
814                            float f1, float f2,
815                            float *decode_buffer,
816                            float *mlt_buffer1, float *mlt_buffer2)
817{
818    int j, tmp_idx;
819    for (j=0 ; j<SUBBAND_SIZE ; j++) {
820        tmp_idx = ((p->js_subband_start + subband)*SUBBAND_SIZE)+j;
821        mlt_buffer1[SUBBAND_SIZE*subband + j] = f1 * decode_buffer[tmp_idx];
822        mlt_buffer2[SUBBAND_SIZE*subband + j] = f2 * decode_buffer[tmp_idx];
823    }
824}
825
826/**
827 * function for decoding joint stereo data
828 *
829 * @param q                 pointer to the COOKContext
830 * @param mlt_buffer1       pointer to left channel mlt coefficients
831 * @param mlt_buffer2       pointer to right channel mlt coefficients
832 */
833
834static void joint_decode(COOKContext *q, COOKSubpacket *p, float* mlt_buffer1,
835                         float* mlt_buffer2) {
836    int i,j;
837    int decouple_tab[SUBBAND_SIZE];
838    float *decode_buffer = q->decode_buffer_0;
839    int idx, cpl_tmp;
840    float f1,f2;
841    const float* cplscale;
842
843    memset(decouple_tab, 0, sizeof(decouple_tab));
844    memset(decode_buffer, 0, sizeof(decode_buffer));
845
846    /* Make sure the buffers are zeroed out. */
847    memset(mlt_buffer1,0, 1024*sizeof(float));
848    memset(mlt_buffer2,0, 1024*sizeof(float));
849    decouple_info(q, p, decouple_tab);
850    mono_decode(q, p, decode_buffer);
851
852    /* The two channels are stored interleaved in decode_buffer. */
853    for (i=0 ; i<p->js_subband_start ; i++) {
854        for (j=0 ; j<SUBBAND_SIZE ; j++) {
855            mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
856            mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
857        }
858    }
859
860    /* When we reach js_subband_start (the higher frequencies)
861       the coefficients are stored in a coupling scheme. */
862    idx = (1 << p->js_vlc_bits) - 1;
863    for (i=p->js_subband_start ; i<p->subbands ; i++) {
864        cpl_tmp = cplband[i];
865        idx -=decouple_tab[cpl_tmp];
866        cplscale = q->cplscales[p->js_vlc_bits-2];  //choose decoupler table
867        f1 = cplscale[decouple_tab[cpl_tmp]];
868        f2 = cplscale[idx-1];
869        q->decouple (q, p, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2);
870        idx = (1 << p->js_vlc_bits) - 1;
871    }
872}
873
874/**
875 * First part of subpacket decoding:
876 *  decode raw stream bytes and read gain info.
877 *
878 * @param q                 pointer to the COOKContext
879 * @param inbuffer          pointer to raw stream data
880 * @param gain_ptr          array of current/prev gain pointers
881 */
882
883static inline void
884decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p, const uint8_t *inbuffer,
885                      cook_gains *gains_ptr)
886{
887    int offset;
888
889    offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
890                          p->bits_per_subpacket/8);
891    init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
892                  p->bits_per_subpacket);
893    decode_gain_info(&q->gb, gains_ptr->now);
894
895    /* Swap current and previous gains */
896    FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
897}
898
899 /**
900 * Saturate the output signal to signed 16bit integers.
901 *
902 * @param q                 pointer to the COOKContext
903 * @param chan              channel to saturate
904 * @param out               pointer to the output vector
905 */
906static void
907saturate_output_float (COOKContext *q, int chan, int16_t *out)
908{
909    int j;
910    float *output = q->mono_mdct_output + q->samples_per_channel;
911    /* Clip and convert floats to 16 bits.
912     */
913    for (j = 0; j < q->samples_per_channel; j++) {
914        out[chan + q->nb_channels * j] =
915          av_clip_int16(lrintf(output[j]));
916    }
917}
918
919/**
920 * Final part of subpacket decoding:
921 *  Apply modulated lapped transform, gain compensation,
922 *  clip and convert to integer.
923 *
924 * @param q                 pointer to the COOKContext
925 * @param decode_buffer     pointer to the mlt coefficients
926 * @param gain_ptr          array of current/prev gain pointers
927 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
928 * @param out               pointer to the output buffer
929 * @param chan              0: left or single channel, 1: right channel
930 */
931
932static inline void
933mlt_compensate_output(COOKContext *q, float *decode_buffer,
934                      cook_gains *gains, float *previous_buffer,
935                      int16_t *out, int chan)
936{
937    imlt_gain(q, decode_buffer, gains, previous_buffer);
938    q->saturate_output (q, chan, out);
939}
940
941
942/**
943 * Cook subpacket decoding. This function returns one decoded subpacket,
944 * usually 1024 samples per channel.
945 *
946 * @param q                 pointer to the COOKContext
947 * @param inbuffer          pointer to the inbuffer
948 * @param sub_packet_size   subpacket size
949 * @param outbuffer         pointer to the outbuffer
950 */
951
952
953static void decode_subpacket(COOKContext *q, COOKSubpacket* p, const uint8_t *inbuffer, int16_t *outbuffer) {
954    int sub_packet_size = p->size;
955    /* packet dump */
956//    for (i=0 ; i<sub_packet_size ; i++) {
957//        av_log(q->avctx, AV_LOG_ERROR, "%02x", inbuffer[i]);
958//    }
959//    av_log(q->avctx, AV_LOG_ERROR, "\n");
960    memset(q->decode_buffer_1,0,sizeof(q->decode_buffer_1));
961    decode_bytes_and_gain(q, p, inbuffer, &p->gains1);
962
963    if (p->joint_stereo) {
964        joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2);
965    } else {
966        mono_decode(q, p, q->decode_buffer_1);
967
968        if (p->num_channels == 2) {
969            decode_bytes_and_gain(q, p, inbuffer + sub_packet_size/2, &p->gains2);
970            mono_decode(q, p, q->decode_buffer_2);
971        }
972    }
973
974    mlt_compensate_output(q, q->decode_buffer_1, &p->gains1,
975                          p->mono_previous_buffer1, outbuffer, p->ch_idx);
976
977    if (p->num_channels == 2) {
978        if (p->joint_stereo) {
979            mlt_compensate_output(q, q->decode_buffer_2, &p->gains1,
980                                  p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
981         } else {
982            mlt_compensate_output(q, q->decode_buffer_2, &p->gains2,
983                                  p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
984         }
985     }
986
987}
988
989
990/**
991 * Cook frame decoding
992 *
993 * @param avctx     pointer to the AVCodecContext
994 */
995
996static int cook_decode_frame(AVCodecContext *avctx,
997            void *data, int *data_size,
998            AVPacket *avpkt) {
999    const uint8_t *buf = avpkt->data;
1000    int buf_size = avpkt->size;
1001    COOKContext *q = avctx->priv_data;
1002    int i;
1003    int offset = 0;
1004    int chidx = 0;
1005
1006    if (buf_size < avctx->block_align)
1007        return buf_size;
1008
1009    /* estimate subpacket sizes */
1010    q->subpacket[0].size = avctx->block_align;
1011
1012    for(i=1;i<q->num_subpackets;i++){
1013        q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i];
1014        q->subpacket[0].size -= q->subpacket[i].size + 1;
1015        if (q->subpacket[0].size < 0) {
1016            av_log(avctx,AV_LOG_DEBUG,"frame subpacket size total > avctx->block_align!\n");
1017            return -1;
1018        }
1019    }
1020
1021    /* decode supbackets */
1022    *data_size = 0;
1023    for(i=0;i<q->num_subpackets;i++){
1024        q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size*8)>>q->subpacket[i].bits_per_subpdiv;
1025        q->subpacket[i].ch_idx = chidx;
1026        av_log(avctx,AV_LOG_DEBUG,"subpacket[%i] size %i js %i %i block_align %i\n",i,q->subpacket[i].size,q->subpacket[i].joint_stereo,offset,avctx->block_align);
1027        decode_subpacket(q, &q->subpacket[i], buf + offset, (int16_t*)data);
1028        offset += q->subpacket[i].size;
1029        chidx += q->subpacket[i].num_channels;
1030        av_log(avctx,AV_LOG_DEBUG,"subpacket[%i] %i %i\n",i,q->subpacket[i].size * 8,get_bits_count(&q->gb));
1031    }
1032    *data_size = sizeof(int16_t) * q->nb_channels * q->samples_per_channel;
1033
1034    /* Discard the first two frames: no valid audio. */
1035    if (avctx->frame_number < 2) *data_size = 0;
1036
1037    return avctx->block_align;
1038}
1039
1040#ifdef COOKDEBUG
1041static void dump_cook_context(COOKContext *q)
1042{
1043    //int i=0;
1044#define PRINT(a,b) av_log(q->avctx,AV_LOG_ERROR," %s = %d\n", a, b);
1045    av_log(q->avctx,AV_LOG_ERROR,"COOKextradata\n");
1046    av_log(q->avctx,AV_LOG_ERROR,"cookversion=%x\n",q->subpacket[0].cookversion);
1047    if (q->subpacket[0].cookversion > STEREO) {
1048        PRINT("js_subband_start",q->subpacket[0].js_subband_start);
1049        PRINT("js_vlc_bits",q->subpacket[0].js_vlc_bits);
1050    }
1051    av_log(q->avctx,AV_LOG_ERROR,"COOKContext\n");
1052    PRINT("nb_channels",q->nb_channels);
1053    PRINT("bit_rate",q->bit_rate);
1054    PRINT("sample_rate",q->sample_rate);
1055    PRINT("samples_per_channel",q->subpacket[0].samples_per_channel);
1056    PRINT("samples_per_frame",q->subpacket[0].samples_per_frame);
1057    PRINT("subbands",q->subpacket[0].subbands);
1058    PRINT("random_state",q->random_state);
1059    PRINT("js_subband_start",q->subpacket[0].js_subband_start);
1060    PRINT("log2_numvector_size",q->subpacket[0].log2_numvector_size);
1061    PRINT("numvector_size",q->subpacket[0].numvector_size);
1062    PRINT("total_subbands",q->subpacket[0].total_subbands);
1063}
1064#endif
1065
1066static av_cold int cook_count_channels(unsigned int mask){
1067    int i;
1068    int channels = 0;
1069    for(i = 0;i<32;i++){
1070        if(mask & (1<<i))
1071            ++channels;
1072    }
1073    return channels;
1074}
1075
1076/**
1077 * Cook initialization
1078 *
1079 * @param avctx     pointer to the AVCodecContext
1080 */
1081
1082static av_cold int cook_decode_init(AVCodecContext *avctx)
1083{
1084    COOKContext *q = avctx->priv_data;
1085    const uint8_t *edata_ptr = avctx->extradata;
1086    const uint8_t *edata_ptr_end = edata_ptr + avctx->extradata_size;
1087    int extradata_size = avctx->extradata_size;
1088    int s = 0;
1089    unsigned int channel_mask = 0;
1090    q->avctx = avctx;
1091
1092    /* Take care of the codec specific extradata. */
1093    if (extradata_size <= 0) {
1094        av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");
1095        return -1;
1096    }
1097    av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
1098
1099    /* Take data from the AVCodecContext (RM container). */
1100    q->sample_rate = avctx->sample_rate;
1101    q->nb_channels = avctx->channels;
1102    q->bit_rate = avctx->bit_rate;
1103
1104    /* Initialize RNG. */
1105    av_lfg_init(&q->random_state, 0);
1106
1107    while(edata_ptr < edata_ptr_end){
1108        /* 8 for mono, 16 for stereo, ? for multichannel
1109           Swap to right endianness so we don't need to care later on. */
1110        if (extradata_size >= 8){
1111            q->subpacket[s].cookversion = bytestream_get_be32(&edata_ptr);
1112            q->subpacket[s].samples_per_frame =  bytestream_get_be16(&edata_ptr);
1113            q->subpacket[s].subbands = bytestream_get_be16(&edata_ptr);
1114            extradata_size -= 8;
1115        }
1116        if (avctx->extradata_size >= 8){
1117            bytestream_get_be32(&edata_ptr);    //Unknown unused
1118            q->subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr);
1119            q->subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr);
1120            extradata_size -= 8;
1121        }
1122
1123        /* Initialize extradata related variables. */
1124        q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame / q->nb_channels;
1125        q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;
1126
1127        /* Initialize default data states. */
1128        q->subpacket[s].log2_numvector_size = 5;
1129        q->subpacket[s].total_subbands = q->subpacket[s].subbands;
1130        q->subpacket[s].num_channels = 1;
1131
1132        /* Initialize version-dependent variables */
1133
1134        av_log(avctx,AV_LOG_DEBUG,"subpacket[%i].cookversion=%x\n",s,q->subpacket[s].cookversion);
1135        q->subpacket[s].joint_stereo = 0;
1136        switch (q->subpacket[s].cookversion) {
1137            case MONO:
1138                if (q->nb_channels != 1) {
1139                    av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
1140                    return -1;
1141                }
1142                av_log(avctx,AV_LOG_DEBUG,"MONO\n");
1143                break;
1144            case STEREO:
1145                if (q->nb_channels != 1) {
1146                    q->subpacket[s].bits_per_subpdiv = 1;
1147                    q->subpacket[s].num_channels = 2;
1148                }
1149                av_log(avctx,AV_LOG_DEBUG,"STEREO\n");
1150                break;
1151            case JOINT_STEREO:
1152                if (q->nb_channels != 2) {
1153                    av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
1154                    return -1;
1155                }
1156                av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");
1157                if (avctx->extradata_size >= 16){
1158                    q->subpacket[s].total_subbands = q->subpacket[s].subbands + q->subpacket[s].js_subband_start;
1159                    q->subpacket[s].joint_stereo = 1;
1160                    q->subpacket[s].num_channels = 2;
1161                }
1162                if (q->subpacket[s].samples_per_channel > 256) {
1163                    q->subpacket[s].log2_numvector_size  = 6;
1164                }
1165                if (q->subpacket[s].samples_per_channel > 512) {
1166                    q->subpacket[s].log2_numvector_size  = 7;
1167                }
1168                break;
1169            case MC_COOK:
1170                av_log(avctx,AV_LOG_DEBUG,"MULTI_CHANNEL\n");
1171                if(extradata_size >= 4)
1172                    channel_mask |= q->subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr);
1173
1174                if(cook_count_channels(q->subpacket[s].channel_mask) > 1){
1175                    q->subpacket[s].total_subbands = q->subpacket[s].subbands + q->subpacket[s].js_subband_start;
1176                    q->subpacket[s].joint_stereo = 1;
1177                    q->subpacket[s].num_channels = 2;
1178                    q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame >> 1;
1179
1180                    if (q->subpacket[s].samples_per_channel > 256) {
1181                        q->subpacket[s].log2_numvector_size  = 6;
1182                    }
1183                    if (q->subpacket[s].samples_per_channel > 512) {
1184                        q->subpacket[s].log2_numvector_size  = 7;
1185                    }
1186                }else
1187                    q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame;
1188
1189                break;
1190            default:
1191                av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
1192                return -1;
1193                break;
1194        }
1195
1196        if(s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
1197            av_log(avctx,AV_LOG_ERROR,"different number of samples per channel!\n");
1198            return -1;
1199        } else
1200            q->samples_per_channel = q->subpacket[0].samples_per_channel;
1201
1202
1203        /* Initialize variable relations */
1204        q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size);
1205
1206        /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1207        if (q->subpacket[s].total_subbands > 53) {
1208            av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
1209            return -1;
1210        }
1211
1212        if ((q->subpacket[s].js_vlc_bits > 6) || (q->subpacket[s].js_vlc_bits < 0)) {
1213            av_log(avctx,AV_LOG_ERROR,"js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q->subpacket[s].js_vlc_bits);
1214            return -1;
1215        }
1216
1217        if (q->subpacket[s].subbands > 50) {
1218            av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n");
1219            return -1;
1220        }
1221        q->subpacket[s].gains1.now      = q->subpacket[s].gain_1;
1222        q->subpacket[s].gains1.previous = q->subpacket[s].gain_2;
1223        q->subpacket[s].gains2.now      = q->subpacket[s].gain_3;
1224        q->subpacket[s].gains2.previous = q->subpacket[s].gain_4;
1225
1226        q->num_subpackets++;
1227        s++;
1228        if (s > MAX_SUBPACKETS) {
1229            av_log(avctx,AV_LOG_ERROR,"Too many subpackets > 5, report file!\n");
1230            return -1;
1231        }
1232    }
1233    /* Generate tables */
1234    init_pow2table();
1235    init_gain_table(q);
1236    init_cplscales_table(q);
1237
1238    if (init_cook_vlc_tables(q) != 0)
1239        return -1;
1240
1241
1242    if(avctx->block_align >= UINT_MAX/2)
1243        return -1;
1244
1245    /* Pad the databuffer with:
1246       DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1247       FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1248        q->decoded_bytes_buffer =
1249          av_mallocz(avctx->block_align
1250                     + DECODE_BYTES_PAD1(avctx->block_align)
1251                     + FF_INPUT_BUFFER_PADDING_SIZE);
1252    if (q->decoded_bytes_buffer == NULL)
1253        return -1;
1254
1255    /* Initialize transform. */
1256    if ( init_cook_mlt(q) != 0 )
1257        return -1;
1258
1259    /* Initialize COOK signal arithmetic handling */
1260    if (1) {
1261        q->scalar_dequant  = scalar_dequant_float;
1262        q->decouple        = decouple_float;
1263        q->imlt_window     = imlt_window_float;
1264        q->interpolate     = interpolate_float;
1265        q->saturate_output = saturate_output_float;
1266    }
1267
1268    /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1269    if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
1270    } else {
1271        av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel);
1272        return -1;
1273    }
1274
1275    avctx->sample_fmt = SAMPLE_FMT_S16;
1276    if (channel_mask)
1277        avctx->channel_layout = channel_mask;
1278    else
1279        avctx->channel_layout = (avctx->channels==2) ? CH_LAYOUT_STEREO : CH_LAYOUT_MONO;
1280
1281#ifdef COOKDEBUG
1282    dump_cook_context(q);
1283#endif
1284    return 0;
1285}
1286
1287
1288AVCodec cook_decoder =
1289{
1290    .name = "cook",
1291    .type = AVMEDIA_TYPE_AUDIO,
1292    .id = CODEC_ID_COOK,
1293    .priv_data_size = sizeof(COOKContext),
1294    .init = cook_decode_init,
1295    .close = cook_decode_close,
1296    .decode = cook_decode_frame,
1297    .long_name = NULL_IF_CONFIG_SMALL("COOK"),
1298};
1299